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Editors’ Preface

Production engineering is crucial for the advancement of our industrial society because
the performance of manufacturing companies depends heavily on the equipment and
resources employed, the production processes applied, and the established manufactu-
ring organization. A company’s full potential for corporate success can only be taken
advantage of by optimizing the interaction between humans, operational structures, and
technologies. Being able to remain competitive while balancing the varying and often
conflicting priorities of complexity, cost, time, and quality requires constant thought,
adaptation, and the development of new manufacturing structures. Thus, there is an
essential need to reduce the complexity of products, manufacturing processes, and sys-
tems. Yet, at the same time, it is also vital to gain a better understanding and command
of these aspects.

The objective of the research activities at the Institute for Machine Tools and Industrial
Management (iwb) is to continuously improve product development and manufacturing
planning systems, manufacturing processes and production facilities. A company’s
organizational, manufacturing, and work structures, as well as the underlying systems
for order processing, are developed under strict consideration of employee-related
requirements and sustainability issues. Although an increasing degree of automation
is unavoidable, labor will remain an important component in production processes.
Thus, questions concerning the optimization of human involvement in all planning and
development processes are of utmost importance.

The volumes published in this book series reflect and report the results from the research
conducted at iwb. Research areas covered span from the design and development
of manufacturing systems to the application of technologies in manufacturing and
assembly. The management and operation of manufacturing systems, quality assurance,
availability, and autonomy are overarching topics, which affect all areas of our research.
In this series, the latest results and insights from our application-oriented research
are published. This will foster an improvement in the transfer of knowledge between
universities and towards a wide industrial sector.

Gunther Reinhart Michael Zäh
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Abstract

Pen-and-paper-based value stream mapping is the established tool for recording pro-
cesses, identifying waste, and deriving recommendations for action. Today, however, its
application in the manufacturing and logistics industry requires a high level of effort and
is challenging due to product and process complexity and issues involving dynamics.

Process mining is a relatively young research discipline that helps to utilize event data
to discover, analyze, and improve processes. Process mining connects business process
modeling and analysis with data mining. Nowadays, the day-to-day business of internal
logistics is based on information systems, which create a vast amount of event data.

Therefore, the overarching objective of the thesis is to enable an effective and efficient
application of value stream mapping in internal logistics using process mining. The
main contribution of this thesis is the integration of the research streams of value stream
mapping and process mining.

The main results include an internal logistics ontology and algorithms for data prepro-
cessing and mining the value streams. Six process mining techniques create a holistic
view of each value stream and a comprehensive picture of all value streams. A method-
ology for an industrial application and guidelines for event data validation and the
analysis according to lean production theory in internal logistics are proposed to ensure
a practical benefit to the work.

The industrial application includes three case studies that demonstrate the feasibility,
effectiveness, and efficiency of the approach in practice. The findings are used to
evaluate and reflect the strengths and limitations of the approach.
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Glossary

Concept drift The change of a process between the beginning and the end of an event
log (BOSE et al. 2011, p. 391).

Data mining Data mining is a process that aims to generate knowledge from data and
present the findings in ways that are useful to the user. Data mining includes
discovering non-trivial patterns, relations, and trends. (SCHUH et al. 2019, p. 876)

Event log An event log is a collection of events of operational data (cf. VAN DER

AALST 2016).

Internal logistics Internal logistics refers to the receipt of parts, warehousing (e.g., stor-
ing, sequencing), and line feeding through to line-side presentation (cf. BOYSEN

et al. 2015; NEGRI et al. 2017; SALI & SAHIN 2016).

Lean production Lean production is an integrated socio-technical system whose main
objectives are eliminating waste and increasing efficiency by concurrently adding
value to the customer and reducing lead times (based on JONES & WOMACK

1997; OHNO 1988; REINHART 2017; SHAH & WARD 2007).

Mixed-model assembly line In a mixed-model assembly line production, “varying
models are manufactured on the same production system, the production pro-
cesses of which are similar enough so that setup times are not present or negligi-
ble.” (BOYSEN et al. 2007, p. 678)

Ontology An ontology is an explicit specification of a conceptualization (GRUBER

1995, p. 1).

Practical guideline A piece of information that suggests how something should be
done and that is related to experience, real situations, or actions rather than ideas
(based on Cambridge Dictionary 2014).
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Glossary

Process A process is a set of specific and ordered activities across time and place, with
a beginning and an end, intended to reach a specific goal (cf. DAVENPORT 1992;
HAMMER & CHAMPY 1993).

Process mining “The idea of process mining is to discover, monitor and improve real
processes by extracting knowledge from event logs.” (VAN DER AALST et al.
2012, p. 172)

Reference process A main process that consists of a unique set of standardized activi-
ties (based on DÖRNHÖFER et al. 2016; ROZINAT et al. 2007).

Value stream A value stream is all the activities, both value-added and non-value-
added, currently required to bring a product through the main flows (ROTHER &
SHOOK 1999, p. 1).

Value stream mapping Value stream mapping is a pencil and paper tool that helps you
to see and understand the flow of material and information as a product makes its
way through the value stream (ROTHER & SHOOK 1999, p. 2).
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1 Introduction

1.1 Initial situation

Over the last decades, lean production has become the de facto standard for production
and manufacturing systems (PSOMAS & ANTONY 2019; REINHART 2017). Lean
production is well accepted both in academia and in industry because it results in
superior performance and can provide a competitive advantage (SHAH & WARD 2007,
p. 785). Invented in Japan, the Toyota Production System (TPS) is based on the two main
components of just-in-time (JIT) and autonomation (OHNO 1988). The primary goal of
the TPS is to eliminate waste, increase efficiency, and subsequently reduce costs (OHNO

1988). In 1990, WOMACK et al. (1990) evolved TPS with a benchmark study of lean

production compared to mass production. The comprehensive study covers both the
technical and the work system perspective and highlights the advantages of using less
of everything: e.g., space, human effort, and inventory (WOMACK et al. 1990, p. 13).
Further development has introduced lean thinking with five key principles: specify
value, identify the value stream, flow, pull, and pursue perfection (JONES & WOMACK

1997). In addition to this major work, many studies on lean production address many
aspects, such as the technical and human perspective or the philosophical and practical
orientation (e.g., HOLWEG 2007; PETTERSEN 2009; PSOMAS & ANTONY 2019; SHAH

& WARD 2003, 2007). Hence, the definition presented in the following is a reflection
upon discussions between the author, researchers, and industry experts.

Definition. Lean production is an integrated socio-technical system whose main
objectives are eliminating waste and increasing efficiency by concurrently adding
value to the customer and reducing lead times (based on JONES & WOMACK

1997; OHNO 1988; REINHART 2017; SHAH & WARD 2007).

These days, the understanding of production also includes related processes, including
logistics (SPATH 2010), and recent developments (e.g., lean logistics) have adapted lean
thinking (e.g., GÜNTHNER & BOPPERT 2013; JONES et al. 1997).
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1 Introduction

Value stream mapping is a pen-and-paper tool to map the current value stream and
see waste within the process (ROTHER & SHOOK 1999). ROTHER & SHOOK (1999,
p. 1) define a value stream as “all the actions (both value-added and non-value-added)
currently required to bring a product through the main flows essential to every product:
(1) the production flow from raw material into the arms of the customer [...]”.

In practice, value stream mapping is frequently used for creating transparency, analyzing,
and improving a variety of processes in the manufacturing industry; the automotive
industry is the main application (SHOU et al. 2017, p. 3909). If existing methods of
process analysis for internal logistics1 are compared, value stream mapping has been
proven to be the most suitable (W. BAUER et al. 2014, p. 483) and most frequently used
tool (GÜNTHNER & SCHNEIDER 2011, p. 44). The literature review of SHOU et al.
(2017), including 91 articles in the manufacturing industry, highlights the strengths of
value stream mapping: improvements on inventory and lead times are the top benefits
with average achievements of 70% and 56%, respectively. FORNO et al. (2014) reviewed
the main difficulties of value stream mapping in 57 articles, and both reviews reveal
that the application presents difficulties in practice. Based on the findings of FORNO

et al. (2014) and SHOU et al. (2017) and the study of SPATH (2010) about value
stream mapping with 304 manufacturing companies, the following limitations have
been identified:

• Missing support for product and process complexity. Today, products contain
hundreds of parts and sub-assemblies that follow different paths and processes.
Then, value stream mapping can be seriously challenging or can even break
down (BRAGLIA et al. 2006; FORNO et al. 2014). In the comprehensive study,
manufacturing companies most frequently reported that value stream mapping is
limited if the production requires many product variants and if product groups
require different processes (SPATH 2010, p. 68).

• Missing support to capture dynamics. As value stream mapping is a static pen-
and-paper tool, the accuracy level and the ability to capture dynamics are limited
(FORNO et al. 2014; Y.-H. LIAN & VAN LANDEGHEM 2007). If processes are
not stable or change frequently, the current state map of the value stream only
provides a limited snapshot or is obsolete (FORNO et al. 2014; SPATH 2010). In

1 Internal logistics refers to the receipt of parts, warehousing (e.g. storing, sequencing) and line feeding through
to line side presentation (cf. BOYSEN et al. 2015; NEGRI et al. 2017; SALI & SAHIN 2016).

2



1.2 Motivation

particular, time and quantity data measurements are impractical (FORNO et al.
2014, p. 781). Additionally, many companies fail to apply value stream mapping
continuously and in the same frequency as often as products and processes change
(FORNO et al. 2014). However, continuous monitoring for several months is
required to see the effects of changes and improvements (HINES et al. 1998,
p. 243).

• High manual effort. The high level of effort involved in collecting the data and
the time spent on constructing the current state map are frequently reported as
the costliest stages (FORNO et al. 2014; SHOU et al. 2017). This cost prevents
the continuous application of value stream mapping (FORNO et al. 2014, p. 787).
The cost, in combination with an increasing product and process complexity, and
process invisibility, can prevent practitioners from collecting sufficient data by
direct observation (FORNO et al. 2014; SHOU et al. 2017).

KNOLL et al. (2019b, p. 130) demonstrate that these existing limitations are even
more challenging for internal logistics in the context of high product and process
complexity, as well as dynamics. In contrast to manufacturing, the value streams can
be highly individual for each product variant and sub-assembly: supplier, material
flow and inventories, and customer demand. Further on, a wide variety of process
types (e.g., warehousing, JIT), activities (e.g., transport, pick), and resources (e.g.,
storage, supermarkets) exist. Consequently, value stream mapping for every part and its
individual value stream is not technically and economically applicable.

1.2 Motivation

In the age of Industrie 4.0, massive amounts of data are created during manufacturing
and logistics operations. This operational data can be used to understand, analyze, and
improve processes in the context of complex production and manufacturing systems
(i.e., BAUERNHANSEL et al. 2016; REINHART 2017). For that purpose, data mining has
been successfully established in the manufacturing industry within the last decade (e.g.,
KÖKSAL et al. 2011; SCHUH et al. 2019).

The relatively young research discipline of process mining has evolved as a subset of
data mining. Process mining connects data mining with business process modeling
and analysis (VAN DER AALST et al. 2012, p. 172). Process mining uses algorithms to

3



1 Introduction

create process models based on operational event data (VAN DER AALST et al. 2012).
Consequently, creating process models is highly automated and scales to cover both
process complexity and time-dependent dynamics. Today, process mining has gained
significant importance when analyzing business processes in domains such as healthcare
or IT (DAKIC et al. 2018; ROJAS et al. 2016).

Definition. “The idea of process mining is to discover, monitor and improve real
processes (i.e., not assumed processes) by extracting knowledge from event logs
readily available in today’s (information) systems.” (VAN DER AALST et al. 2012,
p. 172)

In theory, process mining can support lean production (VAN DER AALST 2016). “What
these approaches have in common is that processes are ‘put under a microscope’ to see
whether further improvements are possible. Clearly, process mining can help to analyze
deviations and inefficiencies.” (VAN DER AALST 2016, p. 48) For instance, VAN DER

AALST (2016, p. 48) illustrates that the “process discovery can be used to eliminate all
non-value-added activities and reduce waste.” In contrast, the application of process
mining in the domain of manufacturing and logistics is rarely reported (DAKIC et al.
2018; KNOLL et al. 2019c; VAN CRUCHTEN & WEIGAND 2018). The literature review
of DAKIC et al. (2018) shows that only 8% of the publications focus on manufacturing,
and 3% focus on logistics (DAKIC et al. 2018, p. 871).

In general, a process mining project can be separated into four stages (adapted from ECK

et al. 2015; VAN DER AALST et al. 2012). Different challenges have been identified for
the application in internal logistics in each stage:

• Planning and data extraction. Any process mining project starts with planning:
defining objectives and questions and extracting event data from information
systems. This requires an understanding of the domain and the data. (VAN DER

AALST et al. 2012, p. 177) Data extraction can be challenging in the context
of complex and heterogeneous information systems, such as manufacturing and
logistics (BECKER et al. 2017; WESTKÄMPER et al. 2013). Particularly, this
step requires combining domain knowledge (e.g., lean production) with technical
knowledge about information systems, underlying data tables, and attributes.
Further on, the vocabulary used differs radically. (CALVANESE et al. 2016) In
the context of process mining, domain ontologies have been proven to provide
support for this step (CALVANESE et al. 2016; INGVALDSEN & GULLA 2008).

4



1.2 Motivation

• Data preprocessing. Standardized event logs are required to apply process mining.
However, “the step to collect the event log used as input for process mining is
far from trivial” (VAN DER AALST & WEIJTERS 2004, p. 238) and “sometimes
significant efforts are needed to correlate events belonging to the same process
instance.” (VAN DER AALST et al. 2012, p. 177) Numerous data tables must be
merged to correlate event logs, and attributes must be located in each data table
(INGVALDSEN & GULLA 2008). Algorithms that correlate operational data of the
material flow and can scale to the high volume of data are required to perform this
step in the context of logistics (KNOLL et al. 2019b, p. 427). For example, five
million transfer orders are processed monthly, on average, in internal logistics in
the automotive industry (KNOLL et al. 2017).

• Mining. A variety of process mining techniques, concepts, and methodologies
can be applied in a process mining project (VAN DER AALST 2016). Innumer-
able algorithms for process discovery and conformance checking are frequently
combined with other techniques (e.g., clustering). However, “[...] there are no
process discovery techniques that produce overarching models able to relate and
analyze different groups and process variants.” (VAN DER AALST 2013, p. 3)
Furthermore, most work “[...] has been concerned with the general concept of
process mining, with little focus on domains.” (YAHYA et al. 2016, p. 383)
Further tailoring to the process characteristics is required to apply process min-
ing to logistics: selecting algorithms and advanced techniques to cover product
and process complexity and integrating domain-specific characteristics such as
inventory or handling costs (KNOLL et al. 2019c).

• Analysis and evaluation. The challenge is to exploit event data meaningfully
using event logs and process mining techniques (VAN DER AALST et al. 2012,
p. 174). Therefore, “the diagnostic [analysis step] should be simple, accurate, and
suggestive for the next, more detailed step in the analysis.” (GRAVES 1981, p. 664)
However, a plethora of technical concepts requires support for practitioners, which
is currently lacking (Y. WANG et al. 2014a, pp. 196–197). In particular, this
requires linking process mining with practical outcomes for the logistics domain,
such as established types of waste according to lean production. Further on,
product and process complexity and dynamics require effectively handling the
complexity of the analysis. For example, to identify wasteful value streams or
activities (KNOLL et al. 2019c).

5



1 Introduction

1.3 Objectives of the thesis

The evidence for lean production and value stream mapping has been successfully
demonstrated across the manufacturing and logistics industry (SHAH & WARD 2007;
SHOU et al. 2017). However, value stream mapping is not complete because of the
gap between theory and practice (SHOU et al. 2017, p. 3921). There is still a need for
improvements in handling both product and process complexity, capturing the process
dynamics and deviations from reality, and reducing the high level of manual effort when
creating the current state map (cf. FORNO et al. 2014; SHOU et al. 2017).

Recent developments in data mining introduce process mining techniques “[...] to
discover, monitor and improve real processes (i.e., not assumed processes) by extracting
knowledge from event logs readily available in today’s (information) systems” (VAN

DER AALST et al. 2012, p. 172). Theory states that process mining can support lean
production objectives and reduce waste (VAN DER AALST 2016, p. 48).

Motivated by existing shortcomings and recent developments in the field of process
mining, the thesis contributes to the state of the art and the application in industrial
practice. The overarching goal is to enable an effective and efficient application of value

stream mapping in internal logistics using process mining. Therefore, three supporting
objectives are defined:

O1. Supporting the planning and data preparation.

The tasks of identifying, extracting, and preprocessing data must be adapted to
internal logistics to support planning and data preparation.

O2. Mapping the value stream using process mining.

Adapting and tailoring existing process mining techniques and concepts for value
stream mapping are required to holistically map the value stream using process
mining. Later, missing aspects must be developed, if required.

O3. Supporting the analysis according to lean production theory.

Practical guidelines for analyzing value streams using process mining in the
context of product and process complexity must be developed to support process
improvement.
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1.4 Research methods and environment

Established research methods have been used in the research project to achieve the main
objective and the three subgoals. The following section briefly describes the methods
in the context of the research project: (1) formulating the Research Questions (RQs),
(2) adapting the Design Research Methodology (DRM), and (3) specifying the research
scope and environment.

1.4.1 Research Questions (RQs)

Three RQs provide guidance (cf. RQ1, RQ2, and RQ3) to further specify the objectives
independently of the research domain:

RQ1. Which data is required, and how must that data be prepared for value stream
mapping for internal logistics using process mining?

RQ2. Which process mining methods, concepts, and algorithms are capable of ex-
tracting and characterizing process models while capturing product and process
complexity?

RQ3. Which steps are required to enable a systematic analysis according to lean pro-
duction theory?

1.4.2 Adapting the Design Research Methodology (DRM)

The research project has been conducted according to the DRM. “A DRM is defined
here as an approach and a set of supporting methods and guidelines to be used as
a framework for doing design research.” (BLESSING & CHAKRABARTI 2009, p. 9)
According to KOCH (2017), the DRM is one of the most comprehensive and detailed
research methods in the field of manufacturing engineering available today2. Thereby,
the DRM includes building theory and supports the improvement of existing models
and support. Figure 1.1 outlines the theoretical foundation of the four-step methodology
that has been adapted to the research project.

2 Please refer to KOCH (2017, pp. 7–9) for a detailed discussion of the suitability and applicability of the DRM.
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1 Introduction
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Figure 1.1: Design Research Methodology (BLESSING & CHAKRABARTI 2009, p. 15)

The Research Clarification aims to find evidence that supports the research objectives
(BLESSING & CHAKRABARTI 2009). An initial understanding of the current situation
and limitations of value stream mapping is required to formulate objectives. Value
stream mapping is an established approach, and numerous studies in academia and
industry exist. Thus, a review-based approach has been selected to derive discrepancies
from the desired situation. The industrial practice provides further evidence.

Descriptive Study I enhances the initial understanding and influencing factors (BLESS-
ING & CHAKRABARTI 2009). A systematic review approach has been developed,
focusing on process mining applications in the manufacturing and logistics industry to
cover the variety of articles spread across research fields. Existing literature has been
characterized and classified based on the methodology, i.e., process mining algorithms,
and application context, i.e., internal logistics, of process mining.

The Prescriptive Study focuses on the development of support (BLESSING &
CHAKRABARTI 2009) by integrating value stream mapping and process mining. The
findings of the reviews in process mining and value stream mapping have been used to
specify the requirements of the approach. The conceptual design outlines the approach
with its relationships and an applicable methodology for practitioners. The detailed
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design focuses on developing and specifying the concept based on process mining and
lean production theory.

Descriptive Study II focuses on the impact and if the desired support can be achieved
(BLESSING & CHAKRABARTI 2009). The concept has been implemented in industry,
and three case studies have been conducted to evaluate the support. The evaluation
includes the fulfillment of requirements, a cost-benefit calculation, and a discussion of
limitations.

If required, further specifications of the research methods (e.g., the review approach)
are provided in each chapter of the thesis.

1.4.3 Research scope and environment

Research scope

The scope of the thesis is value stream mapping for internal logistics supplying a
mixed-model assembly line production. Internal logistics refers to the receipt of parts,
warehousing (e.g., storing, sequencing), and line feeding through to line-side presenta-
tion (BOYSEN et al. 2015; NEGRI et al. 2017; SALI & SAHIN 2016). In a mixed-model
assembly line production, varying models are manufactured on the same production
system with similar production processes (BOYSEN et al. 2007, p. 678). Hence, the
following limitations exist:

• Technical tool perspective of lean production. Lean production provides an
umbrella for a variety of practices, techniques, and tools. The thesis focuses on
the technical perspective of the value stream mapping tool. Lean practices and
techniques must be established before or when applying the tool.

• Value stream design. Because of the identified shortcomings of pen-and-paper-
based value stream mapping, the scope of the work is set on the current state
and the analysis of the value stream (e.g., types of waste). The step of value
stream design to create an improved state of the value stream can be supported
by previous work (e.g., DURCHHOLZ 2014) and is not part of this thesis.

• Performance measurement system. Various performance metrics, also referred
to as key performance indicators, are recorded when mapping and analyzing
value streams. These metrics can be used to characterize waste, e.g., waste
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of inventory. However, many articles have been published on performance
measurement, and literature indicates the company-specific nature of these metrics
(e.g., GUNASEKARAN & KOBU 2007). Thus, only an initial set of performance
metrics can be provided in the thesis.

Research environment

The research project was conducted at the Institute for Machine Tools and Industrial
Management (iwb), Technical University of Munich (TUM). The research project
included the Bayerische Motorenwerke (BMW) AG and, therefore, provides valuable
insights into the automotive industry. Findings have been discussed and evaluated with
more than 20 logistics experts. Later, this research project benefited from the research
cooperation with the MIT Sloan School of Management, MIT. Professor Stephen C.
Graves contributed to the development of the inventory profiling algorithm and the
analysis of inventory.

1.5 Structure of the thesis

The remainder of the thesis is organized as follows (cf. Figure 1.2). Chapter 1 describes
the initial situation and motivation and derives the objectives of the thesis. Chapter 2
provides the theoretical understanding of related research fields and the application con-
text of internal logistics, value stream mapping, and process mining theory. Chapter 3
proposes a review approach to derive a representative overview of existing literature.
Applications of process mining in the fields of manufacturing and logistics are crit-
ically reviewed and related to value stream mapping. Chapter 4 addresses existing
shortcomings of value stream mapping and process mining and integrates both research
fields. The concept includes a methodology for an industrial application and relates
four main research modules. The methodology for the industrial application consists of
four consecutive steps and enables value stream mapping for internal logistics using
process mining. Chapter 5 describes the theoretical development and the research results
of the four main research modules. Chapter 6 describes how the proposed concept is
applied in an industrial application. In addition, the fulfillment of the requirements, the
cost-benefit calculation, and existing limitations are critically discussed to evaluate the
concept. Chapter 7 concludes the thesis and provides an outlook for future research
activities.
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2 Fundamentals

This chapter outlines fundamental aspects of internal logistics (cf. Section 2.1) and
value stream mapping (cf. Section 2.2). After an introduction about the objectives,
types and perspectives of process mining, and fundamental and advanced concepts and
methodologies of process mining are proposed (cf. Section 2.3).

2.1 Internal logistics

2.1.1 Objectives, scope, and processes

Consumers and companies need products and materials at times and places other than
when and where those products and materials are produced. Therefore, “logistics has to
manage physical goods in space and time in order to execute orders.” (GUDEHUS &
KOTZAB 2012, p. 4) The term logistics has been widely discussed, and many definitions
address various aspects (cf. RUTNER & LANGLEY 2000; SCHUH & V. STICH 2013).

Objectives

Logistics ensures the availability of the right product, in the right quantity and the
right condition, at the right place, at the right time, for the right customer, at the right
cost (RUTNER & LANGLEY 2000, p. 73). A refinement of the Seven R’s of Logistics

introduces a variety of logistics performance dimensions like on-time delivery and
customer satisfaction, flexibility, low loss and damage, and cost efficiency (CHOW et al.
1994). In a nutshell, these dimensions can be simplified to effectiveness and efficiency.
Efficiency is doing things right, and effectiveness is doing the right thing (CHOW et al.
1994, p. 23). Non-value-added activities can be evaluated in terms of effectiveness and
efficiency. Consequently, logistics is a process that creates value (RUTNER & LANGLEY

2000, p. 73).
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“A logistics value-added service either provides additional service(s) or exceeds cus-
tomer service requirements that further reduce the supply chain costs or increase the
partners’ profits and gains competitive advantage in the marketplace.” (RUTNER &
LANGLEY 2000, p. 79)

Scope

Logistics can be classified into procurement logistics, internal logistics, and distribution

logistics. Here, internal logistics, also referred to as intra-logistics, or in-house logistics,
connects the receiving areas, internal sources and destinations, and the shipping docks
of the same site or plant. (GUDEHUS & KOTZAB 2012, p. 7)

Definition. Internal logistics refers to the receipt of parts, warehousing (e.g., stor-
ing, sequencing), and line feeding through to line-side presentation (cf. BOYSEN

et al. 2015; NEGRI et al. 2017; SALI & SAHIN 2016).

Processes

Numerous definitions exist for the term “process” (cf. LINDSAY et al. 2003). A popular
definition says a process is a “set of partially ordered activities intended to reach a goal”
(HAMMER & CHAMPY 1993, p. 39). More precisely, DAVENPORT (1992) defines a
process as a “specific ordering of work activities across time and place, with a beginning,
an end, and clearly identified inputs and outputs: a structure for action” (DAVENPORT

1992, p. 5).

Definition. A process is a set of specific and ordered activities across time
and place, with a beginning and an end, intended to reach a specific goal (cf.
DAVENPORT 1992; HAMMER & CHAMPY 1993).

Many types of logistics processes exist. Inbound logistics, outbound logistics, reverse
logistics, or disposal logistics can be differentiated according to the direction of material
flows (GUDEHUS & KOTZAB 2012). Inbound logistics refers to the call order, transport
logistics, receipt of parts, storing parts, sequencing of parts, delivery to line, and line-side
presentation (BOYSEN et al. 2015, p. 109).

Definition. A logistics process is a process that consists of material and informa-
tion flow activities (cf. ARNOLD et al. 2010; GÜNTHNER & BOPPERT 2013).
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2.1 Internal logistics

A logistics reference process is a logistics process that consists of a unique set of
standardized material and information flow activities that are related to resources (based
on DÖRNHÖFER et al. 2016; ROZINAT et al. 2007). An example of a logistics reference
processes is to inspect packages at the goods receiving, to transport packages to the high
rack using a forklift, to store packages, and to distribute packages to the assembly line.
A logistics reference process is implemented and executed in the production plant.

