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Abstract

Coiled-Coil Domain Containing Protein 186 (CCDC186) is hypothesized to

play an important role in the biogenesis of dense-core vesicles in neurons and

endocrine cells. Biallelic loss-of-function variants in the encoding gene

CCDC186 have been suggested as a candidate gene for a neurodevelopmental

phenotype, but only one patient has been described so far. We report a second

patient with a CCDC186-associated phenotype presenting with developmental

delay, epileptic encephalopathy, and failure to thrive. Exome sequencing identi-

fied a homozygous loss-of-function variant in CCDC186 (NM_018017.2)

c.767C> G; p.(Ser256Ter) thus providing further evidence to support CCDC186

as a new disease gene for an autosomal recessive neurodevelopmental disorder.

Introduction

Coiled-Coil Domain Containing 186 (CCDC186) is a

membrane-associated protein encoded by the CCDC186

gene. Its orthologue in C. elegans CCCP-1 was recently

found to participate in secretory dense-core vesicle

(DCV) trafficking, possibly affecting maturation, cargo

sorting, and tethering of vesicles (see Fig. 1)1-3. In con-

trast to neurotransmitters targeting ion channels that are

released from synaptic vesicles, neuromodulators of the

nervous system are secreted from DCVs generated at the

trans-Golgi network (TGN). Neuronal DCVs, which are

presumably equivalent to secretory vesicles in (neuro)-en-

docrine and exocrine cells, contain signaling molecules

thus modulating various intra- and intercellular pro-

cesses.4,5 CCCP-1 was established as a downstream effec-

tor of RAB-2, one of many Rab GTPases involved in

DCV trafficking.1,2,6 Additionally, CCCP-1/CCDC186 co-

localizes with the endosome-associated recycling protein

(EARP) protein complex and the EARP interactor EIPR-

1, which are both responsible for sorting and recycling of

cargo via the endosomal compartment.7

The orchestrated release of neuromodulators is essential

for proper development and function of the nervous sys-

tem. Variants in genes encoding for proteins involved in

synaptic vesicular trafficking are increasingly recognized

as a cause of neurodevelopmental disorders.8 The impor-

tance of DCV trafficking in brain development is under-

lined by the fact that two protein members of the EARP

complex, VPS-51 and VPS-53, have been associated with

neurodevelopmental disorders.9-12 To date, an association

of biallelic loss-of-function variants in CCDC186 with a

neurodevelopmental disorder has been proposed and

described in a single patient.13 We report a second
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pediatric patient with a CCDC186-associated phenotype

comprising of failure to thrive, developmental delay and

medically refractory epilepsy, providing further evidence

for a disease association of CCDC186 variants.

Patients and Methods

Probands and samples

Clinical, laboratory, metabolic, and neuroradiologic data

were acquired at the Department of Pediatrics (Dr. von

Haunersches Kinderspital) at the University Hospital of

Munich, Germany. Repeated 24-channel electroen-

cephalography (EEG) recordings were performed using

standard adjustments. Magnetic resonance imaging (MRI)

of the brain was obtained using a 3-T high-resolution

scanner.

Exome sequencing

Exome sequencing (ES) was performed in the frameworks

of the German health care project “TRANSLATE-

NAMSE.” The legal guardians of the patient were

included in a study that was approved by the local Ethics

Committee of the Technical University of Munich and

gave written informed consent for genetic studies and the

publication of findings.

ES of the index patient and her parents was performed

as previously described.14 Sure Select Human All Exon

60 Mb V6 kits (Agilent, Santa Clara, CA, USA) were used

for the library preparation and enrichment of coding

regions. Sequencing was performed on an Illumina Nova-

Seq 6000 sequencer (Illumina, San Diego, CA, USA). The

BWA algorithm v.0.5.9. was used to align reads to the

UCSC human reference assembly (hg19). Average read-

Figure 1. Simplified illustration of biogenesis of dense-core vesicles (DCVs) and cargo sorting in CCDC186-wildtype (wt) and CCDC186-deficient

(mut) cells. (A): Immature DCVs with soluble cargo such as peptides and monoamines (depicted as red and blue dots) are generated at the trans

Golgi network (TGN). Cargo sorting after vesicle formation is mediated by the active, GTP-bound RAB-2 and CCDC186, among other. Following

cargo sorting, several maturation steps including acidification and processing of cargo leads to mature DCVs, which are stored until release upon

stimulation of the cell. DCV cargo not destined for secretion is transported to the endosomal sorting compartment with help of the endosome

associated recycling protein (EARP) complex and EARP inhibitor protein EIPR-1. From the endosomal compartment, cargo can be either shuttled

back to the TGN via the Golgi associated recycling protein (GARP) complex or processed for lysosomal degradation. (B) Cells deficient of

