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1 Introduction

Exclusive electromagnetic processes involving heavy quarkonia are good probes of quarko-

nium production and decay mechanisms: the clean final states enable accurate measure-

ments [1, 2] and nonrelativistic effective field theories [3, 4] allow to express physical ob-

servables through systematic expansions and factorization formulas. Systematic expansions

guarantee a control over the accuracy of the theoretical expressions, and factorization casts

non perturbative contributions into few long-distance matrix elements (LDMEs). LDMEs

are eventually determined from data. Heavy quarkonium annihilations into light hadrons
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are similarly well under control from the theoretical side, but more difficult to determine

experimentally as contributions from decay channels into leptons, photons or heavy quarks

have to be subtracted from the total width. Heavy quarkonium production in hadron

collisions is challenging both theoretically and experimentally.

Heavy quarkonia, like charmonia and bottomonia, are nonrelativistic bound states of

a heavy quark and a heavy antiquark. Nonrelativistic effective field theories exploit the

typical hierarchy of energy scales characterizing such systems. The energy scales are the

heavy quark mass, m, the typical momentum and momentum transfer, mv, and the typical

kinetic energy, mv2, where v is the relative velocity of the heavy quark and antiquark.

Because v � 1, the above energy scales are hierarchically ordered. Reference values for v

are v2 ≈ 0.3 for charmonia and v2 ≈ 0.1 for bottomonia.

Nonrelativistic QCD (NRQCD) is the effective field theory, suited to describe states

made of a heavy quark and a heavy antiquark, that follows from QCD by integrating

out modes of energy and momentum of order m [3]. In NRQCD, heavy quarkonium

annihilation rates into photons, leptons or inclusive annihilation rates into light hadrons,

Γ, and exclusive electromagnetic production cross sections, σ, are expressed by sums of

products of NRQCD LDMEs, 〈On〉, with perturbative short distance coefficients, cn:

Γ/σ =
∑
n

cn(Γ/σ)

mdn−4
〈On〉, (1.1)

where dn is the mass dimension of the operator On. The short distance coefficients are

process dependent. The LDMEs depend on the quarkonium state, but not on the process.

Whereas the short distance coefficients can be computed as a series expansion in the strong

coupling constant αs, this is guaranteed by m� ΛQCD, the LDMEs are counted in powers

of v. In practice, the factorization formula is truncated at a desired order in αs and v. In

the case of decay widths, the short distance coefficients cn are dimensionless, while in the

case of exclusive electromagnetic production cross sections, they have mass dimension −3

and depend on m and on the center of mass energy of the collision,
√
s. The center of mass

energy is, besides the heavy quark mass, the other large scale in production processes.

The NRQCD factorization formulas for quarkonium inclusive annihilation widths into

light hadrons, electromagnetic annihilation widths and exclusive electromagnetic produc-

tion cross sections have been proved to all orders in the expansion parameters. Early

determinations of several of the short distance coefficients can be found in [3, 5, 6] and in

the review [7]. These have been constantly improved over the last years (see appendix B

and references therein).

The NRQCD LDMEs entering quarkonium annihilation and exclusive electromagnetic

production are expectation values of four-fermion operators on the quarkonium state. A

list of four-fermion operators relevant for the present work is in appendix A. One im-

portant feature of NRQCD is that the quarkonium state can contain contributions not

only from the leading color-singlet heavy quark-antiquark Fock state, but also from the

subleading Fock states that include effects of dynamical gluons. Because gluons carry

color, the heavy quark-antiquark pair in the subleading Fock states can be in a color octet

state. Hence, four-fermion operators projecting on color octet states contribute to the
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observables. Determinations of these contributions provide important verifications of the

NRQCD factorization formalism.

In order to make quantitative statements based on the NRQCD factorization formulas,

it is important to be able to determine the LDMEs. This is a difficult task in the standard

NRQCD approach, especially for the LDMEs of higher orders in v, which, as a result, are

poorly known. Also the power counting of the LDMEs is not unique as they depend on

several, still dynamical, energy scales: mv, mv2, the typical hadronic scale ΛQCD, . . . Disen-

tangling these energy scales in a suitable nonrelativistic effective field theory of lower energy

than NRQCD provides a way to simplify and in some cases compute the NRQCD LDMEs.

Potential NRQCD (pNRQCD) follows from NRQCD by integrating out modes associ-

ated with energy scales larger than mv2, regardless of these energy scales being perturbative

or non perturbative [8]. If all relevant energy scales are perturbative, the LDMEs can be

expressed in pNRQCD as series in αs [9]. If mv2 � ΛQCD, then the LDMEs are non

perturbative. In the non perturbative, confining, regime a heavy quark-antiquark pair

may bind into a quarkonium, i.e., a quark-antiquark pair in a color singlet configuration,

a hybrid, i.e., a quark-antiquark pair in a color octet configuration bound to gluons, a

quarkonium in the presence of glueballs, a tetraquark, i.e., a heavy quark-antiquark pair

bound in different combinations with a light quark-antiquark pair, and so on. We will

consider quarkonia that are well below the open flavor threshold, i.e., separated from it by

an energy gap of order ΛQCD or larger. Moreover, lattice computations suggest that the

quarkonium spectrum may be separated by an energy gap of order ΛQCD or larger from

the spectrum of hybrids and quarkonia plus glueballs [10–12]. The distribution of energy

levels would then be schematically the one shown in figure 1. If the kinematical condition

mv2 � ΛQCD is realized, the higher gluonic excitations can be integrated out, and this

leaves the quark-antiquark pair in a color singlet configuration as the only dynamical degree

of freedom. In this situation, the LDMEs can be factorized in a wavefunction contribution,

which encodes information from the quarkonium state, and some universal correlators of

gluon fields, which encode contributions coming from higher excitations of the heavy quark-

antiquark pair, those induced by gluons or light quarks and separated by an energy gap of

order ΛQCD from the quarkonium spectrum [13, 14]. The quarkonium wavefunction is ob-

tained by solving the Schrödinger equation that is the equation of motion of pNRQCD. The

quarkonium potential may be expressed in terms of Wilson loops and gluon field insertions

on it [15, 16]. It includes contributions coming from quarkonium modes of order mv and

from higher excitations of the heavy quark-antiquark pair induced by gluons or light quarks

and separated by an energy gap of order ΛQCD from the quarkonium spectrum. Under the

kinematical condition mv2 � ΛQCD, the potential is sensitive to distances of order 1/ΛQCD,

where it is non perturbative. Hence, quarkonium satisfying the condition mv2 � ΛQCD

is not a Coulombic bound state. To distinguish it from a Coulombic bound state, which

is weakly coupled, a non Coulombic quarkonium state is referred to as strongly coupled.

Moreover, pNRQCD in the regime mv2 � ΛQCD, is called strongly coupled pNRQCD.

In this work, we will focus on decay and exclusive electromagnetic production of

quarkonium states for which the condition mv2 � ΛQCD is fulfilled. Under this condi-

tion, we will use pNRQCD to express the LDMEs in terms of quarkonium wavefunctions,
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Figure 1. Schematic distribution of energy levels associated with a heavy quark-antiquark pair

and its first gluonic excitation with respect to the corresponding static potentials.

binding energies and gluonic correlators. Ideally the quarkonium wavefunctions and bind-

ing energies should be determined from the solution of the pNRQCD Schrödinger equation,

which requires knowing the quarkonium potential from lattice QCD. Also the gluonic cor-

relators should be computed on the lattice. In practice, however, due to the incomplete

knowledge of these quantities, wavefunctions and binding energies are determined using

potential models and the gluonic correlators from the data. Since the gluonic correlators

are non perturbative but universal quantities that do not depend on the heavy quark flavor,

the non perturbative parameters needed in pNRQCD are in general fewer than the LDMEs

needed in NRQCD. When applicable, the pNRQCD factorization formulas have, therefore,

more predictive power than the NRQCD ones.

The condition mv2 � ΛQCD is fulfilled by non Coulombic, strongly coupled, quarko-

nia.1 Charmonium and bottomonium states that are possibly non Coulombic bound states

are higher excited states whose principal quantum number is greater than one. These states

will be the subject of our phenomenological investigations in section 4.

The paper is organized in the following way. We start in section 2 by briefly reviewing

strongly coupled pNRQCD. In the following section 3, we compute in strongly coupled

pNRQCD the relevant LDMEs and give their explicit expressions in terms of quarkonium

wavefunctions, binding energies and gluonic correlators. Four-fermion operators are listed

in appendix A and NRQCD factorization formulas in appendix B. Details of the computa-

tion are in appendix C. Some of the results presented in section 3 correct previous findings of

ref. [14]. Using these results and after having determined the wavefunctions and binding en-

ergies in several potential models, we fit the unknown gluonic correlators and compute decay

widths and exclusive electromagnetic production cross sections for charmonium 1P states

and bottomonium 2S, 3S, 1P , 2P and 3P states in section 4. We conclude in section 5.

1The quark-antiquark potential is Coulombic under the condition mv2 & ΛQCD, in which case, v ∼ αs.
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2 Effective field theories for strongly coupled quarkonia

We compute the LDMEs of NRQCD assuming that the quarkonium states that we consider

are well below the open flavor threshold and satisfy the condition mv2 � ΛQCD. We further

assume that higher gluonic excitations of the heavy quark-antiquark pair are separated by

an energy gap of order ΛQCD or larger from the ground state; this assumption is supported

by lattice calculations that show the excitation spectrum of the gluon field around a static

quark-antiquark pair separated by a large energy gap from the ground state [10–12]. It fol-

lows that we can picture the distribution of the energy levels as illustrated in figure 1. Such

picture allows us to describe the quarkonium spectrum in an effective field theory where all

modes associated to the excitations of the heavy quark-antiquark pair induced by gluons or

light quarks and separated by an energy gap of order ΛQCD from the quarkonium spectrum

have been integrated out. This effective field theory is strongly coupled pNRQCD [4].

In strongly coupled pNRQCD, the quarkonium potential and the LDMEs are computed

by quantum mechanical perturbation theory, order by order in 1/m, around the NRQCD

static solution. Each power of 1/m is suppressed by v or ΛQCD/m. The computation

of the quarkonium potential in strongly coupled pNRQCD has been first performed in

refs. [15, 16], and the NRQCD LDMEs have been computed in refs. [13, 14, 17]. In this

section, we briefly review the formalism and compute the potentials relevant for the present

work. We compute the LDMEs in section 3.

2.1 NRQCD

The degrees of freedom of NRQCD are heavy quark and antiquark fields, ψ and χ, describ-

ing modes of energy and momentum smaller than m, gluons and light quarks. The NRQCD

Hamiltonian, HNRQCD, can be organized as an expansion in 1/m, so that HNRQCD =

H
(0)
NRQCD +H

(1)
NRQCD/m+ . . . , where

H
(0)
NRQCD =

1

2

∫
d3x (Ea ·Ea +Ba ·Ba)−

nf∑
k=1

∫
d3x q̄kiD · γqk, (2.1)

H
(1)
NRQCD = −1

2

∫
d3xψ†D2ψ − cF

2

∫
d3xψ†σ · gBψ

+
1

2

∫
d3xχ†D2χ+

cF
2

∫
d3xχ†σ · gBχ. (2.2)

Boldfaced characters indicate three-dimensional vectors. The fields ψ and χ respectively

annihilate a heavy quark and create a heavy antiquark, the fields qk are nf massless

quark fields, D = ∇ − igA is the gauge covariant derivative, Ei aT a = Ei = Gi0 and

Bi aT a = Bi = −εijkGjk/2 are the chromoelectric and chromomagnetic fields, respectively,

Gµν aT a = Gµν is the gluon field strength tensor, σi are the Pauli matrices and cF is a

short distance coefficient, which is known up to three loops [18]. The fields ψ and χ satisfy

the canonical equal time anticommutation relations: {ψα(x), ψ†β(y)} = {χα(x), χ†β(y)} =

δαβδ
(3)(x−y), {ψα(x), ψβ(y)} = {ψ†α(x), ψ†β(y)} = {χα(x), χβ(y)} = {χ†α(x), χ†β(y)} = 0.

The mass m is the heavy quark pole mass.
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We restrict ourselves to the one-quark-one-antiquark sector of the NRQCD Fock space,

where quarkonium states live. In this sector, we denote an energy eigenstate of the NRQCD

Hamiltonian by |n;x1,x2〉, where n represents a generic set of conserved quantum numbers,

and x1 and x2 are the positions of the quark and antiquark, respectively. The heavy quark

and antiquark positions are conserved quantum numbers in the static limit. We normalize

the states as 〈n;x1,x2|m;x′1,x
′
2〉 = δnmδ

(3)(x1 − x′1)δ(3)(x2 − x′2). The eigenstates satisfy

the Schrödinger equation:

HNRQCD|n;x1,x2〉 =

∫
d3x′1d

3x′2 |n;x′1,x
′
2〉En(x′1,x

′
2;∇′1,∇′2)δ(3)(x′1 − x1)δ(3)(x′2 − x2),

(2.3)

where ∇1 ≡∇x1 , ∇2 ≡∇x2 , ∇′1 ≡∇x′1
and ∇′2 ≡∇x′2

. The ground state, n = 0, is the

Fock state made of a heavy quark-antiquark pair without excitations induced by gluons or

light quarks and separated by an energy gap of order ΛQCD from the quarkonium spectrum;

other values of n identify heavy quark-antiquark pairs in the presence of such excitations.

The functions En are the corresponding energies. In the static limit the above equation

becomes

H
(0)
NRQCD|n;x1,x2〉(0) =

∫
d3x′1d

3x′2 |n;x′1,x
′
2〉(0)E(0)

n (x′1,x
′
2)δ(3)(x′1 − x1)δ(3)(x′2 − x2).

(2.4)

The static energies E
(0)
n depend only on the quark-antiquark distance, r = |x1 − x2|; E(0)

0

identifies the ground state static energy between a quark and antiquark in a color singlet

configuration, which is well approximated by a Cornell-like potential (see section 4.1), E
(0)
n

for n 6= 0 are the static energies of a quark-antiquark pair in the presence of the excitations

described above. The ground state energy and the first gluonic excitation are schematically

shown in figure 1. The eigenstates |n;x1,x2〉(0) are normalized as (0)〈n;x1,x2|m;x′1,x
′
2〉(0)

= δnmδ
(3)(x1 − x′1)δ(3)(x2 − x′2).

Having assumed that the gap between the lowest-lying energy, E
(0)
0 , and the higher

ones is of order ΛQCD � mv2, we can compute |0;x1,x2〉 by expanding in 1/m around the

static solution |0;x1,x2〉(0):

|0;x1,x2〉 = |0;x1,x2〉(0) +
1

m
|0;x1,x2〉(1) + . . . . (2.5)

Corrections are obtained from quantum mechanical perturbation theory applied to the

NRQCD Hamiltonian. In particular, |0;x1,x2〉(1), which is the correction to the eigenstate

at order 1/m, reads

|0;x1,x2〉(1) = −
∑
n 6=0

∫
d3x′1d

3x′2 |n;x′1,x
′
2〉(0)

(0)〈n;x′1,x
′
2|H

(1)
NRQCD|0;x1,x2〉(0)

E
(0)
n (x′1,x

′
2)− E(0)

0 (x1,x2)
, (2.6)

where H
(1)
NRQCD is given in eq. (2.2).

The explicit expression for the correction term |0;x1,x2〉(1) has been obtained in

refs. [15, 16]. Here, we briefly list the main ingredients to obtain it, as we will use them

to compute the LDMEs. In order to obtain |0;x1,x2〉(1), we need to evaluate the matrix

– 6 –
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elements (0)〈n;x′1,x
′
2|H

(1)
NRQCD|0;x1,x2〉(0). The first step is to make the quark content of

the eigenstates explicit:

|n;x1,x2〉(0) = ψ†(x1)χ(x2)|n;x1,x2〉(0), (2.7)

where |n;x1,x〉(0) encodes the light degrees of freedom content of |n;x1,x2〉(0). The states

|n;x1,x2〉(0) also diagonalize H(0):

H(0)|n;x1,x2〉(0) = |n;x1,x2〉(0)E(0)
n (x1,x2) . (2.8)

The states |n;x1,x2〉(0) do not contain heavy (anti)quarks, hence they are annihilated

by ψ and χ†. This implies the normalization (0)〈n;x1,x2|m;x1,x2〉(0) = δnm. Then,

the matrix elements (0)〈n; z1, z2|H(1)
NRQCD|0;x1,x2〉(0) can be computed by using Wick’s

theorem, which removes the quark and antiquark fields leaving delta functions that con-

strain x1 = x′1 and x2 = x′2. After the quark and antiquark fields have been removed in

this way, we can use the following shorthands without ambiguity: |n〉(0) ≡ |n;x1,x2〉(0),

E
(0)
n ≡ E

(0)
n (x1,x2), D1 ≡ D(x1), Dc2 ≡ Dc(x2), E1 ≡ E(x1), and E2 ≡ E(x2), where

Dc = ∇+ igAT is the charge conjugate of D. Finally, the following identities can be used

to simplify the matrix elements

(0)〈n|D1|n〉(0) = ∇1,
(0)〈n|Dc2|n〉(0) = ∇2, (2.9)

(0)〈n|gE1|n〉(0) = −
(
∇1E

(0)
n

)
, (0)〈n|gET

2 |n〉(0) =
(
∇2E

(0)
n

)
, (2.10)

and, for n 6= k,

(0)〈n|D1|k〉(0) =
(0)〈n|gE1|k〉(0)

E
(0)
n − E(0)

k

, (0)〈n|Dc2|k〉(0) = −
(0)〈n|gET

2 |k〉(0)

E
(0)
n − E(0)

k

. (2.11)

Equations (2.9) follows from symmetry considerations, and eqs. (2.10) and (2.11) may be

derived from canonical commutation relations [4, 15]. The parentheses on the right-hand

sides of eqs. (2.10) imply that the derivatives act only on E
(0)
n . These ingredients are

sufficient to derive the explicit expression of |0;x1,x2〉(1).