Ten standardized material flow activities (cf. Figure 2.1) and four information flow
activities (e.g., label, scan, document, and generate order) can be used to design logis-
tics reference processes (GÜNTHNER & BOPPERT 2013, p. 138). A comprehensive
description of internal logistics is presented in Section 5.1.1.

Transport Buffer t

Store
Collect

Distribute

Pick

Sort Inspect OK

Legend

Internal logistics activity

Location

Time

Quality

Quantity

Variety

t

Pack

Unpack

Figure 2.1: Standardized material flow activities in internal logistics (extract, based on
GÜNTHNER & BOPPERT 2013, p. 138)

2.1.2 From lean production to lean logistics

Over the last decades, lean production has been adapted to logistics. Lean logistics

takes its fundamental philosophy from lean production (JONES et al. 1997, p. 170).
The objective of lean logistics is to meet the requirements of manufacturing while
maintaining high flexibility, short lead times, and cost efficiency (KLUG 2010, p. 254).
The key concepts of value, value streams, flow, pull, and perfection have been adapted
for process improvement within lean logistics (JONES et al. 1997, p. 171). Many
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extensions have been developed, for example, to standardize processes or to improve
process stability (cf. GÜNTHNER & BOPPERT 2013; KLUG 2010).

In lean logistics, the main principle is the understanding of adding value and reducing
waste (cf. DÖRNHÖFER 2016; JONES et al. 1997). Generally speaking, waste is
any activity that consumes resources but creates no value (JONES & WOMACK 1997,
p. 1148). Consequently, “eliminating waste must be a business’ first objective” (OHNO

1988, p. 129). JONES et al. (1997, p. 154) claim that it is easy to see the steps that
add value, but it is much more difficult to see waste in logistics. Some activities in
logistics can be seen as adding value while others, e.g., storage, additional transport, or
quality issues, are seen as waste (DÖRNHÖFER et al. 2016, p. 14). Similarly, GOLDSBY

& MARTICHENKO (2005, p. 14) state that waste in production has received attention,
but relatively little is mentioned about the wastes in logistics. Consequently, various
definitions exist. Table 2.1 describes the fundamental understanding for this work.

Table 2.1: Seven types of waste in lean production and lean logistics (cf. GOLDSBY &
MARTICHENKO 2005; GÜNTHNER & BOPPERT 2013; OHNO 1988)

Lean production Lean logistics Description

Transportation Transportation Unnecessary transport of parts under
production.

Inventory Inventory Stacks of parts waiting to be completed
or to be shipped.

Motion Handling Unnecessary movement of people work-
ing on products.

Waiting Waiting Unnecessary waiting by people to begin
the next step.

Overproduction Over-supplying Supplying and producing material,
goods, energy and products not needed.

Over-processing Undefined processes Processing the product with extra steps.
Defects Defects Defects in the product.

This theoretical understanding of lean logistics and the resulting potentials for improve-
ment have been evaluated in many real-world applications (cf. FORNO et al. 2014;
SHOU et al. 2017; SPATH 2010). Process improvements range from simple continuous

improvement projects to reengineering logistics reference processes. An exemplary
study with 20 practitioners in the German automotive industry identified the largest
saving potentials for just-in-sequence (JIS) processes in the reduction of inventory and
space requirements (THUN et al. 2007, p. 1796).
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2.1.3 Information systems

Nowadays, internal logistics cannot operate without information systems due to per-
formance requirements and involving complexity (TEN HOMPEL & SCHMIDT 2010,
p. 2). J. BAUER (2014, p. 8) concludes that manually operating internal logistics could
not keep up with the needs of the plant. Organizations use Warehouse Management
Systems (WMS) to cope with performance requirements (RAMAA et al. 2012, p. 975).

Definition. A WMS primarily controls the movement and storage of materials
within a warehouse (cf. RAMAA et al. 2012; TEN HOMPEL & SCHMIDT 2010).

WMS have extended their scope to support many aspects of internal logistics, including
procurement, receiving incoming goods, and picking and sequencing of goods (SCHUH

& V. STICH 2013, p. 276). A WMS creates transfer orders based on the production
orders to supply production with the right amount of material. Subsequently, a transfer
order integrates the (digital) information flow with the physical material flow (SCHUH

& V. STICH 2013, pp. 276–277).

Definition. A transfer order triggers the process and activities that transform
the state of the unit load and stores related activity occurrences (cf. LIBERT et al.
2010; SCHUH & V. STICH 2013; TEN HOMPEL & SCHMIDT 2010).

In practice, a WMS can be a standalone system or integrated into an Enterprise Resource
Planning (ERP) system (RAMAA et al. 2012, p. 976). Numerous WMS solutions
are available on the market (TEN HOMPEL & SCHMIDT 2010, p. 255). Due to the
importance of transfer orders for this work, the data models of eight WMS are analyzed
to ensure the availability of transfer orders.

The analysis covers four commercial WMS (e.g., SAP R3 ERP WM) and four open
source WMS (e.g., openWMS) and confirms that every WMS uses transfer orders. Each
transfer order is stored in the database and holds information about the logistics process.
In particular, (1) the part (e.g., variant of a part or sub-assembly and quantity), (2) the
location (source and destination), and (3) time of occurrence are recorded. Notably, the
analysis shows that the number of data tables (and columns) varies among these WMS
(cf. Appendix A.1.1).
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2.2 Learning to see: Value stream mapping

“A value stream is all the actions (both value-added and non-value-added) currently
required to bring a product through the main flows essential to every product: (1) the
production flow from raw material into the arms of the customer [...].” (ROTHER &
SHOOK 1999, p. 1) ROTHER & SHOOK (1999, p. 1) conclude that the value stream
focuses on “the big picture, not just individual processes, and improving the whole, not
just optimizing the parts.” Thus, mapping a value stream includes (sub-)processes, data
boxes (metrics), inventory, and associated information (cf. ROTHER & SHOOK 1999).

Definition. “Value stream mapping is a pencil and paper tool that helps you to
see and understand the flow of material and information as a product makes its
way through the value stream.” (ROTHER & SHOOK 1999, p. 2)

Nowadays, value stream mapping has become a popular method for lean production
(SHOU et al. 2017, p. 3906) and is used “to identify value-adding activities and those
considered wasteful of materials and the flow of information” (FORNO et al. 2014,
p. 779). Benefits relate to the broad view of the entire flow and waste, the simple
and standardized presentation, and making decisions more visible to monitor previous
changes and improvements (FORNO et al. 2014, pp. 779–780).

Firstly, value stream mapping starts with the selection of a product family. Secondly, the
current state map of the production situation is recorded. Here, value stream mapping
focuses on the actual pathways and does not rely on standard times or information.
ERLACH (2010, p. 31) emphasizes that transparency on the actual state is elementary.
Thirdly, waste and potential for improvement are identified to develop the future state.
Fourthly, the future state is achieved1. (cf. ROTHER & SHOOK 1999)

Value stream mapping has been proven to be the most suitable (W. BAUER et al. 2014,
p. 483) and most frequently used tool (GÜNTHNER & SCHNEIDER 2011, p. 44) for
recording, analyzing, and improving processes in internal logistics. DÖRNHÖFER (2016,
p. 22) concludes that “transparency about processes and inventory is the key to identify
waste and potential for improvement”.

1 Please refer to ROTHER & SHOOK (1999) and ERLACH (2010) for further concepts and practical guidelines.
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2.3 Process mining

This section introduces process mining. Objectives, types, perspectives (cf. Sec-
tion 2.3.1), fundamental concepts (cf. Section 2.3.2), and advanced concepts and
methodologies (cf. Section 2.3.3) are briefly discussed.

2.3.1 Objectives, types, and perspectives

Process mining is a relatively young research discipline that bridges the gap between data
mining, on the one hand, and business process modeling and analysis, on the other hand.
In the field of data mining, established techniques, including classification, clustering,
and regression, are widely adapted to solve specific learning tasks. However, most data
mining techniques are not process-centric. (VAN DER AALST et al. 2012, p. 172) In
contrast, modeling, analyzing, and improving business processes are common tasks in
the field of business process management and operations management. According to
VAN DER AALST (2016, p. 56), “making a good model is an art rather than a science”.
Typical errors are related to models that (1) describe an idealized version of reality, (2)
use the wrong level of abstraction, and (3) are unable to capture human behavior (VAN

DER AALST 2016, p. 56).

Objectives of process mining

Over the last decade, event data have become available, and process mining techniques
have been developed. According to the IEEE Task Force on Process Mining, the
“challenge is to exploit event data in a meaningful way [...]. Process mining aims to do
exactly that.” (VAN DER AALST et al. 2012, p. 174)

Definition. “The idea of process mining is to discover, monitor and improve real
processes (i.e., not assumed processes) by extracting knowledge from event logs
readily available in today’s (information) systems.” (VAN DER AALST et al. 2012,
p. 172)

According to VAN DER AALST (2016, p. 32), “the digital universe and the physical
universe become more and more aligned.” Today’s information systems log enormous
amounts of event data, including the manufacturing and logistics domain (cf. REINHART

2017; VAN DER AALST 2016). Therefore, the overarching objective of process mining
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is to “use event data to extract process-related information” (VAN DER AALST 2016,
p. 25). Consequently, process mining provides an unbiased, objective, and historical
view using event data and reduces the effort due to automated algorithms. The key
concepts of event logs and process models that reflect the real world and how they apply
to process mining are shown in Figure 2.2.
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Figure 2.2: Process mining context model: types, perspectives, and related concepts
(based on BOLT & VAN DER AALST 2015; CALVANESE et al. 2016; ECK

et al. 2015; VAN DER AALST 2016)

Types of process mining

Three types of process mining are proposed to address the relationship between the key
concepts of event logs and process models (cf. VAN DER AALST et al. 2012).

• Process discovery. Process discovery takes an event log to create a process model
without using any a priori information. Typically, the resulting process model is
further processed or visualized. Hence, process discovery is the most prominent
process mining technique. (VAN DER AALST et al. 2012, p. 175)
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• Conformance checking. Conformance checking compares and measures the
alignment between a model and an event log and verifies if the model conforms
to reality (VAN DER AALST et al. 2012, p. 175).

• Enhancement. The idea of enhancement is to extend or improve an existing
process model using information about real-world behavior recorded in the event
log (VAN DER AALST et al. 2012, p. 175).

Perspectives of process mining

The three types of process mining cover four fundamental perspectives of a process,
which have been discussed extensively in the literature (VAN DER AALST 2016, p. 34).

• Control-flow perspective. The control-flow perspective focuses on the occurrence
and ordering of activities. The goal of mining the control-flow is to find a good
characterization of all possible paths. The result is typically expressed as a
Petri net. Consequently, the control-flow perspective constitutes the foundation
of process mining and is usually the starting point for a process analysis. (cf.
MANNHARDT 2018; VAN DER AALST 2016)

• Time perspective. The time perspective is concerned with the timing and fre-
quency of events. The time perspective can be used, for instance, to discover
bottlenecks and extend a process model. (VAN DER AALST et al. 2012, p. 176)

• Organizational perspective. The organizational perspective, also referred to as
resource perspective, focuses on the information about resources hidden in the
event log, e.g., actors (VAN DER AALST et al. 2012, p. 176).

• Case perspective. The case perspective, also referred to as the data or information
perspective, focuses on attributes of events or cases. Attributes such as cost are
proposed to enhance the analysis. (VAN DER AALST et al. 2012, p. 176)

The three types of process mining connect the key concepts of event logs and
process models. In contrast, the four process mining perspectives focus on the
different aspects of a process, most dominantly the control-flow perspective.
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2.3.2 From event logs to process models

This section focuses on the fundamental concepts of process mining. Event logs, process
discovery algorithms, and process models are presented.

Event logs

The starting point for process mining is an event log, which assumes that “it is possible
to sequentially record events such that each event refers to an activity (i.e., a well-defined
step in some process) and is related to a particular case (i.e., a process instance).” (VAN

DER AALST et al. 2012, p. 174) Consequently, a process consists of cases. A case

consists of events such that each event relates to precisely one case. Events within a case
are ordered and can have attributes. Providing such event logs may be very challenging,
such as correlating the cases of raw event data or snapshots of incomplete cases. (VAN

DER AALST 2016, pp. 129–143)

Definition (Event, attribute). Let E be the event universe, the set of all possible
event identifiers, and let AN be a set of attribute names. For any event e ∈ E and
name n ∈ AN, #n(e) is the value of the attribute n for event e.

Definition (Case, trace). Let C be the case universe, the set of all possible case
identifiers. Each case refers to a trace σ with a finite sequence of events. For any
case c ∈C and name n ∈ AN, #n(c) is the value of the attribute n for case c.

Definition (Event log). An event log is a set of cases L⊆C such that each event
appears only once. (VAN DER AALST 2016, pp. 130–134)

An example event log is shown in Table 2.2. If possible, process mining techniques use
extra attributes, e.g., the cost and resource recorded with the event (VAN DER AALST

et al. 2012, p. 174). The following standard attributes exist (VAN DER AALST 2016,
p. 131):

• #activity(e) is the activity associated to event e.

• #time(e) is the timestamp of event e.

• #resource(e) is the resource associated to event e.

• #trans(e) is the transaction type associated to event e, e.g., start and complete.
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Table 2.2: A fragment of some event log: each line corresponds to an event (based on
VAN DER AALST 2016, p. 129)

Attributes

Case Id Event Id Timestamp Activity Resource Cost ...

1 35654423 2010-12-30 11:02 register request Pete 50 ...
35654424 2010-12-31 10:06 examine thoroughly Sue 400 ...
35654425 2011-01-05 15:12 check ticket Mike 100 ...
35654426 2011-01-06 11:18 decide Sara 200 ...

2 35654483 2010-12-30 11:32 register request Mike 50 ...
35654485 2010-12-30 12:12 check ticket Mike 100 ...
35654487 2010-12-30 14:16 examine casually Pete 400 ...
35654488 2011-01-05 11:22 decide Sara 200 ...
35654489 2011-01-06 12:05 pay compensation Ellen 200 ...

3 35654641 2011-01-06 15:02 register request Pete 50 ...
35654643 2011-01-07 12:06 check ticket Mike 100 ...

... ... ... ... ... ... ...

Process discovery algorithms

This section focuses on the discovery task in the control-flow perspective, often referred
to as process discovery. “A process discovery algorithm is a function that maps an event
log L onto a process model M that is representative for the behavior seen in the event
log L.” (VAN DER AALST 2016, p. 163) The challenge is to “create a process model
that is consistent with the observed dynamic behavior” (VAN DER AALST & WEIJTERS

2004, p. 232). Four widely adapted quality performance metrics exist for assessing
quality (cf. BUIJS et al. 2012; VAN DER AALST 2016):

1. “Replay fitness quantifies the extent to which the discovered model can accurately
reproduce the cases recorded.” (BUIJS et al. 2012, p. 305)

2. Simplicity. “The complexity of a process model is captured by the simplicity
dimension.” (BUIJS et al. 2012, p. 306)

3. “Precision quantifies the fraction of the behavior allowed by the model which is
not seen in the event log.” (BUIJS et al. 2012, p. 306)

4. “Generalization assesses the extent to which the resulting model will be able to
reproduce future behavior of the process.” (BUIJS et al. 2012, p. 306)
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Many process discovery algorithms have been developed in the field of process mining2.
Some important algorithms are briefly presented:

• α-algorithm. The α-algorithm (α) is one of the first process discovery algorithms.
Basically, the α-algorithm constructs a Petri net from an event log using a directly-
follows graph. The simplicity of the α-algorithm introduces limitations related to
loops and duplicate activities. Many variants have been developed (e.g., α+, α++)
to address those shortcomings. (LEEMANS 2017, pp. 60–62)

• Heuristic miner. The heuristic miner takes frequencies of events and paths into
account when creating the model. Infrequent paths should not be included in the
model. (VAN DER AALST 2016, p. 201) A directly-follows graph is constructed,
and the activity relations are derived probabilistically. Nevertheless, no sound
process model can be guaranteed. (LEEMANS 2017, p. 63)

• Fuzzy miner. The fuzzy miner focuses on complex, real-life processes with noise.
Suitable abstractions of reality are created using (1) correlation and significance
metrics, (2) edge filtering, and (3) activity aggregation and abstraction (GÜNTHER

& VAN DER AALST 2007). Typically, important paths are highlighted (VAN DER

AALST 2016, p. 44).

• Genetic miner. Genetic miners are evolutionary algorithms. Instead of relying
on local information in the log, an iterative global search is applied. On the one
hand, genetic miners are precise and robust to deal with noise and incomplete
logs. For example, the evolutionary tree miner allows specifying the importance
of each quality performance metric (BUIJS et al. 2012, p. 310). On the other
hand, genetic miners are inefficient, resulting in high computation times for larger
models and event logs. (cf. MEDEIROS et al. 2007; VAN DER AALST 2016)

• Inductive miner. Inductive mining techniques use process trees and a divide-
and-conquer approach to create a sound process model. Therefore, infrequent
behavior and very large event logs and models can be handled. (LEEMANS

et al. 2014, 2018) Currently, the inductive miner is a leading process discovery
algorithm (VAN DER AALST 2016, p. 222).

2 BURATTIN (2013, pp. 41–53) presents a summary of the historical development. For further discussions of
individual algorithms, please refer to BUIJS et al. (2014), DONGEN et al. (2009), LEEMANS (2017), VAN
DER AALST (2016), & VAN DER AALST & WEIJTERS (2004).
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Process models

Process discovery algorithms create process models in various perspective, semantic, and
abstraction levels. A plethora of process model notations with different characteristics
exist in industry and academia. (cf. BUIJS et al. 2012; VAN DER AALST 2016) Two
important notations for process mining are briefly explained3.

• Petri nets. A Petri net is a directed graph consisting of places and transitions.
Petri nets are a simple and executable graphical notation. WorkFlow-nets (WF-

net) are a subset of Petri nets that require a dedicated source (start) and sink (end)
of the process. (VAN DER AALST 2016, pp. 59–65)

• Business Process Modeling Notation (BPMN). In 2011, the Object Management

Group (OMG) introduced BPMN 2.0, a widely used business process model
standard (KALENKOVA et al. 2017, p. 1019). BPMN aims to provide a notation
that is readily understandable by all business users (OMG 2011, p. 1). The
BPMN notation models the process as a graph using standardized elements, such
as activities and gateways, that cover different perspectives. Models related to
process mining can be converted into Petri nets, and vice versa4. BPMN is very
attractive for both process mining analysts and business users. Figure 2.3 shows
an example BPMN process model.
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X +
check ticket end

examine 
casually

examine 
thoroughly

decide

X X

+ X X
reject 

request

compensate

reinitiate 
request

Figure 2.3: Process model using the BPMN notation (VAN DER AALST 2016, p. 69)

3 For an overview and discussion of notations (e.g., Causal nets, UML Activity Diagrams or Process Trees),
please refer to BÖRGER (2012), RUSSELL et al. (2005), VAN DER AALST (2016), & VAN DER AALST et al.
(2011).

4 Please refer to KALENKOVA et al. (2017) for further discussion on the relation between BPMN 2.0, low-level
models (e.g., Petri nets), and process mining.
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2.3.3 Advanced concepts and methodologies

Firstly, multidimensional process mining and trace clustering are introduced. Secondly,
methodologies are presented that demonstrate the applicability of process mining.

Multidimensional process mining

Process mining uses event data to extract process-related information. Unfortunately,
“there are no process discovery techniques that produce overarching models able to
relate and analyze different groups and process variants.” (VAN DER AALST 2013, p. 1)
Events and process models are organized into various dimensions using process cubes

notation (cf. Figure 2.4). These dimensions can be analyzed separately to compare
different process variants in terms of the fundamental of process mining5. (cf. BOLT &
VAN DER AALST 2015; VAN DER AALST 2013)

ca
se
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event

3 types of process mining

4 perspectives of 
process mining

Figure 2.4: The concept of process cubes (VAN DER AALST 2013, p. 6)

Process cubes allow organizing events in three dimensions:

• Case type. The case type is based on the attributes of the case as a whole, not on
individual events (VAN DER AALST 2013, p. 6).

• Event class. This dimension is based on the attributes of individual events, e.g.,
activity name or resource (VAN DER AALST 2013, p. 6).

• Time window. The time window dimension uses timestamps, e.g., to cover process
changes (cf. concept drift) (VAN DER AALST 2013, p. 17).

5 Please refer to VOGELGESANG et al. (2016) for a review-based comparison of dimension classes, data
requirements, and limitations of multidimensional process mining approaches.
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Trace clustering

Trace clustering is a process mining technique that aims to identify groups of similar
instances to reduce the complexity of the analysis (cf. Figure 2.5). In contrast to
multidimensional process mining, clustering is typically used in an explanatory manner
if groups are unknown. (VAN DER AALST 2016, p. 116) Therefore, clustering addresses
issues related to less structured and more flexible processes with many process variants
(cf. BOSE & VAN DER AALST 2010; DE WEERDT et al. 2013; SONG et al. 2009).

Definition. Trace clustering splits an event log “into homogeneous subsets, and
for each subset, a process model is created” (SONG et al. 2009, p. 109).

In general, clustering algorithms require a set of input features. Therefore, the event log
is transformed into a set of input features (cf. trace profile). Typically, trace profiles
map the control-flow perspective (BOSE & VAN DER AALST 2009, pp. 398–399):

• Bag-of-activities. For each trace, the frequencies of activities are mapped to a
vector without taking the sequence into account.

• k-gram model. Trace fragments of k occurring activities are mapped (e.g., 2-gram
refers to a pair of activities) to include this sequence.

• Distance-based. Distance-based functions, i.e., hamming distance or edit dis-

tance, evaluate the similarity of traces using distance functions.

Trace profiles can address the case perspective, including performance, case attributes,
or event attributes (SONG et al. 2009, pp. 113–114). To evaluate the goodness of the
clusters, established quality performance metrics (e.g., fitness) are evaluated for each
cluster (BOSE & VAN DER AALST 2009, p. 397).
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Figure 2.5: The concept of trace clustering (BOSE & VAN DER AALST 2010, p. 397)
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Process Mining Project Methodology (PM2)

A range of process mining techniques and perspectives can be used to improve processes.
However, ensuring practical support in real-world applications is far from trivial. Many
theoretical methodologies exist, such as the L* Life-cycle model, and PM2 can be seen
as a comprehensive refinement. (VAN DER AALST 2016, p. 396)

PM2 aims to improve the process performance or compliance to rules, and it covers a
wide range of techniques suitable both for structured and unstructured processes. PM2

supports an iterative execution of process mining. To ensure practical support, PM2

focuses on (1) research questions, (2) performance findings, (3) compliance findings,
and (4) improvement ideas. (ECK et al. 2015, p. 298)

In total, PM2 includes six stages, specified with concrete tasks and outcomes (cf.
Figure 2.6). The first two steps include (1) planning and (2) data extraction to initialize
the project. Here, objectives are defined, and required event data and optional process
models are extracted. In the third step, the data are (3) processed into event logs. The
event log is created, enriched, and filtered. Domain ontologies can support these steps
using domain-specific knowledge. (4) Process mining techniques are applied, and (5)
findings are evaluated iteratively. Finally, (6) process improvements are implemented
for operational support. (cf. ECK et al. 2015)
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Figure 2.6: Process Mining Project Methodology (PM2) (ECK et al. 2015, p. 299)
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Ontology-based data extraction and preprocessing

It is a common misconception to think a project starts as soon as event logs are available
(MURILLAS 2019). Theory states that creating event logs is far from trivial (VAN DER

AALST & WEIJTERS 2004, p. 238), and sometimes significant effort is required (VAN

DER AALST et al. 2012, p. 177); the effort to create event logs can be up to 80% of
the time of a project (MURILLAS 2019). Possible challenges during extracting and
preprocessing data relate to:

1. Information systems. Typically, many legacy information systems interact with
each other. Identifying relevant systems and storage mechanisms can be challeng-
ing. (CALVANESE et al. 2016, p. 141)

2. Data models. Information systems do not record event logs explicitly (VAN DER

AALST 2015, p. 105). Numerous data tables must be merged to correlate the
data, and interesting data attributes must be precisely located in each data table
(INGVALDSEN & GULLA 2008, p. 33).

3. Abstraction. The extraction spans several levels of abstraction, and there is no
such notion for a single event log. The vocabulary used in the information systems
and data models differs radically from domain knowledge, as, for example, in
internal codes with implicit semantics. (CALVANESE et al. 2016, pp. 140–141)

4. Scalability. The volume of data created can be challenging for process mining
(LEEMANS et al. 2018, p. 600). Furthermore, cases may have a lifetime that
exceeds the time frame of the event log (VAN DER AALST 2016, p. 143).

If these time-consuming stages can be reduced, an impact in terms of time, cost, and
quality can be created (MURILLAS 2019). Consequently, suitable data must be identified
and extracted, and event logs must be created and enriched. Within the area of process
mining, domain ontologies are frequently used to support these tasks.

Definition. “An ontology is an explicit specification of a conceptualization. [...]
This set of objects, and the describable relationships among them, are reflected in
the representational vocabulary with which a knowledge-based program represents
knowledge.” (GRUBER 1995, pp. 1–2)
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Firstly, a set of relevant objects and properties enable efficient identification of necessary
information systems, data tables, and columns (CALVANESE et al. 2016; INGVALDSEN

& GULLA 2008). Secondly, domain ontologies include existing relationships between
objects so that complex models can be flattened to an event log (INGVALDSEN &
GULLA 2008). Although events and attributes are difficult to generalize, event logs
can be enriched with concepts from domain ontologies to enhance the interpretation of
results (JAREEVONGPIBOON & JANECEK 2013, p. 460).

Many concepts that use ontologies for data extraction and preprocessing refer to three
stages (e.g., CALVANESE et al. 2016; INGVALDSEN & GULLA 2008; JAREEVONGPI-
BOON & JANECEK 2013; VAN DER AALST 2015):

1. Ontology specification. Create a shared understanding of domain-specific classes,
object properties (relations), and data properties (attributes).

2. Data extraction. Identify application-specific information systems and underlying
data models, including data tables and columns.

3. Data processing. Correlate events to cases and, subsequently, event logs. Enrich
domain-specific attributes at the event, case, or event log level.