CCDC186 are predicted to have impaired cargo sorting in DCVs, resulting in secretion of incorrectly sorted cargo. Additionally, cargo might be

falsely steered towards lysosomal degradation thus leading to a reduced concentration of the secreted cargo.
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depth was more than 103-fold and more than 96% of

exons were covered at least 20-fold. Single-nucleotide

variants (SNVs) and small insertions and deletions were

detected by SAMtools v.0.1.19. The software ExomeDepth

was applied to call copy number variations (CNVs). In-

house custom Perl scripts were used for variant annota-

tion.

Results

Clinical findings

The 15 months old female patient was born small for ges-

tational age (birth weight 2450g) after 37 + 1 gestational

weeks as the first child of consanguineous Senegalese par-

ents with normal postnatal adaptation but congenital pul-

monary artery stenosis. No distinct facial or dysmorphic

features were noted.

First assessments at the age of 4 months revealed global

developmental delay and muscular hypotonia. She devel-

oped seizures and was successfully treated with levetirac-

etam. At the age of five months, a brain MRI showed

unspecific frontotemporal atrophy (Fig. 2A). At the age

of 7 months, severe epileptic encephalopathy (West-Syn-

drome) was present and both seizures (epileptic spasms)

and EEG (hypsarrhythmia, Fig. 2B) were refractory to

levetiracetam, phenobarbitone, vigabatrine, and steroids.

At the age of 15 months, she showed microcephaly,

growth retardation, and severe developmental distortion

showing no ability to sit and lacking visual fixation of

objects or attention to speech. Multiple audiological

screenings by automatic auditory brain response revealed

hyperacusis of the left ear.

Besides neurologic symptoms, the patient presented

with failure to thrive (Figure S1A-D), aggravated by

repetitive vomiting and swallowing difficulties. At the age

of 5 months, she received a gastric/jejunal (PEG-J) tube

for feeding. Gastroesophageal reflux was treated with

omeprazole. At the age of 7 months, exocrine pancreas

insufficiency was detected with low fecal elastase levels.

Pancreatic enzyme replacement therapy (Lipase, Amylase

& Protease; Creon�) was commenced. In addition, endo-

crine pancreas insufficiency was suspected with repeatedly

low Insulin levels but without clinical signs of diabetes.

A detailed listing of symptoms can be found in

Table S1.

Laboratory findings

Basic laboratory work-up showed mild hypothyroidism

and therapy with L-thyroxine was started. Routine testing

for congenital disorder of glycosylation at the age of

5 months showed negative results. Additionally, reduced

levels of serum insulin and C-peptide were repeatedly

measured (three independent measurements performed

between 7 and 13 months of age).

Molecular findings

ES detected approximately 180 Mb of homozygous

regions, corresponding to the consanguinity of the par-

ents. Within these stretches, 13 homozygous loss-of-

Figure 2. (A) Sleep EEG at the age of 12 months in a standard bipolar montage reveals severe epileptic encephalopathic pattern with

predominant bilateral posterior slowing and continuous interictal spikes resembling hypsarrhythmia. There is lack of normal sleep architecture with

absence of vertex waves and sleep spindles. (B) T1 weighted MRI images showing frontotemporal atrophy (arrows) of our patient at the age of

5 months.
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function variants were found (Table S2). Since all but one

of the identified variants were homozygously present in

healthy individuals in the Genome Aggregation Database

(gnomAD),15 the homozygous nonsense variant in

CCDC186 (NM_018017.2) c.767C>G; p.(Ser256Ter)

(hg19, Chr10: g.115910972G>C) was singled out as the

sole candidate. Both parents were heterozygous carriers.

The variant is predicted to cause a premature termination

of translation in exon 4 out of 15 exons and would most

likely result in nonsense-mediated mRNA decay.

Minimal lifetime risk of CCDC186-associated
disease

We assessed the minimal lifetime risk of CCDC186 related

disease by extracting the combined minor allele frequency

of reported loss-of-function alleles in the gnomAD data-

base and calculating the frequency of biallelic carriers

under the assumption of the Hardy–Weinberg equilib-

rium and mutual independence of the variants as previ-

ously described.16 The combined minor allele frequency

of CCDC186 alleles was 0.00016, resulting in 1 in 39 mil-

lion presumingly affected newborns with biallelic loss-of-

function variants in CCDC186 (Table S3).