In this work, the state |0;x1,x2〉(1) will turn out to be relevant only for P -wave states.

For P -wave states only terms containing derivatives acting on the wavefunctions give

nonvanishing contributions. For our purposes it is sufficient, therefore, to isolate from

|0;x1,x2〉(1) only this part, which we denote with |0;x1,x2〉(1)
P -wave. Its explicit expression

reads

|0;x1,x2〉(1)
P -wave = −

∑
n 6=0

|n;x1,x2〉(0)

[
(0)〈n|gE1|0〉(0)

(E
(0)
0 − E(0)

n )2
·
←−
∇1 −

(0)〈n|gET
2 |0〉(0)

(E
(0)
0 − E(0)

n )2
·
←−
∇2

]
.

(2.12)

Also the energy eigenstate E0 of the NRQCD Hamiltonian can be organized as an

expansion in 1/m:

E0(x1,x2;∇1,∇2) = E
(0)
0 (x1,x2) +

1

m
E

(1)
0 (x1,x2;∇1,∇2) + . . . . (2.13)

– 7 –



J
H
E
P
0
4
(
2
0
2
0
)
0
9
5

Following [15, 16], the static energy E
(0)
0 can be identified with the exponential fall off at

large times of a rectangular Wilson loop:

E
(0)
0 (x1,x2) = lim

T→∞

i

T
ln〈Wr×T 〉, (2.14)

where r = x1 − x2 is the space extension and T is the time extension of the rectangular

Wilson loop Wr×T ; 〈· · · 〉 stands for the normalized QCD functional integral. The first

correction E
(1)
0 reads

E
(1)
0 (x1,x2;∇1,∇2) = −∇2

1

2
− ∇2

2

2
(2.15)

+
1

2

∑
n 6=0

∣∣∣∣∣ (0)〈n|gE1|0〉(0)

E
(0)
0 − E(0)

n

∣∣∣∣∣
2

+
1

2

∑
n 6=0

∣∣∣∣∣ (0)〈n|gET
2 |0〉(0)

E
(0)
0 − E(0)

n

∣∣∣∣∣
2

.

The second line of eq. (2.16) may be conveniently reexpressed in terms of functional inte-

grals of Wilson loop operators as

E
(1)
0 (x1,x2;∇1,∇2) = −∇2

1

2
−∇2

2

2
(2.16)

−
∫ ∞

0
dtt

[
〈gE1(t)·gE1(0)Wr×T 〉

〈Wr×T 〉
− 〈gE1(t)Wr×T 〉

〈Wr×T 〉
· 〈gE1(0)Wr×T 〉
〈Wr×T 〉

]
,

where 〈O1(2)(t)Wr×T 〉 means that the fields appearing on the left of Wr×T are inserted

at a time t on the quark (antiquark) line of the Wilson loop. The Wilson loop and field

insertions on it are traced in color space.

2.2 Strongly coupled pNRQCD

The degrees of freedom of strongly coupled pNRQCD, i.e., the degrees of freedom that

are resolved at an energy scale of order mv2 are only color singlet heavy quark-antiquark

pairs, if we neglect the interaction with light hadrons of energy and momentum of order

mv2 or smaller (these are the Goldstone bosons of the chiral symmetry, for a discussion

see ref. [14]). The reason is that, having assumed mv2 � ΛQCD, the scale mv2 is below

the confinement scale, ΛQCD. Hence, the pNRQCD Hamiltonian has the very simple form

HpNRQCD =

∫
d3x1d

3x2 S
† h(x1,x2;∇1,∇2)S , (2.17)

where S annihilates a color singlet heavy quark-antiquark field. It satisfies the canonical

equal time commutation relation: [S(x′1,x
′
2), S†(x1,x2)] = δ(x′1 − x1)δ(x′2 − x2).

Because of the assumed energy gap of order ΛQCD between the ground state and the

higher excitations of the heavy quark-antiquark pair, these have been integrated out when

matching to strongly coupled pNRQCD, whereas the NRQCD ground state, |0;x1,x2〉,
matches the pNRQCD state made of one color singlet heavy quark-antiquark pair, S†(x1,

x2)|vac〉. If we neglect light hadrons of energy and momentum of order mv2 or smaller,

then |vac〉 is the pNRQCD vacuum.
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The function h can be organized as an expansion in 1/m: h = h(0) + h(1)/m + . . . .

The terms h(0), h(1), . . . can be determined by matching h with the NRQCD ground state

energy order by order in 1/m:

h(0)(x1,x2) ≡ V (0)(x1,x2) = E
(0)
0 (x1,x2), (2.18)

h(1)(x1,x2;∇1,∇2) ≡ −∇2
1

2
− ∇2

2

2
+ V (1)(x1,x2) = E

(1)
0 (x1,x2;∇1,∇2), (2.19)

and so on. Also in this case, like in the NRQCD case, the mass m should be understood

as the heavy quark pole mass. The term h(0) is the static quark-antiquark potential V (0),

which, according to (2.14), can be determined from the large time behavior of the static

Wilson loop:

V (0)(x1,x2) = lim
T→∞

i

T
ln〈Wr×T 〉. (2.20)

The term h(1) contains the quark and antiquark kinetic energies, and the 1/m potential

V (1), which, according to (2.17), may be computed from a Wilson loop with two chromo-

electric field insertions:

V (1)(x1,x2) = −
∫ ∞

0
dt t

[
〈gE1(t) · gE1(0)Wr×T 〉

〈Wr×T 〉
− 〈gE1(t)Wr×T 〉

〈Wr×T 〉
· 〈gE1(0)Wr×T 〉

〈Wr×T 〉

]
.

(2.21)

The eigenstates of h are the solutions of the following Schrödinger equation in coordi-

nate space

h 〈R|P 〉 〈r|nJLS〉 = εnJLS 〈R|P 〉 〈r|nJLS〉 , (2.22)

where R = (x1 + x2)/2 is the center of mass coordinate, r = x1 − x2 is the quark-

antiquark distance, P is the center of mass momentum and εnJLS is the binding energy. The

states, |P 〉 |nJLS〉, are classified according to the center of mass momentum, the principal

quantum number, n, the total angular momentum, J , the orbital angular momentum, L,

and the spin, S. At leading order, h contains the kinetic energy, −∇2
1/(2m) −∇2

2/(2m),

and the static potential, V (0), which both count like mv2, as a consequence of the scale

hierarchy in a nonrelativistic bound state and the virial theorem.2 Also εnJLS is of order

mv2. For a strongly coupled bound state, the potential V (1)/m of eq. (2.21) can be of the

same order as the static potential if mv ∼ ΛQCD [15, 16]. Under this condition it should

be included in the leading order h. Whatever the specific regime that we are describing

is, the leading order potential is a central potential, i.e., it depends only on r = |x1 − x2|.
Hence, the leading order binding energy may be classified in terms of n and L only. The

corresponding Schrödinger equation reads

h(0) 〈R|P 〉 〈r|nJLS〉(0) = ε
(0)
nL 〈R|P 〉 〈r|nJLS〉

(0) , (2.23)

2The momenta −i∇1 and −i∇2 may be decomposed in a center of mass momentum and a relative

momentum: −i∇1 = −i∇r − i∇R/2 and −i∇2 = i∇r − i∇R/2. The relative momentum, −i∇r, scales

like mv, while the center of mass momentum, −i∇R, scales like the momentum of the dynamical low-energy

degrees of freedom of the effective theory. Hence, the center of mass momentum scales at most like mv2.

In the effective field theory of eq. (2.17) that does not contain dynamical low-energy degrees of freedom

besides the quark-antiquark color singlet, the reference frame may be always chosen so that the center of

mass momentum is set to zero. The kinetic energy entering the leading order pNRQCD Hamiltonian is,

therefore, only the kinetic energy associated with the relative momentum: −∇2
r/m.
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where h(0), ε
(0)
nL and |nJLS〉(0) are respectively h, the binding energy and the eigenstate at

leading order. The center of mass wavefunction is a plane wave: 〈R|P 〉 = exp(−iR · P ).

In summary, a generic strongly coupled quarkonium state |H〉 with quantum numbers

n, J , L and S and center of mass momentum P is described in pNRQCD by a state

1√
〈P = 0|P = 0〉

∫
d3x1d

3x2 〈R|P 〉 〈r|nJLS〉S†(x1,x2)|vac〉 . (2.24)

The wavefunction 〈R|P 〉 is equal to 1 in the center of mass frame, P = 0. The factor

1/
√
〈P = 0|P = 0〉 normalizes the state. The wavefunction 〈r|nJLS〉 is the solution of

the Schrödinger equation (2.22), whose static potential is given by (2.20), 1/m potential

by (2.21) and so on [16]. The field S†(x1,x2) creates a heavy quark-antiquark pair in a

color singlet configuration.

3 LDMEs

Four-fermion operators show up in NRQCD at order 1/m2 or higher. Some of them are

listed in appendix A. They match into contact terms of pNRQCD. The matching condition

reads

〈0;x1,x2|
∫
d3xOn(x)|0;x′1,x

′
2〉

= 〈vac|S(x1,x2)

∫
d3xd3y S†(x,y)[−V (dn−4)

On (x,y;∇x,∇y)]S(x,y)S†(x′1,x
′
2)|vac〉

= −V (dn−4)
On (x1,x2;∇1,∇2)δ(3)(x1 − x′1)δ(3)(x2 − x′2), (3.1)

where On is a four-fermion operator in the NRQCD Lagrangian, dn is its dimension and

V
(dn−4)
On is a dimension dn − 3 contact term, i.e., a function of δ3(r) or its derivatives.3

From eqs. (2.24) and (3.1) it follows that the LDME of a generic four-fermion operator

of the type listed in appendix A, which includes decay and exclusive electromagnetic pro-

duction LDMEs but excludes hadronic production LDMEs, for a strongly coupled quarko-

nium H of quantum numbers n, J , L and S, at rest (P = 0), can be expressed in strongly

coupled pNRQCD by means of the master formula [14]:

〈H|On|H〉 =
1

〈P = 0|P = 0〉

∫
d3x1d

3x2 d
3x′1d

3x′2 〈nJLS|r〉 (3.2)

×
[
− V (dn−4)

On (x1,x2;∇1,∇2)δ(3)(x1 − x′1)δ(3)(x2 − x′2)

]
〈r′|nJLS〉 ,

where r = x1 − x2 and r′ = x′1 − x′2.

3This is a generic feature that follows from the heavy quark and antiquark content of the state |0;x1,x2〉
and the structure of the four-fermion operator. For instance, for On(x) = ψ†Kχχ†Kψ we have

(0)〈0;x1,x2|
∫
d3xψ†(x)K(x,∇)χ(x)χ†(x)K(x,∇)ψ(x)|0;x′1,x

′
2〉(0)

=(0) 〈0;x1,x2|K(x1,∇1)δ(3)(x1 − x2)K(x1,∇1)|0;x1,x2〉(0)δ(3)(x1 − x′1)δ(3)(x2 − x′2) .

– 10 –



J
H
E
P
0
4
(
2
0
2
0
)
0
9
5

Because V
(dn−4)
On is a contact term, the wavefunctions 〈r|nJLS〉 and their derivatives

contribute to eq. (3.2) only at the origin r = r′ = 0. In the particular case of P -wave states,

since their wavefunctions vanish at the origin, the contact term V
(dn−4)
On must contain a suffi-

cient number of derivatives acting on the wavefunctions in order to give a nonvanishing con-

tribution. In appendix C we compute some relevant LDMEs in strongly coupled pNRQCD

from the master formula (3.2). The results are listed and discussed in the following section.

3.1 LDMEs in strongly coupled pNRQCD

The LDMEs appearing in the NRQCD factorization formulas for the quarkonium decay

widths and electromagnetic production cross sections, see appendix B, involve four-fermion

operators of the type listed in appendix A. These LDMEs can be evaluated from the master

formula (3.2), which holds when strongly coupled pNRQCD is valid, i.e., for quarkonium

states satisfying the condition mv2 � ΛQCD.

Equation (3.2) requires first the computation of the contact term V
(dn−4)
On from the

matching condition (3.1). This can be done straightforwardly using the same ingredients

listed in section 2.1. Eventually one gets V
(dn−4)
On as a function of δ(3)(r) or derivatives of

it multiplying matrix elements of gluonic fields computed in r = 0 (x1 = x2). These are,

for instance in the case of P -wave quarkonia, of the type

En
δij
3
≡ (−i)n+1n!

∑
k 6=0

(0)〈0|gEi|k〉(0)(0)〈k|gEj |0〉(0)

(E
(0)
k − E

(0)
0 )n+1

∣∣∣∣∣
x1=x2

. (3.3)

The chromoelectric fields are evaluated at the same location x1 = x2. The quantity En is a

gluonic matrix element that can be conveniently expressed in terms of a correlator of two

chromoelectric fields [14]:

En =
TF
Nc

∫ ∞
0

dt tn〈vac|gEi,a(t,0)Φab(t, 0)gEi,b(0,0)|vac〉, (3.4)

where Φab(t, 0) is a straight Wilson line in the adjoint representation connecting the points

(t,0) and (0,0) and TF = 1/2 is the normalization of the color matrices. The Wilson

line ensures the gauge invariance of En. We have used that |0〉(0)|x1=x2 = 1c|vac〉/
√
Nc,

1c being the SU(Nc) identity matrix and Nc = 3 the number of colors. Note that the

correlator 〈vac|gEi,a(t,0)Φab(t, 0)gEi,b(0,0)|vac〉 may be understood as the r → 0 limit of

a Wilson loop with two chromoelectric field insertions. As we have seen in section 2.2,

Wilson loops with field insertions are related to the quarkonium potential. We will exploit

this observation in the following.

The power counting of gluon field correlators and their time integrals is obvious, for

they depend on only one scale: ΛQCD. Hence they scale like ΛQCD to their dimension. For

instance, we have that En ∼ Λ3−n
QCD.

Once the relevant contact terms have been computed and expressed in terms of delta

functions at r = 0 and field strength correlators, eq. (3.2) allows to compute the LDMEs.

Because of the delta functions at r = 0 the LDMEs will depend on the wavefunction

〈r|nJLS〉 or its derivatives computed at the origin. If the four-fermion operator and/or
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corrections to the state (see eq. (2.12)) contain derivatives, one can generate Laplacian

operators acting on the wavefunction at the origin. Such terms can be rewritten in terms

of the binding energy of the state by using the Schrödinger equation (2.22):

∇2
r〈r|nJLS〉

∣∣
r=0

=
(
mV (0)(r) + V (1)(r) + . . .−mεnJLS

)
〈r|nJLS〉

∣∣∣
r=0

, (3.5)

where the dots stand for higher order terms in the 1/m expansion of h. In dimensional

regularization, V (0)(r = 0) vanishes as the static potential is purely perturbative at short

distances [19] (for a more recent analysis with the same conclusion see [20]) and, therefore,

its Fourier transform is scaleless. The situation is different for V (1)(r), which at r = 0

reduces to V (1)(r = 0) = −E1 (compare eq. (2.21) with eq. (3.4) in the r → 0 limit, taking

into account that 〈Wr×T 〉|r=0 = 1). Therefore we have in dimensional regularization

∇2
r〈r|nJLS〉

∣∣
r=0

= (−E1 + . . .−mεnJLS) 〈r = 0|nJLS〉. (3.6)

The first neglected correction in the right-hand side is suppressed by a factor of order

ΛQCD/m with respect to E1, which is of order Λ2
QCD. Equation (3.6) corrects an analogous

expression obtained and used in ref. [14], where the contribution from V (1)(r = 0) was set to

zero. We will show in section 3.1.2 how this modifies some of the LDMEs obtained in [14].

Note that, since mεnJLS is of order (mv)2, E1 is smaller than mεnJLS if mv � ΛQCD.

Therefore, one can neglect at leading order the term E1 in the right-hand side of (3.6), if

the examined quarkonium state fulfills the kinematical condition mv � ΛQCD � mv2.

After matching the contact terms, evaluating the LDMEs with the master formula (3.2)

and rewriting the Laplacian of the wavefunction by means of (3.6), the LDMEs are ex-

pressed in terms of the quarkonium wavefunctions at the origin, correlators of field strength

tensors and the quarkonium binding energies. Because the angular dependence of the

wavefunctions is know, we will use the radial parts of the wavefunctions, rather than the

wavefunctions. We will denote them with RnJLS(r) (R
(0)
nL(r) at leading order). We note

that the correlators of field strength tensors are universal non perturbative parameters,

since they do not depend neither on the heavy quark nor on the quarkonium state. Hence

they may be fixed on some set of observables and used in some other one, even involving

heavy quarks of different flavor. As it has been noted in ref. [14], this leads eventually to

a reduction in the number of non perturbative parameters needed to describe quarkonium

decay widths and electromagnetic production cross sections in strongly coupled pNRQCD

in comparison to the number of LDMEs required in NRQCD.

3.1.1 P -wave LDMEs

Here we list some relevant P -wave LDMEs computed in strongly coupled pNRQCD. We

consider a generic spin one quarkonium state that is a P -wave state with principal quantum

number n and total angular momentum J made of a heavy quark-antiquark pair of flavor

Q: χQJ(nP ).4 Details can be found in appendix C.