For example, CALVANESE et al. (2016) developed an annotation-based approach that
allows domain experts to specify how to view the domain. In other words, events, traces
and optional attributes are annotated in the ontology (cf. Figure 2.7).
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Figure 2.7: Domain ontology with annotations for ontology-based data extraction
(CALVANESE et al. 2016, p. 105)
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This chapter identifies, discusses, and evaluates relevant literature contributing to the
objectives of the thesis. A systematic literature review identified relevant process mining
publications with applications in logistics and manufacturing (cf. Section 3.1). Relevant
work is discussed and evaluated for the logistics (cf. Section 3.2) and the manufacturing
industries (cf. Section 3.3) separately. A conclusive summary synthesizes the findings
and outlines future research opportunities (cf. Section 3.4).

3.1 Systematic review approach

The systematic literature review provides a representative overview of the existing
literature (cf. Figure 3.1). Each step is tailored based on the findings of three process
mining literature reviews in healthcare (ROJAS et al. 2016), Supply Chain Management
(SCM) (JOKONOWO et al. 2018), and business processes (DAKIC et al. 2018).
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Figure 3.1: Approach for a systematic literature review of process mining in logistics
and manufacturing (based on BOELL & CECEZ-KECMANOVIC 2014; BR-
ERETON et al. 2007; WEBSTER & WATSON 2002)
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Unit of analysis

The literature review includes relevant literature in the fields of logistics and manufac-
turing to enable value stream mapping for internal logistics using process mining (cf.
Section 1.3). Integrating manufacturing allows a broad view of related applications and
supports the identification of further research opportunities.

Classification and evaluation context

A concept-centric classification context can be formulated in terms of the addressed
problem (problem context) or the applied methodology (methodological context). In
practice, various process mining techniques and perspectives are combined. A review of
the SCM literature shows that a “high number of the papers aim to indirectly contribute
to all other types of process mining [than data preparation].” (JOKONOWO et al. 2018,
p. 3633) DAKIC et al. (2018, p. 870) reported that 94% of the publications analyze
the control-flow perspective, and 63% address the case/time perspective. In contrast,
the problem context provides support for the practical application of process mining.
For instance, a literature review in healthcare uses the process type to classify different
hospital processes: “That way, process mining techniques and algorithms can be applied
correctly and appropriately.” (ROJAS et al. 2016, p. 228). However, a variety of
processes with different characteristics exist in logistics and manufacturing. Thus, the
problem context must be refined to the targeted industry to classify similar processes.

Consequently, the evaluation of the work is based on the problem context and a cross-
analysis of the methodological context. The main findings are discussed in terms of
the process types and the four stages of a process mining project: planning and data
extraction, data preprocessing, mining, and analysis and evaluation.

Searching the publications

The publications were collected using the three scientific databases Scopus R©, Web of

Science and Google Scholar. A keyword search for “process mining” AND (logistics

OR manufacturing OR production) was performed for each database. After an initial
screening, the search was extended by specific terms such as RFID or warehousing. In
total, after removing duplicates, 207 publications were considered.1

1 The articles of KNOLL et al. (2017), REINHART et al. (2017), and KNOLL et al. (2019c) were excluded from
the review.
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Delimiting the publications

Both inclusion criteria (IC) and exclusion criteria (EC) were defined (based on BRERE-
TON et al. 2007) to limit the total number of publications:

IC1. Publications explicitly using process mining techniques, algorithms, and concepts
applied in the logistics or manufacturing domain.

IC2. Peer-reviewed publications and PhD theses in English.

IC3. Articles published before April 4, 2019.

EC1. Publications that do not include evidence of an application (neither real-world
data nor simulation) of process mining in logistics or manufacturing.

EC2. Applications for non-material flow processes. For example, FAROOQUI et al.
(2019) use process mining to analyze the operations of a robot.

The 207 publications were reviewed in terms of title, abstract, and keywords based
on these criteria. Promising publications were evaluated in detail based on the full
text and the same criteria. In this step, further literature was identified by selectively
going forward and backward in the articles. The resulting 40 relevant publications were
classified into seven industry categories (cf. Figure 3.2).
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Figure 3.2: Classification of relevant process mining literature according to the domain
and industry
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3.2 Process mining in logistics

This section provides an overview of the major work in logistics. The work is classified
into three applications: internal logistics (cf. Section 3.2.1), infrastructure logistics,
including the dominant research stream of port logistics (cf. Section 3.2.2), and other
applications (cf. Section 3.2.3). Afterward, the methodological context is analyzed (cf.
Section 3.2.4). Section 3.2.5 concludes the literature in logistics.

3.2.1 Internal logistics

Internal logistics refers to the receipt of parts, warehousing (e.g., storing, sequencing),
and line feeding through to line-side presentation, and can include further processing on
the shop floor or of the finished goods. The activities can be classified into transport,
buffer and store, collect and distribute, pick and sort, and quality checking. However,
the occurrence of these activities, and the related manufacturing processes, varies across
publications. The studies are clustered into three process types: (1) goods receiving to
the manufacturing shop floor, (2) manufacturing shop floor, and (3) manufacturing shop
floor to outgoing goods.

Goods receiving to manufacturing shop floor

ER et al. (2015a) developed a practical methodology and analyzed a process with
two warehouses (cf. Figure 3.3). Within the analysis, the material flow was mined
using process discovery. The results were combined with a performance analysis (e.g.,
duration) and rule-based checking of the conformance (e.g., First In - First Out (FIFO)
principle). Various deviations from the reference process model (e.g., quality activities),
long stock waiting times, and violations of the FIFO principle were identified. (cf. ER

et al. 2015a)
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Figure 3.3: Process mining methodology for analyzing a goods receiving process in the
shoe manufacturing industry (ER et al. 2015a, p. 119)
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In ER et al. (2015b), the authors extended the case study with an in-depth analysis of
the quality inspection. Interviews extended the understanding of the quality process,
and multiple ERP data tables were needed to create the event logs. ER et al. (2015b)
integrated information flow activities (e.g., purchase order). Process discovery identified
issues related to the significantly higher duration of quality inspection for certain material
types. (cf. ER et al. 2015b)

VAN CRUCHTEN & WEIGAND (2018) aimed to improve the data preprocessing for
complex processes using domain knowledge. The domain knowledge was translated into
rules to simplify the event log. By checking business constraints, invalid movements and
locations were cleaned. In the case study, a business expert selected a process related to
rework of defective materials. The process is potentially related to waste of inventory,
as the blocked materials cannot be used for the Material Resource Planning (MRP).
For this reason, process discovery was combined with the duration and frequency of
activities. Resulting inefficiencies due to blocked stock in the quality inspection and
loops were uncovered. (cf. VAN CRUCHTEN & WEIGAND 2018)

Y. WANG et al. (2018) present a study in an electronic equipment manufacturer’s
complex manufacturing environment. A conformance checking analysis was carried out
to discover the root causes of inventory differences. The answers to collected business
questions identified various fault causes. For example, material issued to the production
was sent back to different storages. Additionally, financial violations could be evaluated
by including the value of the rejected parts in the analysis. (cf. Y. WANG et al. 2018)

Manufacturing shop floor

S.-k. LEE et al. (2013) developed a process mining methodology for transportation logs
in a shipbuilding manufacturing process. The methodology focused on the identification
of bottleneck activities, long waiting times, and, subsequently, the reduction of transport
costs. The application showed that unplanned activities exist, and different blocks of
a ship have unique characteristics that result in different transportation processes. As
an example, the number of transportation activities varies from three to 37 activities
based on the process variants. To overcome the product and process complexity, S.-k.
LEE et al. (2013) applied hierarchical clustering to mine for unknown, local process
variants (cf. Figure 3.4). Processing and waiting times were analyzed in detail for each
of the four identified process variants. No process discovery and conformance checking
techniques were used. (cf. S.-k. LEE et al. 2013)
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Figure 3.4: Trace clustering for process mining of transportation logs in a shipbuilding
manufacturing process (S.-k. LEE et al. 2013, p. 86)

Similarly, BECKER & INTOYOAD (2017) applied k-medoids clustering to improve the
results in heterogeneous process environments with many process variants, such as
manufacturing and logistics, using context information. The paper used the frequency
of a process and its overall cycle time for clustering. Based on the evaluation of six
different data sets from manufacturing and logistics, the authors conclude that selecting
the most frequent process variant can be used to reduce the complexity. The evaluation
focused on the clustering approach, and no analysis of the process using process mining
techniques was conducted. (cf. BECKER & INTOYOAD 2017)

In addition to these approaches evaluated with real-world data, two conceptual articles
exist for this process type. BECKER et al. (2017) identified the issue that manufacturing
and logistics processes are characterized by a high frequency of changes and hetero-
geneous information systems. The authors developed a concept to maintain processes
using process mining and formulated “the need for a common information base in terms
of an ontology” (BECKER et al. 2017, p. 78). For demonstration purposes, artificial data
were used for process discovery. Notably, no data preprocessing or analysis has been
completed. (cf. BECKER et al. 2017)

GLASCHKE et al. (2016) developed a concept to overcome heterogeneous application
landscapes in an Industrie 4.0 Laboratory at the University of Potsdam. In this lab-
oratory, a manufacturing process is simulated. Contrasting to all other publications
in internal logistics, Radio frequency identification (RFID) is used as a data source.
GLASCHKE et al. (2016) state that combining RFID with process mining facilitates a
comprehensive look at a process. However, no analysis was completed. (cf. GLASCHKE

et al. 2016)
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Manufacturing shop floor to outgoing goods

PASZKIEWICZ (2013) evaluated the conformance of activities required to take finished
mattresses from production and ship them to the client. The activities include the mate-
rial flow (e.g., on fork) and information flow (e.g., production finished). PASZKIEWICZ

(2013) state that a practical evaluation of conformance checking is still missing. Based
on an interview with a warehouse manager, six conformance rules were collected and
analyzed (cf. Figure 3.5). As an outcome, various violations (e.g., FIFO principle) were
identified and addressed (e.g., worker training).
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Figure 3.5: Conformance checking of an outgoing goods process in a mattress factory
(own illustration, based on PASZKIEWICZ (2013))

Finally, LIIV & LEPIK (2014) analyzed a picking process used by a logistics warehous-
ing service. The objectives of the work include both technical and business aspects.
The business aspects focus on identifying deviations from the reference process and
wastes of time. The authors describe the data extraction, preprocessing, discovery, and
performance analysis steps of the process in detail. During the analysis, the duration
and frequencies were combined with the mined process model. The transparency of the
actual process enabled management to make further improvement plans.

3.2.2 Infrastructure logistics

The literature on infrastructure logistics can be broken down into two categories: port
logistics and airport logistics.

Port logistics

A group of researchers developed various process mining techniques and evaluated
them by examining Chinese ports. Only publications relevant to this thesis are presented
here because the process types used to operate port logistics tend to differ in terms of a
higher amount of activities.
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Y. WANG et al. (2014a) is the earliest and most comprehensive study in this field. The
authors aimed to enhance logistics process transparency, to strengthen the internal
control of the company, and to improve performance. According to Y. WANG et al.
(2014a), there is a lack of comprehensive methodologies to support practitioners of
process mining in logistics. The authors developed a methodology for extracting,
preprocessing, and evaluating performance and conformance (cf. Figure 3.6).
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Figure 3.6: Process mining methodology for acquiring logistics knowledge in a port
logistics process (Y. WANG et al. 2014a, p. 197)

The applied process mining techniques focus on the practical outcome, and the method-
ology covers many stages of process mining. Y. WANG et al. (2014a) emphasize the
importance of experts when integrating knowledge of the material flow and resources.
In contrast to the situation in internal logistics, the analyzed process for port logistics
is comparatively complex. Further on, Y. WANG et al. (2014a) suggest using logistics
attributes in the event log (e.g., cargo type) for the analysis. (Y. WANG et al. 2014a)

The same research group provided an extension of this work. As they identified a
large set of variants in the process, Y. WANG et al. (2014b) applied trace clustering
combined with domain knowledge (e.g., cargo type in the case perspective) for further
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analysis. After clustering the process variants, the correlation with available attributes
was analyzed statistically. The complexity of process variants was reduced efficiently.
Nevertheless, Y. WANG et al. (2014b) claim that the challenge lies in extracting a
suitable set of case attributes. (cf. Y. WANG et al. 2014b)

Another issue in this context is the availability of similar activities for different locations
(e.g., customs activities at different locations). Therefore, PULSHASHI et al. (2015)
developed a multidimensional process mining approach to discover different process
variants and measure the dependencies. (cf. PULSHASHI et al. 2015)

YAHYA et al. (2016) developed a process mining discovery algorithm to integrate expert
domain knowledge. The authors state that most process mining research is related to
general concepts of process mining, and only little focus has been put on domains.
Therefore, they developed the proximity miner algorithm to integrate domain-specific
constraints during process discovery (e.g., causality rules). The event logs of a transport
process were mined to evaluate the approach. Additionally, a performance analysis
created statistics about the duration and frequencies of events. (cf. YAHYA et al. 2016)

The presented approaches have developed or applied various process mining techniques
to analyze processes. Other work has integrated process mining with other data mining
techniques. After completing process discovery, J. WANG et al. (2016) integrated the
organizational perspective of process mining with a graph-based network structure
analysis. The importance (node centrality) and amount of work relations (edges)
were calculated based on information about the process participants (case perspective).
SUTRISNOWATI et al. (2015) developed an approach to predict the lateness of containers
based on a Bayesian network. A process model based on the process discovery technique
can be used to construct the Bayesian network. Notably, three articles in port logistics
were not available in full text.

Airport logistics

One study focuses on airport logistics from a time perspective, which is in contrast to
other articles aiming to understand different process variants in terms of the control-flow.
DENISOV et al. (2018) argue that usually, the time-based metrics (e.g., duration) are
aggregated over the time frame. Therefore, the performance spectrum pairs related
process activities to visualize the variability of the duration over time (cf. Figure 3.6).
The concept was evaluated using the baggage handling system of a major European
airport. (cf. DENISOV et al. 2018)
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Figure 3.7: Performance analysis of time-dependent variability using the performance
spectrum (illustration modified from DENISOV et al. 2018, p. 140)

3.2.3 Other industries

Distribution logistics

JAREEVONGPIBOON & JANECEK (2013) present a concept to improve the analysis
results of process mining. The concept aims to enhance event logs with the semantics
of an ontology. Included are steps for (1) examining event data, (2) defining ontologies,
(3) creating and combining ontologies, and (4) mapping concepts from ontologies
to event logs. The evaluation of this concept concentrated on a restocking process
from warehouses to retail stores. In conclusion, the authors found that the discovered
processes can be analyzed from different perspectives (e.g., product code in the case
perspective) and aggregation levels. (cf. JAREEVONGPIBOON & JANECEK 2013)

Supply Chain Management (SCM)

In the context of SCM, GERKE et al. (2009) investigated the use of RFID data with
process mining. The authors present an algorithm to prepare EPCglobal data into
event logs. Extensive preprocessing was required, and various packaging and assembly
operations made it difficult to follow a single process instance (GERKE et al. 2009,
p. 286). KANG et al. (2013) adapted the work of GERKE et al. (2009) to analyze a supply
chain of imported beef. Both evaluations were based on artificial data generated using
simulations, and real-world applications were missing. Additional literature related to
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SCM focuses on the cross-organizational perspective and is discussed in a literature
review (cf. JOKONOWO et al. 2018).

Healthcare

Process mining is used to track the material flow of physical equipment, medical
personnel and patients in healthcare using RFID data (ZHOU & PIRAMUTHU 2010a,b).
A review of healthcare-related literature provides a broad overview (cf. ROJAS et al.
2016).

The articles in the review support the conclusion that process mining can be applied to
analyze RFID data of material flow activities. The publications outline the challenges
and steps required for preprocessing RFID data into event logs for process mining.
However, no case study with a detailed process analysis exists. The feasibility of
analyzing RFID data has been presented in the context of big data applications. ZHONG

et al. (2015) processed RFID data within data warehouses to create a logistics trajectory.
Later, ZHONG et al. (2016) developed a visualization concept and ZHONG et al. (2017)
integrated physical resources. Notably, no process mining techniques were used.

3.2.4 Cross-analysis of the methodological context

Process mining has been applied and evaluated in different logistics industry sectors.
The methodological context provides further insights across all publications in logistics.
The literature review has identified two main types of research: articles related to
the design and evaluation of concepts (conceptual work) and articles focusing on the
practical application (case study). The characteristics of the methodological context
vary depending on the research type.

Process types

Essentially, two generic types of processes exist: lasagna processes and spaghetti

processes. Lasagna processes are well-structured and relatively simple, with a low
number of activities. Spaghetti processes are unstructured and complex. Different
process mining techniques can be applied to each process type. Theory claims that both
types exist in the transportation industry. (VAN DER AALST 2016, p. 401)

The literature review confirms these theoretical findings as the number of activities
analyzed in internal logistics varies from four to ten activities per process. If the
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activities are related to one or more locations such as storages, the complexity usually
increases (cf. VAN CRUCHTEN & WEIGAND 2018; Y. WANG et al. 2018). Multiple
publications have reported that many processes exist, either as process variants (e.g.,
BECKER & INTOYOAD 2017; S.-k. LEE et al. 2013) or as processes preselected by
logistics experts (e.g., PASZKIEWICZ 2013; VAN CRUCHTEN & WEIGAND 2018). In
infrastructure logistics for ports, by contrast, the number of activities ranges from ten to
37 activities, in addition to multiple process variants. Airport logistics may have up to
850 activities (DENISOV et al. 2018). The number of activities per process, events, and
cases is reported to be high. For example, PASZKIEWICZ (2013) reported 87,660 cases
and 554,745 events in a mattress factory, and VAN CRUCHTEN & WEIGAND (2018)
analyzed a process with 4.2 million events in one year.

Planning and data extraction

Any process mining project starts with planning the objectives and questions and then
extracting event data from information systems (VAN DER AALST et al. 2012, p. 177).

Conceptual work can be characterized by less-practical objectives and, typically, no
analysis questions (i.e., BECKER & INTOYOAD 2017; Y. WANG et al. 2014b). The
evaluation aims to verify that the concept (e.g., clustering techniques) can be applied. In
contrast, the case studies have defined objectives and questions. However, the objectives
and the processes selected for analysis are determined by the process expert’s choice
(e.g., ER et al. 2015a; PASZKIEWICZ 2013).

Due to the fact of heterogeneous information systems, the picture of event data is also
sparse and fragmented. Except for S.-k. LEE et al. (2013), all publications with real-
world data rely on transactional information systems (i.e., WMS or ERP). S.-k. LEE

et al. (2013) refers to a manually recorded transportation history. Usually, multiple data
tables, sometimes even across systems, must be extracted. ER et al. (2015b) claims
that obtaining an event log is one of the main challenges. According to Y. WANG et al.
(2014a), the identification of additional attributes is an important challenge in event log
extraction and requires domain knowledge.

The concept of ontology-based data extraction and preprocessing is proposed to ad-
dress this issue. BECKER et al. (2017) argue that upper ontologies should be used.
JAREEVONGPIBOON & JANECEK (2013), on the other hand, state that event logs
should be enriched using domain ontologies. Remarkably, only JAREEVONGPIBOON &
JANECEK (2013) evaluated an ontology-based approach in distribution logistics.
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Data preprocessing

Event data must be preprocessed into standardized event logs to apply process mining.
Unfortunately, “the step to collect the event log used as input for process mining is far
from trivial.” (VAN DER AALST & WEIJTERS 2004, p. 238)

No strict distinction is made between the two steps because preprocessing may require
an iterative step back to data extraction. However, the literature review revealed that
preprocessing requires significant effort. For internal logistics, the majority of publica-
tions have explicitly described several steps related to filtering, renaming, merging, and
enhancing to create usable event logs. VAN CRUCHTEN & WEIGAND (2018) developed
a methodology for preprocessing for this purpose. LIIV & LEPIK (2014) reported that
90% of the project time (200 hours) was spent on data preprocessing. These challenges
have rarely been reported in port logistics. Interestingly, in the context of SCM, GERKE

et al. (2009) state that the case identifier must be reconstructed first, and the shift of
states (e.g., from pallet to package) results in difficult relationships.

In conclusion, the preprocessed event logs can be characterized as follows. The case id
varies but is always related to a traceable object (e.g., pallet or cargo id). The majority
of event logs contain a start event and end event. The additional attributes are far from
standard and vary across the papers. However, in more than one case, part-specific
attributes (e.g., supplier), locations, and resources (e.g., workers) have been used.

Mining: Techniques, concepts, and methodologies

A variety of process mining techniques, concepts, and methodologies can be applied
during a process mining project (cf. VAN DER AALST 2016).

The literature review in logistics confirms the findings in healthcare, SCM, and general
business processes (cf. DAKIC et al. 2018; JOKONOWO et al. 2018; ROJAS et al. 2016).
The most dominant technique employed on real-world data is the process discovery of
the control-flow (13 publications). Typically, this is the starting point of the analysis.
Closely related is the application of performance analysis (12 publications). Most
frequently, the duration (also referred to as lead time) and the frequency of cases are
analyzed (time perspective). Applications of conformance checking (six papers) and
automated conformance checking (three papers) are described less frequently.

Advanced concepts have been developed and evaluated in addition to these frequently
applied process mining techniques. Most importantly, different types of clustering

43



3 Literature review

techniques are used. For example, trace clustering (i.e., S.-k. LEE et al. 2013) is extended
by domain knowledge of case attributes (i.e., Y. WANG et al. 2014b) or case-specific
context information (i.e., BECKER & INTOYOAD 2017). In addition, domain knowledge
is integrated into a process discovery algorithm using constraint rules (YAHYA et al.
2016). Less frequently, process mining is combined with advanced algorithms for
inter-dependency (PULSHASHI et al. 2015), Bayesian networks (SUTRISNOWATI et al.
2015), or network analysis (J. WANG et al. 2016). Notably, case studies rarely reuse
these techniques.

Analysis and evaluation

The challenge is to exploit event data meaningfully using event logs and process mining
techniques (VAN DER AALST et al. 2012, p. 174).

Again, differences can be identified based on the research type. Conceptual work
mostly focuses on a particular aspect when developing and evaluating the concept
(e.g., clustering traces). The analysis of the process and the evaluation of the practical
implications are mostly out of scope.

Case studies, in contrast, typically analyze processes holistically using multiple perspec-
tives. Then, based on the objectives and questions, sufficient process mining techniques
are used to achieve the results. The control-flow perspective is used most frequently. In
internal logistics, process discovery is used to manually check non-value-added activi-
ties, i.e., quality or rework (cf. ER et al. 2015a; PASZKIEWICZ 2013). The control-flow
perspective is often extended by the time perspective (frequency and waiting and pro-
cessing time). Later, the metrics are used in an aggregated form (e.g., average duration),
which is also referred to as performance analysis, or in a detailed analysis of cases using
the dotted chart (ER et al. 2015a; PASZKIEWICZ 2013). Bottleneck analysis is used to
identify long-running storage or quality-related activities. In contrast, the organizational
perspective is rarely used in internal logistics.

After identifying deviations (“What happened?”), only a few publications have con-
ducted an in-depth analysis (“Why does it happen?”). In the case perspective, process
variants (e.g., quality-based cases) are linked with attributes (e.g., suppliers). Interviews
are used to understand or verify the root causes (ER et al. 2015a). Notably, in time
perspective, several publications refer to inventory as the root cause. However, none
of the publications used process mining to analyze the inventory. Table 3.1 shows an
overview of the literature.
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Table 3.1: Evaluation of selected process mining publications in logistics: Internal
logistics, infrastructure logistics, and others
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Process types

Activities -
Cases - - -
Process variants -

Planning and extraction

Business objectives -
Data identification -

Preprocessing

Creating event logs -
Filtering event logs - - -
Enriching event logs -

Mining

Process discovery - -
Performance analysis - - -
Conformance checking - - - - - - - - -
Advanced concepts -

Analysis (perspectives)

Control-flow - -
Time - - - - -
Case - - - - - -
In-depth analysis - - - - - - - - -

Fully addressed, Partly addressed, - Not addressed
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3.2.5 Conclusion

The literature review in logistics covers applications in internal logistics, infrastructure
logistics, and other sectors. Based on the application, both simple processes with
two warehouses (e.g., goods receiving and storage in internal logistics) and complex
processes (e.g., port logistics) have been analyzed with process mining techniques.

The methodological context varies depending on the type of research. Conceptual
literature usually does not define precise business objectives or analysis questions but
proposes advanced concepts (e.g., clustering or ontologies). Case studies, in contrast,
use experts to define precise objectives. Independent of the research type, the step of data
extraction and preprocessing is highly time-consuming and challenging. Preparation of
event logs is especially difficult. No ontology has been developed and applied for the
context of internal logistics.

Different process mining techniques have been applied to different process types. Com-
plex processes in port logistics mainly require advanced concepts of clustering to reduce
the complexity of process variants. However, process discovery of the control-flow and
performance analysis from the time perspective have been applied frequently. Confor-
mance checking has been applied infrequently to identify deviations in the control-flow
for simple process types. Differences between the research types also exist for analysis
and evaluation. Case studies mainly try to answer the analysis questions, including
in-depth analyses and evaluations with experts, using a variety of standard process
mining techniques. Conceptual work aims to evaluate the applicability of the concept,
but the practical benefit or evaluation with experts is mostly out of scope.

3.3 Process mining in manufacturing

This section provides an overview of the literature using process mining in manufactu-
ring processes. Work in manufacturing is more fragmented than work in logistics. The
publications can be categorized in terms of the industry: capital goods (cf. Section 3.3.1),
semiconductors (cf. Section 3.3.2), consumer durables (cf. Section 3.3.3), and other
industries (cf. Section 3.3.4). Afterward, the methodological context is discussed in
Section 3.3.5, and the results of the review are summarized in Section 3.3.6.
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3.3.1 Capital goods

Multiple articles have analyzed manufacturing processes in the shipbuilding industry as
an example of capital goods. One case study reported on electrical equipment.

Shipbuilding

D. LEE et al. (2013) applied process mining to the assembly of ship blocks. The
process is characterized by a multitude of process variants depending on the blocks to
be manufactured. Therefore, hierarchical clustering was used based on (1) the activities,
(2) the resources (workshops), and (3) a hybrid approach. The authors discovered a
process model for each cluster to evaluate the results. D. LEE et al. (2013) concluded
that the clusters represent reality more precisely than the planned models.

J. PARK et al. (2014) evaluated the performance of assembly in a shipbuilding block
process. Again, the process variants compounded the analysis of discrepancies between
the actual and the planned processing times. Therefore, J. PARK et al. (2014) developed
a framework that utilizes k-means clustering to evaluate the performance of each process
variant individually (cf. Figure 3.8). The authors conducted 30 interviews with experts to
identify and prioritize performance metrics. Afterward, the authors identified inefficient
blocks with unexpected deviations (e.g., waiting in the stockyard).