Discussion

Our female patient presented with failure to thrive, severe

developmental disorder and seizures. ES identified a

homozygous nonsense variant in the candidate gene

CCDC186 (NM_018017.2: c.767C>G; p.(Ser256Ter)),

which is expected to result in nonsense-mediated mRNA

decay. We consider it to be associated with the patient’s

phenotype, although (especially in the context of parental

consanguinity) other variants contributing to the pheno-

type cannot be entirely excluded. Within a large sequenc-

ing study of 1000 cases from Saudi-Arabia, a homozygous

loss-of-function variant in CCDC186 (NM_018017:

c.610C>T; p.(Gln204Ter)) was identified in a patient with

failure to thrive, global developmental delay, hypotonia,

brain atrophy as well as undescended testis, micropenis,

and poor vision.13 Thus, a distinct overlap in the reported

phenotypes can be observed (Table S1). The pathogenic

effect of predicted loss-of-function variants in CCDC186

is further undermined by the absence of homozygous loss

of function alleles in healthy individuals in gnomAD, as

well as in our in-house variant database of currently

20,000 exome datasets.

Knockout of cccp-1 in C. elegans neurons lead to

reduced levels of secretory cargo in axonal vesicles2 and it

was proposed that deficiency of CCDC186 might lead to

loss of secretory cargo to the endolysosomal compartment

or secretion of incorrectly sorted cargo (Fig. 1).3,7 As

DCVs are important for axonal and dendritic growth,

synaptogenesis, synaptic pruning and myelination,17-19 the

impaired secretion of neuromodulators could result in

aberrant neuronal development and impaired synaptic

plasticity in patients with a loss of CCDC186. By engaging

with the EARP complex, CCDC186 is additionally linked

to the endolysosomal pathway. Disruption of the TGN

and endolysosomal trafficking due to impaired function

of Rab GTPases has further been recognized in neurode-

generative diseases such as amyotrophic lateral sclerosis

and frontotemporal dementia.20,21

In the affected individuals, truncating CCDC186 vari-

ants additionally lead to severe failure to thrive. While

cccp-1 knockout in C. elegans results in a neurologic phe-

notype of impaired and slowed locomotion,2 homozygous

Otg1/CCDC186 knockout mice show severe postnatal

growth retardation and preweaning lethality as well as

impaired glucose metabolism with hypoglycemia and low

levels of serum insulin.22 The critical role of CCDC186 in

cargo sorting and insulin secretion upon stimulation was

recently confirmed in rat insulinoma cells.3 The participa-

tion of CCDC186 in the secretion of peptides and hor-

mones in humans might be further strengthened as blood

protein levels were found to be associated with a single

nucleotide polymorphism in CCDC186 (rs11595697-C).23

In our patient, blood glucose levels were normal but

reduced serum insulin levels as well as C-peptide levels

indicate dysfunctional insulin secretion because of endo-

crine pancreas insufficiency. Interestingly, our patient also

showed additional exocrine pancreas insufficiency, and

commencing pancreatic enzyme replacement therapy

directly led to weight gain. These findings are suggestive

for a pivotal role of CCDC186 in the pancreas as well, as

no genetic alterations in genes associated with chronic

pancreatitis were detected by ES. Secondary pancreas

insufficiency due to severe gut inflammation or autoin-

flammation seem unlikely without endoscopic signs nor

systemic signs of inflammation. However, it remains

unclear whether the reduced secretion of pancreatic hor-

mones and enzymes is a result of dysfunctional DCV

secretion alone or if another underlying pathomechanism

exists.

Taken together, our findings confirm the association of

biallelic loss-of-function in CCDC186 with a phenotype

including epileptic encephalopathy and growth retarda-

tion. By applying the framework suggested by the Clinical

Genome Resource regarding the evaluation of gene-dis-

ease associations,24 we recognize there is still limited evi-

dence to support a disease association of CCDC186. Thus,

further evidence, especially data from experimental stud-

ies, is needed to strengthen the evidence level of

CCDC186 as a new disease gene. Whether defects of the

endocrine or exocrine systems also contribute to the
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CCDC186-associated phenotype remains unclear. Addi-

tional patients with biallelic variants in CCDC186 will

have to be identified to illuminate the phenotypic spec-

trum of CCDC186-associated disease.
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