4Following the Particle Data Group notation [21], in the paper we will write χQJ((n − 1)P ) instead of

χQJ(nP ) when identifying a specific state, so that a 1P state (χcJ(1P ), χbJ(1P )) is a state with principal

quantum number 2, a 2P state (χcJ(2P ), χbJ(2P )) a state with principal quantum number 3 and so on.
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The hadronic LDME 〈χQJ(nP )|O1(3PJ)|χQJ(nP )〉 reads in pNRQCD at leading order

in the v and ΛQCD/m expansion:

〈χQJ(nP )|O1(3PJ)|χQJ(nP )〉 =
3Nc

2π
|R′nJ11(0)|2, (3.7)

where the hadronic operators O1(3PJ) have been defined in eqs. (A.18)–(A.20) and R′nJLS
stands for the derivative of RnJLS . We have computed the corresponding electromagnetic

LDME 〈χQJ(nP )|Oem
1 (3PJ)|χQJ(nP )〉 at next-to-leading order:

〈χQJ(nP )|Oem
1 (3PJ)|χQJ(nP )〉 =

3Nc

2π
|R′nJ11(0)|2

[
1 +

2

3

iE2

m
+O

(
v2
)]
, (3.8)

where the electromagnetic operators Oem
1 (3PJ) have been defined in eqs. (A.3)–(A.5). The

expressions (3.8) and (3.7) agree at leading order. The leading order expressions are known

since ref. [3]. Instead, the correction proportional to iE2/m in eq. (3.8) is new. This is the

dominant correction to the pure wavefunction contribution. It is of order ΛQCD/m. As we

detail in appendix C it originates from the 1/m correction to the quarkonium Fock state

given in eq. (2.12).

The electromagnetic LDME 〈χQJ(nP )|T em
8 (3PJ)|χQJ(nP )〉 reads in pNRQCD at lead-

ing order in the v and ΛQCD/m expansion:

〈χQJ(nP )|T em
8 (3PJ)|χQJ(nP )〉 =

3Nc

2π
|R′nJ11(0)|2 4

3

E1

m
, (3.9)

where the electromagnetic operators T em
8 (3PJ) have been defined in eqs. (A.11)–(A.13).

The result (3.9) agrees with the result of ref. [14] for the J = 0 case. Note that the

operator T em
8 (3PJ) has no overlap with the color singlet component of the heavy quark-

antiquark pair. Hence, the expression of its matrix element in terms of the quarkonium

wavefunction is a specific feature of strongly coupled pNRQCD: the above expression has

no equivalent in ref. [3].

The electromagnetic LDME 〈χQJ(nP )|Pem
1 (3PJ)|χQJ(nP )〉 reads in pNRQCD in di-

mensional regularization:

〈χQJ(nP )|Pem
1 (3PJ)|χQJ(nP )〉 =

3Nc

2π
|R′nJ11(0)|2

[
mε

(0)
n1 −

2

3
E1 +O

(
v3
)]
, (3.10)

where the electromagnetic operators Pem
1 (3PJ) have been defined in eqs. (A.8)–(A.10). The

term mε
(0)
n1 is of order (mv)2, while E1 is of order Λ2

QCD. The expression follows from having

used eq. (3.6). The result is new.

Since |R′nJLS(0)|2 = |R(0) ′
nL (0)|2(1 + O(v2)), the right-hand sides of eqs. (3.7)–(3.10)

are independent of J up to the computed corrections. This verifies the heavy-quark spin

symmetry. In particular, the symmetry is realized also for the octet matrix element (3.9).

3.1.2 S-wave LDMEs

The inclusion of the term E1 in eq. (3.6) modifies the expression of some of the S-wave

color singlet LDMEs computed in ref. [14]. The modification is relevant at relative order
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(ΛQCD/m)2. The corrected S-wave color singlet LDMEs read

〈VQ(nS)|O1(3S1)|VQ(nS)〉

=
Nc

2π
|Rn101(0)|2

[
1− ε

(0)
n0

m

2E3

9
− 2E1E3

9m2
+

2E(2,t)
3

3m2
+
c2
FB1

3m2
+O

(
v3
)]
, (3.11)

〈PQ(nS)|O1(1S0)|PQ(nS)〉

=
Nc

2π
|Rn000(0)|2

[
1− ε

(0)
n0

m

2E3

9
− 2E1E3

9m2
+

2E(2,t)
3

3m2
+
c2
FB1

m2
+O

(
v3
)]
, (3.12)

〈VQ(nS)|Oem
1 (3S1)|VQ(nS)〉

=
Nc

2π
|Rn101(0)|2

[
1− ε

(0)
n0

m

2E3

9
− 2E1E3

9m2
+

2E(2,em)
3

3m2
+
c2
FB1

3m2
+O

(
v3
)]
, (3.13)

〈PQ(nS)|Oem
1 (1S0)|PQ(nS)〉

=
Nc

2π
|Rn000(0)|2

[
1− ε

(0)
n0

m

2E3

9
− 2E1E3

9m2
+

2E(2,em)
3

3m2
+
c2
FB1

m2
+O

(
v3
)]
, (3.14)

〈VQ(nS)|P1(3S1)|VQ(nS)〉 = 〈PQ(nS)|P1(1S0)|PQ(nS)〉 = 〈VQ(nS)|Pem
1 (3S1)|VQ(nS)〉

= 〈PQ(nS)|Pem
1 (1S0)|PQ(nS)〉 =

Nc

2π
|R(0)

n0 (0)|2
[
mε

(0)
n0 +O

(
v3
)]
, (3.15)

where VQ(nS) (PQ(nS)) is an S-wave vector (pseudoscalar) quarkonium state made of a

heavy quark and antiquark of flavor Q. The operators O1(3S1), O1(1S0), Oem
1 (3S1) and

Oem
1 (1S0) can be found in eqs. (A.15), (A.14), (A.2) and (A.1), respectively. The operators

P1(3S1) and P1(1S0) are defined in eqs. (A.22) and (A.21), and the operators Pem
1 (3S1) and

Pem
1 (1S0) in eqs. (A.7) and (A.6). The correlator B1 is analogous to the correlator E1 but

with the chromoelectric fields replaced by chromomagnetic ones. The correlators E(2,em)
3

and E(2,t)
3 are four-chromoelectric field correlators of mass dimension two, whose definition

can be found in ref. [14] but is irrelevant for the present work.

The (leading order) binding energy ε
(0)
n0 scales like mv2, the correlator E3 is a scaleless

constant, whereas all other correlators in eqs. (3.11)–(3.15) scale like Λ2
QCD. Hence the

term proportional to the binding energy is the dominant correction in eqs. (3.11)–(3.14) if

the quarkonium state satisfies the condition mv � ΛQCD � mv2. All corrections are of

the same order if mv ∼ ΛQCD.

The inclusion of the term E1 in eq. (3.6) has modified eqs. (3.11)–(3.14) with respect

to ref. [14] by adding the term proportional to −2E1E3/(9m
2). This term is of order

(ΛQCD/m)2. It has also modified eq. (3.15). Differently from the version in ref. [14],

eq. (3.15) does not contain the term −Nc|R(0)
n0 (0)|2/(2π) E1.

We note that eqs. (3.11)–(3.14) are accurate up to relative order v2, hence also the

wavefunctions at the origin include corrections of relative order v2. These corrections dis-

tinguish the vector from the pseudoscalar radial wavefunctions. On the contrary, eq. (3.15)

is accurate only at leading order, hence the wavefunction appearing there needs not to be

more accurate than that. At leading order the radial parts of the vector and pseudoscalar

wavefunctions are equal.
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For completeness we reproduce here also the S-wave color octet LDMEs of the op-

erators O8(1S0) and O8(3S1), defined in eqs. (A.16) and (A.17) respectively, and of the

operators O8(3PJ) and O8(1P1), defined in eqs. (A.24)–(A.26) and (A.23) respectively,

computed in ref. [14]

〈VQ(nS)|O8(1S0)|VQ(nS)〉 =
〈PQ(nS)|O8(3S1)|PQ(nS)〉

3

=
Nc

2π
|R(0)

n0 (0)|2
[
−

(Nc/2− CF )c2
FB1

3m2

]
, (3.16)

〈VQ(nS)|O8(3PJ)|VQ(nS)〉 =
〈PQ(nS)|O8(1P1)|PQ(nS)〉

3

= (2J + 1)
Nc

2π
|R(0)

n0 (0)|2
[
−(Nc/2− CF )E1

9

]
, (3.17)

where CF = (N2
c − 1)/(2Nc) = 4/3. These relations are valid at leading order in the

velocity and ΛQCD/m expansion.

3.2 Gremm-Kapustin relations

The NRQCD equations of motion imply that some LDMEs are related at leading order

in the velocity expansion. These relations are often referred to as Gremm-Kapustin rela-

tions [22]. Over the years, following the same method, more relations have been derived,

see, for instance, refs. [23–25].

The Gremm-Kapustin relations are automatically satisfied by the expressions of the

LDMEs derived in strongly coupled pNRQCD in sections 3.1.1 and 3.1.2. The reason is

that at the level of pNRQCD the information encoded in the equations of motion has been

implemented through the Schrödinger equation, or, more specifically through eq. (3.6).

In particular, for electromagnetic P -wave LDMEs, from eqs. (3.8), (3.9) and (3.10) it

follows that

〈χQJ(nP )|Pem
1 (3PJ)|χQJ(nP )〉 = mε

(0)
n1 〈χQJ(nP )|Oem

1 (3PJ)|χQJ(nP )〉

−m
2
〈χQJ(nP )|T em

8 (3PJ)|χQJ(nP )〉. (3.18)

This relation was first derived in ref. [23]. According to the expressions of the LDMEs in

strongly coupled pNRQCD, it holds at the orders |R′nJ11(0)|2 × (mv)2 and |R′nJ11(0)|2 ×
Λ2

QCD. This is the leading order if mv ∼ ΛQCD, but goes beyond it if mv � ΛQCD � mv2.

For S-wave LDMEs, from eqs. (3.11)–(3.15) it follows that at leading order in both

regimes, mv ∼ ΛQCD and mv � ΛQCD � mv2,

〈VQ(nS)|P1(3S1)|VQ(nS)〉
〈VQ(nS)|O1(3S1)|VQ(nS)〉

=
〈PQ(nS)|P1(1S0)|PQ(nS)〉
〈PQ(nS)|O1(1S0)|PQ(nS)〉

(3.19)

=
〈VQ(nS)|Pem

1 (3S1)|VQ(nS)〉
〈VQ(nS)|Oem

1 (3S1)|VQ(nS)〉
=
〈PQ(nS)|Pem

1 (1S0)|PQ(nS)〉
〈PQ(nS)|Oem

1 (1S0)|PQ(nS)〉
= mε

(0)
n0 .

This relation was first derived in ref. [22]. We note that ref. [14] could reproduce this

relation only in the regime mv � ΛQCD � mv2.
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4 Fits, analyses and results

We apply now the pNRQCD factorization of the LDMEs computed in the previous sec-

tion to the analysis of some quarkonium decay and production observables, in particular

electromagnetic ones. The strategy that we will pursue is the following: first we deter-

mine the quarkonium wavefunctions and binding energies by means of models, then we fit

the relevant chromoelectric field correlators on charmonium data and finally we compute

the observables. Because the correlators are universal we are in the position to predict

observables in the bottomonium sector.

We focus on two sets of observables that depend on two distinct sets of correlators. In

the first part of the section, we compute quarkonium P -wave electromagnetic decay widths

and production cross sections. In the second part, we analyze quarkonium P -wave widths

for inclusive decays into light hadrons, and bottomonium S-wave widths for decays into

lepton pairs. We use the strongly coupled pNRQCD factorization formulas in their regime

of validity, i.e., for non Coulombic quarkonium states. For this reason we limit ourselves

to states with principal quantum number greater than one.

The section is organized as follows. In section 4.1 we establish some reasonable val-

ues for the quarkonium wavefunctions at the origin and the binding energies by com-

paring several potential models. In section 4.2 we fit the correlators E1 and iE2 on the

P -wave charmonium electromagnetic decay widths and the recently measured cross sec-

tion σ(e+e− → χc1(1P ) + γ). We also compute these quantities within our framework. In

section 4.3, we compute the P -wave bottomonium electromagnetic decay widths and elec-

tromagnetic cross sections from the determined correlators. In section 4.4, we compute the

P -wave charmonium widths for inclusive decays into light hadrons and fit the correlator E3.

We also compute with this information P -wave bottomonium widths for inclusive decays

into light hadrons. Finally, in section 4.5, we use the determination of the correlator E3 to

compute, under some assumptions, the leptonic decay widths of the bottomonium S-wave

states Υ(2S) and Υ(3S).

4.1 Potential models

The first ingredients entering the LDMEs are the quarkonium wavefunctions at the origin

and the binding energies. In particular the wavefunctions at the origin are very important

as they affect all LDMEs in the pNRQCD formulation and contribute to widths and cross

sections at leading order. The uncertainty of the wavefunction at the origin is typically the

major source of uncertainty for these observables.

Ideally, quarkonium wavefunctions and binding energies should follow from the solution

of the Schrödinger equation (2.22) with the potentials computed within lattice QCD from

the corresponding Wilson loops, like the one in eq. (2.20) for the static potential or the one

in eq. (2.21) for the 1/m potential. The knowledge of the lattice potentials beyond the static

one is, however, incomplete and sometimes poor [26–28]. In practice, therefore, one uses

potential models, with the idea that tuning the potential model parameters on some observ-

ables may provide enough input to mimic the full real dynamics, the one that lattice compu-

tations are not yet in the position to provide. Clearly, the use of potential models introduces
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Potential model A B C D

|R(0) ′
21 (0)|2 (GeV5) 0.131 0.1296 0.075 0.0682

ε
(0)
21 (GeV) 0.68591 0.68764 0.55219 0.72544

∆LS(1P ) 0.0164 0.0167 0.0190 0.0216

Table 1. For the four potential models described in the text, we list the squared derivative of

the radial wavefunction at the origin, |R(0) ′
21 (0)|2, the binding energy, ε

(0)
21 , and the spin-dependent

correction defined in eq. (4.2), ∆LS(1P ), of the charmonium 1P state.

possibly large and, to some extent, uncontrolled uncertainties. Nevertheless, it has also

proved to be successful in many cases, besides being the only available solution at present.

We employ four different potential models to compute wavefunctions at the origin and

binding energies for charmonium states. We label these potential models A, B, C, and D.

A common feature of them is that they reduce to a liner rising potential at long distances.

Model A is the Cornell potential model of refs. [29, 30], where V (0)(r) = −κ/r + σr,

with κ = 0.52 and σ = 0.1826 GeV2; σ may be identified with a string tension. In this

model, the charm and bottom quark mass parameters are taken to be mc = 1.84 GeV and

mb = 5.18 GeV, respectively.

Model B is the frozen αs model of refs. [31, 32]. It is similar to model A, except that

now κ depends on r. The r-dependent values of κ are tabulated in ref. [31].

Model C is the Buchmüller-Tye potential model [33]. Here the charm and bottom

quark mass parameters are taken to be mc = 1.48 GeV and mb = 4.88 GeV, respectively.

Model D is the Cornell potential model in the version of ref. [34]. In this version, the

parameters are set to be κ = 0.538, σ = 0.1682 GeV2 and mc = 1.44 GeV in order to repro-

duce the mass difference of the J/ψ and ψ(2S), and the leptonic width of the J/ψ. Similarly,

the bottom quark mass parameter is taken to be mb = 3.98 GeV in order to reproduce the

mass difference of the Υ(1S) and Υ(2S), and the leptonic width of the Υ(3S) [35].

We have determined from these potential models the binding energy, ε
(0)
21 , and squared

derivative of the radial wavefunction at the origin, |R(0) ′
21 (0)|2, at leading order in v for

charmonium 1P states. They are listed in table 1. The values of |R(0) ′
21 (0)|2 for the models

A, B, and C are taken from refs. [30, 32].

Furthermore, we have used models A, B, C, and D to compute the wavefunctions at

the origin and binding energies of some nP bottomonium states. The results are listed in

table 2. The values of the squared derivatives of the radial wavefunctions at the origin for

the models A, B and C are taken from refs. [30, 32]. For bottomonium we employ also a

potential model E.

Model E is similar to model D. The only difference is that we take κ = 0.508 and

mb = 4.68 GeV so to reproduce the mass difference of the Υ(2S) and Υ(3S), and the

leptonic width of the Υ(3S) in the calculation of section 4.5.

In order to compute electromagnetic decay widths and production cross sections of

P -wave quarkonia at relative order v2, we would need to include also order v2 corrections

to the wavefunctions at the origin. Since the model dependence of the values of |R(0) ′
n1 (0)|2
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Potential model A B C D E

|R(0) ′
21 (0)|2 (GeV5) 2.067 1.6057 1.417 0.932 1.342

ε
(0)
21 (GeV) 0.32792 0.33804 0.13173 0.3763 0.33133

∆LS(1P ) 0.00379 0.00390 0.00347 0.00522 0.00417

|R(0) ′
31 (0)|2 (GeV5) 2.440 1.8240 1.653 1.147 1.624

ε
(0)
31 (GeV) 0.68206 0.68956 0.49168 0.7321 0.68264

∆LS(2P ) 0.00286 0.00302 0.00269 0.00397 0.00316

|R(0) ′
41 (0)|2 (GeV5) 2.700 1.9804 1.794 1.296 1.817

ε
(0)
41 (GeV) 0.96466 0.97115 0.76921 1.01933 0.95681

∆LS(3P ) 0.00233 0.00250 0.00222 0.00325 0.00258

Table 2. Similar to table 1 but for bottomonium nP states. In the bottomonium case, we also

consider the model E described in the text.

that we employ exceeds v2, their inclusion would not improve, however, the accuracy of the

model determinations. Hence, we account for the order v2 corrections to the wavefunctions

at the origin only in our final error budget. The sole corrections that we add explicitly are

those that depend on the total angular momentum, since they contribute to distinguish

between decay and production of χQJ(nP ) states with different J . Nevertheless, also in this

case the corrections are smaller than the systematic uncertainty due to the models. The

total angular momentum corrections originate from one single 1/m2 spin-orbit potential,

V
(2)
LS /m

2. In the short range, this potential generates corrections to the wavefunction at

the origin of relative order α2
s that are divergent. The renormalization of these divergences

requires introducing order α2
s short distance coefficients for P -wave quarkonium production

and decay processes. Since these are unknown at present, in this work we will not include

corrections due to the short distance part of the spin-orbit potential. In the long range,

the behavior of the spin-orbit potential is entirely described by the string tension σ and

fixed by Lorentz symmetry [36, 37]. This behavior is confirmed by lattice calculations [27].