M. PARK et al. (2015) contribute a conceptual approach for a workload and delay
analysis. The approach includes the degree of workload (cf. resource perspective) and
the delay of activities (cf. time perspective).

Electrical equipment

Like ship block manufacturing, MEINCHEIM et al. (2017) state that the production
of industrial control panels is highly customized and difficult to understand. While
process discovery provided a holistic view of the process and showed unknown loops
of activities, specific issues were still hidden. For this reason, MEINCHEIM et al.
(2017) applied trace clustering. First, the authors clustered individual process variants
to identify performance issues. The authors were faced with 170 process variants,
and prioritization of the most frequent variant was required. The in-depth analysis
highlighted that individual process variants could be characterized by different lead
times. Bottleneck analysis was used to determine root causes and uncovered unnecessary
waiting due to an unbalanced allocation of resources. (cf. MEINCHEIM et al. 2017)
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Figure 3.8: Framework for process mining of the block assembly process in the ship-
building industry (J. PARK et al. 2014)

3.3.2 Semiconductors

ROZINAT et al. (2009) were the first to apply process mining techniques in manufac-
turing. The authors conducted an extensive analysis of a testing procedure of wafer
scanners required to manufacture semiconductors. The process is extremely complex,
with up to 16,250 events per case. The analysis was driven by two questions: “How
are tests usually executed?” and “Where is the most time spent in the process?”. After
defining precise objectives, the event log was prepared to gain insights on performance
metrics (e.g., frequencies and duration). Next, an iterative process discovery identified
dominant feedback loops that required re-execution of already-completed testing se-
quences. ROZINAT et al. (2009) applied basic filtering steps to reduce complexity. As
the event log includes start and completion times, the analysis of testing and waiting
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times identified different patterns for individual activities. ROZINAT et al. (2009) stated
that frequently applying process mining can enable a continuous improvement process.
(cf. ROZINAT et al. 2009)

HSIAO et al. (2016) analyzed a chip probing process. However, in contrast to ROZINAT

et al. (2009), the process was structured and comparatively simple (23 activities). HSIAO

et al. (2016) developed a concept to predict the next activities using Naive Bayes models.
The total costs were predicted in combination with activity-based costing, and the event
log was annotated with cost information (cf. HSIAO et al. 2016). Additionally, VIALE

et al. (2011) proposed a concept to align partial sequences of event logs with expert
models. The authors stated that this concept is beneficial if many process variants
exist. In contrast to conformance checking, the self-defined concept does not provide a
quantified alignment. No results on real-world data were presented. (cf. VIALE et al.
2011)

In contrast to ROZINAT et al. (2009), HSIAO et al. (2016) and VIALE et al. (2011) did
not analyze the process to identify potential for improvement. Neither process discovery
nor conformance checking was applied.

3.3.3 Consumer durables

This section presents applications of process mining, focusing on textiles and household
durables manufacturing processes.

Textiles

SAAD (2018) analyzed a textiles manufacturing process. The author reported that more
than three months were required to extract and preprocess the data. Then, a process
discovery and a performance analysis of bottlenecks were completed for different pro-
cess variants. Although the process is comparatively simple (14 activities), a clustering
technique with Markov Chains was applied to identify clusters. Afterward, similar
analysis steps were repeated for selected clusters. However, no details about practical
outcomes and improvement potentials were provided. (cf. SAAD 2018)

SATITCHAROENMUANG et al. (2018) applied process mining to delayed customer
orders in a garment production process. To begin, the authors completed 25 interviews
and recorded the paper-based documentation. The analysis focused on the control-flow
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and time perspective and showed that several activities were skipped. The authors
concluded that the study is aligned with lean production theory as waste of time was
reduced in each step. (cf. SATITCHAROENMUANG et al. 2018)

TU & SONG (2016) developed a method to analyze and predict the costs of a jeans
manufacturing process. They utilized activity-based costing to enhance the costs of an
activity. The work in progress and costs of events were used to predict the remaining
time and total costs. This step was repeated for each trace to calculate statistical cost
ranges. However, in contrast to HSIAO et al. (2016), no probabilities based on Naive

Bayes were included. Critically, the authors did not report on practical implications. (cf.
TU & SONG 2016)

Household durables

MUSIC & ROJEC (2012) analyzed a door side panel manufacturing process in a furniture
factory. During the data extraction and preprocessing steps, additional attributes were
integrated into the event log. An analysis of case frequencies identified that 98% of the
cases were similar and simple. Consequently, cases with a long duration were removed.
An initial process discovery determined that further classification of sub-groups was
required. Suitable groups of products were identified based on an iterative exploration of
additional attributes. Finally, the process model was extended with the time perspective.
MUSIC & ROJEC (2012) reported that differences among product groups were not
visible in the data directly due to the high number of different parts. However, the
authors did not report practical implications or potential for improvements. (cf. MUSIC

& ROJEC 2012)

BETTACCHI et al. (2016) completed a benchmark of five different process discovery
algorithms in a coffee machine manufacturing process. During the preparation, the
event logs were organized by product specifications (individual coffee machines). BET-
TACCHI et al. (2016) identified only a few non-standard traces explained by incorrect
management, repair or replacements of defective components, and special customization.
(cf. BETTACCHI et al. 2016)

3.3.4 Other industries

Two publications in the automotive industry and further unspecified processes or indus-
tries are discussed in this section.
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Automotive industry

DIŠEK et al. (2017) present a case study focusing on data preprocessing in the automo-
tive industry. The authors state that the processes are operated by many information
systems, and significant effort is required for preprocessing data to apply process min-
ing. DIŠEK et al. (2017) selected a transmission manufacturing process and technically
described the data extraction and preprocessing steps. One month of effort was required
to complete these steps. Notably, no methodological procedure is provided (e.g., data
requirements). (cf. DIŠEK et al. 2017)

In the context of sustainability management, JO et al. (2014) developed a concept for
improving a component manufacturing process. The authors integrated process mining
to derive the current state and combined the results with simulation. In the evaluation,
process mining was able to detect defective parts related to one specific machine. No
further analysis of the process was reported. (cf. JO et al. 2014)

Unspecified processes, industries, or multiple case studies

YANO et al. (2013) developed an approach for data preprocessing and process analysis
in the context of complex information systems. They developed a search algorithm
to identify relations between database tables. Three patterns were used to identify
exceptional cases: (1) direct repetition of the same activity, (2) going back to previous
activities (loops), and (3) identifying violations of predefined business rules. Then,
process discovery was used to investigate the exceptions. The evaluation was conducted
on a manufacturing process with more than 70 activities. Interestingly, 60% of the cases
were exceptional and related to a preparation and a testing procedure. Neither the three
rules were evaluated nor were practical implications discussed in detail. (cf. YANO et al.
2013)

NATSCHLÄGER et al. (2017) developed a methodology to apply process mining in
the manufacturing industry (cf. Figure 3.9). The authors highlighted the role of
manufacturing experts and the required understanding of the production (e.g., plant
visit). The methodology covers both the control-flow and time perspective. For example,
infrequent paths and unexpected endings and absolute duration and standard deviations
are considered. In the evaluation, two case studies on manufacturing processes were
completed: a production with 21 different processes and 45.8 million events and a
simple environment with two processes. Notably, neither the steps of methodology nor
the results and practical implications were discussed. (cf. NATSCHLÄGER et al. 2017)
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Figure 3.9: Methodology for process mining in the manufacturing industry (own illus-
tration, based on NATSCHLÄGER et al. (2017))

NAGY et al. (2018) present a concept to relate defective products to the manufacturing
process. The concept includes five self-developed algorithms to extract information
about time and space from the process. As an example, one algorithm calculates the
cumulative number of defective products per station. The evaluation showed how the
concept could be applied to assembly line production with two lines, but no further
process mining techniques were applied. (cf. NAGY et al. 2018)

INTAYOAD & BECKER (2018b) developed a concept to analyze the delay of orders
under consideration of contextual information. Naive Bayes models were used to predict
the delay. The authors extracted the number of concurrent events for a resource and
the lead time of the previous case. The evaluation was conducted on three data sets of
manufacturing companies, but a high degree of a relationship was reported in only one
case. (cf. INTAYOAD & BECKER 2018b)

In relation to previous work on clustering, INTAYOAD & BECKER (2018a) developed
an approach to integrate Markov Chain clustering before applying a process discovery.
The authors state that real-world applications of process mining, which include complex
and dynamic processes, were lacking support at the time of the study. The evaluation
of the clustering technique was performed on a complex manufacturing process with
3,508 cases and 63,558 events. The clustering algorithm identified 50 process variants,
and the evaluation showed that the fitness value of the discovered process model could
be improved. (cf. INTAYOAD & BECKER 2018a)

Further applications in the manufacturing industry are related to conceptual work or
other non-material flow processes. As an example, YANG et al. (2014) present a software
architecture for manufacturing process mining. Furthermore, the production planning
process (ER et al. 2018) and the failure diagnostics process of production shutdowns
were analyzed (FEAU et al. 2016).
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3.3.5 Cross-analysis of the methodological context

Similar to the findings in the methodological context in logistics, the literature review
on manufacturing reveals further aspects of the methodological context. Again, the
main findings are discussed in terms of process types, planning and data extraction, data
preprocessing, process mining techniques and analysis and evaluation.

Process types

Compared to logistics, the manufacturing process types are less structured (and more
spaghetti-like) in terms of activities, events, and especially, the number of process
variants. Most publications emphasize that different product and part variants require
different operations or sequences of operations and, consequently, activities. This fact is
driven by the product and process complexity of the production system.

For example, in the shipbuilding industry, ship blocks are manufactured in a workshop
production. Each of the 250 different blocks has a unique structure and requires different
operations (J. PARK et al. 2014). In the semiconductor industry, processes are even
more complex as they are characterized by the repetition of individual activities or
even complete sequences of testing procedures. For example, ROZINAT et al. (2009)
report up to 16,250 events per case, and VIALE et al. (2011) state that 1,000 different
manufacturing processes with more than 50 modifications per week exist.

In contrast, the manufacturing process of coffee machines in the consumer durables
industry is organized into two sub-assemblies and six assembly lines with five stations
each, and the process includes six activities (BETTACCHI et al. 2016).

Planning and data extraction

Similar to case studies in logistics, case studies in manufacturing provide a reasonable
explanation of the process and objectives. However, analysis questions are less frequent
in the manufacturing industry. These studies aim to understand specific characteristics
(e.g., lead times) that are not visible due to product and process complexity (e.g., J. PARK

et al. 2014; ROZINAT et al. 2009). In this stage, the identification of manufacturing
processes and products has required process experts (e.g., NATSCHLÄGER et al. 2017)
and has been supported by interviews (e.g., J. PARK et al. 2014).

In contrast, conceptual literature mostly simplifies the tasks of planning and data
extraction. Here, the focus is set on the evaluation of the developed approach and
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practical results and implications are rarely discussed. However, some case studies also
neglect to discuss practical results (e.g., MUSIC & ROJEC 2012).

Typically, Manufacturing Execution Systems (MES) are used for data extraction. These
information systems and the underlying databases are complex; they record massive
amounts of data, and extracting all data is impractical. Furthermore, these systems do
not record prepared event logs. (e.g., DIŠEK et al. 2017; J. PARK et al. 2014; YANO

et al. 2013) Based on a valid process understanding and in combination with experts,
relevant data can be extracted (e.g., NATSCHLÄGER et al. 2017; J. PARK et al. 2014).
Nevertheless, the majority of publications do not report how the data is extracted, and if
they do, they do not propose ontologies to systematically extract data.

Data preprocessing

The step of data preprocessing to create event logs in the manufacturing industry is
comparatively simple. A few authors reported that cleaning of incorrect or incomplete
data was required (e.g., DIŠEK et al. 2017; M. PARK et al. 2015). MEINCHEIM et al.
(2017) stated that the cleaning had already been completed by the business analysts.

If reported, the order number was used as the case identifier. A few publications used
an application-specific case identifier such as the ship block (e.g., J. PARK et al. 2014).
Usually, no effort was reported for this step and, for instance, JO et al. (2014) stated that
the MES already provided all the necessary information. Two notable exceptions exist.
YANO et al. (2013) developed an algorithm to correlate events across multiple tables of
an ERP system to create a case identifier. DIŠEK et al. (2017) reported that merging
three information systems into one database took one month of effort.

Consequently, the event logs are simple, and only a few publications proposed additional
attributes. Most publications referred to a complete start and end timestamp as well as
the resources (e.g., machine). In contrast, additional attributes about the product (e.g.,
material) or the process (e.g., shift schedule) were rarely integrated (e.g., J. PARK et al.
2014). In addition, two approaches used activity-based costing to annotate each activity
with costs (HSIAO et al. 2016; TU & SONG 2016).

Mining: Techniques, concepts, and methodologies

Process discovery and performance analysis are most frequently applied. Aside from
conceptual work, almost every case study applied the process discovery technique. In
combination with the process discovery, the performance analysis has been used to
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calculate statistics about frequencies (e.g., case frequencies) and time metrics (e.g.,
waiting, lead times). To identify relevant performance metrics, M. PARK et al. (2015)
carried out an extensive survey with 30 experts and TU & SONG (2016) used the
cost-annotated event logs to calculate the costs of each case.

Conformance checking with predefined models is rarely used in the manufacturing
industry (e.g., D. LEE et al. 2013; NATSCHLÄGER et al. 2017). To partially evaluate
the conformance, VIALE et al. (2011) aligned sequences of the event logs with expert
models and YANO et al. (2013) suggested specifying business rules to identify deviations.
However, both approaches have not been evaluated. Additionally, further metrics are
derived from pattern extraction. As an example, YANO et al. (2013) proposed rules to
calculate repetitions, loops, and violations of business rules. Other patterns are related
to defective parts and machines (e.g., NAGY et al. 2018).

Many researchers combine process mining techniques with advanced concepts in the
manufacturing industry. Clustering is suitable when many process variants exist (e.g.,
MEINCHEIM et al. 2017; J. PARK et al. 2014). The clustering techniques use trace
information, case attributes (e.g., resource), or contextual information (e.g., concurrent
activities on the same resource) (e.g., INTAYOAD & BECKER 2018b; D. LEE et al. 2013).
Furthermore, two approaches aim to predict future states of processes (e.g., times or
costs) (HSIAO et al. 2016; TU & SONG 2016) and JO et al. (2014) combine process
mining with simulation.

Analysis and evaluation

The literature review in the manufacturing industry shows differences between the
two research types. Conceptual literature without practical objectives rarely analyzes
processes in detail. Typically, clustering is applied at the beginning to derive clusters
that can be analyzed afterward. In contrast, case studies focus on the analysis with
simple techniques. Basic statistics of the processes are often analyzed first to support
the process understanding (e.g., MUSIC & ROJEC 2012; ROZINAT et al. 2009). Based
on this, further iterative analysis steps, such as filtering, are combined with process
discovery in the control-flow perspective. In particular, the frequencies of process
variants are used for decision making. However, no explicit recommendations are made
about removing exceptions (MUSIC & ROJEC 2012) or analyzing exceptions in detail
to discover new knowledge (YANO et al. 2013). Other case studies emphasize the
importance of experts for analysis and evaluation (e.g., ROZINAT et al. 2009).
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The control-flow and time perspective are dominant in analysis. As conformance
checking has rarely been applied, most deviations have been derived manually using
process discovery. For example, ROZINAT et al. (2009) manually identified loops of
repeating activities and idle times. If applied, conformance checking is used to evaluate
the performance of the clustering technique (D. LEE et al. 2013). For both research
types, the time perspective (i.e., waiting times or processing times) has been analyzed
more often (e.g., MEINCHEIM et al. 2017; J. PARK et al. 2014). In the case perspective,
derived clusters are mainly used for segmentation. Also, product-related attributes of the
event log are used to manually build groups (MUSIC & ROJEC 2012). Cost information
is rarely analyzed, even though it may exist in the event log (e.g., TU & SONG 2016).
An overview of relevant articles is provided in Table 3.2.

3.3.6 Conclusion

The literature review in the manufacturing industry identified a variety of applications for
different production systems (e.g., workshop and assembly line production). Complex
processes with numerous activities and low structures are dominant. Case studies focus
on creating a process understanding of different process variants. Usually, simple event
logs are created using MES, and no significant effort is reported.

However, the complexity of processes and process variants shows that the analysis must
be structured because no technique provides overarching results. Therefore, both simple
and iterative “trial-and-error” filtering techniques, and advanced concepts of clustering,
can be used to derive different clusters. This approach is often combined with process
discovery and performance analysis. In contrast, conformance checking is only applied
infrequently. Furthermore, existing domain knowledge about predefined processes or
manufacturing operations is rarely integrated.

Again, the analysis strongly depends on the type of research. Both top-down and
in-depth analyses have been conducted. These approaches are non-exclusive: the
performance of the time perspective can be combined with the control-flow of the
process variants to analyze different clusters in detail. Case studies emphasize the
importance of process understanding and expert knowledge to derive improvement
potentials.
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Table 3.2: Evaluation of selected process mining publications in manufacturing: Capital
goods, semiconductor, consumer durables, and other industries
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Process types

Activities
Cases -
Process variants -

Planning and extraction

Business objectives -
Data identification -

Preprocessing

Creating event logs
Filtering event logs - - - - - - - - -
Enriching event logs - - - - -

Mining

Process discovery - - - -
Performance analysis -
Conformance checking - - - - - - - -
Advanced concepts - - - -

Analysis (perspectives)

Control-flow - -
Time - - - - -
Case - - -
In-depth analysis - - - - - - -

Fully addressed, Partly addressed, - Not addressed

3.4 Summary and research opportunities

The literature review in the logistics and manufacturing industry provides a comprehen-
sive overview of the application and methodological context. In the following section,
the findings are summarized and discussed in terms of the objectives of the thesis.
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Generally speaking, the literature review shows that process mining is capable of creat-
ing transparency and supporting the analysis of processes in logistics and manufacturing.
Both process mining and value stream mapping reveal the current state of a process and
identify potential for improvement. However, process mining provides support to cover
process complexity and dynamics. Process mining addresses dynamics by creating
precise and sound process models of material and information flow activities based on
historical event data. Furthermore, complex processes with many activities, events, and
process variants can be successfully discovered and analyzed.

From an application viewpoint, no work in internal logistics in the context of a mixed-
model assembly line production exists. The effects of product and process complexity
and dynamics are mostly neglected in publications about internal logistics. The follow-
ing research opportunities would provide support for the objectives of the thesis and its
research questions in the context of internal logistics.

O1. Supporting the planning and data preparation

Theory states that any process mining project starts with planning: defining objectives
and questions and extracting event data from information systems (VAN DER AALST

et al. 2012, p. 177). The literature review shows that this step is often neglected. Only a
few publications have defined precise objectives and analysis questions. If reported, the
practical benefit of the objectives and expected outcomes mostly remain unclear.

Notably, even though lean production is the de facto standard, none of the publications
utilize lean production theory to derive objectives and analysis questions. However,
reported objectives and findings are partially aligned with lean production theory (e.g.,
reduction of waiting times). Nevertheless, the planning is highly application-specific
and relies on the expert’s choice (e.g., selection of the process).

Research opportunity. Supporting the definition of objectives and analysis
questions in a process mining project based on lean production theory.

Process mining theory states that data extraction can be challenging. Therefore, the con-
cept of ontology-based data extraction and preprocessing is proposed (cf. Section 2.3.3).
The literature review confirms previous findings about complex and heterogeneous
information systems in manufacturing and, in particular, in logistics. Two concepts
address this challenge by using ontologies for data extraction and enrichment. However,
no domain ontology for internal logistics has been developed or evaluated.
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The step of data identification and standardization is rarely reported in the articles. Most
publications focus on the technical perspective (e.g., database tables). The articles
show that a variety of technical and domain-specific terminology is used. Systematic
identification of relevant objects, object properties, and their relations can be enabled
using ontologies but has not been applied yet.

Research opportunity. Developing a domain ontology for internal logistics to
support the identification, extraction, and standardization of data.

In the field of process mining, a variety of data imperfection patterns exist (e.g., SURIADI

et al. 2017). However, process mining applications in manufacturing and logistics rarely
focus on data validation. In contrast, value stream mapping is applied on the shop floor,
e.g., by manually recording processes or conducting interviews with workers. Therefore,
existing event data must be validated on the shop floor to enable value stream mapping
using process mining.

Research opportunity. Developing a practical guideline for event data validation
in internal logistics.

Process mining theory claims that significant effort may be required to correlate events
belonging to the same process instance (VAN DER AALST et al. 2012). The literature
review confirms this fact. Several publications in the field of logistics have reported
significant effort to create event logs based on transactional ERP systems. None of the
publications covers product complexity while preprocessing. Additionally, literature in
the field of SCM identified challenges caused by logistics operations that can modify
the state (e.g., a split of a pallet shifts the case identifier). These challenges have not yet
been solved for internal logistics.

From a lean production perspective, the holistic view of a value stream contains all the
activities from the supplier to the customer, including the supplier, the material flow
(e.g., logistics operations), inventories, and customer demand. Furthermore, underlying
resources (e.g., packaging) are also required. However, most publications in process
mining do not enrich event logs with these attributes.

Research opportunity. Providing algorithms for creating and enriching event
logs for internal logistics to enable a holistic value stream perspective.
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O2. Mapping the value stream using process mining

Many process mining techniques, algorithms, and concepts exist in the field of process
mining theory (cf. Section 2.3). The literature review elucidates that process discovery
and performance analysis are frequently applied in the field of manufacturing and
logistics using existing process discovery algorithms. These algorithms are capable
of creating process models that cover process complexity and dynamics. Performance
analysis is mostly used to calculate frequencies and time measurements. Less frequently,
conformance checking is applied to measure the alignment between the planned process
model and the actual behavior. In addition, a wide range of advanced concepts (e.g.,
trace clustering) has been developed.

However, the practical value of deriving process improvements is rarely reported, and
existing domain knowledge is mostly neglected. Again, the product complexity and the
holistic perspective of value streams are not covered. In particular, no work has been
done on inventory profiles (e.g., saw tooth diagram) in the field of process mining.

Research opportunity. Combining state-of-the-art process mining techniques
with logistics domain knowledge to cover product and process complexity and
dynamics to provide a holistic view of the value stream.

O3. Supporting the analysis according to lean production theory

The challenge is to exploit event data meaningfully using event logs and process mining
techniques (VAN DER AALST et al. 2012). The literature review confirms this challenge.
If objectives and analysis questions are not defined, the analysis of the process tends to be
less detailed, lacking an in-depth evaluation from a practical perspective. Subsequently,
the practical support for process improvement is missing. Furthermore, as the analysis
is not aligned with lean production theory, a systematic identification of waste is lacking.
In practice, the analysis depends on the experts’ abilities to align process mining with
domain knowledge.

From a manufacturing perspective, process mining theory is often technical, and the
language differs from the manufacturing and logistics domain. Consequently, no support
is provided for (1) when to apply which process mining technique, (2) which practical
support (e.g., types of waste) can be created, and (3) which potential issues (e.g., lessons
learned) must be considered.
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The literature review also shows that different process types, objectives, and analysis
questions require different process mining techniques and, subsequently, affect the
analysis. Therefore, an iterative analysis is required rather than a sequential, step-
by-step procedure. These challenges are strengthened in the context of product and
process complexity as well as dynamics. An effective analysis can be impossible when a
system has dozens of individual value streams with their own characteristics. Therefore,
different perspectives (e.g., control-flow, time) are required.

Finally, even though process mining theory claims that the practical evaluation and
operational support is a necessary step of process mining, the literature review reveals
that this step is often neglected. Practical outcomes in terms of process improvements or
the existence of practical constraints are rarely integrated or discussed. Both conceptual
work and case studies tend to see process mining as a singular project instead of a
continuous tool. Time-dependent analyses and effects are often neglected, even though
theoretical concepts could provide support.

Research opportunity. Providing practical support to systematically analyze
value streams (e.g., types of waste) using process mining techniques in the context
of product and process complexity and dynamics.
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As a first major part of the prescriptive study (cf. Section 1.4), this section compromises
the conceptual design of the approach. The overarching goal of the thesis is to enable

an effective and efficient application of value stream mapping in internal logistics

using process mining (cf. Section 1.3). Therefore, the research streams of value stream
mapping and process mining are integrated in terms of (1) requirements (cf. Section 4.1),
(2) assumptions (cf. Section 4.2), and (3) concept (cf. Section 4.3). In Section 4.4, the
methodology for the industrial application is presented.

4.1 Requirements

Requirements of value stream mapping

R1. Creating a holistic view of the value stream using process mining. The goals of
value stream mapping are to observe the flow across the whole value stream and
to identify the waste within the process (cf. ROTHER & SHOOK 1999). When
enabling value stream mapping using process mining, these goals should be seen
as an overarching objective. Suitable process mining techniques (e.g., process
discovery) must be selected and tailored to internal logistics or developed (e.g.,
inventory profiling) if required.

R2. Scaling to cover product and process complexity. Today, products contain hun-
dreds of parts that follow different paths and processes. In this case, value stream
mapping can be seriously challenging or can even break down (cf. BRAGLIA

et al. 2006; FORNO et al. 2014). In industry, product and process variety is the
most frequently reported challenge (SPATH 2010, p. 68). For internal logistics,
each product variant has its own value stream: i.e., customer demands, material
flows, inventories, and suppliers (KNOLL et al. 2019c). Consequently, to provide
support, the approach must scale to cover product and process complexity.
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R3. Capturing dynamics. The static paper-and-pencil tool does not capture dynamics.
If processes are not stable or frequently change, the current state map provides
only a limited snapshot or is obsolete (cf. FORNO et al. 2014; SPATH 2010). In
particular, time and quantity data measurements are impractical (FORNO et al.
2014, p. 781). Consequently, the approach must capture time-dependent dynamics
and enable continuous recording of value streams.

R4. Reducing manual effort. The time spent collecting the data and constructing the
current state map is frequently reported as the costliest stage (cf. FORNO et al.
2014; SHOU et al. 2017). The approach must reduce this manual effort by the use
of process mining.

Requirements of process mining

R5. Supporting the planning stage according to lean production theory. Process
mining theory identified that defining concrete objectives and analysis questions
is important for a successful process mining project (ECK et al. 2015, p. 300).
Meanwhile, the literature review reveals that this step is often neglected. There-
fore, the approach must support the definition of objectives and analysis questions
according to lean production theory.