The spin-orbit potential in the long range reads:

V
(2)
LS = − σ

2r
L · S, (4.1)

where L and S are the total orbital angular momentum and spin, respectively. For P -wave

spin-triplet states, the corrections to |R(0) ′
n1 (0)|2 from V

(2)
LS /m

2 have the following form

|R′nJ11(0)|2 = |R(0)
n1
′(0)|2

[
1 +

(
3

2
J(J + 1)− 6

)
∆LS(nP )

]
, (4.2)

where ∆LS(nP ) depends on the radial excitation. We have listed the values of ∆LS(nP )

in the different models for the charmonium 1P state in table 1, and for the bottomonium

1P , 2P , and 3P states in table 2. We see explicitly that the correction induced by the

spin-orbit potential is smaller than the intrinsic potential model uncertainty, which we

infer from the spread of the different wavefunction determinations. Finally, we observe
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Potential model A B C D E

|R(0)
20 (0)|2 (GeV3) 5.668 2.8974 3.234 3.47 4.36

ε
(0)
20 (GeV) 0.421 0.463 0.258 0.478 0.435

|R(0)
30 (0)|2 (GeV3) 4.271 2.2496 2.474 2.67 3.32

ε
(0)
30 (GeV) 0.767 0.795 0.597 0.823 0.767

Table 3. For the five potential models described in the text, we list the squared radial wavefunctions

at the origin, |R(0)
n0 (0)|2, and the binding energies, ε

(0)
n0 , of the bottomonium 2S and 3S states.

that uncalculated corrections of relative order v2 coming from the quantum-mechanical

1/m expansion of the quarkonium Fock state, in particular for the LDME of eq. (3.8),

can be spin and angular momentum dependent as well. These uncalculated corrections

are included in the error budget of the LDME, although the tuning of the potential model

parameters may effectively reduce their size.

With the same five potential models described above we have also determined at leading

order in v the squared radial wavefunctions at the origin and the binding energies of the

2S and 3S bottomonium states. The results are listed in table 3. The values of the

wavefunctions at the origin for the models A, B, and C are taken from refs. [30, 32].

4.2 P -wave charmonium electromagnetic decay and production

In this section, we compute the charmonium decay widths Γ(χcJ(1P )→ γγ) and the cross

sections σ(e+e− → χcJ(1P )+γ) using the NRQCD factorization formulas (B.4) and (B.19),

which are valid up to order v2, and rewriting the LDMEs according to the strongly coupled

pNRQCD factorization formulas (3.8)–(3.10). We determine the gluonic correlators E1 and

iE2 by fitting the available data.

The experimental inputs that we use are the χc0(1P ) and χc2(1P ) two photon decay

widths and the cross section σ(e+e− → χc1(1P ) + γ). The BESIII measurements for the

former give [38]

Γ(χc0(1P )→ γγ)
∣∣
BESIII

= 2.33± 0.20± 0.22 keV , (4.3)

Γ(χc2(1P )→ γγ)
∣∣
BESIII

= 0.63± 0.04± 0.06 keV . (4.4)

For the latter, very recently Belle has observed the process e+e− → χc1(1P ) + γ and

measured at
√
s = 10.6 GeV [39]

σ(e+e− → χc1(1P ) + γ)
∣∣
Belle

= 17.3+4.2
−3.9 ± 1.7 fb . (4.5)

From the theoretical side, rather than using the NRQCD factorization formulas for

electromagnetic processes in their original form (see appendix B) we prefer using NRQCD

factorization formulas at the amplitude level. So that the matching, the velocity expansion

and the power counting are done for the amplitudes rather than for the decay widths or

cross sections. In practice, one moves from the original factorization formulas to the ones

– 19 –



J
H
E
P
0
4
(
2
0
2
0
)
0
9
5

at the amplitude level through replacements of the type

〈H|ψ†Kχ|vac〉〈vac|χ†Kψ|H〉
(

1 + cNLOαs

π
+ . . .

)
→
∣∣∣∣〈H|ψ†Kχ|vac〉

(
1 +

cNLO

2

αs

π
+ . . .

)∣∣∣∣2 . (4.6)

The advantage is that in this way, without losing any systematicity, one is effectively

including some potentially large contributions of order v4, αsv
2 and α2

s in the expressions

of the observables. Moreover, we replace the uncertain heavy quark pole mass with the

spin average of the masses of the P states. This is defined in the case of charmonium 1P

states as

M1Pc =
Mhc(1P ) +Mχc0(1P ) + 3Mχc1(1P ) + 5Mχc2(1P )

10
. (4.7)

We take the 1P charmonium masses from ref. [21]. At our accuracy it is sufficient to use

the following relation between M1Pc and the charm pole mass mc:

M1Pc = 2mc + ε
(0)
21 , (4.8)

which is valid up to order v2. Afterwards we expand in powers of the binding energy up

to relative order v2 accuracy in the amplitude. Eventually, the theoretical expressions for

the two photon decay widths that we use in the numerical analyses are

Γ(χc0(1P )→ γγ) =
96πe4

cα
2

M4
1Pc

3Nc

2π
|R′n011(0)|2

[
1 +

3π2 − 28

24
CF

αs

π

− ε
(0)
21

3M1Pc

+
16E1

9M2
1Pc

+
2

3

iE2

M1Pc

]2

, (4.9)

Γ(χc2(1P )→ γγ) =
128πe4

cα
2

5M4
1Pc

3Nc

2π
|R′n211(0)|2

[
1− 2CF

αs

π

+
8E1

3M2
1Pc

+
2

3

iE2

M1Pc

]2

, (4.10)

where ec = 2/3. Note that Γ(χc2(1P ) → γγ) does not depend explicitly on the binding

energy ε
(0)
21 . Similarly, the expression for the cross sections σ(e+e− → χcJ(1P ) + γ) at the

center of mass energy
√
s that we use is

σ(e+e−→χcJ(1P )+γ) =σ
(0)
cJ

(
M1Pc

2
,s,r

)
3Nc

2π
|R′nJ11(0)|2

[
1+

c
(O1)NLO
J (r)

2

αs

π
(4.11)

+
3ε

(0)
21

2M1Pc

+
2iE2

3M1Pc

+
c

(T )
J (r)

2

16E1

3M2
1Pc

+
c

(P )
J (r)

2

(
2ε

(0)
21

M1Pc

− 8E1

3M2
1Pc

)]2
∣∣∣∣∣∣
r=(M1Pc−ε

(0)
21 )2/s

.

The factor σ
(0)
cJ has been defined in eqs. (B.20)–(B.22), and c

(O1)NLO
J , c

(T )
J and c

(P )
J in

eqs. (B.23)–(B.31).
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Potential model A B C D

E1 (GeV2) −0.06± 0.75 −0.07± 0.76 −0.34± 1.00 −0.33± 1.08

iE2 (GeV) −0.09± 0.72 −0.06± 0.72 1.49± 0.94 1.75± 1.01

Table 4. Results of the fit of the gluonic correlators E1 and iE2, when the wavefunctions and

binding energies are computed within the potential models described in section 4.1.

In eqs. (4.9)–(4.11) the corrections proportional to αs come from the short distance

coefficients. Hence αs should be understood as evaluated at a high energy scale and count-

ing parametrically like a v2 correction in the velocity expansion. For the decay widths, we

use αs = 0.282, which is evaluated at the scale M1Pc/2, and α = 1/137 reflecting the fact

that the photons in the final state are on-shell. For the cross section at
√
s = 10.6 GeV,

we evaluate αs at the scale
√
s/2 and take αs = 0.200. Of the fine structure constants ap-

pearing in eqs. (B.20)–(B.22), two originate from the virtual production mechanism, and

are evaluated at virtuality
√
s, and one originates from the real photon emission, and is

evaluated at zero virtuality. For α at the scale
√
s we take α = 1/131, while for α at zero

virtuality we take α = 1/137. In the fit, we take the uncertainties in the decay rates and

in the cross section to be 0.3 times the central values, for the order v2 corrections that

we have not included, and α2
s times the central values, for the uncalculated corrections of

higher orders in αs. We also add the experimental errors.

We determine E1 and iE2 by a least squares fit. The results for E1 and iE2, when wave-

functions and binding energies are computed by means of the potential models described

in section 4.1, are shown in table 4. The errors include the theoretical errors due to higher

order corrections in v2 and αs as described above, and the experimental errors in the data.

Taking the averages over the different models, we get

E1 = −0.20+0.14
−0.14 ± 0.90 GeV2 , (4.12)

iE2 = 0.77+0.98
−0.86 ± 0.85 GeV , (4.13)

where the first uncertainty comes from the potential model dependence and the second one

is the average of the uncertainties in each potential model determination. The correlators

E1 and iE2 have a size that is consistent, within uncertainties, with their naive scaling in

powers of ΛQCD. The uncertainties are, however, large, reflecting the large uncertainty

carried by the potential models. Vanishing small correlators are also consistent with our

determinations.

One may wonder if it would not be possible to fit also the quarkonium wavefunctions

eliminating in this way a major source of uncertainty. For the considered observables, see

eqs. (4.9)–(4.11), it is not possible to disentangle the contribution of the wavefunction from

the one of the correlator iE2. Hence, a fit would be able to determine a combination of

the wavefunction and iE2, but not each of the two. Since in section 4.3 we aim at making

some predictions for P -wave bottomonium electromagnetic decay and production, we have

chosen to add the information on the wavefunction coming from potential models and gain

some insight in the universal correlator iE2.
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Potential model A B C D

〈Oem
1 (3P0)〉χc0 (GeV5) 0.163± 0.046 0.163± 0.046 0.149± 0.034 0.141± 0.032

〈Oem
1 (3P1)〉χc1 (GeV5) 0.172± 0.048 0.172± 0.048 0.158± 0.036 0.152± 0.035

〈Oem
1 (3P2)〉χc2 (GeV5) 0.190± 0.053 0.190± 0.053 0.177± 0.040 0.173± 0.040

〈T em
8 (3PJ)〉χcJ (GeV6) −0.009± 0.107 −0.009± 0.106 −0.028± 0.081 −0.024± 0.080

〈Pem
1 (3PJ)〉χcJ (GeV7) 0.235± 0.094 0.233± 0.094 0.129± 0.071 0.146± 0.070

Table 5. The LDMEs 〈χcJ (1P )|Oem
1 (3PJ)|χcJ (1P )〉 (〈Oem

1 (3PJ)〉χcJ
for short), 〈χcJ (1P )|

T em
8 (3PJ) |χcJ (1P )〉 (〈T em

8 (3PJ)〉χcJ
for short) and 〈χcJ (1P )|Pem

1 (3PJ)|χcJ (1P ) (〈Pem
1 (3PJ)〉χcJ

for short) obtained from our numerical analysis within the potential models of section 4.1.

The correlators undergo renormalization and therefore depend on a subtraction scheme

and a renormalization scale. The considered observables, at their present accuracy, are how-

ever insensitive to the renormalization of E1 and iE2, and, in particular, they are insensitive

to the renormalization scale of the correlators. We may reasonably expect that the obtained

values refer to a renormalization scale that is of the order of the typical hadronic scale, but

at this point further specifications are not possible. In section 4.4, we will see instead a

case where the observable is sensitive to the renormalization of the involved correlator, so

that a proper renormalization scale can be fixed, at least at leading logarithmic accuracy.

Combining the values of E1 and iE2 with the potential model calculations of the wave-

functions and binding energies in table 1, we obtain the χcJ(1P ) LDMEs listed in table 5,

whose errors are due to the uncertainties in the correlators E1 and iE2. Here and in the

following we take into account that the uncertainties in E1 and iE2 are correlated. The

averages read

〈χc0(1P )|Oem
1 (3P0)|χc0(1P )〉 = 0.154+0.009

−0.013 ± 0.039 GeV5, (4.14)

〈χc1(1P )|Oem
1 (3P1)|χc1(1P )〉 = 0.164+0.009

−0.012 ± 0.042 GeV5, (4.15)

〈χc2(1P )|Oem
1 (3P2)|χc2(1P )〉 = 0.183+0.008

−0.010 ± 0.047 GeV5, (4.16)

〈χcJ(1P )|T em
8 (3PJ)|χcJ(1P )〉 = −0.017+0.009

−0.010 ± 0.094 GeV6, (4.17)

〈χcJ(1P )|Pem
1 (3PJ)|χcJ(1P )〉 = 0.186+0.049

−0.057 ± 0.082 GeV7, (4.18)

where the first uncertainties come from the potential model dependence and the second

ones from the uncertainties in E1 and iE2. In 〈χcJ(1P )| T em
8 (3PJ) |χcJ(1P )〉 and 〈χcJ(1P )|

Pem
1 (3PJ) |χcJ(1P )〉, we have ignored the total angular momentum dependent corrections

to the wavefunction at the origin, because they are of higher order in v. The obtained

value for the octet LDME is compatible with zero.

The above values for 〈χcJ(1P )| Oem
1 (3PJ) |χcJ(1P )〉 are consistent with the determi-

nation in [40], which uses a model very close to our model C, where the authors obtain

〈χcJ(1P )|Oem
1 (3PJ)|χcJ(1P )〉 = 0.107 ± 0.032 GeV5. The values for 〈χcJ(1P )| T em

8 (3PJ)

|χcJ(1P )〉 and 〈χcJ(1P )| Pem
1 (3PJ) |χcJ(1P )〉 are consistent, within errors, with the ones

obtained in [25]: 〈χcJ(1P )| T em
8 (3PJ) |χcJ(1P )〉 = 0.045± 0.052± 0.014± 0.039 GeV6 and

〈χcJ(1P )| Pem
1 (3PJ) |χcJ(1P )〉 = 0.058± 0.074± 0.086± 0.033 GeV7.
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Potential model A B C D

Γγγχc0(1P ) (keV) 2.92± 0.54 2.91± 0.54 2.76± 0.52 2.62± 0.50

Γγγχc2(1P ) (keV) 0.58± 0.16 0.58± 0.16 0.58± 0.16 0.59± 0.17

Table 6. Results for the two photon decay widths of the states χc0(1P ) and χc2(1P ), indicated

with Γγγχc0(1P ) and Γγγχc2(1P ) for short, for each of the potential models of section 4.1.

Potential model A B C D

σ(e+e− → χc0(1P ) + γ) (fb) 2.10± 0.80 2.08± 0.80 1.58± 0.71 1.62± 0.71

σ(e+e− → χc1(1P ) + γ) (fb) 16.2± 6.3 16.2± 6.3 16.4± 6.4 16.6± 6.4

σ(e+e− → χc2(1P ) + γ) (fb) 3.19± 1.97 3.22± 1.98 4.18± 2.29 4.42± 2.39

Table 7. Results for the cross sections σ(e+e− → χcJ (1P ) +γ) at
√
s = 10.6 GeV for the potential

models described in section 4.1.

The results for the two photon decay widths of the charmonium P -wave states χc0(1P )

and χc2(1P ) for each potential model determination of the wavefunction and binding energy

are listed in table 6. The errors are due to the uncertainties in the correlators E1 and iE2.

The averages of these determinations read

Γ(χc0(1P )→ γγ) = 2.80+0.12
−0.19 ± 0.52 keV , (4.19)

Γ(χc2(1P )→ γγ) = 0.58+0.01
−0.00 ± 0.16 keV , (4.20)

where the first uncertainty comes from the potential model dependence and the second one

is the average of the uncertainties from each potential model.

The determined values of E1 and iE2 allow us to make predictions for the cross sections

σ(e+e− → χcJ(1P ) + γ). In table 7, we list for each potential model the results at
√
s =

10.6 GeV. The uncertainties in table 7 are computed from the uncertainties of E1 and iE2,

which already account for the uncertainties originating from the missing corrections of

relative order v2 and α2
s, and from adding in quadrature the uncertainty that comes from

varying αs between αs(
√
s) = 0.171 and αs(

√
s/4) = 0.245. From the averages of the

results in table 7 we obtain

σ(e+e− → χc0(1P ) + γ) = 1.84+0.25
−0.26 ± 0.76 fb , (4.21)

σ(e+e− → χc1(1P ) + γ) = 16.4+0.2
−0.2 ± 6.4 fb , (4.22)

σ(e+e− → χc2(1P ) + γ) = 3.75+0.67
−0.56 ± 2.16 fb , (4.23)

where the first uncertainty is from the model dependence and the second one is the average

of the uncertainties in table 7. The obtained cross sections are consistent, inside errors,

with the results of ref. [25].

It is worthwhile emphasizing that, although the measured two photon decay widths of

the χc0(1P ) and χc2(1P ) states and the cross section σ(e+e− → χc1(1P ) + γ) have been

used as an experimental input, the theoretical results for these quantities, eqs. (4.19), (4.20)
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Potential model A B C D E

Γγγχb0(1P ) (eV) 58.3± 7.8 45.5± 6.1 49.1± 7.0 32.6± 4.7 47.3± 6.9

Γγγχb2(1P ) (eV) 11.2± 1.5 8.7± 1.2 9.6± 1.4 6.6± 1.0 9.5± 1.4

Γγγχb0(2P ) (eV) 58.6± 7.8 44.0± 5.8 48.6± 6.8 34.1± 4.9 48.7± 7.0

Γγγχb2(2P ) (eV) 11.4± 1.5 8.5± 1.2 9.6± 1.4 6.9± 1.0 9.8± 1.4

Γγγχb0(3P ) (eV) 57.9± 7.6 42.6± 5.6 47.0± 6.6 34.3± 4.9 48.5± 7.0

Γγγχb2(3P ) (eV) 11.4± 1.5 8.4± 1.1 9.4± 1.3 7.0± 1.0 9.9± 1.4

Table 8. Results for the two photon decay widths of the states χb0(nP ) and χb2(nP ), indicated

with Γγγχc0(nP ) and Γγγχc2(nP ) respectively, for each of the potential models described in section 4.1.

and (4.22), and their agreement with the data, eqs. (4.3)–(4.5), is nevertheless significant.