R6. Providing a domain ontology for internal logistics. In the context of heteroge-
neous information systems data extraction can be challenging. To overcome these
challenges, process mining theory and applications in the field of logistics suggest
supporting the data extraction and preprocessing using a domain ontology. The
concept must support the data identification, extraction, and standardization of
the taxonomy using an internal logistics ontology.

R7. Providing algorithms for creating and enriching event logs for internal logistics.
Process mining theory claims that many information systems do not record event
logs explicitly. The literature review confirms this challenge for internal logistics.
To mine for value streams using process mining, algorithms for creating event
logs that can scale to cover the product and process complexity and dynamics
must be provided. Event logs must be enriched by attributes identified using the
ontology to enable a holistic view of the value stream.

R8. Supporting the analysis according to lean production theory. The challenge is to
exploit event data meaningfully using event logs and process mining techniques.
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Therefore, “the diagnostic should be simple, accurate, and suggestive for the
next, more detailed step in the analysis” (GRAVES 1981, p. 664). Process mining
must be linked with lean production to provide practical support. Subsequently,
practical guidelines must be developed to systematically analyze value streams
(e.g., types of waste) in internal logistics. This requires considering different
perspectives and iterations.

4.2 Assumptions

This section briefly describes the underlying assumptions of the concept. This is
essential to set the scope and outline the strengths and existing limitations.

A1. Lean production and lean logistics. It is assumed that the existing production and
internal logistics systems are designed according to lean production principles.
In particular, logistics must be operated based on predefined and standardized
logistics processes (cf. logistics reference process) and activities.

A2. Product and process complexity and dynamics. It is assumed that the approach
will be applied in suitable application scenarios in which existing limitations of
value stream mapping are significant. In the case that there is no product and
process complexity or dynamics in the logistics system, value stream mapping
without process mining might be more economical.

A3. Data availability. It is assumed that the physical logistics processes are operated
by information systems and that these information systems create event data
during the operation of logistics. If the process is not operated by information
systems, the methodology cannot be applied.

A4. Data reliability. It is assumed that the logistics processes and activities create
reliable data, that no activities record data infrequently, and that the master data
(e.g., supplier specification) is reliable.

A5. Interdisciplinary project team. It is assumed that the required competencies and
roles are available. According to ECK et al. (2015), members of process mining
project teams should have different backgrounds. Logistics experts (business

experts) and process analysts are frequently required. The logistics management
(business owners) and software engineers must be available for specific tasks.
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4.3 Overview

This section presents the concept for value stream mapping for internal logistics using
process mining1. The concept includes a methodology for an industrial application and
four main research modules. The methodology for the industrial application consists of
four consecutive steps and enables value stream mapping for internal logistics using
process mining. The four main research modules describe the theoretical development
(e.g., underlying assumptions or literature-based development) and the research results
(e.g., algorithm specification). The research results of this thesis are required as input to
execute the methodology. Figure 4.1 shows an overview of the concept.

1. Planning and 
data extraction

2. Data 
preprocessing

3. Mining
4. Analysis and 

evaluation

� Define objectives 
and analysis 
questions 

� Identify, extract, and
standardize data

� Validate data

� Create, enrich, and 
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using algorithms
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value streams 
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� Select guidelines
� Analyze value 
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� Evaluate the results 
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Section 5.1 Section 5.2 Section 5.3 Section 5.4
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� Practical guideline for 
event data validation 
in internal logistics
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automated data
preprocessing

� Algorithms and 
metrics for 
automated value 
stream mapping

� Practical guidelines 
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model for the 
analysis
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Legend

Methodology for the industrial application

Iteration within the methodology Input

Research module

Figure 4.1: Conceptual design of value stream mapping for internal logistics using
process mining: a methodology and four research modules

1 The concept has been published within KNOLL et al. (2019b,c). The first step (Planning and extraction)
has also been referred to as Modeling internal logistics and has been refined as the concept integrates the
ontology-based extraction presented in KNOLL et al. (2019b).

66



4.3 Overview

Methodology for the industrial application

The methodology for practitioners aligns and integrates the research results to enable
value stream mapping for internal logistics. Thereby, the methodology adapts PM2,
which is a generic process mining methodology that covers the necessary steps of a
process mining project (cf. Section 2.3.3).

The first step covers planning and data extraction to ensure that objectives and analysis
questions are defined and that data is extracted and validated. These manual tasks
are supported by the internal logistics ontology and the practical guideline for event
data validation. In the second step, the extracted data is processed into enriched event
logs. Then, in the third step, the enriched event logs are used to mine and cluster value
streams. The second and third steps are performed automatically for each value stream
using algorithms. An initial understanding of data preprocessing and mining is required
to implement the algorithms in practice. The fourth step focuses on the analysis and
evaluation of the results for process improvement. Further support is provided by the
practical guidelines for the analysis that integrate process mining with lean production
theory. Iterations are possible during the analysis. In Section 4.4, the methodology and
its relationship to each research result are presented.

Main research modules

The four main research modules describe the theoretical development and research
results.

• Section 5.1 describes the literature-based development of the internal logistics
ontology and the practical guideline for event data validation in internal logistics.

• Section 5.2 describes the development of three algorithms used for preprocessing
the raw data into enriched event logs for process mining.

• Section 5.3 describes six process mining techniques used for mining and clus-
tering value streams, including the adaption of existing techniques to internal
logistics (e.g., multidimensional process mining or process discovery) and the
development of new techniques (e.g., inventory profiling).

• Section 5.4 describes the literature-based development of eight practical guide-
lines and the reference model for the analysis, each focusing on the integration of
process mining and lean production theory.
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4.4 Methodology for the industrial application

4.4.1 Planning and data extraction

The first step of the methodology aims (1) to define objectives and analysis questions,
(2) to identify, extract and standardize data, and (3) to validate data. The outcome of this
step is a set of standardized and validated data that is required for data preprocessing.

Defining objectives and analysis questions

Any process mining project starts with defining objectives and analysis questions.
According to ECK et al. (2015, p. 231), “various case studies showed the importance
of defining concrete research questions for a successful process mining project.” In
contrast, Chapter 3 shows that this step is often neglected when applying process mining
in the manufacturing and logistics industry. In particular, if no concrete objectives and
analysis questions exist, the practical benefit and impact remain unclear.

The overarching objective can be derived by lean production theory: eliminate waste
and increase efficiency to improve processes (cf. OHNO 1988). In the field of internal
logistics, a variety of application-specific objectives can be addressed, for instance, to
reduce lead times by eliminating inventory in a block storage. Therefore, the seven
types of waste found in any process (cf. Section 2.1.2) can be used to define objectives
and analysis questions. This task is driven by both the logistics expert and management.
The practical benefit must be evaluated for each analysis question. An ideal business
case scenario can be calculated to support this application-specific step. As an outcome,
a set of prioritized analysis questions is defined and documented.

Identifying, extracting, and standardizing the data using the ontology

Data extraction can be challenging in complex and heterogeneous information systems,
such as manufacturing and logistics. In practice, numerous information systems with
technical data models consisting of dozens of data tables, attributes, and relationships
exist. Domain ontologies can be used to identify, extract, and standardize data for
process mining (cf. Section 2.3.3). In contrast to technical data requirements, a domain
ontology provides a shared understanding of relevant classes and object properties
(relationships) and data properties (attributes). Consequently, ontologies reduce the time
to extract the required data.
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The team uses the analysis questions and the internal logistics ontology (cf. Sec-
tion 5.1.1) to identify the required data. In the ontology, a generally valid set of required
classes for value stream mapping using process mining is annotated (cf. Figure 4.2).

Process

Activity ActivityOccurrence

TimeLocationMaterialFlowActivity InformationFlowActivity

Thing

+happensAt

+isSuccessorOf+hasSequence

UnitLoad...

time:timestamp

concept:name

trace

event

Package

...

Figure 4.2: Example extract of the internal logistics ontology with annotations for
process mining (based on KNOLL et al. 2019b)

Firstly, the logistics expert identifies or extends the required classes and data properties
in the ontology for each analysis question. Secondly, the corresponding information
systems and data tables must be identified. Thirdly, the feasibility and complexity of
each analysis question must be evaluated by the process analyst. Therefore, the number
of necessary classes and data properties in the ontology and the data availability (e.g.,
number of information systems and data tables) must be considered. Fourthly, beneficial
and feasible analysis questions must be prioritized. These tasks highlight the importance
of an interdisciplinary team: logistics experts cannot assess the feasibility of the analysis,
and process analysts cannot assess the practical benefit. Fifthly, the necessary data must
be extracted from the information systems, which may require the support of software
engineers to transform the data tables and columns into the standardized taxonomy of
the ontology. Finally, the extracted data must be stored in the schema of the input data
for data preprocessing (cf. Section 5.2).

Validating the data

A variety of data imperfection patterns exist in process mining (e.g., SURIADI et al.
2017). Before using the extracted data for process mining, an initial validation of the
data is required. The purpose of this task is to compare the existing event data with the
reality on the shop floor at the production plant. This comparison is crucial for further
improvement initiatives.
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To validate the data on the shop floor, the logistics expert and the process analyst use
the practical guideline for event data validation in internal logistics (cf. Section 5.1.2).
During the data validation, the initial understanding of the application will be enhanced.
Subsequently, the feasibility of the analysis questions can be re-evaluated. If the
extracted data cannot be used to answer the analysis questions, an iterative step back to
the extraction or the definition of objectives and analysis questions is required.

As an outcome, beneficial and feasible analysis questions are selected, and required data
is extracted, standardized, and validated. Furthermore, the interdisciplinary team has
gained a shared understanding of internal logistics.

4.4.2 Data preprocessing

The second step of the methodology preprocesses the extracted data into enriched event
logs. Algorithms are applied (1) to create event logs, (2) to enrich event logs, and (3) to
filter event logs. The outcome of this step is an event log for each part-specific value
stream that is ready to use for mining.

Creating event logs

According to VAN DER AALST et al. (2012, p. 174), “all process mining techniques
assume that it is possible to sequentially record events such that each event refers to
an activity (i.e., a well-defined step in some process) and is related to a particular case
(i.e., a process instance)”. However, process mining theory states that creating event
logs is far from trivial, and sometimes significant effort is required (cf. Section 2.3.3).
While business processes are controlled by workflow systems, internal logistics does
not record high-quality event logs explicitly. Instead, to operate internal logistics, a
WMS creates transfer orders that integrate the material and information flow to supply
production (cf. Section 2.1.3). Each transfer order holds information about the logistics
process, including (1) the part (e.g., variant of a part, or sub-assembly and quantity),
(2) the location (source and destination), and (3) time of occurrence are recorded. (cf.
KNOLL et al. 2019c)

The transfer orders are processed and transformed using a Breadth-First Search (BFS)

algorithm to create the event logs. The algorithm connects individual transfer orders
belonging to a specific package (e.g., batch number), reflecting the material flow within
the process from goods receiving through to assembly. The algorithm also covers
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logistics operations, in particular, the shift from a pallet to packages, and repeats this
procedure for each package of a part-specific value stream. An event log is created for
each part-specific value stream separately that contains a set of cases (packages). (cf.
KNOLL et al. 2019c)

For an industrial application, the software engineer must implement Algorithm 1 (cf.
Section 5.2.1) once in a software environment.

Enriching event logs

So far, the event logs contain basic information about cases, activities (e.g., movements
between storage locations), and timestamps. However, they do not provide any further
process context, which is needed to correlate specific process and event characteristics
(e.g., resources) with a specific behavior (LEONI et al. 2014, p. 252). Using the
Extensible Event Stream (XES)2, the de facto standard for event logs, attributes can
be enriched using the extracted data. Using the internal logistics ontology for data
extraction ensures that relevant context information is available and can be enriched.

For an industrial application, the software engineer must implement Algorithm 2 (cf.
Section 5.2.2) once in a software environment.

Filtering event logs

Filtering the event log aims to create the correct view and to reduce complexity (ECK

et al. 2015). Filtering removes irrelevant events, cases, or attributes from the event log.
Depending on the scope of the analysis, filtering can be done iteratively.

To apply filtering, the team specifies a list of attributes with allowed or forbidden
values. This list of key-value pairs 〈δ1,k,v, ...,δn,k,v〉 is used as an input for the algorithm.
For example, product components, suppliers, time frames, or personalized attributes
(e.g., names) can be filtered. For an industrial application, the software engineer must
implement Algorithm 3 (cf. Section 5.2.3) once in a software environment.

An outcome of this step is an enriched and filtered event log for each part-specific value
stream (cf. Figure 4.3).

2 In the XES standard, the following nomenclature for data storage is used: trace refers to case identifier,
concept:name refers to the activity and time:timestamp refers to the timestamp. For consistency in the thesis,
the terms of a case, activity and timestamp are used.
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Figure 4.3: Example set of enriched event logs (based on KNOLL et al. 2019b,c)

4.4.3 Mining

The third step of the methodology mines and clusters the value streams using six process
mining techniques. A value stream can be mined for each part using the event logs and
multidimensional process mining. The outcome of this step is a holistic view, including
a process model, an inventory profile, and related metrics of each value stream.

Process discovery

Process discovery takes an event log to create a process model without using any a
priori information (VAN DER AALST et al. 2012, p. 175). The result is a process model
similar to the current state map of the value stream, including the occurring activities
and the control-flow in reality. However, process discovery provides three benefits:

1. Process complexity. Process discovery algorithms are capable of covering com-
plex processes with many activities and different flows and can learn the best
fitting model that represents reality. Consequently, process discovery is more
accurate and less subjective than value stream mapping. (KNOLL et al. 2019c)
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2. Dynamics. Process discovery algorithms take the event log of a specific time
frame. Therefore, process discovery enables long-term observation and clearly
shows temporal stages (e.g., changes in the process). In contrast, filtering enables
an iterative analysis of specific time frames. (KNOLL et al. 2019c)

3. Manual effort. The process discovery algorithms create the process model auto-
matically. Because they only rely on ad hoc filtering of the event log, the manual
effort is significantly lower. (KNOLL et al. 2019c)

Process discovery is the most frequently used process mining technique (cf. Chapter 3),
and numerous algorithms exist (cf. Section 2.3.2). This research module covers the
selection of suitable process discovery algorithms (cf. Section 5.3.1).

For an industrial application, the software engineer must implement the inductive miner
algorithm (cf. Section 2.3.2) once in a software environment.

Conformance checking

Conformance checking evaluates if reality, as recorded in the event log, conforms to
the model, and vice versa (VAN DER AALST et al. 2012, p. 175). Similar to process
discovery, conformance checking focuses on the control-flow of the process. The result
is a quantified alignment between the process model and the event log. Deviations of
value streams can be measured using reference process models. The algorithm evaluates
all reference process models for each value stream to capture dynamics (e.g., concept
drifts of processes). This procedure identifies and selects the best fitting process model
and its alignment. (cf. KNOLL et al. 2019c)

For an industrial application, the software engineer must implement Algorithm 4 (cf.
Section 5.3.2) once in a software environment.

Activity mapping

Activity mapping evaluates material and information flow activities independently of
reference processes and value streams. Here, both the average and variance waiting
and processing times and frequencies of individual events are aggregated statistically.
This aggregation enables evaluation of the stability of activities, and value-added and
non-value-added activities can be identified. (cf. KNOLL et al. 2019c)

For an industrial application, the software engineer must implement the Algorithm 5 (cf.
Section 5.3.3) once in a software environment.
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Inventory profiling

Inventory profiling creates the actual inventory profile of a value stream based on the
event log. Like process discovery, the inventory profile is created without any a priori
information. Therefore, the algorithm mines the inventory levels, the demand, and the
deliveries. The inventory profile algorithm can identify both absolute quantities and
packages (inventory on a case level) to cover the product complexity and variety. With
the resulting inventory profile, the conformance of the actual behavior can be compared
with the inventory control policy.

For an industrial application, the team must define the time-interval k (e.g., daily level).
However, k can be adjusted depending on the analysis questions. The software engineer
must implement Algorithm 6 (cf. Section 5.3.4) once in a software environment.

Performance analysis

Performance analysis provides an aggregated view of all value streams by aggregating
the event log and the results of other process mining techniques statistically. In contrast
to process discovery and conformance checking, performance analysis is more domain-
specific than a process mining standard. An initial set of metrics can be proposed,
but the performance measurement and its metrics always depend on the nature of the
production system.

• Non-financial efficiency metrics include the lead time, inventory aggregated to
average, and variance values. The metrics are normalized on the case level or
time level (e.g., demand per day) or provided as absolute numbers.

• Non-financial effectiveness metrics include the conformance checking result
and the non-value-added activities of value streams. Example quality-related
activities may be summarized depending on the activity categories. The metrics
are presented in absolute numbers and normalized numbers on the case level.

• Financial cost metrics include the activities (e.g., transportation, handling) and
the inventory as the main cost drivers. Activity-based costing and inventory
costing are applied to determine the costs.

For an industrial application, the logistics expert and the process analyst must tailor
the proposed metrics (cf. Section 5.3.5) to the objectives and analysis questions. The
software engineer must implement the metrics once in a software environment.
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Clustering

Clustering aims to identify process variants of similar value streams (groups of in-
stances) to reduce the complexity of the analysis. The concept includes two types of
clustering: trace clustering and value stream clustering. Trace clustering is beneficial for
process-specific deviations independent of the part-specific value stream. Value stream
clustering supports the identification of groups of value streams and takes the results of
conformance checking and performance analysis as input.

A reference process must be selected to apply trace clustering. A list of value streams
must be defined for value stream clustering. The clustering algorithm cannot be deter-
mined in advance because performance depends on the application-specific data. Due
to its robustness, the k-means algorithm with the gap statistics method can be used to
start. For an industrial application, the software engineer must implement both types of
clustering (cf. Section 2.3.3 and Section 5.3.6) once in a software environment.

An outcome of this step is the mining of a holistic value stream for each part (cf.
Figure 4.4), and similar value streams are clustered.
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Figure 4.4: Example extract of mined value streams (based on KNOLL et al. 2019c)
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4.4.4 Analysis and evaluation

The fourth step focuses on the analysis and evaluation of the results for process improve-
ment. This step includes (1) selecting practical guidelines, (2) analyzing value streams
according to the guidelines, and (3) evaluating the results for process improvement. The
outcome of this step is a set of concrete and evaluated improvement ideas.

Selecting practical guidelines for the analysis

Analysis becomes increasingly challenging as product and process complexity and
dynamics increase. However, due to the application-specific objectives and analysis
questions, no prescriptive step-by-step analysis is possible3.

To support the analysis, (1) eight practical guidelines and (2) a reference model for the
analysis are presented in Section 5.4. Both focus on the integration of process mining
with lean production theory and the main objective of eliminating waste.

Each practical guideline provides an analysis objective, a link to lean production (e.g.,
types of waste), the process mining technique(s), the analysis description, potential
issues and lessons learned, and the relation to other practical guidelines. Because of the
modular and iterative character of the analysis, the reference model for the analysis is
modeled as an Activity-based Design Structure Matrix (DSM)4. In the Activity-based
DSM, the relation between the rows and the columns indicates the flow. According
to BROWNING (2001), reading down a column reveals input sources, while reading
across a row indicates output sinks. In the reference model for the analysis, the rows
and columns reflect the practical guidelines, and the relation specifies the flow. For
example, Filtering “reduces the complexity (for the)” process discovery.

The logistics expert and the process analyst simulate the analysis in the reversed direction
to select guidelines. If possible, the team selects the type(s) of waste based on the
objectives and analysis questions. Then, the team selects the relevant guideline(s)
by reading across the row(s). For each selected guideline, the team scans down the
column(s) to identify further relations, then scans the related guideline(s) in the row.

3 Please refer to Section 5.4 for a detailed discussion of this aspect.
4 A DSM is a square matrix with identical row and column labels that displays the relations between the ele-

ments. The Activity-based DSM is used to model processes or activity networks based on their dependencies
(BROWNING 2001, pp. 292–293).
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This procedure yields an ordered set of guidelines that can be applied during the analysis.
Finally, the team discusses the selected guidelines (e.g., analysis description and lessons
learned) and verifies that the expected results contribute to the objective(s) and analysis
question(s). An illustration of the procedure is shown in Figure 4.5.

Filtering

Filtering Clustering
Conformance 

checking 2 …
Lean

production 
waste

4 3
Conformance 

checking

2 1

… Waiting

Identify guideline

Identify input relation

Identify guideline

Practical guidelines for the analysis Types of waste

Select type 
of waste

Figure 4.5: Illustration of the procedure to select suitable guidelines in the reference
model for the analysis (e.g., to identify waste)

Analyzing value streams according to the practical guidelines

The process analyst performs the analysis and frequently discusses the results with
the logistics expert. Even though the practical guidelines support the analysis, this
task requires experience and iterations. Promising results (e.g., unexpected transport
activities) are used for the evaluation.

Evaluating the results for process improvement

The results of the analysis must be related to the objectives and improvement ideas to
provide practical support (ECK et al. 2015). For each analysis question, the team must
evaluate the results in terms of the practical benefit and reliability (e.g., data quality).
Based on the results, the team can develop ideas to improve the current state. Afterward,
the improvement ideas must be validated on the shop floor.

As an outcome of this step, a set of concrete and evaluated improvement ideas are defined
for implementation. The improvements can be monitored, and further improvement
potential can be identified. This methodology supports the continuous improvement of
value streams.
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5.1 Planning and data extraction

5.1.1 Internal logistics ontology for process mining

This section describes the internal logistics ontology that is used for data extraction.
Firstly, the literature-based development of the ontology is described in Section 5.1.1.1.
Secondly, an overview of developed ontology is provided in Section 5.1.1.2. Thirdly,
the classes are explained in detail (cf. Sections 5.1.1.3 to 5.1.1.7).

5.1.1.1 Literature-based development of the internal logistics ontology

The Ontology Development Guide by NOY & MCGUINNESS (2001) is used (cf. Ap-
pendix A.2.1.1) to develop the internal logistics ontology in this thesis.

Step 1: Determining the domain and scope

The objectives of the thesis (cf. Section 1.3) and ontology-based data preprocessing
(cf. Section 2.3.3) are matched to determine the domain and scope. The ontology
must create a shared understanding of the process perspective of internal logistics, and
required concepts of process mining (e.g., case identifier) must be annotated. In addition,
related attributes to enrich the event logs (e.g., costs) must be defined. Four competency
questions are defined to support this step (KNOLL et al. 2019b):

• Which logistics activities are related to the material flow and information flow?

• Which resources and actors are required to fulfill these activities?

• How can the transition of objects be described regarding the time and location?

• Which specifications are required to characterize parts and processes?
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Step 2: Considering reusing existing ontologies

According to NOY & MCGUINNESS (2001), it is almost always worth considering
reusing existing ontologies. Therefore, ontologies in the field of internal logistics are
reviewed. The review approach (e.g., keywords) is described in Appendix A.2.1.11.

In total, 14 publications are related to internal logistics. The process and resource
perspectives are used to classify the publications (cf. NEGRI et al. 2017). Table 5.1
shows the evaluation of relevant work for developing the internal logistics ontology.

Table 5.1: Evaluation of relevant work for developing the internal logistics ontology
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Fully addressed, Partly addressed, - Not addressed

The first group of ontologies focuses on the process perspective. In this group, the
ontologies include the process and a set of activities. Here, LIBERT et al. (2010)
developed the most comprehensive ontology. The authors formalized the functions
and information required for the material flow of internal logistics. Consequently, the

1 Note, the development of the ontology as well as the ontology for internal logistics presented in this section
have been published in KNOLL et al. (2019b).
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different perspectives of the material flow cover the process, the resource, and the actors.
Furthermore, the relationships between the classes and a set of initial data properties
are included. However, the ontology is not complete; the material flow activities,
for example, only include buffer, store, and transfer. Other material flow activities,
such as picking and distributing, are not included. Similarly, ZHANG & TIAN (2010)
and HOXHA et al. (2010) modeled a holistic picture of internal logistics and existing
relationships on an abstract level. In contrast, D. PARK et al. (2008) and P. LIAN et al.
(2007) modeled a precise picture of the process and its activities, but other relevant
classes (e.g., resources) are missing.

The second group of ontologies focuses on the resources of internal logistics. Many
classes are modeled, including data properties. In contrast, the relations (object prop-
erties) between the classes are not in the scope. In this group, NEGRI et al. (2017)
developed the most comprehensive ontology. The authors formulated a set of nine
sub-classes of the class component, such as storage and transporter. For each class,
additional sub-classes and data properties are provided (NEGRI et al. 2017). Notably,
the unit load describes a product that is not further described using sub-classes. The
work of NEGRI et al. (2017) is an extension of the Manufacturing Systems Ontology, an
upper ontology developed by FUMAGALLI et al. (2014). The other two publications
modeled the resources on an abstract level (HIMOFF et al. 2006; LI et al. 2014).

The third group summarizes publications that focus on certain aspects of internal
logistics, for instance, packaging (KOWALSKI & QUINK 2013) or transport (MERDAN

et al. 2008). Partial aspects are modeled with sub-classes and data properties from
a micro-perspective. For example, KOWALSKI & QUINK (2013) defined ten classes
that describe packaging, packaging goods (parts), unit loads, and underlying standards,
including instances (e.g., DIN ISO). Subsequently, a precise separation between products
and packages, and packaging, is given. However, existing relationships between the
classes and the holistic perspective of internal logistics have been neglected (e.g.,
BONFATTI et al. 2010; JINBING et al. 2008).

The review outlines the opportunity to reuse existing ontologies and suggests four
improvement directions. Firstly, most existing ontologies do not integrate the process
and resource perspective. The relations between classes are often neglected, and no
holistic picture of internal logistics is created. Secondly, as the ontologies have different
purposes, the ontologies are modeled with a different level of abstraction. Ontologies
with explicit formalization and data properties (e.g., NEGRI et al. 2017) can be used to
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enrich event logs. In contrast, other ontologies are abstract and do not specify properties.
Thirdly, no standardized taxonomy exists; MERDAN et al. (2008), for example, use the
term pallet while other ontologies refer to unit load. Fourthly, existing upper ontologies
are often neglected. In particular, the process is often modeled using concepts that are
not compatible with the process mining perspective. (KNOLL et al. 2019b)

Step 3: Enumerating important terms

Table 5.2 presents an overview of the enumerated (main) terms of the internal logistics
ontology based on the review. The count describes the number of occurrences within
the reviewed ontologies. Frequent terms are used to define the hierarchy of top- and
sub-classes. The representative ontologies provide the basis for modeling, e.g., to reuse
classes, object properties (relations), and data properties (attributes).