The reason is that the two correlators E1 and iE2 are the result of a least squares fit of

three data and not of a fine tuning of some of them.

4.3 P -wave bottomonium electromagnetic decay and production

With the values of E1 and iE2 determined in the previous section we can make predictions

for P -wave electromagnetic decay widths and production cross sections of bottomonium

states. Wavefunctions and binding energies are computed according to the potential model

results listed in table 2.

We consider, first, the two photon decay rates of the states χb0(nP ) and χb2(nP ) with

n = 1, 2 and 3. Following the same procedure discussed in section 4.2 for charmonium

states, we replace in our theoretical expressions for the χbJ(nP ) decay widths the bottom

pole mass with the spin average of the nP bottomonium masses. We use the equivalent

of eq. (4.7) and eq. (4.8). The masses of the 1P , 2P and 3P bottomonium states are

taken from ref. [21].5 Moreover, we take α = 1/137 reflecting the fact that the photons in

the final state are on shell, and we take αs = 0.200 at the scale of half the spin averaged

masses. The results for each choice of potential model used to compute wavefunctions and

binding energies are shown in table 8. The uncertainties in table 8 come from the correlated

uncertainties in E1 and iE2, as well as from the uncertainties stemming from uncalculated

corrections of order v2 and α2
s in the bottomonium sector, which we estimate to be 0.1 and

α2
s times the central values, respectively. The uncertainties are added in quadrature.

After averaging over the determinations from the different potential models, we obtain

the following predictions

Γ(χb0(1P )→ γγ) = 46.6+11.7
−14.0 ± 6.5 eV, (4.24)

Γ(χb2(1P )→ γγ) = 9.1+2.1
−2.5 ± 1.3 eV, (4.25)

Γ(χb0(2P )→ γγ) = 46.8+11.8
−12.7 ± 6.5 eV, (4.26)

5Since only the 33P2 and 33P1 states have been observed among the n = 4, L = 1 bottomonium states,

we include only them when computing the spin average of the 3P bottomonium masses and normalize

accordingly.
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Figure 2. Predicted cross sections σ(e+e− → χbJ (1P ) + γ) for J = 0 (red band), J = 1 (blue

band), and J = 2 (grey band with black lines).
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Figure 3. Predicted cross sections σ(e+e− → χbJ (2P ) + γ) for J = 0 (red band), J = 1 (blue

band), and J = 2 (grey band with black lines).

Γ(χb2(2P )→ γγ) = 9.3+2.1
−2.3 ± 1.3 eV, (4.27)

Γ(χb0(3P )→ γγ) = 46.1+11.9
−11.8 ± 6.3 eV, (4.28)

Γ(χb2(3P )→ γγ) = 9.2+2.2
−2.2 ± 1.3 eV, (4.29)

where the first uncertainty comes from the potential model dependence, and the second

one is the average of the uncertainties in table 8.

Using the same input as for the two photon decay widths, we can also make predictions

for the cross sections σ(e+e− → χbJ(nP ) + γ). As has been pointed out in this context in

ref. [41] and mentioned at the end of appendix B, the perturbative expression of the elec-

tromagnetic cross section becomes singular when the center of mass energy approaches the

heavy quark-antiquark pair production threshold. In the bottomonium case, this threshold

is around 10 GeV. Therefore, in order to make predictions for σ(e+e− → χbJ(nP ) + γ)

using the factorization formulas provided in appendix B, the center of mass energy has to
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Figure 4. Predicted cross sections σ(e+e− → χbJ (3P ) + γ) for J = 0 (red band), J = 1 (blue

band), and J = 2 (grey band with black lines).

be significantly larger than 10 GeV. We look at the energy range 20 GeV<
√
s <500 GeV

that encompasses the energies of a possible future e+e− collider. We evaluate αs at the

scale
√
s/2. Furthermore, we fix α = 1/128 and neglect the running, as the running of

α only affects the cross section by less than a few percent, which is negligible compared

to other uncertainties. The results for the electromagnetic cross sections of the 1P , 2P ,

and 3P bottomonium states are shown in figures 2, 3 and 4, respectively. The central

values are obtained by averaging over the determinations of the wavefunctions and binding

energies from the different potential models described in section 4.1. The bands account

for the uncertainties, which include potential model dependence, uncertainties in E1 and

iE2, uncertainties from uncalculated corrections of order v2 and α2
s , which we estimate

to be 0.1 and α2
s times the central values, and uncertainties coming from varying αs be-

tween αs(
√
s/4) and αs(

√
s). We add these uncertainties in quadrature. In particular, at√

s = 20 GeV the cross sections are

σ(e+e− → χb0(1P ) + γ) = (2.47± 0.83± 0.56)× 10−3 fb , (4.30)

σ(e+e− → χb1(1P ) + γ) = (47.8± 12.5± 11.4)× 10−3 fb , (4.31)

σ(e+e− → χb2(1P ) + γ) = (19.1± 4.8± 5.9)× 10−3 fb , (4.32)

σ(e+e− → χb0(2P ) + γ) = (2.33± 0.78± 0.55)× 10−3 fb , (4.33)

σ(e+e− → χb1(2P ) + γ) = (54.6± 13.0± 12.4)× 10−3 fb , (4.34)

σ(e+e− → χb2(2P ) + γ) = (22.9± 5.3± 6.6)× 10−3 fb , (4.35)

σ(e+e− → χb0(3P ) + γ) = (2.21± 0.75± 0.53)× 10−3 fb , (4.36)

σ(e+e− → χb1(3P ) + γ) = (58.9± 13.2± 13.0)× 10−3 fb , (4.37)

σ(e+e− → χb2(3P ) + γ) = (25.4± 5.6± 7.0)× 10−3 fb , (4.38)

where the first uncertainties come from the dependence on the potential models, and the

second ones account for the other uncertainties that we have mentioned above eq. (4.30).
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Similarly at
√
s = 90 GeV we obtain

σ(e+e− → χb0(1P ) + γ) = (2.05± 0.61± 0.26)× 10−5 fb , (4.39)

σ(e+e− → χb1(1P ) + γ) = (12.1± 3.5± 2.0)× 10−5 fb , (4.40)

σ(e+e− → χb2(1P ) + γ) = (1.89± 0.45± 0.49)× 10−5 fb , (4.41)

σ(e+e− → χb0(2P ) + γ) = (2.20± 0.60± 0.28)× 10−5 fb , (4.42)

σ(e+e− → χb1(2P ) + γ) = (13.3± 3.4± 2.1)× 10−5 fb , (4.43)

σ(e+e− → χb2(2P ) + γ) = (2.17± 0.47± 0.54)× 10−5 fb , (4.44)

σ(e+e− → χb0(3P ) + γ) = (2.27± 0.63± 0.29)× 10−5 fb , (4.45)

σ(e+e− → χb1(3P ) + γ) = (13.9± 3.6± 2.1)× 10−5 fb , (4.46)

σ(e+e− → χb2(3P ) + γ) = (2.35± 0.48± 0.56)× 10−5 fb . (4.47)

4.4 P -wave charmonium and bottomonium decay into light hadrons

In this section, we analyze inclusive P -wave quarkonium decays into light hadrons (LH) at

leading order in the velocity expansion. The NRQCD factorization formula has been first

derived in [42] and we reproduce it in eq. (B.14). It depends on two LDMEs. The color

singlet LDME has been factorized in strongly coupled pNRQCD at leading order in v in

eq. (3.7). The color octet matrix element can be written in strongly coupled pNRQCD at

leading order in v as [13]

〈χQJ(nP )|O8(1S0)|χQJ(nP )〉 =
2TF

9Ncm2

3Nc

2π
|R(0) ′

n1 (0)|2E3 , (4.48)

where the gluonic correlator E3 has been defined in eq. (3.4). The expression of the decay

width of a P -wave quarkonium into light hadrons under the conditions of validity of strongly

coupled pNRQCD reads therefore at leading order in v:

Γ(χQJ(nP )→ LH) =
3Nc

2π
|R′n1(0)|2

[
32

Imf1(3PJ)(µΛ)

M4
nPQ

+ 32
Imf8(3S1)

M4
nPQ

2TF
9Nc
E3(µΛ)

]
,

(4.49)

where we have expressed the heavy quark pole mass in terms of the spin averaged nPQ
mass (analogous to the spin averaged mass defined in eq. (4.7)) at leading order in the

velocity. The NRQCD short distance coefficients up to order α3
s accuracy are listed in

eqs. (B.15)–(B.18).

In eq. (4.49) we have emphasized that both Imf1(3PJ)(µΛ) and E3(µΛ) depend on a

cutoff µΛ. We use the MS scheme for both quantities. The correlator E3(µΛ) is dimension-

less, and depends logarithmically on the scale µΛ. This dependence cancels in the decay

width (4.49) against the µΛ dependence of the short distance coefficient Imf1(3PJ)(µΛ) [13].

Also the one loop running with respect to the scale µΛ of Imf1(3PJ)(µΛ) and E3(µΛ) is

known.

We determine E3(µΛ) from a least squares fit to the ratios of decay rates Γ(χc0(1P )→
LH)/Γ(χc1(1P ) → LH), Γ(χc1(1P ) → LH)/Γ(χc2(1P ) → LH), Γ(χc0(1P ) → LH)/

Γ(χc0(1P ) → γγ), and Γ(χc2(1P ) → LH)/Γ(χc2(1P ) → γγ) at leading order in v. The
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Potential model A B C D

〈O8(1S0)〉χcJ × 103 (GeV3) 4.59+2.10
−1.45 4.54+2.08

−1.44 2.63+1.20
−0.83 2.39+1.09

−0.76

Table 9. Results for the matrix element 〈χcJ (1P )|O8(1S0)|χcJ (1P )〉 at the scale µΛ = 1 GeV,

indicated with 〈O8(1S0)〉χcJ
for short. The wavefunctions at the origin have been computed within

the potential models of section 4.1.

theoretical expressions for the decay rates that we use are valid up to next-to-leading

order in αs, except for Γ(χc1(1P )→ LH), which is known only at leading order in αs. The

decay rates Γ(χcJ(1P )→ LH) have been obtained by subtracting radiative decay rates and

transition rates into other charmonia from the total widths of χcJ(1P ) given in ref. [21].

Among the subtracted rates, only the radiative transition into J/ψ+ γ makes a significant

contribution. The experimental values of Γ(χcJ(1P )→ LH) that we use are

Γ(χc0(1P )→ LH)
∣∣
from PDG

= 10.6± 0.6 MeV, (4.50)

Γ(χc1(1P )→ LH)
∣∣
from PDG

= 0.552± 0.041 MeV, (4.51)

Γ(χc2(1P )→ LH)
∣∣
from PDG

= 1.60± 0.09 MeV. (4.52)

We set mc = M1Pc/2 and µΛ = 1 GeV. We use αs(mc) = 0.282 and nf = 3. We take the the-

oretical uncertainties of the ratios Γ(χc0(1P )→ LH)/Γ(χc1(1P )→ LH) and Γ(χc1(1P )→
LH)/Γ(χc2(1P ) → LH) to be 0.3 times the central values for the uncalculated order v2

corrections, and αs times the central values for corrections of higher orders in αs. For the

ratios Γ(χc0(1P ) → LH)/Γ(χc0(1P ) → γγ) and Γ(χc2(1P ) → LH)/Γ(χc2(1P ) → γγ), we

take the theoretical uncertainties to be 0.3 times the central values for ignoring the order

v2 corrections, and α2
s times the central values for corrections of higher orders in αs. At

leading order in v the ratios do not depend on the quarkonium wavefunctions. We obtain,

in the MS scheme,

E3(1 GeV) = 2.05+0.94
−0.65. (4.53)

This result is compatible, within errors, with a previous determination in ref. [13]. Nev-

ertheless, we note that the uncertainties are smaller, despite the determination in [13] did

not include theoretical uncertainties.6 From eq. (4.53), we can compute E3(µΛ) at different

scales by using the one loop renormalization group improved expression [13]:

E3(µΛ) = E3(µ′Λ) +
24CF
β0

log
αs(µ

′
Λ)

αs(µΛ)
, (4.54)

where β0 = 11Nc/3− 4TFnf/3.

From eq. (4.53) and eq. (4.48), we can compute the matrix element 〈χcJ(1P )| O8(1S0)

|χcJ(1P )〉. The results at the scale µΛ = 1 GeV for each potential model are listed in

table 9. If we average over them, we obtain

〈χcJ(1P )|O8(1S0)|χcJ(1P )〉 = (3.53+1.05
−1.15

+1.62
−1.12)× 10−3 GeV3, (4.55)

6Note that the quantity E(µ) in ref. [13] corresponds to NcE3(µ) in this paper.
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where the first uncertainty comes from the potential model dependence, and the second

one is the average of the uncertainties in table 9.

From eq. (4.53) and eq. (4.49), we can compute the decay widths of the χcJ(1P ) states

into light hadrons. Rather than computing the decay rates directly using eq. (4.49), we

determine Γ(χcJ(1P )→ LH) for J = 0 and 2 states by combining the ratios Γ(χcJ(1P )→
LH)/ Γ(χcJ(1P ) → γγ) with the two photon decay widths computed in eq. (4.19) and

eq. (4.20). Similarly, we compute Γ(χc1(1P )→ LH) by combining these determinations of

Γ(χc0(1P ) → LH) and Γ(χc2(1P ) → LH) with the ratios Γ(χc0(1P ) → LH)/Γ(χc1(1P ) →
LH) and Γ(χc1(1P )→ LH)/Γ(χc2(1P )→ LH). This approach has the advantage that the

ratios do not depend on the choice of potential model, a fact that reduces significantly the

uncertainties. Our results for the ratios Γ(χcJ(1P ) → LH)/ Γ(χcJ(1P ) → γγ) for J = 0

and 2 are

Γ(χc0(1P )→ LH)

Γ(χc0(1P )→ γγ)
= (2.96+0.92

−0.92)× 103, (4.56)

Γ(χc2(1P )→ LH)

Γ(χc2(1P )→ γγ)
= (2.48+0.86

−0.77)× 103, (4.57)

where the uncertainties come from uncalculated corrections of relative order v2 and α2
s ,

which are taken to be 0.3 and α2
s times the central values, respectively. These uncertainties

are added in quadrature. Since the uncertainty in E3 is dominated by uncertainties from

uncalculated higher order corrections to the theoretical expressions of the ratios, we do

not include the uncertainty in E3 to avoid double counting. Using eqs. (4.19)–(4.20) and

eqs. (4.56)–(4.57), we obtain for the inclusive decay widths into light hadrons:

Γ(χc0(1P )→ LH) = 8.3+3.0
−3.1 MeV, (4.58)

Γ(χc2(1P )→ LH) = 1.4+0.6
−0.6 MeV. (4.59)

Comparing these results with the experimental determinations shown in eqs. (4.50)

and (4.52), we see that they are consistent within errors. We also determine Γ(χc1(1P )→
LH) from the results in (4.58)–(4.59) and the ratios Γ(χc0(1P ) → LH)/Γ(χc1(1P ) → LH)

and Γ(χc1(1P )→ LH)/Γ(χc2(1P )→ LH). The numerical results for these ratios are

Γ(χc0(1P )→ LH)

Γ(χc1(1P )→ LH)
= 23.7+9.8

−9.8 , (4.60)

Γ(χc1(1P )→ LH)

Γ(χc2(1P )→ LH)
= 0.33+0.16

−0.16 , (4.61)

where the uncertainties come from uncalculated corrections of relative order v2 and αs,

which are taken to be 0.3 and αs times the central values, respectively. These uncertainties

are added in quadrature. If we use eq. (4.58) and eq. (4.60), we obtain Γ(χc1(1P ) →
LH) = 0.35+0.28

−0.16 MeV, and if we use eq. (4.59) and eq. (4.61), we obtain Γ(χc1(1P ) →
LH) = 0.48+0.28

−0.28 MeV. The average of the two determinations reads

Γ(χc1(1P )→ LH) = 0.42+0.06
−0.06

+0.28
−0.22 MeV, (4.62)
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where the first uncertainty comes from the deviation of the central value of each determi-

nation from the average, and the second is the average of the uncertainties in each deter-

mination. This result is also consistent with the experimental determination in eq. (4.51)

within errors.

We can also predict the decay widths of the χbJ(nP ) states into light hadrons. To

compute Γ(χbJ(nP ) → LH) we take mb = MnPb/2, with αs(mb) = 0.200, and nf =

4. The short-distance coefficients in eqs. (B.15)–(B.17) contain two scales, mb and µΛ.

Since a value of µΛ that is too small compared to mb may spoil the convergence of the

perturbation series, we resum the leading logarithms of µΛ/MnPb that appear in the short-

distance coefficients. At the current level of accuracy, this is equivalent to computing

E3(µΛ) at the scale µΛ = MnPb using the formula in eq. (4.54) and setting µΛ = MnPb in

the short-distance coefficients (B.15)–(B.17). As we have done for the χcJ(1P ) states, we

compute the decay widths Γ(χbJ(nP )→ LH) from the ratios Γ(χb0(nP )→ LH)/ Γ(χb0(nP )

→ γγ), Γ(χb2(nP ) → LH)/ Γ(χb2(nP ) → γγ), Γ(χb0(nP ) → LH)/Γ(χb1(nP ) → LH)

and Γ(χb1(nP ) → LH)/Γ(χb2(nP ) → LH), and the two photon widths determined in

eqs. (4.24)–(4.29). Our results for the ratios Γ(χb0(nP ) → LH)/Γ(χb0(nP ) → γγ) and

Γ(χb2(nP )→ LH)/Γ(χb2(nP )→ γγ) are

Γ(χb0(1P )→ LH)

Γ(χb0(1P )→ γγ)
= (23.0+2.5

−2.5)× 103, (4.63)

Γ(χb2(1P )→ LH)

Γ(χb2(1P )→ γγ)
= (29.7+4.5

−3.6)× 103, (4.64)

Γ(χb0(2P )→ LH)

Γ(χb0(2P )→ γγ)
= (23.0+2.5

−2.5)× 103, (4.65)

Γ(χb2(2P )→ LH)

Γ(χb2(2P )→ γγ)
= (29.9+4.5

−3.6)× 103, (4.66)

Γ(χb0(3P )→ LH)

Γ(χb0(3P )→ γγ)
= (23.0+2.5

−2.5)× 103, (4.67)

Γ(χb2(3P )→ LH)

Γ(χb2(3P )→ γγ)
= (29.9+4.5

−3.7)× 103, (4.68)

where the uncertainties come from the uncertainty in E3, and from the uncalculated cor-

rections of order v2 and of order α2
s , which are taken to be 0.1 and α2

s times the central

values, respectively. These uncertainties are added in quadrature. Using eqs. (4.24)–(4.29)

and eqs. (4.63)–(4.68), we obtain

Γ(χb0(1P )→ LH) = 1.07+0.33
−0.37 MeV, (4.69)

Γ(χb2(1P )→ LH) = 0.27+0.08
−0.10 MeV, (4.70)

Γ(χb0(2P )→ LH) = 1.08+0.33
−0.35 MeV, (4.71)

Γ(χb2(2P )→ LH) = 0.28+0.09
−0.10 MeV, (4.72)

Γ(χb0(3P )→ LH) = 1.06+0.33
−0.33 MeV, (4.73)

Γ(χb2(3P )→ LH) = 0.28+0.09
−0.10 MeV. (4.74)

Now we determine the decay rate Γ(χb1(nP )→ LH) using the determinations of Γ(χb0(nP )

→ LH) and Γ(χb2(nP ) → LH) in eqs. (4.69)–(4.74) and the ratios Γ(χb0(nP ) → LH)/
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Γ(χb1(nP )→ LH) and Γ(χb1(nP )→ LH)/Γ(χb2(nP )→ LH). Our results for the ratios are

Γ(χb0(nP )→ LH)

Γ(χb1(nP )→ LH)
= 7.9± 2.1 , (4.75)

Γ(χb1(nP )→ LH)

Γ(χb2(nP )→ LH)
= 0.54± 0.13 , (4.76)

for n = 1, 2, and 3, the differences between the results for different n being negligible. The

uncertainties come from the uncertainty in E3, and the uncalculated corrections of relative

order v2 and of relative order αs, which are taken to be 0.1 and αs times the central

values, respectively. These uncertainties are added in quadrature. Using the numerical

results for the decay rates Γ(χb0(nP )→ LH) in eqs. (4.69), (4.71) and (4.73), and the ratio

Γ(χb0(nP )→ LH)/Γ(χb1(nP )→ LH) in eq. (4.75), we obtain the following determination

for Γ(χb1(nP )→ LH):

Γ(χb1(nP )→ LH) = 0.14± 0.06 MeV, (4.77)

where, again, we find negligible differences between the results for n = 1, 2, and 3. If we

compute this decay rate by using the values of Γ(χb2(nP ) → LH) in eqs. (4.70), (4.72)

and (4.74), and the ratio Γ(χb1(nP ) → LH)/Γ(χb2(nP ) → LH) in eq. (4.76), we find the

same result as in eq. (4.77).

The predictions for the widths Γ(χbJ(1P )→ LH) given in eqs. (4.69), (4.77) and (4.70)

are compatible with the total widths of the χbJ(1P ) states recently computed in ref. [43]

from the electric dipole transition widths. For the total width of the χb0(1P ) state, the

Belle collaboration has determined an upper limit, Γχb0(1P ) < 2.4 MeV, in ref. [44], which is

also compatible with the result in eq. (4.69). Finally, our predictions for Γ(χbJ(nP )→ LH)

support the hypothesis made in ref. [45] that the total widths of the χbJ(nP ) states are

approximately independent of the radial excitation n. This hypothesis was then used to

compute the feeddown contributions in the inclusive production cross sections of Υ(nS)

from χbJ(3P ) decays at the LHC.

4.5 Υ(2S) and Υ(3S) decay into lepton pairs

The NRQCD factorization formula for the decay width of a vector S-wave quarkonium

state into a lepton pair at relative order v2 is given by eq. (B.1). It depends on two

LDMEs: 〈VQ(nS)|Oem
1 (3S1)|VQ(nS)〉, whose factorization in strongly coupled pNRQCD at

relative order (ΛQCD/m)2 is in (3.13), and 〈VQ(nS)|Pem
1 (3S1)|VQ(nS)〉, whose factorization

in strongly coupled pNRQCD at leading order is in (3.15).

At relative order (ΛQCD/m)2 the matrix element 〈VQ(nS)|Oem
1 (3S1)|VQ(nS)〉 depends,

besides on E1 and E3, also on a correlator involving four chromoelectric fields and a cor-

relator involving two chromomagnetic fields. In this section, also to avoid dealing with

correlators about which practically nothing is known, we will explore the leptonic de-

cays of the bottomonium states Υ(2S) and Υ(3S) assuming that these states satisfy the

kinematical condition mbv � ΛQCD � mbv
2. Under this condition the matrix element

〈Υ(nS)|Oem
1 (3S1)|Υ(nS)〉 for n = 2, 3 can be written in strongly coupled pNRQCD at
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Potential model A B C D E

Γe
+e−

Υ(2S) (keV) 0.91+0.1
−0.1 0.46+0.05

−0.05 0.55+0.06
−0.06 0.54+0.06

−0.06 0.69+0.07
−0.07

Γe
+e−

Υ(3S) (keV) 0.57+0.06
−0.06 0.30+0.03

−0.03 0.35+0.04
−0.04 0.35+0.04

−0.04 0.44+0.05
−0.05

Table 10. Results for the leptonic decay widths of the states Υ(2S) and Υ(3S), indicated with

Γe
+e−

Υ(2S) and Γe
+e−

Υ(3S) for short. Wavefunctions at the origin and binding energies have been computed

within the potential models of section 4.1.

relative order v2 as

〈Υ(nS)|Oem
1 (3S1)|Υ(nS)〉 =

Nc

2π
|Rn101(0)|2

[
1− ε

(0)
n0

mb

2E3

9

]
, (4.78)

as all other contributions in eq. (3.13) are of relative order (ΛQCD/m)2 and, therefore,

suppressed.

Under the assumption that the states Υ(2S) and Υ(3S) satisfy the condition mbv

� ΛQCD � mbv
2, their decay width into a lepton pair can be written up to relative order

v2 in strongly coupled pNRQCD as

Γ(Υ(nS)→ e+e−) =
8πe2

bα
2

3M2
Υ(nS)

Nc

2π
|Rn101(0)|2

[
1− 2CF

αs

π
− ε

(0)
n0

3MΥ(nS)
− ε

(0)
n0

MΥ(nS)

2E3

9

]2

,

(4.79)

where eb = −1/3. We have neglected corrections of order Λ2
QCD/m

2 compared to order v2

corrections and used the expressions of the short distance coefficients given in eqs. (B.2)

and (B.3). For the short distance coefficient in (B.3) we only use the leading order ex-

pression.7 As done before for all electromagnetic processes, the formula follows from the

factorization at the amplitude level, see discussion in section 4.2. Finally, in eq. (4.79)

we have expressed the bottom mass in terms of the Υ(nS) mass, MΥ(nS), according to

MΥ(nS) = 2mb + ε
(0)
n0 , which is valid up to order v2, and expanded in the leading order

binding energy, ε
(0)
n0 , up to relative order v2.

Hence, under the above assumptions, the decay widths Γ(Υ(nS) → e+e−) for n = 2,

3 depend on the Υ(nS) wavefunctions at the origin, the binding energies and the chromo-

electric correlator E3. The wavefunctions at the origin and the binding energies have been

computed in the potential models of section 4.1 and are listed in table 3. The correlator

E3 has been computed in the previous section from the decays of P -wave charmonia and

its value at 1 GeV is given in eq. (4.53).

7The next-to-leading order expression of Im gee(
3S1) contributes at relative order αsv

2, which is beyond

our accuracy. It is worth noting, however, that the next-to-leading order expression of Im gee(
3S1) depends

on the cutoff µΛ and that this dependence cancels against the µΛ dependence of E3 in the expression of the

dilepton decay width of S-wave quarkonia:

Im fee(
3S1)

(
−ε

(0)
n0

m

2E3
9

)
+ Im gee(

3S1)
ε

(0)
n0

m
∼ −ε

(0)
n0

m

2

9

(
12CF

αs

π
log

µΛ

m

)
− 4

3

(
−CF

αs

π
2 log

µΛ

m

) ε(0)
n0

m
= 0.
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Potential model A B C D E

〈Oem
1 (3S1)〉Υ(2S) (GeV3) 2.45+0.25

−0.25 1.24+0.13
−0.13 1.46+0.15

−0.15 1.48+0.15
−0.15 1.88+0.19

−0.19

〈Pem
1 (3S1)〉Υ(2S) (GeV5) 5.72+0.57

−0.57 3.21+0.32
−0.32 2.00+0.20

−0.20 3.96+0.40
−0.40 4.54+0.45

−0.45

〈Oem
1 (3S1)〉Υ(3S) (GeV3) 1.70+0.18

−0.18 0.89+0.09
−0.1 1.03+0.10

−0.11 1.05+0.11
−0.11 1.32+0.14

−0.14

〈Pem
1 (3S1)〉Υ(3S) (GeV5) 8.09+0.81

−0.81 4.42+0.44
−0.44 3.63+0.36

−0.36 5.44+0.54
−0.54 6.30+0.63

−0.63

Table 11. Results for the matrix elements 〈Υ(nS)|Oem
1 (3S1)|Υ(nS)〉 and 〈Υ(nS)| Pem

1 (3S1)

|Υ(nS)〉 at the scale µΛ = MΥ(nS), indicated with 〈Oem
1 (3S1)〉Υ(nS) and 〈Pem

1 (3S1)〉Υ(nS) for short.

Wavefunctions at the origin and binding energies have been computed within the potential models

of section 4.1.

We take α = 1/131 and compute αs at the scale of the meson mass, which gives

αs(MΥ(2S)) = 0.177 for the 2S state and αs(MΥ(3S)) = 0.176 for the 3S state. Similarly to

what we have done for Γ(χbJ(nP )→ LH), we compute E3(µΛ) at the scale µΛ = MΥ(nS) us-

ing the expression at leading logarithmic accuracy given in eq. (4.54), which, at the current

level of accuracy, is equivalent to resumming the leading logarithms of µΛ/MΥ(nS) in the

short distance coefficients (in this case, the short distance coefficient (B.3)). The obtained

leptonic widths of the bottomonium states Υ(2S) and Υ(3S) for the different potential

model determinations of the wavefunctions at the origin and binding energies are shown in

table 10. The uncertainties are computed combining the uncertainties coming from uncalcu-

lated order v2 corrections, estimated to be 0.1 times the central values, with the uncertain-

ties coming from the neglected corrections of higher orders in αs, estimated to be α2
s of the

central values, and with the uncertainty of E3. The uncertainties are added in quadrature.

The present experimental values of the Υ(2S) and Υ(3S) leptonic decay widths are [21]

Γ(Υ(2S)→ e+e−)
∣∣
PDG

= 0.612± 0.011 keV , (4.80)

Γ(Υ(3S)→ e+e−)
∣∣
PDG

= 0.443± 0.008 keV . (4.81)

Few remarks concerning the determinations in table 10. First, we recall that the central

value of Γ(Υ(3S) → e+e−) in model E coincides with the measurement, because the pa-

rameters of model E have been chosen to precisely reproduce it. Second, even though the

parameters of model D have been determined to reproduce the measured leptonic width

of the Υ(3S), the model does not reproduce the measured rate when eq. (4.79) is used,

because the contribution from E3 was not included in ref. [35]. Taking the averages over

the five determinations in table 10 gives

Γ(Υ(2S)→ e+e−) = 0.63+0.28
−0.17

+0.07
−0.07 keV, (4.82)

Γ(Υ(3S)→ e+e−) = 0.40+0.17
−0.11

+0.04
−0.05 keV, (4.83)

where the first uncertainties are from the potential model dependence, and the second ones

are the averages of the uncertainties in table 10. The theoretical determinations (4.82)

and (4.83) agree well, within uncertainties, with the data (4.80) and (4.81).

From eq. (4.78) we can compute the LDME 〈Υ(nS)|Oem
1 (3S1)|Υ(nS)〉 (which is equal to

〈Υ(nS)|O1(3S1)|Υ(nS)〉 at relative order v2 and under the assumed kinematical conditions)
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and from eq. (3.15) 〈Υ(nS)| Pem
1 (3S1) |Υ(nS)〉 (which is equal to 〈Υ(nS)| P1(3S1) |Υ(nS)〉

at leading order in v) for n = 2, 3, by using the determination of the correlator E3 at the

scale µΛ = MΥ(nS), and the potential model results for the wavefunctions at the origin and

the binding energies. The results are shown in table 11. The theoretical uncertainties from

uncalculated corrections of higher orders in v are taken to be 0.1 times the central values.

In 〈Υ(nS)|Oem
1 (3S1)|Υ(nS)〉, the uncertainty from E3 is also included. The uncertainties

are added in quadrature. The averages of the determinations in table 11 read

〈Υ(2S)|Oem
1 (3S1)|Υ(2S)〉 = 1.70+0.75

−0.46
+0.17
−0.17 GeV3, (4.84)

〈Υ(2S)|Pem
1 (3S1)|Υ(2S)〉 = 3.88+1.83

−1.89
+0.39
−0.39 GeV5, (4.85)

〈Υ(3S)|Oem
1 (3S1)|Υ(3S)〉 = 1.20+0.50

−0.31
+0.12
−0.13 GeV3, (4.86)

〈Υ(3S)|Pem
1 (3S1)|Υ(3S)〉 = 5.58+2.51

−1.95
+0.56
−0.56 GeV5, (4.87)

where the first uncertainties are from the potential model dependence, and the second ones

are the averages of the uncertainties in table 10. The matrix elements are evaluated at the

scale µΛ = MΥ(nS).

Under the same kinematical conditions considered above, we can also compute the

inclusive decay widths of the Υ(2S) and Υ(3S) states into light hadrons. The NRQCD

factorization formula valid at relative order v2 is eq. (B.11). It depends on the LDMEs:

〈Υ(nS)|O1(3S1)|Υ(nS)〉 and 〈Υ(nS)|P1(3S1)|Υ(nS)〉 for n = 2, 3. At relative order v2

and under the condition mbv � ΛQCD � mbv
2, from the comparison of eq. (3.11) with

eq. (3.13) it follows that 〈Υ(nS)|O1(3S1)|Υ(nS)〉 is equal to 〈Υ(nS)|Oem
1 (3S1)|Υ(nS)〉.

Moreover, 〈Υ(nS)|P1(3S1)|Υ(nS)〉 is equal to 〈Υ(nS)|Pem
1 (3S1)|Υ(nS)〉 at leading order in

the velocity and ΛQCD/m expansion. Hence, by using the same strongly coupled pNRQCD

factorization formulas for LDMEs employed above, we can write at relative order v2 and

neglecting corrections of order Λ2
QCD/m

2

Γ(Υ(nS)→ LH) =
Nc

2π
|Rn101(0)|2

[
8

Imf1(3S1)

M2
Υ(nS)

(
1 +

2ε
(0)
n0

MΥ(nS)
− 2ε

(0)
n0

MΥ(nS)

2E3

9

)

+8
Img1(3S1)

M2
Υ(nS)

2ε
(0)
n0

MΥ(nS)

]
. (4.88)

The expressions for the short distance coefficients are in eq. (B.12) and eq. (B.13), and we

have again expressed the bottom mass in terms of the Υ(nS) mass and the corresponding

binding energy up to relative order v2.8

If we consider the ratios of the leptonic decay widths, eq. (4.79), with the corresponding

decay widths into light hadrons, eq. (4.88), the wavefunction dependence drops out and

8Using the same reasoning of footnote 7, from requiring that the right-hand side of eq. (4.88) is inde-

pendent of the factorization scale µΛ, it follows that Img1(3S1) must develop a µΛ dependence at order α4
s

that exactly cancels the one in E3. The µΛ dependent part of Img1(3S1) at order α4
s then reads

Img1(3S1)
∣∣
µΛ

=
16

27
(π2 − 9)C2

F (N2
c − 4)

(
Nc
2
− CF

)2
α4

s

π
log

µΛ

m
.
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Potential model A B C D E

RΥ(2S)/Υ(3S) 0.670± 0.070 0.672± 0.070 0.684± 0.072 0.686± 0.072 0.674± 0.071

Table 12. Results for the ratio RΥ(2S)/Υ(3S), where the binding energies are computed within the

potential models of section 4.1.

the ratio depends only on the binding energies, whose potential model dependent values

are in table 3, and on the chromoelectric field correlator E3, which has been determined

in eq. (4.53) and whose running at leading logarithmic accuracy is described by eq. (4.54).