Table 5.2: Main terms of the internal logistics ontology based on the review

Class Exemplary term(s) Count Representative ontologies

Resource Storage, transporter 17 • NEGRI et al. (2017)
Process Activity, time 14 • BOCK & GRUNINGER (2005)

• LIBERT et al. (2010)
Actor Supplier, customer 11 • HOXHA et al. (2010)
UnitLoad Product, package 9 • PANETTO et al. (2012)
Customer Transfer order 7 • OBITKO et al. (2010)
Order • LIBERT et al. (2010)

Steps 4-6: Define the classes, properties, and facets

The ontology is modeled in the fourth, fifth, and sixth steps. If possible, concepts of
existing domain ontologies and upper ontologies, such as Process Specification Lan-

guage (PSL), are integrated, supported by fundamental concepts of internal logistics.

5.1.1.2 Overview of the internal logistics ontology

The internal logistics ontology consists of five top classes: CustomerOrder, Process,
UnitLoad, Resource, and Actor (cf. Figure 5.1). The focus of the internal logistics
ontology is set on the process (cf. Process). A process consists of a sequence of activities
(cf. Activity) covering the material (cf. MaterialFlowActivity) and information flow
(cf. InformationFlowActivity) of internal logistics. Every activity happens at an activity

82



5.1 Planning and data extraction

occurrence (cf. ActivityOccurrence) specifying the time (cf. Time) and location (cf.
Location). Actors (cf. Actor) and resources (cf. Resource) are required to operate this
process. The customer (cf. Customer) generates a customer order (cf. CustomerOrder)
that triggers the process, resulting in transfer orders (cf. TransferOrder) for internal
logistics. A transfer order contains one or many parts (cf. Part), instantiating product
components (cf. ProductComponent) that are stored as packages (cf. Package) on unit
loads (cf. UnitLoad). During the operation of this process, the transfer orders, including
activity occurrences, are stored as information objects (cf. InformationObject). The
ontology with all classes and properties is published in KNOLL et al. (2019b).
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Figure 5.1: Overview of the top classes and relations of the internal logistics ontology
(based on KNOLL et al. 2019b, p. 430)

5.1.1.3 Customer Order

The customer order (cf. CustomerOrder) describes the market requirement of products
(OBITKO et al. 2010, p. 322). The demand planning process uses actual orders of
customers (cf. Customer) and predicted orders based on historical statistics to create
customer orders. The master production planning process aggregates the customer
orders to a production schedule with production orders (cf. ProductionOrder). (cf.
SCHUH & P. STICH 2012) Then, production orders are decomposed into work orders
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(cf. WorkOrder) for production and manufacturing processes and transfer orders (cf.
TransferOrder) for internal logistics processes (LIBERT et al. 2010, p. 82). A transfer
order contains one or many parts (cf. Part) and triggers the internal logistics process
(cf. Process) on the shop floor (ER et al. 2015a; KNOLL et al. 2019c; LIIV & LEPIK

2014; TEN HOMPEL & SCHMIDT 2010), including an activity (cf. Activity) and activity
occurrence (cf. ActivityOccurrence) related to a specific time (cf. Time) and location (cf.
Location) (cf. Section 5.1.1.4). Figure 5.2 shows the customer order.

TransferOrder Part

Process

+contains

+triggers
CustomerOrder

ProductionOrder

WorkOrder

Customer
+generates

Figure 5.2: The class CustomerOrder of the internal logistics ontology (based on
KNOLL et al. 2019b, p. 430)

Annotations for process mining

The transfer order takes on a key role in supporting value stream mapping using process
mining. The transfer order is the trigger for any process and activity in internal logistics
(cf. Section 2.1.3). If started and completed, a transfer order is confirmed, as is the
activity, including the activity occurrences (events). Transfer orders, including the
activity occurrences, are stored as information objects in information systems. The
transfer order holds the raw data for event logs (KNOLL et al. 2019c).

A transfer order triggers the process and activities that transform the state of the
unit load and stores related activity occurrences (events).

5.1.1.4 Process

A process is a set of specific and ordered activities across time and place, with a
beginning and an end, intended to reach a specific goal (cf. Section 2.1). For internal
logistics, the logistics process ensures the availability of the right product, in the right
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quantity, and the right condition, at the right place, at the right time, for the right
customer, at the right cost (RUTNER & LANGLEY 2000, p. 73).

The upper ontology PSL is used to model the process (cf. Process) in the internal
logistics ontology (cf. Figure 5.3). The PSL defines an ordered process with the main
concepts of activities (cf. Activity) and occurrences (cf. ActivityOccurrence): (1) an
activity is defined as “a class or type of action” (SCHLENOFF & GRUNINGER 2000,
p. 16) and (2) an activity occurrence as “an event or action that takes place at a specific
place and time” (SCHLENOFF & GRUNINGER 2000, p. 16). Every activity occurrence
is linked to a given activity and includes a specific location (cf. Location) and time (cf.
Time) at which an activity begins and ends (SCHLENOFF & GRUNINGER 2000).

ActivityOccurrenceActivity

Location TimeInformationFlowActivityMaterialFlowActivity

+happensAt

+isSuccessorOf+hasSequence

Label Scan GenerateOrderDocumentSpatial Temporal Quantitative Qualitative Varietal

Transport

Store Buffer

Collect Distribute

Pack Unpack Inspect

Sort Pick

Process

+ID
+name
+cost

Figure 5.3: The class Process of the internal logistics ontology (KNOLL et al. 2019b)

During tailoring, the activities are classified into material flow (MaterialFlowActivity)
and information flow activities (InformationFlowActivity) and further specified into nine
generic activity classes (cf. GÜNTHNER & BOPPERT 2013; KNÖSSL 2015). Further-
more, an activity can be classified as a value-added, non-value-added but required, or
non-value-added activity (DURCHHOLZ 2014, p. 52). A schema with five categories is
predefined to instantiate non-value-added activities in the application: (1) quality, (2)
rework, (3) replenishment, (4) urgent order, and (5) repack.
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Annotations for process mining

The process represents the fundamental concept of process mining: activities with
activity occurrences (events). “Each sequence of primitive activity occurrences is a
possible execution trace, and all sequences together represent everything of concern that
can possibly happen at runtime.” (BOCK & GRUNINGER 2005, p. 213) The internal
logistics ontology is aligned with process mining theory: (1) an event refers to an
activity, (2) the time of an event defines the timestamp, (3) events can be linked to a
predecessor and/or successor, and (4) a (predefined) sequence of activities reflects a
process model. However, the nature of internal logistics introduces two challenges if
the activities are instantiated. (1) Location-specific activities: The generic activities can
be fundamentally different depending on the context, e.g., a transfer activity is related
to resources foreseen for a specific path between two locations. The location of an
occurrence further specifies activities in internal logistics. (2) Synchronization errors: In
internal logistics, material flow activities can be executed independently of information
flow activities. Then, multiple material flow activities may occur before an information
flow activity completes a transfer order or vice versa.

5.1.1.5 Unit Load

A unit load (cf. UnitLoad) is the basic handling unit for internal logistics and is defined
as “the means used to move and handle one or more workpieces at one time.” (NEGRI

et al. 2017, p. 24) A unit load includes one or many packages (cf. Package) (ARNOLD

et al. 2010, p. 703). A package is defined as a packaging good, i.e., a product variant
or sub-assembly, with a specific quantity and packaging (cf. Packaging) (DIN EN
55405 2014; KOWALSKI & QUINK 2013). Hence, a unit load, or package, refers to a
unique batch of a specific order (cf. Figure 5.4). The abstract sub-class of the product
component (cf. ProductComponent) is introduced according to the upper ontology
Product-driven ONTOlogy for Product Data Management (ONTO-PDM) interoperabil-

ity within manufacturing process environment (PANETTO et al. 2012) to model the
nature of product variants or sub-assemblies. The review on multi-criteria inventory
classification of KABIR & HASIN (2013) is reused and extended with fundamental
literature on internal logistics (e.g., GÜNTHNER & BOPPERT 2013; NYHUIS et al. 2008;
NYHUIS & WIENDAHL 2009) to specify relevant data properties of a part (cf. Part) for
internal logistics.
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UnitLoad

+ID
+quantitiy

Package

Part

+number
+price
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+change_frequency
+width
+height
+length

PartFamily

ProductComponent

+ID
+name
+is_dangerous_goods
+is_electrostatic_discharge

+isComposedOf

+belongsTo

Figure 5.4: The class UnitLoad of the internal logistics ontology (KNOLL et al. 2019b)

Annotations for process mining

The unit load enables the creation of event logs and provides domain-specific attributes
to be enriched for each value stream. Firstly, the unit load, or package, provides a
traceable object that is transformed by material flow activities. The state of the unit
load can be modified depending on the type of material flow activity. Consequently,
the package ensures a unique case identifier for process mining. Secondly, the data
properties of parts and product components classes enhance the case perspective.

5.1.1.6 Resource

To operate the process, the material flow and information flow activities require resources
(cf. Resource). In total, the resource includes five sub-classes (cf. Figure 5.5). Similar to
the activities, the resources are separated into material flow (cf. MaterialFlowResource)
and information flow resources (cf. InformationFlowResource).

The material flow resource describes the resources required to enable the material flow
activities: the transporter (cf. Transporter), the storage (cf. Storage), the load carrier
(cf. LoadCarrier), the packaging (cf. Packaging), and the order picking (cf. Order-

Picking). Supporting resources such as straps, tools, and foam material are summarized
as aid (cf. Aid). The transporter and the storage resource are based on NEGRI et al.
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(2017) and are classified into the continuous (cf. ContinuousTransporter) and discrete
transporters (cf. DiscreteTransporter), and similarly, storages (cf. ContinuousStorage,
DiscreteStorage). The information flow resources cover the acquisition, processing,
and storage of information. An abstract information object (cf. InformationObject) is
introduced to cover the heterogeneous information systems (JÜNEMANN & BEYER

1998). The infrastructure (cf. Infrastructure), energy, and human elements have been
modeled abstractly.

Resource

+ID
+name

MaterialFlowResource InformationFlowResource

TransporterStorage

+location
+section

OrderPicking LoadCarrier Packaging

+type
+is_one_way
+length
+width
+height
+price

Aid

HighRack

ContinuousStorage DiscreteStorage

BlockStorage

SmallPartsStorage RackStorage

Supermarket

AssemblyBuffer ContinuousTransporter DiscreteTransporter

TuggerTrain ForkliftAutomatedGuidedVehicle

DataMedium

Human Infrastructure Energy

DataAcquisition

DataOutput DataTransferInformationObject

DataProcessing

Figure 5.5: The class Resource of the internal logistics ontology (KNOLL et al. 2019b)

Annotations for process mining

The resource provides domain-specific attributes to enrich the event log. Firstly, the data
properties of the packaging and storage classes enhance the case perspective. They cover
the product and the resulting packaging complexity within the analysis and evaluation of
value streams (e.g., spatial restrictions). In addition, the storage section can be used to
differentiate ingoing, internal, and outgoing storages, which is required for the inventory
profiling algorithm. Secondly, the sub-classes of storages and transporters can be used
to instantiate the master data in the application.

88



5.1 Planning and data extraction

5.1.1.7 Actor

The actor (cf. Actor) covers the actors required to operate internal logistics (cf. Fig-
ure 5.6). According to HOXHA et al. (2010), the customer (cf. Customer), the supplier
(cf. Supplier), and the manufacturing company (cf. Manufacturer) are necessary. For
internal logistics, the customer is categorized as an external (cf. ExternalCustomer) or
internal customer (cf. InternalCustomer), e.g., the assembly line. To operate the process,
the supplier delivers the parts, and the manufacturer fulfills the customer orders.

ExternalCustomer

Actor

InternalCustomer

Supplier

+ID
+name
+address
+zip
+city
+country
+reliability

CustomerManufacturer

Part
+has

Figure 5.6: The class Actor of the internal logistics ontology (KNOLL et al. 2019b)

Annotations for process mining

The supplier provides domain-specific attributes that are enriched for each value stream.
They include suppliers’ static data properties (e.g., city and country) and the actual
performance and reliability (e.g., risk of shortages). These data and attributes support
analysis and decision-making about processes and inventory on hand, and the supplier
enhances the case perspective.

5.1.2 Practical guideline for event data validation in internal logistics

This section provides a practical guideline for validating event data in internal logistics
before data processing. The practical guideline aims to identify quality issues related
to the event data in internal logistics2. The development includes three steps. Firstly,
generally valid quality issues of event data described in process mining theory are briefly

2 To improve the quality of event logs, research proposes guidelines for logging (e.g., VAN DER AALST 2016).
To identify quality issues of non-event data, e.g., master data, please refer to data mining literature (cf. CHU
et al. 2016; KIM et al. 2003; P. OLIVEIRA et al. 2005).
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presented. Secondly, domain-specific data quality issues within internal logistics (e.g.,
case studies) are evaluated. Thirdly, the practical guideline is formulated.

Related work on quality issues of event data

According to VAN DER AALST et al. (2012, p. 179), the resulting quality of process
mining depends on the quality of the input event data. Therefore, the authors define
four criteria to judge the quality of event logs: trustworthy, complete, semantics, and
safe. Then, VAN DER AALST et al. (2012) derive five maturity levels of event logs and
discuss them with practical examples (e.g., types of information systems).

In contrast to these five rough maturity levels, BOSE et al. (2013) provide a comprehen-
sive quality classification framework for event logs. The authors define four categories
to assess the quality of the event log: missing data, incorrect data, imprecise data, and
irrelevant data. In combination with process characteristics, BOSE et al. (2013) derive
27 classes of quality issues. Timestamps, for instance, can be missing completely or be
incorrect (e.g., the difference between the event in reality and the documentation in the
information system). Many authors use this framework to assess the quality of event
logs in process mining in different domains, such as healthcare (e.g., ALHARBI et al.
2017; ALVAREZ et al. 2018; ROJAS et al. 2017).

In between the range of five maturity levels and 27 precise classes of quality issues,
a variety of research on the quality of event logs exist (cf. review of SURIADI et al.
2017). Even though an overlap between quality issues and dimensions of event logs
exist, less attention is spent on the raw event data extracted from information systems.
To address this issue, SURIADI et al. (2017) adapted the work of BOSE et al. (2013)
to develop 11 data imperfection patterns that have been evaluated in a user study with
15 researchers and five practitioners. Recent work focuses on initial approaches for
automatically detecting imperfection patterns using algorithms (e.g., ANDREWS et al.
2018).

Evaluation of quality issues of event data in internal logistics

The domain-specific quality issues of event data within internal logistics are derived
from the 11 data imperfection patterns (SURIADI et al. 2017). The characteristics of
transfer orders (cf. Section 5.1.1.3) and the findings of the case studies are discussed
and evaluated for each data imperfection pattern (cf. Chapter 3).
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5.1 Planning and data extraction

1. Form-based Event Capture. This pattern states that single events overwrite
all data associated with an updated timestamp (SURIADI et al. 2017, p. 140).
In internal logistics, a transfer order contains one or many parts that trigger
individual activities. For example, depending on the resources, parts can be
delivered separately (e.g., tugger train) or as a whole unit load (e.g., forklift).
Therefore, this pattern must be checked in the application.

2. Scattered Event. Scattered events describe additional events (e.g., different life
cycles) that can be extracted from the event data (SURIADI et al. 2017, p. 140).
This pattern received the second-highest importance rating in the user study of
SURIADI et al. (2017). In internal logistics, a transfer order includes a start and a
completion timestamp. Thus, two different events can be derived. The majority
of case studies report two timestamps. However, exceptions, including only one
timestamp, exist (e.g., ER et al. 2015b). This pattern must be integrated into the
data preprocessing and checked in the application.

3. Elusive Case. Elusive cases occur if events are not explicitly linked to their
respective case identifiers (SURIADI et al. 2017, p. 140). SURIADI et al. (2017)
showed that this pattern received the highest importance rating of all patterns. In
internal logistics, transfer orders do not include a case identifier. Therefore, the
case identifier must be constructed during data preprocessing.

4. Scattered Case. A scattered case includes missing activities that can be retrieved
from different information systems (SURIADI et al. 2017, p. 141). The literature
review highlighted heterogeneous information systems in logistics (cf. Chapter 3).
This imperfection pattern can occur in the application depending on the material
and information flow of the physical logistics process. Internal logistics offers an
additional challenge because material flow activities can be executed without any
information flow. None of the case studies reported this pattern explicitly.

5. Collateral Events. Here, multiple events refer to one particular process step, e.g.,
trivial low-level activities that do not contribute much to the analysis (SURIADI

et al. 2017, p. 142). For internal logistics, again, this pattern can occur depending
on the material and information flow and the related resources. An automated
conveyor line, for example, might trigger multiple events for controlling and
monitoring the equipment. This situation implies that the number of activities
and events does not necessarily correlate with the physical process or effort.
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6. Synonymous Labels. This pattern refers to labels that are syntactically different
but semantically similar, e.g., the same real-world activity with different labels
(SURIADI et al. 2017, p. 144). The case studies in internal logistics did not
identify this pattern explicitly (cf. Chapter 3). However, this pattern occurs
frequently if multiple information systems are merged (SURIADI et al. 2017,
p. 144). In that case, the pattern must be checked within the application.

7. Homonymous Labels. Here, an activity is repeated multiple times, and the in-
terpretation of the activity differs across the occurrences (SURIADI et al. 2017,
p. 144). For internal logistics, this pattern has not been reported as the standard-
ized activities refer to the (same) material flow activity. However, the process
complexity (process types) identified in the literature review is comparatively
low (cf. Chapter 3). The activity occurrence (event) must be enriched with the
location to address process complexity (cf. Section 5.1.1.4).

8. Polluted Label. A polluted label refers to activities that are structurally the same
but tailored to the event, for example, by appending event-specific information
to the label (SURIADI et al. 2017, p. 143). For internal logistics, the literature
review identified standardized activities that are predefined in the information
system. However, this pattern can occur in the application.

9. Unanchored Event. An unanchored event refers to different formats of values that
are not compatible with each other (SURIADI et al. 2017, p. 139). Many cleaning
steps during the data preprocessing have been reported to address these issues in
internal logistics. However, the prevalence of this pattern heavily depends on the
application scenario, e.g., if multiple information systems must be merged.

10. Inadvertent Time Travel Description. Here, the events are recorded with an
erroneous timestamp that is caused by manual data entry failures (SURIADI et al.
2017, p. 138). For internal logistics, this pattern is not relevant as the transfer
orders are created using an information system (e.g., WMS or ERP). Furthermore,
no case study has reported on this specific pattern (cf. Chapter 3).

11. Distorted Label. This pattern refers to labels that have strong similarities but do
not exactly match, caused by manual data entry failures, for instance (SURIADI

et al. 2017, p. 143). For internal logistics, this pattern is not relevant as the event
data is created using transfer orders.
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In conclusion, the evaluation and discussion shows that nine patterns can possibly occur
in internal logistics (cf. Table 5.4). In particular, three patterns (cf. Scattered Event,
Elusive Case and Homonymous Labels) relate to the universal nature of transfer orders
and must be addressed during the data preprocessing. However, most imperfection
patterns are application-specific and must be validated before further work takes place.
In addition, many imperfection patterns are related to merging event data of multiple
information systems.

Table 5.3: Evaluation of imperfection patterns of event data in internal logistics

Nature Information system(s)

- Imperfection pattern U
ni

ve
rs

al

A
pp

lic
at
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n

Si
ng

le

M
ul

tip
le

Examplary root cause

1 Form-based Event Capture x x Parametrization
2 Scattered Event x (x) x Transfer order update
3 Elusive Case x (x) x Unit load & batch ID
4 Scattered Case x x Missing bar code scan
5 Collateral Events x x Level of abstractions
6 Synonymous Labels x x Non-standardized label
7 Homonymous Labels x (x) Distributed activities
8 Polluted Label x x Parametrization
9 Unanchored Event x x Different data models
10 Inadvertent Time Travel -
11 Distorted Label -

Practical guideline for event data validation in internal logistics

The practical guideline aims to support practitioners with five principles to identify
quality issues of event data on the shop floor.

1. Observe the process on the shop floor. An essential requirement is to observe the
process on the shop floor. Special attention must be paid to the activities related
to the information flow that generate event data, for example, manual bar code
scans, mobile data terminals, or automated conveyor lines3.

3 Advanced concepts to model the material, information and data flow are referred to MEUDT et al. (2017).
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2. Record your own data for each process. Along with observation, sample data
must be recorded for each reference process and activity. For instance, the
actual processing times of activities can be compared to the measured duration
of activities. If the effort is too high, the main processes and activities (e.g.,
frequencies) must be prioritized.

3. Talk to people who execute the process every day. Interviews with workers on
the shop floor are required to validate the data quality and potential weaknesses
of the processes. In particular, the validation requires understanding when the
data is generated in the process. For example, is the bar code confirmation scan
executed at every step or only at the end of each shift?

4. Compare the findings with existing documentation. Findings made on the shop
floor must be compared to the existing documentation. The existing documenta-
tion of internal logistics, i.e., reference processes and activities, and information
technology, i.e., underlying information systems and data models, must be ana-
lyzed. The latter is very important as multiple imperfection patterns are caused by
the heterogeneity of information systems. For each deviation, further interviews
are required to derive the root causes and to understand the actual behavior.

5. Compare the findings with the event data. Finally, the findings made and recorded
on the shop floor must be compared with the extracted event data. Here, the nine
relevant imperfection patterns must be checked based on the findings.
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5.2 Data preprocessing

5.2 Data preprocessing

This section describes the development of the algorithms for creating (cf. Section 5.2.1),
enriching (cf. Section 5.2.2), and filtering event logs (cf. Section 5.2.3). Consequently,
the flattened data4 that is extracted using the internal logistics ontology (cf. Section 5.1.1)
is preprocessed into enriched event logs.

For each algorithm, the preliminary declarations and the flattened input data are specified,
linking the algorithm’s input data with the internal logistics ontology. The algorithm is
explained using pseudo code.

Figure 5.7 shows the relationship between the input data, the algorithms, and the pre-
processed data for process mining as a Data Flow Diagram (DFD)5. The preprocessed
data include an enriched event log for each value stream and the predefined reference
process models suitable for multidimensional process mining.

TransferOrder

Activity

Creating event logs

Enriching event logs Filtering event logs
Storage

Event logsPart

Packaging

Supplier

Extracted data using the ontology

Process Process models

Preprocessed
data for process
mining

Figure 5.7: Data Flow Diagram (DFD) for preprocessing event logs

4 To flatten implies to aggregate an existing data model. It is like a tabular view of the complete data set (VAN
DER AALST 2016, p. 160).

5 The DFD models a system as a network of transformations linked by paths of data (GANE & SARSON 1979).
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5.2.1 Creating event logs

Enabling process mining requires event logs with a case identifier, an activity, and a
timestamp (cf. Section 2.3.2). In contrast, internal logistics does not record an event log
explicitly; hence, the event log must be created (cf. KNOLL et al. 2019c).

Preliminary declarations

In internal logistics, the unit load consists of one or many packages that reflect the
material flow from goods receipt through to assembly. The unit load provides the basis
for the case identifier in internal logistics. Due to the nature of internal logistics, a
variety of material flow activities exist. These activities can change the state of the
unit load, potentially affecting the composition of the unit load (cf. Section 5.1.1.2).
Consequently, the package is used as the traceable object to correlate the event log. An
event log is provided for each value stream to adapt multidimensional process mining
for internal logistics. (cf. KNOLL et al. 2019c)

Definition. Let the case identifier of the event log L be the smallest unit load of a
single package for one part (KNOLL et al. 2019c, p. 134).

A transfer order triggers the process and activities that transform the state of the unit
load and stores related activity occurrences (events). Both a defined start and completion
exist, each with a specific time and location. Consequently, an activity is a class or type
of action triggering a collection of material and information flow activities between a
specified source and destination location (cf. Section 5.1.1.4).

Definition. Let the activity of the event log L be the transformation of a unit
load triggering a collection of material and information flow activities between a
specified source and destination location (based on KNOLL et al. 2019c).

The time of the activity occurrence (events) is used to specify the timestamp for process
mining (cf. Section 5.1.1.4). As every transfer order stores the activity occurrences, both
the start and end timestamp can be mapped to the standard transactional life-cycle model
of process mining: start and complete. Further activity occurrences can be extracted if
they are available, e.g., the schedule event. (VAN DER AALST 2016, p. 131)

Definition. Let the timestamp of the event log L be the specific timestamp that
the event takes place (based on KNOLL et al. 2019c).
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Flattened input data specification

Let the input data λTO for the algorithm be a tabular representation of the transfer orders
including the relationships to (1) the process, (2) the activities and activity occurrences
(events), and (3) the unit load, or package, with the part (cf. Table 5.4). The following
nomenclature is used to link the flattened input data with the internal logistics ontology:
Class or Class_relationType_ClassOrProperty.

Table 5.4: Flattened input data λTO of transfer orders

Column Attribute Internal logistics ontology

1 transfer_order_id TransferOrder_has_ID
2 activity_id Activity_has_ID
3 transfer_order_item TransferOrder_contains_Part
4 unit_load_batch_id UnitLoad_has_BatchID
5 part_number Part_has_Number
6 part_quantity UnitLoad_has_PartQuantity
7 location_source Activity_happensAt_ActivityOccurrence
8 location_destination Activity_happensAt_ActivityOccurrence
9 time_start Activity_happensAt_ActivityOccurrence
10 time_complete Activity_happensAt_ActivityOccurrence

A transfer order has a unique identifier (cf. Column 1), contains one or many packages
enumerated as transfer order items (cf. Column 3) and is associated with a specific
unit load (cf. Column 4). Each transfer order refers to a unique activity identifier
that describes a set of material and information flow activities (cf. Column 2). A
specified source and destination location and a start and complete timestamp exist for
each transfer order (cf. Columns 7-10). As the traceable unit load, or package, can be
correlated, transfer orders also can be correlated. Consequently, a unique identifier is
described using the part (cf. Column 5), the unit load (cf. Column 4), and the source
and destination location (cf. Columns 7-8). (KNOLL et al. 2019c)

Algorithm specification

In view of the fact that internal logistics has many value streams, the algorithm is
designed for multidimensional process mining (cf. Algorithm 1). For this reason, the
transfer orders are split into groups according to part numbers. All transfer orders
without a successor (e.g., assembly line) are used as a starting point. For each starting
point, a BFS identifies all leaves in the graph in linear time (KOZEN 1992, p. 19). The
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path for each leaf to the root reflects the material flow and information flow of an
individual package. The event log can be constructed and flattened into the defined case
identifier schema using the paths. This reversed-direction search offers the potential to
connect any transfer order without setting explicit starting points (e.g., goods receiving).
Then, the available life-cycle events are extracted, e.g., start and complete. As a result,
an event log is created for each value stream. (KNOLL et al. 2019c, p. 134)

Algorithm 1 Creating event logs (based on KNOLL et al. 2019c, p. 134)

Input: λTO... Transfer orders
Output: 〈L1, ...,LN〉... Event logs (for N value streams)

1: procedure CREATEEVENTLOGS

2: λTO(s_id)← λTO(location_source,unit_load_batch_id, ...)
3: λTO(d_id)← λTO(location_destination,unit_load_batch_id, ...)
4: λTO(item_count)← group(λTO, trans f er_order_id)
5: P← distinct(λTO(part_number))
6: for all p in P do
7: C← f ilter(λTO, part_number = p)
8: case_id← 1
9: for i← 1, f ilter(C,d_id = NULL) do

10: node_id← 1
11: BFS . BFS tree from C(i) where edge (u,v) if

C(u,d_id) = C(v,s_id)
12: for all leaf in BFS do
13: Lp(case_id,node_id)← path(lea f ,root) . path returns

visited activities in C
14: node_id← node_id + 1
15: end for
16: case_id← case_id + 1
17: end for
18: enumerate(Lp) . enumerate case_ids

19: li f ecycle(Lp) . extract available life-cycle events
20: end for
21: return 〈L1, ...,LN〉 . grouped by value streams
22: end procedure
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5.2.2 Enriching event logs

An event log L can be enriched by creating or computing additional attributes (based
on the event log itself) or by attributes derived using external (data) sources using the
internal logistics ontology (cf. ECK et al. 2015; KNOLL et al. 2019b).

Preliminary declarations

Enriching event logs always depends on the objectives and analysis questions in the
application. Presented attributes are not always required and must be further extended
on request. Three steps are required to extend the attributes. Firstly, the internal logistics
ontology must be extended, including classes, object properties, and data properties.
The object properties specify the relationship within internal logistics, the underlying
information systems, and the event log. Secondly, the input data, including an attribute
to merge the event log, must be specified. This ensures that the attribute is given both in
the event log and in the information system. Thirdly, the algorithm must be extended
based on the updated input data.

Flattened input data specification

To specify the input data, a generic set of attributes for the enrichment is clustered
according to the top classes of the ontology.

Process. Let the input data λA for the algorithm be a tabular representation of the
activity (cf. Table 5.5). The unique activity (cf. Column 1) can be enriched by a name
(cf. Column 2), e.g., to include source and destination location. The material flow
(cf. Column 3) and information flow (cf. Column 4) attribute represent the collection
of the activities required on the shop floor, reflecting the sub-classes of an activity
(cf. MaterialFlowActivity, InformationFlowActivity). The proposed classification (e.g.,
rework) is used to differentiate between value-added, non-value-added but required, and
non-value-added activities (cf. Section 5.1.1.4).

The cost value (cf. Column 6) and the currency are specified (cf. Column 7), e.g.,
monetary or non-monetary effort, to evaluate an activity’s effort. For the assessment of
the cost value, Activity-based Costing (ABC) or time-driven ABC can be used (VAN

DER AALST 2016, p. 86). As a transfer order contains one or multiple packages, the
effort must be split and allocated to each individual package. The enumerated number
of packages is used for this purpose.
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Table 5.5: Flattened input data λA of activities

Column Attribute Internal logistics ontology

1 activity_id Activity_has_ID
2 activity_name Activity_has_Name
3 activity_material_flow MaterialFlowActivity
4 activity_information_flow InformationFlowActivity
5 activity_category Activity_has_Category
6 activity_cost_value Activity_has_CostValue
7 activity_cost_currency Activity_has_CostCurrency

Resource. Let the input data for the algorithm be a tabular representation of the storage
λST (cf. Table 5.6) and the packaging λPG (cf. Table 5.7) resource. For internal logistics,
a storage has a unique identifier (cf. Column 1) with a specific location (cf. Column 2).
One or multiple storage locations can be aggregated into a storage section (cf. Column

3). (KNOLL et al. 2019c, p. 133)

Table 5.6: Flattened input data λST of storages

Column Attribute Internal logistics ontology

1 storage_id Storage_has_ID
2 storage_location_id Resource_has_LocationID
3 storage_name Storage_has_Name
4 storage_section Storage_has_Section

For internal logistics, each part has its individual characteristics and requires suitable
packaging (cf. Column 1). The packaging has a unique identifier (cf. Column 2) with a
set of characteristics (cf. Columns 3-5). The flattened input data includes a list of parts,
including the packaging specifications. (KNOLL et al. 2019a, p. 576)

Table 5.7: Flattened input data λPG of packaging

Column Attribute Internal logistics ontology

1 part_number Part_uses_Packaging
2 packaging_id Packaging_has_ID
3 packaging_name Packaging_has_Name
4 packaging_type Packaging_has_Type
5 packaging_size Packaging_has_Size
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Actor. Let the input data λSU for the algorithm be a tabular representation of the
supplier (cf. Table 5.8). For internal logistics, every part is delivered from a supplier
that produces the part (cf. Section 5.1.1.7). Furthermore, the supplier has a set of
characteristics (cf. Columns 2-7).

Table 5.8: Flattened input data λSU of suppliers

Column Attribute Internal logistics ontology

1 part_number Part_has_Supplier
2 supplier_ID Supplier_has_ID
3 supplier_name Supplier_has_Name
4 supplier_address Supplier_has_Address
5 supplier_zip Supplier_has_Zip
6 supplier_city Supplier_has_City
7 supplier_reliability Supplier_has_Reliability

UnitLoad. Let the input data λPT for the algorithm be a tabular representation of the
part (cf. Table 5.9). For internal logistics, every part can be identified using a unique
identifier (cf. Column 1). Furthermore, the part has a set of characteristics (cf. Columns

2-3). These characteristics are defined for each part individually or inherited from the
product component (cf. ProductComponent). In addition, a part belongs to a part family
(cf. Column 4) and has a predefined reference process (cf. Column 5) that specifies the
sequence of activities (cf. Section 5.1.1.4).

Table 5.9: Flattened input data λPT of parts

Column Attribute Internal logistics ontology

1 part_number Part_has_Number
2 part_name Part_has_Name
3 part_value Part_has_Value
4 part_family_name Part_belongsTo_PartFamily
5 part_reference_process Part_has_Process

Algorithm specification

The algorithm uses the event log L and the flattened input data λA, λST , λPG, λSU , λPT to
enrich the event log (cf. Algorithm 2). As the algorithm is designed for multidimensional
process mining, the procedure to enrich the event log is applied for each value stream,
or part number, separately. The procedure merges the flattened input data with the
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event log L using the primary attribute, calculates additional attributes, and returns the
enriched event log Le. (cf. KNOLL et al. 2019b,c)

Algorithm 2 Enriching event logs (based on KNOLL et al. 2019b,c)

Input: 〈L1, ...,LN〉... Event logs
Input: λA... Activity
Input: λST ... Storage
Input: λPG... Packaging
Input: λSU ... Supplier
Input: λPT ... Part
Output: 〈Le,1, ...,Le,N〉... Enriched event logs

1: procedure ENRICHEVENTLOGS

2: for all L in 〈L1, ...,LN〉 do
3: E← L(E) . set of all events of the event log L
4: part_number← E(part_number)
5: E← merge(E,λA,activity_id)
6: E(cost_value)← E(cost_value)/E(item_count) . calculate

shared cost ratio
7: E← merge(E,λST ,storage_id)
8: E← merge(E,λPG, part_number)
9: E← merge(E,λSU , part_number)

10: E(supplier_distance)← distance(λSU (part_number))
11: E← merge(E,λPT , part_number)
12: Le← update(L,E) . update event log
13: end for
14: return 〈Le,1, ...,Le,N〉
15: end procedure

5.2.3 Filtering event logs

Filtering the event log aims to create the correct view and reduce complexity (ECK et al.
2015). Therefore, irrelevant events, cases, or attributes are removed from the event log.
Any attribute available in the event log Le can be used to apply filtering, and a set of
key-value pairs 〈δ1,k,v, ...,δn,k,v〉 is defined in the industrial application.
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5.2 Data preprocessing

Preliminary declarations

In contrast to ad hoc filtering using process mining software (cf. Section 5.4.3.1), this
section focuses on two aspects of filtering: (1) selecting a sufficient time frame and
(2) anonymizing data. For process mining, a sufficient time frame of the event log
is required. “The larger the number of records used, the higher the process model’s
fidelity.” (RUSCHEL et al. 2018, p. 6) However, the trade-off between a short and
long time frame must be considered. Long-running time frames can reduce the trace
fitness and the classification result of reference processes because of concept drifts. To
anonymize data, any personal data, such as logistics operators, must be filtered. (KNOLL

et al. 2019c, p. 134) Further aspects of data privacy challenges are discussed in the
process mining theory (cf. MANNHARDT et al. 2018; PETERSEN et al. 2018).

Algorithm specification

The procedure to filter event logs is shown in Algorithm 3. An extract of the XES

Standard Definition 2.06 for the enriched event log Le is shown in Table 5.10. Please
refer to Appendix A.2.2.1 for additional attributes.

Algorithm 3 Filtering event logs (based on KNOLL et al. 2019c)

Input: 〈Le,1, ...,Le,N〉... Enriched event logs
Input: 〈δ1,k,v, ...,δn,k,v〉... Key-value pairs
Output: 〈Le,1, ...,Le,N〉... Enriched event logs (filtered)

1: procedure FILTEREVENTLOGS

2: for all Le in 〈Le,1, ...,Le,N〉 do
3: for all k,v in 〈δ1,k,v, ...,δn,k,v〉 do
4: E← f ilter(Le(E),k = v) . filter based on key-value pairs
5: Le← update(Le,E) . update event log
6: end for
7: end for
8: return 〈Le,1, ...,Le,N〉
9: end procedure

6 Available at: http://xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf, requested on May 24, 2019.
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Table 5.10: Extract of the enriched event log Le (Extensible Event Stream (XES) Standard Definition 2.0)

Extension Level Key Type Description

concept event event_id string A unique transfer order number, item (part), and batch.
concept event activity_id integer Activity id.
concept event activity_name string Activity name including the source and destination location.
concept event activity_material_flow list A list of material flow activities.
concept event activity_information_flow list A list of information flow activities.
concept event activity_category string Value-added or non-value-added activity category.
lifecycle event transition string Life-cycle of each activity occurrence (event).
time event timestamp date Date and time of the activity occurrence (event).
cost event value float Value of a cost.
cost event currency string Currency of a cost.
packaging trace name string Name of the packaging.
packaging trace type string Type of the packaging.
supplier trace name string Name of the supplier.
supplier trace distance float Distance of the supplier to the plant.
supplier trace reliability float Reliability of the supplier.
part trace number string Unique number of the part.
part trace name string Name of the part.
part trace value float Value of the part.
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5.3 Mining

This section describes the development of the framework for mining and clustering value
streams. The framework is organized into six process mining techniques. In general, the
framework requires the results of the data preprocessing (cf. Section 5.2). Depending
on the technique, the results of other techniques can be required. For each technique,
preliminary declarations are formulated based on the theory of process mining and
internal logistics and the requirements of the approach (cf. Section 4.1). Finally, the
resulting algorithms are explained using pseudo code.

Figure 5.8 shows the relationship between the preprocessed data for mining, the tech-
niques, and the mined data for the analysis.

Process discovery

Event logs

Process models

Preprocessed data for process mining

Conformance checking

Inventory profiling

Performance analysis

Clustering

Activity mapping

Performance report

Process models

Activities report

Mined data for the analysis

Inventory profiles

Figure 5.8: Data Flow Diagram (DFD) for mining and clustering value streams
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Different process mining techniques, characterized by different maturity levels (cf.
Chapter 3), are required to contribute to the overarching goal of the thesis (cf. Sec-
tion 1.3). Firstly, this work contributes to the literature by adapting multidimensional
process mining (cf. Section 2.3.3) to mine each value stream separately. Secondly, this
work contributes the following outcomes to the literature:

1. Process discovery is the most frequently used process mining technique (cf. Chap-
ter 3), and numerous process discovery algorithms with different characteristics
exist (cf. Section 2.3.2). Section 5.3.1 contributes a literature-based evaluation
and selection of process discovery algorithms in the context of internal logistics
to the literature.

2. Conformance checking is another elementary process mining technique (cf. Sec-
tion 2.3.2). However, conformance checking typically evaluates one event log
with one process model. Section 5.3.2 contributes to the literature by developing
an algorithm to align and classify part-specific event logs with multiple (reference)
process models.

3. Activity mapping is a pen-and-paper-based method of lean production introduced
by JONES et al. (1997). Section 5.3.3 contributes to the literature by developing
an algorithm and selecting metrics to characterize activities.

4. Inventory profiling. Process mining has not been used to analyze inventory
profiles (cf. Chapter 3). Section 5.3.4 contributes to the literature by developing
an algorithm for inventory profiling.

5. Performance analysis is another frequently used process mining technique (cf.
Chapter 3). In contrast to process discovery and conformance checking, the
performance analysis is rather domain-specific than a process mining standard.
Section 5.3.5 contributes a literature-based selection of performance metrics to
the literature.

6. Clustering is an advanced process mining technique (cf. Section 2.3.3), and many
applications in the field of logistics and manufacturing have been reported (cf.
Chapter 3). Section 5.3.6 contributes to the literature by specifying relevant input
features for value stream clustering.
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5.3.1 Process discovery

Within process discovery, the process model is derived from the event log without any a
priori information about the process (KNOLL et al. 2019c, p. 135).

Preliminary declarations

Process discovery of the control-flow is similar to drawing the current state map in
value stream mapping. Both approaches focus on the actual behavior of the process, its
activities, and their ordering. Consequently, the current state map can be created using
process discovery to identify potential for improvement. (cf. KNOLL et al. 2019c)

Practical benefit. Process discovery enables an in-depth analysis of the value
stream, including both value-added and non-value-added activities and their
ordering.

From the perspective of value stream mapping, the first step is to choose a part family
(ROTHER & SHOOK 1999). In contrast to manufacturing, value streams in internal logis-
tics can be highly individual for each product variant and sub-assembly (cf. Chapter 1).
Process discovery implements multidimensional process mining to create a process
model for each value stream individually (KNOLL et al. 2019c, p. 135).

Evaluating and selecting process discovery algorithms

Much progress in developing new algorithms has been made in the field of process
mining. However, according to VAN DER AALST & WEIJTERS (2004, p. 239), “there is
a strong relation between the mining algorithm and the type of problems that can be
successfully handled by that algorithm.”

Quality performance metrics7 are used (cf. Section 2.3.2) to evaluate and select suit-
able process discovery algorithms. For instance, DONGEN et al. (2009) discuss the
common assumptions and shortcomings of the algorithms in five categories. Advanced
approaches use regression models to evaluate, compare, and rank algorithms (J. WANG

et al. 2013) or include the dimensions of the event log to the benchmark (WEBER et al.

7 An overview of existing metrics in the field of process mining can be found at ROZINAT et al. (2007, p. 9).
For further discussions of individual algorithms, please refer to BUIJS et al. (2014), DONGEN et al. (2009),
LEEMANS (2017), VAN DER AALST (2016), & VAN DER AALST & WEIJTERS (2004).
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2013). However, according to J. WANG et al. (2013), no widely accepted standard to
benchmark algorithms exists.

The review of process mining applications in manufacturing and logistics extends
process mining theory (cf. Chapter 3). Based on this work, existing process types are
characterized, and applied process discovery algorithms are evaluated. Firstly, the cross-
analysis of the methodological context in both fields shows a wide range of process
types. In internal logistics, analyzed processes include up to ten activities. Furthermore,
the product and process complexity result in up to 4.2 million events in one year. In
contrast, process types in the manufacturing industry are more complex, including up
to 16,250 events per case. Secondly, the case study articles report about numerous
algorithms. Most frequently, the heuristic miner is applied. Other publications include
the fuzzy miner, the inductive miner, or self-defined algorithms. MEINCHEIM et al.
(2017), for example, applied the inductive miner due to its flexibility and scalability. This
fragmented picture can be confirmed for both the manufacturing and logistics industries.
An exception is BETTACCHI et al. (2016), who completed a benchmark analysis of five
process discovery algorithms in the context of the manufacturing industry. To assess the
algorithms, BETTACCHI et al. (2016) extended the four quality dimensions of BUIJS

et al. (2014) with complexity metrics, e.g., the number of nodes. BETTACCHI et al.
(2016) concluded that the inductive miner and the evolutionary tree miner are the most
suitable algorithms, and the low computation time of the inductive miner is superior.

The cross-analysis of the review provides three findings. Firstly, a variety of discovery
algorithms can be applied for various process types. Secondly, less attention is spent on
the selection and evaluation of algorithms. Thirdly, BETTACCHI et al. (2016) propose the
inductive miner due to the highest fitness and precision values and high performance.

Consequently, the cross-analysis confirms the findings of process mining theory. In
general, no algorithm is suitable for every process type. However, the inductive miner
demonstrated its suitability within multiple studies. Due to its robustness and ability to
handle large, incomplete event logs with much infrequent behavior (VAN DER AALST

2016, p. 222), the inductive miner is recommended for process discovery in internal
logistics (KNOLL et al. 2019c). If required, advanced approaches can be applied to
benchmark different algorithms. An example of a value stream mined using process
discovery is presented in the industrial application (cf. Figure 6.3).
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5.3.2 Conformance checking

Conformance checking evaluates if reality recorded in the event log conforms to the
model, and vice versa (VAN DER AALST et al. 2012, p. 175). Deviations of value
streams can be measured using reference process models (KNOLL et al. 2019c).

Preliminary declarations

Conformance checking requires the application of one or many reference process models
(de jure models). It is assumed that a set of reference process models 〈M1, ...,Mn〉 exists
that can be aligned with activities recorded in the event log Le. In the following section,
three suitable metrics to align and classify an event log Le with a process model M are
proposed and explained (KNOLL et al. 2019c).

Practical benefit. Conformance checking quantifies the alignment between the
reference process and the actual behavior of a value stream.

The fitness “quantifies the extent to which the process model can accurately reproduce
the cases recorded in the event log.” (BUIJS et al. 2014, p. 309) “A model has a perfect
fitness [equals 1] if all traces in the log can be replayed by the model from beginning to
end.” (BUIJS et al. 2014, p. 309) Fitness is the most important metric for the algorithm.
To illustrate fitness, an event log L with three different traces σ1, σ2, σ3 and a process
model M are shown in Figure 5.9. For σ1 = 〈a,b,c〉, the fitness(σ1,M) equals 1.0
because all events of the trace can be replayed on M. For σ2 = 〈a,b〉, the fitness(σ2,M)
equals 0.8 because activity c of the process model M is not consumed in the log. For
σ3 = 〈a,b,d〉, the fitness(σ2,M) equals 0.67 because in addition to σ2, the event d is
missing in the process model M.

a b c

endstart

problem: activity c is
missing in σ2 and σ3

σ1 a b c

σ2 a b

σ3 a b d

problem: event d is
missing in the process model

Traces in the event log

Process model M

Figure 5.9: Illustration of conformance checking on process model M
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Precision “quantifies the fraction of the behavior allowed by the model which is not seen
in the event log.” (BUIJS et al. 2012, p. 306) If all paths in the model can be observed
in the event log, the precision equals 1. Assuming that models describe activities of
reference processes, precision is the second-most important metric for the algorithm.
The generalization reflects the likelihood of overfitting. If paths are visited infrequently,
the generalization is low (BUIJS et al. 2012, p. 309). The generalization is the third
most important metric to extend the algorithm.

Algorithm specification

The algorithm uses a set of event logs 〈L1, ...,LN〉 and a set of process models
〈M1, ...,Mn〉 to align and classify the best-fitting process model for each value stream.
The three metrics are compared for each process model M, and the maximum value is
selected (cf. Algorithm 4). The definition of the metrics is based on process mining
theory (cf. Appendix A.2.3.1). The temporary results for each value stream (c f ,cp,cg)
are also used as input for value stream clustering (cf. Section 5.3.6).

Algorithm 4 Aligning and classifying event logs (based on KNOLL et al. 2019c,
p. 136)

Input: 〈Le,1, ...,Le,N〉... Event logs (enriched)
Input: 〈M1, ...,Mn〉... Process models
Output: 〈Le,1, ...,Le,N〉... Event logs (enriched, aligned, and classified)

1: procedure ALIGNANDCLASSIFYVALUESTREAMS

2: for all Le in 〈Le,1, ...,Le,N〉 do
3: for all M in 〈M1, ...,Mn〉 do
4: c f (M)← f itness(Le,M)
5: cp(M)← precision(Le,M)
6: cg(M)← generalization(Le,M)
7: end for
8: imax← argmax(c f ,cp,cg) . ordered by c f then cp then cg

9: E(M)← (M(imax),c f (imax))
10: Le← update(Le,E) . update event log
11: end for
12: return 〈Le,1, ...,Le,N〉
13: end procedure
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5.3.3 Activity mapping

Activity mapping aims to analyze occurring activities, both material and information
flow, independently of reference processes and value streams (KNOLL et al. 2019c).

Preliminary declarations

JONES et al. (1997) developed a general approach to analyze activities to eliminate
unnecessary activities and simplify others to reduce waste. The authors manually
recorded activities, including a set of relevant metrics, e.g., total time taken or the type
of activity (operation, transport) (JONES et al. 1997, p. 162). The proposed approach
supports these steps using process mining (KNOLL et al. 2019c).

Practical benefit. Activity mapping analyzes every activity occurrence to identify
value-added and non-value-added activities across processes and value streams.

Activity mapping proposes a set an initial set of metrics (KNOLL et al. 2019c, p. 133):

• Frequency is the number of activity occurrences of an activity within a specific
time frame (KNOLL et al. 2019c, p. 133).

• Processing time is the difference between the start and completion of an activity.
The life-cycle attribute that distinguishes the start from completion and the
associated timestamps are required to measure the duration of activities (VAN

DER AALST 2016, p. 135).

• Waiting time is the time required for a resource to become available and begin the
activity (VAN DER AALST 2016, p. 86). The completion time of the predecessor
activity occurrence is required to measure the waiting time. If no predecessor
exists, the waiting time is zero.

If further details are required, in particular about material flow activities, activity
mapping can be extended. For this, KNOLL et al. (2019c) propose five additional
metrics to characterize the material flow. The modification of part quantities of a unit
load, for instance, is used to differentiate between collect and distribute activities. Then,
KNOLL et al. (2019c) mapped the metrics against generic material flow activities (cf.
Section 5.1.1.4). Please refer to KNOLL et al. (2019c, pp. 133–134) for the specification
of the additional metrics.
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Algorithm specification

The algorithm uses a set of event logs 〈Le,1, ...,Le,N〉 to map the activities. The processing
and waiting times are calculated on an event log level. This calculation is necessary to
determine the predecessor, if available. Then, activities 〈A1, ...,An〉 in the event universe
E of all event logs are processed separately. These events are removed to avoid double
counting of duplicate events introduced during the creation of event logs. Finally, the
values are reduced to average and variance for the activities report (cf. Algorithm 5).

Algorithm 5 Activity mapping (based on KNOLL et al. 2019c, p. 134)

Input: 〈Le,1, ...,Le,N〉... Event logs (enriched)
Output: 〈A1, ...,An〉... Activities

1: procedure MAPACTIVITIES

2: for all Le in 〈Le,1, ...,Le,N〉 do
3: E← Le(E) . set of all events of the event log Le

4: E(processing)← E(complete) − E(start) . timestamps
5: if predecessor then
6: E(waiting)← E(start) − Epre(complete) . timestamps
7: else
8: E(waiting)← 0
9: end if

10: Le← update(Le,E) . update event log
11: end for
12: E← 〈Le,1, ...,Le,N〉 . set of all events of all event logs
13: for all A in E do
14: EA← f ilter(E,activity = A)
15: EA← remove_duplicates(EA) . remove duplicate events
16: δA← reduce(EA(processing),EA(waiting)) . average and variance
17: A← length(EA),δA

18: end for
19: return 〈A1, ...,An〉
20: end procedure
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5.3.4 Inventory profiling

Inventory profiling creates the actual inventory profile of a value stream based on the
event log. Like process discovery, the actual behavior of the inventory is modeled
without any a priori information.

Preliminary declarations

Many inventory models designed to reduce inventory have been established in theory
and industry. What they have in common is modeling the inventory history for each
part over time (e.g., NYHUIS & WIENDAHL 2009). In industry, where thousands of
parts have individual value streams (cf. Chapter 1), modeling the actual inventory (i.e.,
not assumed inventory) can be challenging. The proposed approach aims to create the
inventory profile of a value stream based on the event log.

Practical benefit. Inventory profiling enables an in-depth analysis of the actual
inventory history over time.

It is assumed that any activity available in the event log can be classified into (1) a
goods receiving activity that increases the inventory, (2) an internal logistics activity not
affecting the inventory, and (3) an outgoing goods activity that decreases the inventory.
Furthermore, any event includes the actual part quantity (cf. Section 5.1.1.4).

It is assumed that an event log with a fixed time window exists, and events outside the
time window can occur (cf. Section 2.3). Then, the event log can be discretized in k time-
intervals δt1, ...,δtk. To determine k, the first and last event and the required precision
(e.g., 1 day) are used. Thereupon, the cases can be classified into four scenarios:

1. Missing goods receiving activity. The start event of a case is not available. It is
assumed that the case (package) entered the logistics system before the start date.

2. Complete case. The start and end event of a case are available. It is assumed that
the complete case is observed within the event log.

3. Missing outgoing goods activity. The end event of a case is not available. It is
assumed that the case (package) remains in the logistics system.

4. Hidden case. The scenario that both the start and end events are outside the time
frame, before or after, is not considered.
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The part quantities or cases in the event log can be used to create the inventory profile.

• Quantity level. This perspective uses relative inventory movements: quantities of
incoming goods are added, and quantities of outgoing goods are subtracted. While
the computation is simple, the absolute level of inventory remains unknown.

• Case level. This perspective evaluates the number of active cases for each
discretization step. A case is active as long as the case is not completed by an
end event. The absolute measurement of inventory levels can be enabled.

The inventory profile uses the case level. However, three limitations remain:

• Discretization error. In general, a case is active for the complete time-interval
δt, e.g., from 00:00 to 23:59 for δt = 1day. This error exists for all k resulting
in δt larger than the precision of the timestamp (e.g., 1 second). However, the
discretizing event logs simplify the procedure and (process) model (TSAI et al.
2010, p. 57). Therefore, a simplification is implemented: a case is active for δt of
the goods receiving activity and inactive for δt of the outgoing goods activity.