Furthermore, if we expand the ratio in powers of v2, the dependence on E3 also drops out,

and we obtain an expression that depends only on the binding energy. To relative order v2

accuracy, it reads

Γ(Υ(nS)→ e+e−)

Γ(Υ(nS)→ LH)
=

Imfee(
3S1)

Imf1(3S1)
+

(
Imgee(

3S1)

Imf1(3S1)
− Img1(3S1) Imfee(

3S1)

(Imf1(3S1))2

)
2ε

(0)
n0

MΥ(nS)
,

(4.89)

where Imfee(
3S1) and Imgee(

3S1) can be read off eqs. (B.2) and (B.3), respectively. If

we compute this ratio for the states Υ(2S) and Υ(3S), the correction of relative order v2

coming from the term proportional to the binding energy in eq. (4.89) is almost half of

the leading order contribution. This may question the reliability of this expression to get

accurate determinations of the ratios Γ(Υ(nS)→ e+e−)/Γ(Υ(nS)→ LH). If we consider,

instead, the ratio [14]

RΥ(2S)/Υ(3S) ≡
Γ(Υ(2S)→ e+e−)/Γ(Υ(2S)→ LH)

Γ(Υ(3S)→ e+e−)/Γ(Υ(3S)→ LH)

= 1 +

(
Imgee(

3S1)

Imfee(3S1)
− Img1(3S1)

Imf1(3S1)

)(
2ε

(0)
20

MΥ(2S)
− 2ε

(0)
30

MΥ(3S)

)
, (4.90)

we get an expression that is valid up to relative order v2 and whose order v2 correction

is better under control. The results for this ratio are listed in table 12 for each potential

model determination of the binding energies. The uncertainties are computed, as in the

case of the leptonic widths, combining the uncertainties coming from uncalculated order

v2 corrections, estimated to be 0.1 times the central values, with the uncertainties coming

from the neglected corrections of higher orders in αs, estimated to be α2
s of the central

values. The uncertainties are combined in quadrature. The number of flavors is taken to

be nf = 4.

The average over the potential models in table 12 gives

RΥ(2S)/Υ(3S) = 0.677+0.007
−0.007

+0.071
−0.071 , (4.91)

where the first uncertainties are from the potential model dependence, and the second ones

are the averages of the uncertainties in table 12. Since RΥ(2S)/Υ(3S) is one at leading order

in v, the order v2 correction amounts to about one third of the leading order contribution;

hence, the order v2 correction in RΥ(2S)/Υ(3S) is in better control compared to the one in
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the ratios Γ(Υ(nS)→ e+e−)/Γ(Υ(nS)→ LH). In order to compare the result in eq. (4.91)

with measurements, we compute Γ(Υ(2S) → LH) and Γ(Υ(3S) → LH) by subtracting

the radiative decay widths and the transition widths into other bottomonia from the total

Υ(2S) and Υ(3S) widths given in ref. [21]; also the decay widths into e+e− are taken from

ref. [21]. We obtain the following experimental value

RΥ(2S)/Υ(3S)

∣∣
from PDG

= 0.761+0.110
−0.100 . (4.92)

Compared to eq. (4.91), the theoretical result is compatible with the experimental value

within uncertainties. The result (4.91) improves a more qualitative determination that can

be found in ref. [14].

Other quarkonium S-wave vector states are the ψ(2S), the Υ(1S) and the Υ(4S). In

the present analysis, we have not considered the states ψ(2S) and Υ(4S), because they

are very close or above the open flavor threshold, respectively. Effects due to degrees of

freedom that are relevant above or close to the open flavor threshold have not been included

in the pNRQCD Hamiltonian (2.17). Hence, the effective field theory as formulated in this

work is not suited to treat quarkonia like the ψ(2S) and Υ(4S). In this analysis, we

have not considered the Υ(1S) too, because the hierarchy mv2 � ΛQCD is unlikely to be

realized for this state, which is commonly treated assuming mv2 & ΛQCD (see, for instance,

refs. [1, 2, 46]). Hence, the only S-wave quarkonia that satisfy possibly the condition mv

� ΛQCD � mv2 within the effective field theory (2.17) are the Υ(2S) and Υ(3S). If they

really realize this kinematical condition may be eventually established only at the hand of

phenomenological analyses of the kind presented here.

5 Summary and conclusion

In the paper, we have computed decay widths and exclusive electromagnetic production

cross sections of charmonia and bottomonia based on strongly coupled pNRQCD. In strong-

ly coupled pNRQCD, nonperturbative LDMEs are expressed in terms of quarkonium wave-

functions, binding energies and gluonic correlators. Wavefunctions and binding energies

are the solutions of the equation of motion of pNRQCD. The gluonic correlators are non-

perturbative parameters, which are independent of the quarkonium state and of the flavor

of the heavy quark. Owing to the universal nature of the gluonic correlators, the number

of nonperturbative unknowns needed in pNRQCD to describe decay widths and exclusive

electromagnetic production cross sections of charmonia and bottomonia is smaller than the

number of LDMEs needed in NRQCD, as they depend on the quarkonium state and on

the flavor of the heavy quark. This enables specific predictions in pNRQCD that are not

possible in NRQCD. Since strongly coupled pNRQCD is suited to describe non Coulombic

quarkonium, we have restricted our applications to charmonium 1P states and bottomo-

nium 2S, 3S, 1P , 2P and 3P states, which are possibly non Coulombic bound states.

The calculation of the NRQCD LDMEs in strongly coupled pNRQCD was first done in

refs. [13, 14]. We have computed new corrections to P -wave LDMEs and revised the com-

putation of S-wave LDMEs by adding some new contributions proportional to Λ2
QCD/m

2.

The newly computed corrections are expressed in terms of gluonic correlators. Our results
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for P -wave and S-wave LDMEs in the strongly coupled pNRQCD factorization are listed

in sections 3.1.1 and 3.1.2, respectively. The LDMEs that we have computed satisfy the

Gremm-Kapustin relations, as discussed in section 3.2.

We have applied strongly coupled pNRQCD for the first time to exclusive electro-

magnetic production cross sections. In particular, we have computed the cross sections

e+e− → χcJ(1P ) + γ in section 4.2 and e+e− → χbJ(nP ) + γ for n = 1, 2 and 3 in sec-

tion 4.3. Although straightforward in the case of exclusive electromagnetic production, the

application of strongly coupled pNRQCD has never been attempted before for any produc-

tion process. This has enabled us to make first and so far unique predictions for exclusive

electromagnetic production cross sections of bottomonia. Furthermore, in section 4.2 we

have computed the decay widths χc0(1P ) → γγ and χc2(1P ) → γγ, in section 4.3 the

decay widths χb0(nP )→ γγ and χb2(nP )→ γγ for n = 1, 2 and 3 and in section 4.5, un-

der some assumptions, the dilepton decay widths Υ(2S)→ e+e− and Υ(3S)→ e+e−. We

have also considered hadronic annihilations. In section 4.4, we have computed the inclusive

annihilation widths into light hadrons (LH) of charmonium spin triplet 1P states and bot-

tomonium spin triplet 1P , 2P and 3P states. Finally, in section 4.5 we have also computed

the particular ratio of decay widths [Γ(Υ(2S) → e+e−)Γ(Υ(3S) → LH)]/[Γ(Υ(2S) →
LH)Γ(Υ(3S) → e+e−)] that involves the inclusive annihilation widths into light hadrons

of the 2S and 3S bottomonium states.

From the theoretical side, our expressions are generally accurate up to relative order v2

in the velocity expansion, with the exception of the P -wave inclusive annihilation widths

into light hadrons, where we have truncated our expansions in v at leading order. The

results that we obtain are in agreement, within errors, with experimental data, when

available. The determinations of the e+e− → χc0(1P ) + γ, e+e− → χc2(1P ) + γ, e+e− →
χbJ(nP ) + γ cross sections, and of the χb0(nP ) → γγ, χb2(nP ) → γγ and χb(nP ) → LH

decay widths for n = 1, 2 and 3 are predictions. These predictions were made possible by

the universal nature of the potential and gluonic correlators that determine the LDMEs

in strongly coupled pNRQCD. The gluonic correlators can be computed, in principle, in

lattice QCD. However, since lattice QCD determinations of the gluonic correlators are not

available yet, we have determined them from the available data on decay and production

of charmonia and used to compute bottomonium observables. This procedure should be

contrasted with NRQCD, where one cannot, in general, infer the bottomonium LDMEs

from the charmonium ones.

Our results rely on potential models for determining the quarkonium wavefunctions at

the origin and the binding energies. We rely on potential models because a first princi-

ple determination of the wavefunctions and binding energies from the equation of motion

of pNRQCD is hindered by the poor or incomplete knowledge of the corrections to the

wavefunction at higher orders in v stemming from 1/m suppressed terms in the potential.

Difficulties come from the limited accuracy in our knowledge of the potential beyond the

static term, and also from the renormalization of the divergences in the wavefunction at the

origin due to the potential at short distances. Concerning the 1/m corrections to the poten-

tial, we remark that, although these corrections can be expressed in terms of Wilson loops

and gauge field strength insertions on them, not all of them have been computed in lattice
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QCD and with enough precision. Indeed, besides the static potential, no 1/m suppressed

correction to the quarkonium potential has been computed in full (unquenched) QCD.

The lack of a reliable determination of the quarkonium wavefunctions at the origin

and the binding energies reflects in the wide spread of potential model results presented

and discussed in section 4.1. As the quarkonium wavefunction enters most quarkonium

observables at leading order, the poor knowledge of the quarkonium wavefunction is the

main source of uncertainty for most observables computed in NRQCD, and, in particular,

for the observables computed in this work that are not ratios of suitably chosen decay

widths. Parametrically, the uncertainty in the wavefunction affects these observables at

least at relative order v2 assuming a perfect knowledge of the leading order potential. It

can be argued that this is the case if the leading order potential coincides with the static

potential; the relative order v2 uncertainty stems, then, from the 1/m suppressed terms in

the potential that have not been included neither in an accurate nor in a complete form.

The uncertainty may be larger, however, if the term V (1)/m contributes at leading order

to the potential (see the discussion in section 2.2).

The poor knowledge of the quarkonium wavefunctions at the origin and the binding

energies is the main limitation in the phenomenological analyses done in the present (and

similar) works. It could be overcome by improving our knowledge of the quarkonium poten-

tial, ideally via lattice QCD, but also by using all available short distance and long distance

information on the potential in a comprehensive analysis. Wavefunctions at the origin and

binding energies could be determined, in principle, also from a global fit of quarkonium

observables versus data. The fit would then determine these parameters together with the

field strength correlators encoding the universal non perturbative parts of the LDMEs. As

we discussed in section 4.2, for the set of observables considered in the present work, it is

not possible, even in principle, to disentangle the wavefunction at the origin from all field

strength correlators. It remains an open and interesting question to answer if an enlarged

set of observables may be able to solve the problem and fix on the data all non perturbative

parameters.

Finally, we note that the strategy used in this work to compute the nonperturbative

LDMEs could be possibly applied to study inclusive hadroproduction of heavy quarkonia

too. This may improve our understanding of the inclusive production mechanism of heavy

quarkonium that remains elusive to this day. In particular, the pNRQCD calculations of

color-octet LDMEs could lead to a reduction of the number of nonperturbative unknowns.
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A Four-fermion operators

In the following, we list the four-fermion operators in the NRQCD Lagrangian relevant for

the present analysis. Extensive lists of four-fermion operators can be found in [47–49]. The

specified quantum numbers identify the state on which the operator projects dominantly.

The electromagnetic (em) operators are

Oem
1 (1S0) = ψ†χ|vac〉〈vac|χ†ψ, (A.1)

Oem
1 (3S1) = ψ†σχ|vac〉 · 〈vac|χ†σψ, (A.2)

Oem
1 (3P0) =

1

3
ψ†
(
− i

2

←→
D ·σ

)
χ|vac〉〈vac|χ†

(
− i

2

←→
D ·σ

)
ψ, (A.3)

Oem
1 (3P1) =

1

2
ψ†
(
− i

2

←→
D ×σ

)
χ|vac〉 · 〈vac|χ†

(
− i

2

←→
D ×σ

)
ψ, (A.4)

Oem
1 (3P2) = ψ†

(
− i

2

←→
D (iσj)

)
χ|vac〉〈vac|χ†

(
− i

2

←→
D (iσj)

)
ψ, (A.5)

Pem
1 (1S0) =

1

2
ψ†χ|vac〉〈vac|χ†

(
− i

2

←→
D

)2

ψ+H.c., (A.6)

Pem
1 (3S1) =

1

2
ψ†σχ|vac〉 · 〈vac|χ†σ

(
− i

2

←→
D

)2

ψ+H.c., (A.7)

Pem
1 (3P0) =

1

6
ψ†
(
− i

2

←→
D ·σ

)(
− i

2

←→
D

)2

χ|vac〉〈vac|χ†
(
− i

2

←→
D ·σ

)
ψ+H.c., (A.8)

Pem
1 (3P1) =

1

4
ψ†
(
− i

2

←→
D ×σ

)(
− i

2

←→
D

)2

χ|vac〉 · 〈vac|χ†
(
− i

2

←→
D ×σ

)
ψ+H.c., (A.9)

Pem
1 (3P2) =

1

2
ψ†
(
− i

2

←→
D (iσj)

)(
− i

2

←→
D

)2

χ|vac〉〈vac|χ†
(
− i

2

←→
D (iσj)

)
ψ+H.c., (A.10)

T em
8 (3P0) =

1

3
ψ† (−igE ·σ)χ|vac〉〈vac|χ†

(
− i

2

←→
D ·σ

)
ψ+H.c., (A.11)

T em
8 (3P1) =

1

2
ψ† (−igE×σ)χ|vac〉 · 〈vac|χ†

(
− i

2

←→
D ×σ

)
ψ+H.c., (A.12)

T em
8 (3P2) = ψ†

(
−igE(iσj)

)
χ|vac〉〈vac|χ†

(
− i

2

←→
D (iσj)

)
ψ+H.c., (A.13)

where the fields are defined as in section 2.1, |vac〉〈vac| projects on the QCD vacuum

state, T (ij) ≡ (T ij + T ji)/2 − T kkδij/3, and H.c. stands for Hermitian conjugate. The

subscript “1” labels four-fermion operators that project dominantly on a color singlet

heavy quark-antiquark pair, whereas the subscript “8” labels four-fermion operators that

project dominantly on a color octet heavy quark-antiquark pair. The relevant four-fermion

hadronic operators are

O1(1S0) = ψ†χχ†ψ, (A.14)

O1(3S1) = ψ†σχ · χ†σψ, (A.15)

O8(1S0) = ψ†T aχχ†T aψ, (A.16)

O8(3S1) = ψ†σT aχ · χ†σT aψ, (A.17)
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O1(3P0) =
1

3
ψ†
(
− i

2

←→
D · σ

)
χχ†

(
− i

2

←→
D · σ

)
ψ, (A.18)

O1(3P1) =
1

2
ψ†
(
− i

2

←→
D × σ

)
χ · χ†

(
− i

2

←→
D × σ

)
ψ, (A.19)

O1(3P2) = ψ†
(
− i

2

←→
D (iσj)

)
χχ†

(
− i

2

←→
D (iσj)

)
ψ, (A.20)

P1(1S0) =
1

2
ψ†χχ†

(
− i

2

←→
D

)2

ψ + H.c., (A.21)

P1(3S1) =
1

2
ψ†σχ · χ†σ

(
− i

2

←→
D

)2

ψ + H.c., (A.22)

O8(1P1) = ψ†
(
− i

2

←→
D

)
T aχ · χ†

(
− i

2

←→
D

)
T aψ, (A.23)

O8(3P0) =
1

3
ψ†
(
− i

2

←→
D · σ

)
T aχχ†

(
− i

2

←→
D · σ

)
T aψ, (A.24)

O8(3P1) =
1

2
ψ†
(
− i

2

←→
D × σ

)
T aχ · χ†

(
− i

2

←→
D × σ

)
T aψ, (A.25)

O8(3P2) = ψ†
(
− i

2

←→
D (iσj)

)
T aχχ†

(
− i

2

←→
D (iσj)

)
T aψ. (A.26)

B NRQCD factorization formulas

In this appendix, we list the NRQCD factorization formulas for quarkonium decay widths

and exclusive electromagnetic production cross sections for which we provide the strongly

coupled pNRQCD factorization formulas in the main body of the paper. We list first the

decay formulas and conclude with the electromagnetic production ones.

Leptonic decay widths of S-wave quarkonium vector states are described in NRQCD

up to relative order v2 by two LDMEs [3]:

Γ(VQ(nS)→ e+e−) =
2 Im fee(

3S1)

m2
〈VQ(nS)|Oem

1 (3S1)|VQ(nS)〉

+
2 Im gee(

3S1)

m4
〈VQ(nS)|Pem

1 (3S1)|VQ(nS)〉. (B.1)

The short distance coefficients, which are the imaginary parts of the coefficients of the cor-

responding four fermion operators in the NRQCD Lagrangian, read at next-to-leading or-

der [50–53] (the next-to-next-to-leading order correction to Im fee(
3S1) has been computed

in refs. [54, 55], and the next-to-next-to-next-to leading order correction to Im fee(
3S1) has

been computed in ref. [56])

Im fee(
3S1) =

πe2
Qα

2

3

(
1− 4CF

αs

π

)
, (B.2)

Im gee(
3S1) = −4

9
πe2

Qα
2

[
1− CF

αs
π

(
23

6
+ 2 log

µΛ

m

)]
, (B.3)

where eQ is the fractional electric charge of a heavy quark of flavor Q, α is the fine structure

constant, αs is the strong coupling in the MS scheme and CF = (N2
c − 1)/(2Nc) (= 4/3
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in QCD) is the Casimir of the fundamental representation of SU(Nc). The infrared cutoff

µΛ arises from renormalization of the short distance coefficients in NRQCD. In here and

in the following, the short distance coefficients are renormalized in the MS scheme.

Two photon decay widths of spin one and J = 0, 2 P -wave quarkonia are described in

NRQCD up to relative order v2 by the factorization formulas [23, 47]:

Γ(χQJ(nP )→ γγ) =
2 Im fem(3PJ)

m4
〈χQJ(nP )|Oem

1 (3PJ)|χQJ(nP )〉

+
2 Im gem(3PJ)

m6
〈χQJ(nP )|Pem

1 (3PJ)|χQJ(nP )〉

+
2 Im t8 em(3PJ)

m5
〈χQJ(nP )|T8 em(3PJ)|χQJ(nP )〉. (B.4)

The short distance coefficients read

Im fem(3P0) = 3α2e4
Qπ

(
1 +

3π2 − 28

12
CF

αs

π

)
, (B.5)

Im fem(3P2) =
4

5
α2e4

Qπ
(

1− 4CF
αs

π

)
, (B.6)

Im gem(3P0) = −7α2e4
Qπ, (B.7)

Im gem(3P2) = −8

5
α2e4

Qπ, (B.8)

Im t8 em(3P0) = −3

2
α2e4

Qπ, (B.9)

Im t8 em(3P2) = 0. (B.10)

The coefficients Im fem(3PJ) for J = 0, 2 have been computed at order αs in refs. [57, 58],

and the coefficients Im gem(3PJ) and Im t8 em(3PJ) for J = 0, 2 have been computed at

leading order in ref. [47].

Inclusive decay widths into light hadrons (LH) of S-wave quarkonium vector states are

described in NRQCD up to relative order v2 by the factorization formula [14]:

Γ(VQ(nS)→ LH) =
2 Im f1(3S1)

m2
〈VQ(nS)|O1(3S1)|VQ(nS)〉 (B.11)

+
2 Im f8(3S1)

m2
〈VQ(nS)|O8(3S1)|VQ(nS)〉+

2 Im f8(1S0)

m2
〈VQ(nS)|O8(1S0)|VQ(nS)〉

+
2 Im g1(3S1)

m4
〈VQ(nS)|P1(3S1)|VQ(nS)〉+

2 Im f8(3P0)

m4
〈VQ(nS)|O8(3P0)|VQ(nS)〉

+
2 Im f8(3P1)

m4
〈VQ(nS)|O8(3P1)|VQ(nS)〉+

2 Im f8(3P2)

m4
〈VQ(nS)|O8(3P2)|VQ(nS)〉

≈ 2 Im f1(3S1)

m2
〈VQ(nS)|O1(3S1)|VQ(nS)〉+

2 Im g1(3S1)

m4
〈VQ(nS)|P1(3S1)|VQ(nS)〉.

The approximation in the last line holds when mv � ΛQCD � mv2 and when neglect-

ing, at relative order v2, all contributions that scale like (ΛQCD/m)2 (one should consider

in the power counting of strongly coupled pNRQCD the expressions of the LDMEs in

eqs. (3.11), (3.15), (3.16), (3.17) and the expression of 〈VQ(nS)|O8(3S1)|VQ(nS)〉 given in
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ref. [14]).9 The short distance coefficients appearing in the last line of (B.11) read

Im f1(3S1) =
2

9
(π2 − 9)CF (N2

c − 4)

(
Nc

2
− CF

)2

αs(m)3

×
{

1 +
αs

π
[−9.46(2)CF + 4.13(17)Nc − 1.161(2)nf ]

}
+πe2

Q

( nf∑
k=1

e2
qk

)
α2

{
1− 13

4
CF

αs

π

}
, (B.12)

Im g1(3S1) = −19π2 − 132

54
CF (N2

c − 4)

(
Nc

2
− CF

)2

α3
s , (B.13)

where eqk is the fractional electric charge of a massless quark of flavor qk. The expression

of the short distance coefficient Im f1(3S1), which is accurate up to order α4
s and α2αs,

comes from refs. [3, 59], and the expression of Im g1(3S1), which is accurate at leading

order, comes from ref. [22].

Inclusive decay widths of spin one P -wave quarkonia into light hadrons are described

in NRQCD at leading order in the velocity expansion by the factorization formula [42]:

Γ(χQJ(nP )→ LH) =
2 Im f1(3PJ)

m4
〈χQJ(nP )|O1(3PJ)|χQJ(nP )〉

+
2 Im f8(3S1)

m2
〈χQJ(nP )|O8(1S0)|χQJ(nP )〉. (B.14)

The short distance coefficients Imf1(3PJ) and Imf8(3S1) are known up to order α3
s accu-

racy [5]:

2Imf1(3P0) =
3πCF
Nc

αs(m)2

{
1+

αs

π

[
CF

(
−7

3
+
π2

4

)
+Nc

(
427

81
− π2

144

)
−β0 log2

]}
+nf

4CF
9Nc

α3
s

(
−29

6
− log

µΛ

2m

)
, (B.15)

2Imf1(3P1) =
CF
2
α3

s

(
587

27
− 317

144
π2

)
+

4

9
nf
CF
Nc

α3
s

(
−4

3
− log

µΛ

2m

)
, (B.16)

2Imf1(3P2) =
4πCF
5Nc

αs(m)2

{
1+

αs

π

[
−4CF +Nc

(
2185

216
− 337π2

384
+

5

3
log2

)
−β0 log2

]}
+nf

4CF
9Nc

α3
s

(
−29

15
− log

µΛ

2m

)
, (B.17)

2Imf8(3S1) =
πnf

3
αs(m)2

{
1+

αs

π

[
−13

4
CF +Nc

(
133

18
+

2

3
log2− π

2

4

)
− 10

9
nfTF

−β0 log2

]}
+

5

3
α3

s

(
−73

4
+

67π2

36

)
, (B.18)

where β0 = 11Nc/3− 4TFnf/3 and µΛ is an infrared cutoff.

Finally, we give the NRQCD factorization formula for the cross sections σ(e+e− →
χQJ(nP ) + γ) describing exclusive electroproduction of spin one P -wave quarkonia. The

9The last line also provides Γ(VQ(nS)→ LH) up to relative order v2 in the power counting of ref. [3].
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formula is valid up to relative order v2; it reads [25]

σ(e+e− → χQJ(nP ) + γ) = σ
(0)
QJ(m, s, r)

{
c

(O1)
J (r)〈χQJ(nP )|O1(3PJ)|χQJ(nP )〉 (B.19)

+
c

(P )
J (r)

m2
〈χQJ(nP )|P1(3PJ)|χQJ(nP )〉+

c
(T )
J (r)

m
〈χQJ(nP )|T8(3PJ)|χQJ(nP )〉

}
,

where r = 4m2/s and s is the square of the center of mass energy. The factors σ
(0)
QJ(m, s, r)

are the production cross sections of color singlet heavy quark-antiquark pairs of flavor Q

in a 3PJ state at leading order in αs and v. They are given by [60]

σ
(0)
Q0(m, s, r) =

(4π)3α3e4
Q(1− 3r)2

18πm3s2(1− r)
, (B.20)

σ
(0)
Q1(m, s, r) =

(4π)3α3e4
Q(1 + r)

3πm3s2(1− r)
, (B.21)

σ
(0)
Q2(m, s, r) =

(4π)3α3e4
Q(1 + 3r + 6r2)

9πm3s2(1− r)
. (B.22)

The short distance coefficients c
(O1)
J (r) have been computed at next-to-leading order in αs in

refs. [41, 61]: c
(O1)
J (r) = 1+c

(O1)NLO
J (r) (αs/π). The coefficients c

(O1)NLO
J (r) are of the form

c
(O1)NLO
0 (r) = C0

0 (r), (B.23)

c
(O1)NLO
1 (r) =

C0
1 (r) + rC1

1 (r)

1 + r
, (B.24)

c
(O1)NLO
2 (r) =

C0
2 (r) + 3rC1

2 (r) + 6r2C2
2 (r)

1 + 3r + 6r2
, (B.25)

where the explicit expressions of the coefficients Cji (r) can be found in ref. [41]. The short

distance coefficients c
(T )
J (r) and c

(P )
J (r) have been computed at leading order in αs in

ref. [25] and in refs. [62, 63], respectively. They read

c
(T )
0 (r) =

(3− 2r + 3r2)

4(1− 4r + 3r2)
, (B.26)

c
(T )
1 (r) = − (3 + r2)

4(1− r2)
, (B.27)

c
(T )
2 (r) = − (3 + 2r − 3r2 + 18r3)

4(1− r)(1 + 3r + 6r2)
, (B.28)

c
(P )
0 (r) = − 13− 18r + 25r2

10(1− 4r + 3r2)
, (B.29)

c
(P )
1 (r) = −11− 20r − 11r2

10(1− r2)
, (B.30)

c
(P )
2 (r) = − 7 + 6r − 83r2 − 30r3

10(1− r)(1 + 3r + 6r2)
. (B.31)

We observe that the cross sections are singular in the limit r → 1, i.e., when the center of

mass energy approaches the heavy quark-antiquark pair production threshold.
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C Derivation of some LDMEs in strongly coupled pNRQCD

We give here few more details on the computation of the electromagnetic P -wave LDMEs

appearing in section 3.1.1.

C.1 〈χQJ(nP )|Oem
1 (3PJ)|χQJ(nP )〉

We start by computing the matrix element (0)〈n;x1,x2|
∫
d3xOem

1 (3PJ)(x)|k;x′1,x
′
2〉(0):

(0)〈n;x1,x2|
∫
d3xOem

1 (3PJ)(x)|k;x′1,x
′
2〉(0)

= −1

4
T ij1J

∫
d3x (0)〈n;x1,x2|χ†(x2)ψ(x1) (ψ†

←→
D iχ)(x)|vac〉

×〈vac|(χ†
←→
D jψ)(x)ψ†(x′1)χ(x′2)|k;x′1,x

′
2〉(0)

= −1

4
T ij1J

∫
d3x (0)〈n;x1,x2|δ(3)(x1 − x)

←→
D i(x)δ(3)(x2 − x)|vac〉

×〈vac|δ(3)(x′2 − x)
←→
D j(x)δ(3)(x′1 − x)|k;x′1,x

′
2〉(0)

= −1

4
NcT

ij
1J

(0)〈n|(D1 −Dc2)i|0〉(0)δ(3)(r)(0)〈0|(D1 −Dc2)j |k〉(0)

×δ(3)(x1 − x′1)δ(3)(x2 − x′2), (C.1)

where we have used eq. (2.7) for the first equality, Wick’s theorem for the second one and

|0〉(0)δ(3)(r) = 1c|vac〉/
√
Ncδ

(3)(r) for the third one. The spin projectors T ij1J are defined as

T ij10 =
1

3
σi ⊗ σj , (C.2)

T ij11 =
1

2
εkimεkjnσ

m ⊗ σn, (C.3)

T ij12 =

(
δimσ

n + δinσ
m

2
− δmn

3
σi
)
⊗
(
δjmσ

n + δjnσ
m

2
− δmn

3
σj
)
. (C.4)

For n = k = 0 and from eqs. (2.9), it follows

(0)〈0;x1,x2|
∫
d3xOem

1 (3PJ)(x)|0;x′1,x
′
2〉(0)

= −1

4
NcT

ij
1J (∇1 −∇2)iδ(3)(r)(∇1 −∇2)jδ(3)(x1 − x′1)δ(3)(x2 − x′2)

= −NcT
ij
1J ∇

i
rδ

(3)(r)∇jrδ(3)(x1 − x′1)δ(3)(x2 − x′2). (C.5)

For n 6= 0, k = 0 and from eqs. (2.11), it follows

(0)〈n;x1,x2|
∫
d3xOem

1 (3PJ)(x)|0;x′1,x
′
2〉(0)

= −NcT
ij
1J

(0)〈n|gEi1|0〉(0)

E
(0)
n − E(0)

0

δ(3)(r)∇jrδ(3)(x1 − x′1)δ(3)(x2 − x′2), (C.6)
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where we have also used the fact that (0)〈n|gE1|0〉(0) and (0)〈n|gET
2 |0〉(0) are equal at

r = 0. Finally, for completeness we give the result for n 6= 0 and k 6= 0, which reads

(0)〈n;x1,x2|
∫
d3xOem

1 (3PJ)(x)|k;x′1,x
′
2〉(0)

= −NcT
ij
1J

(0)〈n|gEi1|0〉(0)

E
(0)
n − E(0)

0

δ(3)(r)
(0)〈0|gEj1|k〉(0)

E
(0)
0 − E(0)

k

δ(3)(x1 − x′1)δ(3)(x2 − x′2). (C.7)

We also need the correction to the matrix element (C.5) stemming from next-to-leading

order in the quantum-mechanical expansion in 1/m. In particular, we need the part that

projects on P waves. It is given by

P -wave
(1)〈0;x1,x2|

∫
d3xOem

1 (3PJ)(x)|0;x′1,x
′
2〉(0) + H.c.

= NcT
ij
1J

∑
k 6=0

(
∇1 ·

(0)〈0|gE1|k〉(0)

(E
(0)
0 − E(0)

k )2
−∇2 ·

(0)〈0|gET
2 |k〉(0)

(E
(0)
0 − E(0)

k )2

)

×
(0)〈k|gEi1|0〉(0)

E
(0)
k − E

(0)
0

δ(3)(r)∇jrδ(3)(x1 − x′1)δ(3)(x2 − x′2) + H.c.

= −2

3
NcT

ij
1J ∇

i
riE2δ

(3)(r)∇jrδ(3)(x1 − x′1)δ(3)(x2 − x′2), (C.8)

where we have used eq. (2.12), eq. (C.6) and, in the last equality, the definition (3.3).

Plugging eqs. (C.5) and (C.8) into eq. (3.1) one gets V
(4)
Oem

1 (3PJ )
:

V
(4)
Oem

1 (3PJ )
= NcT

ij
1J ∇

i
r

(
1 +

2

3

iE2

m

)
δ(3)(r)∇jr . (C.9)

In turn, V
(4)
Oem

1 (3PJ )
is the fundamental ingredient to obtain from eq. (3.2) the LDME

〈χQJ(nP )|Oem
1 (3PJ)|χQJ(nP )〉. The result is in eq. (3.8). Comments on and implications

of eq. (3.8) are in the main body of the paper in section 3.1.1.

C.2 〈χQJ(nP )|T em
8 (3PJ)|χQJ(nP )〉

We compute here the matrix element 〈0;x1,x2|
∫
d3x T em

8 (3PJ)(x)|0;x′1,x
′
2〉. Differently

from the matrix elements computed in the previous and in the next section, at leading

order in the 1/m expansion this matrix element does not contribute to P -wave quarkonium

states. Hence, the first non vanishing contribution of the matrix element of the color octet

operator T em
8 (3PJ) on a P -wave state appears only at next-to-leading order in 1/m.

Indeed, at leading order the matrix element reads

(0)〈0;x1,x2|
∫
d3x T em

8 (3PJ)(x)|0;x′1,x
′
2〉(0)

= 2NcT
ij
1J

(
∇irE

(0)
0 (x1,x2)

)
δ(3)(r)∇jrδ(3)(x1 − x′1)δ(3)(x2 − x′2), (C.10)

where we have used eqs. (2.10). The function δ(3)(r) brings the derivative of the static

energy, ∇rE
(0)
0 (x1,x2), into the perturbative regime. At r = 0 this vanishes in dimensional
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regularization, because it is scaleless. Moreover, eq. (C.10) defines through (3.1) a contact

term V
(5)
T em

8 (3PJ )
with only one derivative left to act on the wavefunctions. This is not

enough in eq. (3.2) to produce a non vanishing contribution for P -wave states. At least

two derivatives are necessary.

At next-to-leading order in the quantum-mechanical 1/m expansion, the missing

derivative comes from the 1/m correction to the state shown in eq. (2.12):

P -wave
(1)〈0;x1,x2|

∫
d3x T em

8 (3PJ)(x)|0;x′1,x
′
2〉(0) + H.c.

= −4

3
NcT ij1J ∇

i
rE1δ

(3)(r)∇jrδ(3)(x1 − x′1)δ(3)(x2 − x′2). (C.11)

Plugging eq. (C.11) into eq. (3.1) one gets a contact term V
(5)
T em

8 (3PJ )
with two derivatives

left to act on the wavefunctions:

V
(5)
T em

8 (3PJ )
= NcT

ij
1J ∇

i
r

4

3

E1

m
δ(3)(r)∇jr . (C.12)

From V
(5)
T em

8 (3PJ )
and eq. (3.2) the expression of the octet LDME, 〈χQJ(nP )|T em

8 (3PJ)

|χQJ(nP )〉, given in eq. (3.9) follows.

C.3 〈χQJ(nP )|Pem
1 (3PJ) |χQJ(nP )〉

Finally, we compute the matrix element 〈0;x1,x2|
∫
d3xPem

1 (3PJ)(x)|0;x′1,x
′
2〉. For our

purposes, it is sufficient to consider it at leading order in the quantum-mechanical 1/m

expansion:

(0)〈0;x1,x2|
∫
d3xPem

1 (3PJ)(x)|0;x′1,x
′
2〉(0)

= NcT
ij
1J ∇

i
rδ

(3)(r)

(
∇2

r +
5

3
E1

)
∇jrδ(3)(x1 − x′1)δ(3)(x2 − x′2). (C.13)

The corresponding contact term from eq. (3.1) reads

V
(6)
Pem

1 (3PJ )
= NcT

ij
1J ∇

i
rδ

(3)(r)

(
−∇2

r −
5

3
E1

)
∇jr . (C.14)

From V
(6)
Pem

1 (3PJ )
and eq. (3.2) the expression of the LDME, 〈χQJ(nP )|Pem

1 (3PJ) |χQJ(nP )〉,
written in eq. (3.10) follows if we replace the Laplacian acting on the wavefunction at the

origin with the expression given in eq. (3.6). Note that the two derivatives in (C.14),

∇ir and ∇jr, need to act on the wavefunctions to ensure a non vanishing contribution for

P -wave states to the right-hand side of eq. (3.2).
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