• Hidden cases. If no start and end events exist, no active case can be created
artificially, even if a package might be on stock. Using a sufficient time frame
(e.g., several months) and evaluating value streams with few events in detail is
recommended.

• Simplified logistics system. Inventory profiling aggregates multiple storage lo-
cations to one logistics system. This aggregation helps to assess the required
inventory, but process-related restrictions must be considered (e.g., required
buffers that introduce additional inventory).

Algorithm specification

The algorithm uses a set of event logs 〈Le,1, ...,Le,N〉 to create the inventory profile IP

for each value stream (cf. Algorithm 6). Firstly, the quantity statement is calculated for
each unit load received at goods receiving. For internal logistics, the state of the unit
load can be modified by material flow activities, e.g., splitting a unit load into smaller
packages (cf. Section 5.2.1). Consequently, active cases can include different sizes (e.g.,
pallet and package). Therefore, all cases must be normalized to the smallest unit load of
a single package. Secondly, artificial cases are created for the remaining quantities to
normalize cases. An artificial case includes a start and an end event. The start is inherited

114



5.3 Mining

from the event related to the goods receiving activity, and the end event is set to the end
of the event log. Subsequently, every case in the event log reflects the smallest unit load
of a single package. Thirdly, to address incomplete cases, artificial events are created to
complete cases. An artificial start event (cf. Scenario 1) or an end event (cf. Scenario 3)
is created for each incomplete case. Scenario 2 does not require further modifications.
Subsequently, every case in the event log is complete. Fourthly, the actual inventory

profile is calculated. The event log is transformed into an empty matrix where: (1) the
rows reflect the total number of cases, and (2) the columns reflect the k time-intervals.
For each case, the matrix elements of the discretized start event δtstart and end event
δtend−1 are set to 1, including the range between the events. Finally, the inventory profile
IP is the column sum for each δt1, ...,δtk. Algorithms to create the demand profile DP

and goods receiving profile RP are shown in the Appendix A.2.3.2.
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Algorithm 6 Creating the inventory profile

Input: 〈Le,1, ...,Le,N〉... Enriched event logs
Input: k... Time-intervals
Output: 〈IP1, ..., IPN〉... Inventory profiles

1: procedure CREATEINVENTORYPROFILE

2: for all Le in 〈Le,1, ...,Le,N〉 do
3: C← group(Le(case_id,date),min,max)
4: C(o f f set_start)←C(min − min(Le(date))) . based on k

5: C(o f f set_end)←C(max(Le(date)) − max)) . based on k

6: for all e in filter(Le,category = goods_receiving) do
7: q = e(quantity)−sum( f ilter(Le,outgoing_goods),quantity)

. calculate the remaining part quantity of a unit load
8: if q > 0 then
9: C← arti f icial_cases(q) . add artificial cases

10: end if
11: end for
12: A← matrix_zeros(len(C),k)
13: for all c in C do
14: if unable to find start event in C then
15: c← arti f icial_event(min(Le(date)) . based on k

16: end if
17: if unable to find end event in C then
18: c← arti f icial_event(max(Le(date)) . based on k

19: end if
20: A(c,c(o f f set_start,o f f set_end − 1))← 1 .

including the steps in between
21: end for
22: IP← column_sum(A)
23: end for
24: return 〈IP1, ..., IPN〉
25: end procedure
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5.3.5 Performance analysis

Performance analysis provides a holistic view of all value streams. The event log and
the results of other process mining techniques are aggregated statistically.

Preliminary declarations

Performance measurement is the process of quantifying the efficiency and effectiveness
of action using metrics (NEELY et al. 1995, p. 80). Measurement is important to identify
success, whether the customer needs are met, to identify problems and waste, to ensure
fact-based decisions, and that improvements actually happen (PARKER 2000, p. 63).

Practical benefit. Performance analysis uses the results of process mining tech-
niques to create an aggregated and holistic picture of all value streams.

Process mining applications in manufacturing and logistics demonstrate the benefits
of performance analysis. However, the extent of the analysis and the set of metrics is
far from standard (cf. Chapter 3). In contrast, value stream mapping provides a set of
frequently applied metrics (ROMERO & ARCE 2017; SHOU et al. 2017). Furthermore,
performance metrics have been extensively discussed in the literature (e.g., CAPLICE

& SHEFFI 1994; GUNASEKARAN & KOBU 2007). These research streams are briefly
discussed and summarized to propose an initial set of metrics (cf. Table 5.11).

The literature review of SHOU et al. (2017) identified 36 metrics frequently used when
applying value stream mapping. Most frequently, the cycle time, lead time, and inventory
are applied. In general, 19 of the 36 metrics relate to production efficiency. The review
of ROMERO & ARCE (2017, p. 1078) confirms these findings and highlights the lead
time. Further metrics related to internal logistics include the processing time, waiting
time, transportation, and rework and defects (non-value-added activities). Second most,
financial metrics are used, e.g., the non-value-added cost. These metrics focus on the
process and day-to-day perspective. (SHOU et al. 2017, p. 3911)

The literature review of GUNASEKARAN & KOBU (2007) identified 27 key performance
metrics and the authors conclude that there is no shortage of performance metrics. Time
and productivity dimensions have significant weight. “While financial performance
measures are important for strategic decisions, day-to-day control of manufacturing and
distribution operations is better handled with non-financial measures.” (GUNASEKARAN

& KOBU 2007, p. 2828) A study with 121 manufacturing executives confirms the
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importance of non-financial metrics (FULLERTON & WEMPE 2009, p. 232). Non-
financial metrics are an integral component of a lean production system (DURDEN et al.
1999). Nevertheless, a balanced presentation of both financial and operational measures
can be useful (KAPLAN & NORTON 1992, p. 71). The literature review of SANTOS et al.
(2016, p. 339) identified the key financial metrics of transportation, inventory, storage
or material handling costs, and administrative costs for logistics. Useful performance
metrics depend on the nature of the production system and must be tailored to individual
organizations (GUNASEKARAN & KOBU 2007).

Table 5.11: Relevant performance metrics in the context of internal logistics (based on
GUNASEKARAN & KOBU 2007; ROMERO & ARCE 2017; SANTOS et al.
2016; SHOU et al. 2017)

Nature of measurement Category Metric

Non-financial Efficiency Lead time
Non-financial Efficiency Inventory
Non-financial Efficiency Processing time
Non-financial Efficiency Waiting time
Non-financial Effectiveness Conformance to specifications
Non-financial Effectiveness Transportation
Non-financial Effectiveness Rework
Non-financial Effectiveness Defect
Financial Cost Transportation costs
Financial Cost Inventory costs
Financial Cost Storage / handling costs
Financial Cost Scrap / defect costs
Financial Cost Administrative costs

In contrast, process mining applications have rarely integrated these findings and perfor-
mance metrics. Typically, the frequencies and lead times (duration) of processes and
activities have been analyzed (cf. Chapter 3). Existing articles focused on the technical
perspective (e.g., number of cases or fitness value) without relating the findings to the
business. Consequently, a gap exists between applied metrics in the field of process
mining and established performance metrics.

Performance metrics can be calculated or aggregated on the activity level (e.g., duration
of an individual activity), case level (e.g., cost of a case), and event log level (e.g.,
number of cases in a specific time frame). The average (mean), variance (standard
deviation), median, and minimum and maximum values can be used to aggregate the
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metrics. Performance metrics can also be absolute (e.g., number of cases) or relative
(e.g., ratio of quality activities).

Non-financial efficiency metrics

• The lead time (duration) is the total time from the creation of the case to its
completion (VAN DER AALST 2016, p. 86). The lead time is collected for each
case and aggregated on the event log level for each value stream.

• The processing time of a case is the sum of the processing times for all activities
(cf. Section 5.3.3). The processing time is collected for each case and aggregated
on the event log level for each value stream.

• The waiting time of a case is the sum of the waiting times for all activities (cf.
Section 5.3.3). Thus, the waiting time is collected for each case and aggregated
on the event log level for each value stream.

• Demand is the number of cases within a normalized time-interval (e.g., one day).
The demand is calculated for each time-interval and aggregated (e.g., mean) for
each value stream. (KNOLL et al. 2019c, p. 135)

• Delivery (frequency) is the number of cases entering the system within a nor-
malized time-interval (e.g., one week). Similar to the demand, the deliveries are
summarized on the event log level for each value stream.

• Inventory. The number of active cases reflects the inventory on stock. In general,
inventory can be separated into cycle-stock and safety stock. To evaluate the
safety stock, absolute inventory, and relative inventory metrics, i.e., range on the
delivery day to cover the upcoming demand, are used. To evaluate the cycle-stock,
the ordered quantities Q can be compared to JIT (Q = 1), which results in waste
of Q/2 − 1/2. The inventory metrics are collected for each time-interval and
aggregated on the event log level for each value stream.

Non-financial effectiveness metrics

• Conformance checking. The (highest) trace fitness is used to measure deviations
from the reference process (cf. Section 5.3.2). If required, the fitness related to
other reference processes can be evaluated, e.g., to separate concept drifts from
systematic failures. Then the trace fitness is provided for each value stream.
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• Non-value-added activities. The activity categories are used to determine the root
causes of deviations. Relative and absolute activity occurrences can be calculated
for each case in each activity category. Then the metrics are aggregated for each
activity category and on the event log level for each value stream.

Financial cost metrics

• Activity costs. The activity costs reflect the effort to complete an activity. ABC or
time-driven ABC can be used to assess the costs (cf. Section 5.2.2).

• Inventory costs. The inventory costs reflect all costs to hold the inventory, e.g.,
the capital costs or storage space costs.

5.3.6 Clustering

Clustering aims to identify groups of similar instances to reduce the complexity of the
analysis. In this section, value stream clustering is proposed to identify groups of value
streams, e.g., those with high costs due to rework activities.

Preliminary declaration

Value stream clustering is a domain-specific extension that covers product and process
complexity. It is assumed that this complexity prevents analysis of each value stream
separately, e.g., performing process discovery.

Practical benefit. Clustering provides support for the analysis to identify system-
atic issues related to both (reference) processes and value streams.

The review identified a variety of modifications of trace clustering (cf. Chapter 3),
including the time perspective (e.g., cycle time), the organizational perspective (e.g.,
workshop resources), or the case perspective (e.g., cargo types). These modifications
demonstrate the benefits of domain-specific characteristics for clustering in the field
of manufacturing and logistics. Value stream clustering aims to identify domain-
specific groups of value streams in internal logistics. Therefore, value stream clustering
maintains the relationships of value streams and event logs.
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Definition. Let a value stream profile be a set of features 〈 f1, ..., fn〉 that maps the
characteristics of a value stream.

It is assumed that the results of performance analysis provide a set of suitable metrics
to create value stream profiles. Hence, the proposed metrics are discussed in terms of
value stream clustering.

• Non-financial efficiency metrics. Lead time, demand, and inventory can be used
to separate value streams. Those established metrics of value stream mapping pro-
vide a set of initial metrics. Additional metrics can be specified in the application,
such as minimum, average, and maximum inventory.

• Non-financial effectiveness metrics. Conformance checking and non-value-added
activities are both suitable for separating value streams. Conformance checking
findings for the three quality performance metrics are used (cf. Section 5.3.2)
for value stream clustering. Notably, multiple values of each metric (top-n)
can be integrated, e.g., the highest three fitness values (top-3 fitness). Then,
different types of deviations can be separated (e.g., systematic failures from
concept drifts). Relative occurrences of non-value-added activities are used to
separate the underlying root causes (e.g., to derive a rework cluster).

• Financial cost metrics. The financial cost metrics provide an extension to both
efficiency and effectiveness metrics. If combined, the economic impact of devia-
tions can be used to focus on costly clusters.

In any case, clustering algorithms require comparable features, so normalization of
the input features 〈 f1, ..., fn〉 is required. On the one hand, this affects dynamics over
time, e.g., normalize the total quantity in a specific period to a quantity per day. On the
other hand, absolute values must be normalized to relative values, e.g., the maximum is
reduced to 1.

Algorithm specification

Numerous clustering algorithms exist in the data mining field. The k-means algorithm
is frequently used because of its robustness and simplicity. Many methods can be
used (e.g., elbow method or gap statistics) to determine the number of clusters. (cf.
KODINARIYA & MAKWANA 2013) A set of value stream profiles is created and used as
input features for the clustering algorithm.
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5.4 Analysis and evaluation

This section describes the reference model and the eight practical guidelines that support
the analysis (cf. Section 4.4.4). Firstly, the literature-based development of the analysis
is described in Section 5.4.1. Secondly, the reference model for the analysis is presented
in Section 5.4.2. Thirdly, the eight practical guidelines for the analysis are explained in
detail (cf. Section 5.4.3).

5.4.1 Literature-based development of the analysis

The literature-based development of the analysis is conducted in four steps. Firstly, the
preliminary declarations outline how support can be provided. Secondly, the reference
model for the analysis is developed. Thirdly, a generic set of properties to model the
guidelines is defined. Fourthly, the eight guidelines are modeled in detail.

Step 1: Outlining preliminary declarations

The analysis is problem-, objective-, and application-specific. The scope may be intro-
duced by what it is not and how practical support can be provided. Firstly, the analysis
always depends on the analysis questions and objectives (e.g., types of waste); it should
not be a prescriptive, step-by-step procedure. The practical guidelines must be loosely
coupled and can be iteratively combined or skipped. Secondly, the analysis cannot be
complete. The reference model for the analysis must be set up initially and must be
capable of evolving over time as new information is acquired. Thirdly, the analysis does
not aim to identify the most wasteful value streams (e.g., accumulating different types of
waste) but instead aims to identify the potential for process improvement. Assuming that
different types of waste are introduced by different causes, the guidelines must address
different types of waste and causes separately. In conclusion, the analysis cannot be too
prescriptive and must be flexible and extendable.

The review reveals research opportunities (cf. Section 3.4). In general, the integration
of process mining (e.g., techniques) and lean production theory (e.g., types of waste) is
required. In addition, the synthesis of lessons learned (e.g., potential issues) increases
support. Standardizing the practical guidelines with reusable properties (e.g., objectives)
helps to ensure that the analysis will be beneficial.
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5.4 Analysis and evaluation

Practical benefit. The reference model and the practical guidelines for the
analysis provide support by integrating process mining with lean production
theory and the main objective of eliminating waste.

Step 2: Developing the reference model for the analysis

Relevant articles were selected based on the evaluation in the review (cf. Chapter 3) to
develop the reference model for the analysis. The steps suggested in the articles were
extracted, mapped, and clustered into practical guidelines for the analysis. Theoretical
process mining perspectives were used as main categories (e.g., time perspective) to
guide this procedure, and the variety of analysis steps was reduced according to their
added value and frequencies of occurrence. The mapping of 12 resulting articles to the
guidelines can be found in Appendix A.2.4.1. Next, the established types of waste were
mapped to the practical guidelines based on the case studies, process mining theory,
and logical reasoning. The relationships between the practical guidelines were defined
to complete the reference model. The reference model is defined as an Activity-based
DSM that can be extended at any time to ensure flexibility. The reference model for the
analysis consists of eight practical guidelines and is presented in Section 5.4.2.

Step 3: Defining a generic set of guideline properties

Before the practical guidelines for the analysis are modeled in detail, generic guideline
properties are defined. The initial set of six properties provides the structure for each
practical guideline in Section 5.4.3. This initial set can be extended depending on the
requirements in the application, for example, by adding organizational properties.

• Objective: “What is the objective of the guideline?” The objective property
ensures that every analysis has a clear objective that provides a practical benefit.
A generic formulation should be preferred, e.g., identify value streams with
oversized inventories, to ensure the re-usability of a practical guideline.

• Lean production: “How is the guideline related to lean production?” The
lean production property links the practical guideline to lean production theory.
Consequently, the property extends the objective with established types of waste
(e.g., waste of inventory). Based on this property, application-specific analysis
questions can be mapped to the practical guidelines.
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• Process mining: “Which process mining perspectives, techniques, and metrics are

applied?” The process mining property links the practical guideline to process
mining theory. This includes the process mining perspective (e.g., control-flow),
techniques (e.g., conformance checking), and metrics (e.g., trace fitness). Aside
from the control-flow and time perspective, the case perspective enhances the
understanding of any analysis, at least in theory. Therefore, the case perspective
will not be specified in detail. Please refer to the internal logistics ontology (cf.
Section 5.1.1).

• Description: “Which steps are performed during the analysis?” The description
property specifies instructions about steps that can be conducted during the
analysis. In particular, this includes top-down prioritization rules according to
metrics (e.g., first quartile of the trace fitness) or an in-depth analysis (e.g., a
discovered process model of a specific value stream). The description property
helps to ensure the analysis is standardized and repeatable.

• Potential issues: “Which potential issues should be taken into account?” This
property addresses potential issues of the practical guideline and the analysis and
reflects lessons learned and issues from previous case studies.

• Continue with: “What are the next steps?” This property proposes the next steps
after completing the analysis using the practical guideline. In addition to the
reference model, this property focuses on evaluating the findings, for instance,
with further validation steps on the shop floor.

Step 4: Modeling the practical guidelines for the analysis

Twelve articles and personal experiences of the author of this thesis were used to model
the eight practical guidelines in detail. The practical guidelines developed for the
analysis are presented in Section 5.4.3.

5.4.2 Reference model of the analysis

The reference model for the analysis consists of eight practical guidelines. The rows and
columns reflect the practical guidelines, and the relation specifies the flow: Practical

guideline “type of relation” Practical guideline (cf. Figure 5.10). For instance, Filtering

“reduces the complexity (for the)” process discovery.
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Figure 5.10: Reference model for the analysis (reading down a column reveals input
sources, reading across a row indicates output sinks)
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5.4.3 Practical guidelines for the analysis

This section describes the eight practical guidelines for the analysis. Each practical
guideline provides an analysis objective, the link to lean production, the process mining
technique(s), the analysis description, potential issues and lessons learned, and the
relation to other practical guidelines (cf. Section 5.4.1).

5.4.3.1 Filtering

Objective. Including or excluding value streams based on the control-flow (e.g., activ-
ity), time (e.g., duration), and case perspective (e.g., attribute).

Lean production. Not related to lean production.

Process mining. Filtering (control-flow perspective, time perspective, case perspective)
or process discovery (noise filter).

Description. Once an event log is created, it is typically filtered, which is an iterative
process (VAN DER AALST 2016, p. 128). Filtering can be applied during preprocessing
or ad hoc in the process mining software (VAN DER AALST 2016). Filtering can be
applied multiple times and for each process mining perspective.

In the case perspective, enriched attributes in the event log are used to filter value streams:
for internal logistics, different reference processes or clusters (e.g., KNOLL et al. 2019c;
S.-k. LEE et al. 2013; Y. WANG et al. 2014a,b), storages (e.g., VAN CRUCHTEN &
WEIGAND 2018; Y. WANG et al. 2018), and part-specific or supplier-specific attributes
(e.g., ER et al. 2015a,b). Depending on the analysis questions, application-specific
attributes can be extended in the internal logistics ontology, enriched into the event log,
and then used for filtering.

In the control-flow perspective, either activity-independent filtering, i.e., to remove
noise, or activity-based filtering, i.e., a process must contain a specific activity, can be
applied (e.g., ER et al. 2015b; PASZKIEWICZ 2013). A refinement of the activity-based
filtering is to remove incomplete cases that do not contain both start and end activity
(e.g., LIIV & LEPIK 2014; Y. WANG et al. 2014a).

In the time perspective, cases are usually filtered using lead times and frequencies
(e.g., ER et al. 2015a; KNOLL et al. 2019c). The statistics of the event log are used to
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separate main flows from infrequent variants or high lead times from low lead times.
Additionally, the time frame of the event log (e.g., a certain period of the year) can be
filtered (e.g., Y. WANG et al. 2014a).

Potential issues. Filtering is a simple technique to reduce the complexity of the analysis.
However, a priori understanding of the value streams and related attributes is required.
Furthermore, removing complete cases can hide specific problems.

Continue with. Any practical guideline.

5.4.3.2 Clustering

Objective. Find process variants of similar value streams (groups of instances) using
clustering algorithms (based on VAN DER AALST 2016).

Lean production. Not related to lean production.

Process mining. Trace clustering and value stream clustering.

Description. Depending on the analysis question, either trace clustering or value stream
clustering is suitable. Trace clustering uses cases without the context of the value stream
to identify process-specific deviations that are independent of individual value streams.
Frequent error patterns during the process execution can be identified independently
of the value stream. In contrast, value stream clustering maintains the context of the
value stream to identify value-stream specific deviations. For instance, value streams
with unnecessary transports caused by quality defects can be clustered.

Both clustering types can be applied for the control-flow and the time perspective. In
the control-flow perspective, the activities are used to discover different process variants
(S.-k. LEE et al. 2013; Y. WANG et al. 2014a,b). In the time perspective, the frequency
or cycle-time can be used (BECKER & INTOYOAD 2017). Typically, the time perspective
extends the control-flow perspective. For value stream clustering, in particular, the
frequencies of activity categories utilize domain-specific characteristics.

Potential issues. Clustering is an advanced technique that requires expert knowledge.
Typically, several iterations can be required to determine the number of clusters and
suitable perspectives, or input features. Statistical methods, the gap statistic method,
for instance, can be used to derive the number of clusters (TIBSHIRANI et al. 2001).
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Alternatively, work on trace clustering suggested maximizing the quality performance
metrics to determine an optimal number of clusters (BOSE & VAN DER AALST 2009,
2010). Depending on the heterogeneity of the value streams, clustering should begin by
focusing either on the control-flow or time perspective.

Continue with. Process discovery or lead times/frequencies (for each process vari-
ant).

5.4.3.3 Conformance checking (for each process variant)

Objective. Quantify and diagnose deviations by comparing the reality with the process
model (e.g., reference process) (VAN DER AALST et al. 2012, p. 175).

Lean production. Not related to lean production.

Process mining. Conformance checking (trace fitness metric). In the case of multiple
process variants, use the trace fitness metric for each value stream, grouped by the
process variant in a box plot (e.g., in a box plot diagram).

Description. Conformance checking evaluates if reality, as recorded in the event log,
conforms to the model, and vice versa (VAN DER AALST et al. 2012, p. 175). The
alignment of the control-flow (e.g., skipped or additional activities) is measured as the
trace fitness value using process models. Subsequently, this technique can be used to
prioritize value streams but does not explain the root causes. If multiple process variants
(e.g., reference processes) exist, the trace fitness is calculated for each value stream (cf.
Section 5.3.2) and grouped by the process variant. Different process variants can be
compared to systematically prioritize value streams when they are visualized in a box
plot.

In general, a trace fitness of 1.0 represents a perfect alignment without any deviation.
Therefore, a low trace fitness indicates a potential waste of unnecessary movement,
transportation, and over-processing. If applied to multiple process variants, a low
median value of a variant indicates process variability and instability. A short box
plot indicates a systematic issue in the process, and a tall box plot indicates unstable
processes (or part-specific issues of value streams). In contrast, a high median value
(close to 1.0) indicates a high degree of standardization. (cf. KNOLL et al. 2019c)
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Economic attributes (e.g., costs) of the process variants can be added to enhance the
conformance checking. Consequently, individual value streams or process variants (e.g.,
reference processes) can be prioritized for a detailed analysis.

Potential issues. A process model is required (e.g., reference process) to apply confor-
mance checking. In general, incomplete cases reduce trace fitness because activities are
skipped. The trace fitness can only be used to compare value streams to each other rela-
tively and not absolutely. Furthermore, in the case of a low number of cases in a value
stream, the effect is strengthened. A threshold of a minimum of three cases for each
value stream can be defined to overcome this potential issue. Another potential issue
is concept drift, e.g., a manufacturing change that results in a change of the reference
process within the time frame of the event log.

Continue with. Process discovery of value streams or process variants with a low
(median) trace fitness. In the case of a tall box plot (high variance), trace clustering can
be useful to identify different patterns.

5.4.3.4 Process discovery

Objective. Create a process model of the material and information flow of value
stream(s) without a priori information (KNOLL et al. 2019c; VAN DER AALST 2016).

Lean production. Waste of unnecessary movement, transportation, and over-
processing. If combined with the time perspective: waste of waiting and (possibly)
inventory.

Process mining. Process discovery, extended with the time perspective (frequencies,
processing, and waiting times).

Description. A process discovery algorithm derives a process model based on the
event log such that the model is “representative” for the behavior seen in the event log
(VAN DER AALST 2016, p. 163). Process discovery can be used to identify and explain
deviations and completes the conformance checking. In the case studies, the focus
of process discovery is either set on the main flow and its efficiency or on infrequent
and exceptional behavior. In both cases, the extension of the time perspective (e.g.,
frequencies or duration) is required.
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The case studies reported three different patterns of unnecessary movement, transporta-
tion, and over-processing. Firstly, multiple executions of the same activity (non-value-
added activities). Examples are a re-location in storage or sending material backward
and forward between different storages (e.g., KNOLL et al. 2019c; S.-k. LEE et al. 2013;
PASZKIEWICZ 2013; VAN CRUCHTEN & WEIGAND 2018; Y. WANG et al. 2014b).
Secondly, the case studies highlight additional, non-value-added activities. Most often,
additional quality activities were uncovered in the process discovery (e.g., ER et al.
2015a,b; KNOLL et al. 2019c; PASZKIEWICZ 2013). Also, rework, damaged pallets
and unknown activities were identified (KNOLL et al. 2019c; PASZKIEWICZ 2013; VAN

CRUCHTEN & WEIGAND 2018). Thirdly, missing activities at the beginning or end or
skipped activities are reported: for instance, a scheduled quality check is missing (ER

et al. 2015b; PASZKIEWICZ 2013) or skipped storage activities caused by urgent orders
(KNOLL et al. 2019c).

Potential issues. If not combined with filtering, the product and process complexity
can result in a complex process model that is difficult to analyze. The importance of
infrequent process variants can be overestimated: use the time perspective to focus on
the main paths (frequency) or costly paths. Process discovery algorithms remove noise
(e.g., infrequent behavior) to create a representative process model. Iteration may be
required (e.g., threshold parameters).

Continue with. Lead times/frequencies (for each process variant), bottleneck analysis,
or verification (e.g., interview, shop floor).

5.4.3.5 Lead times and frequencies (for each process variant)

Objective. Identify and prioritize inefficient process variants or part-specific value
streams with high and/or unexpected lead times.

Lean production. Not related to lean production.

Process mining. Activity mapping or performance analysis. In the case of multiple
process variants: lead time for each value stream, grouped by the process variant or
frequency (e.g., in a box plot diagram).

Description. The lead times and frequencies can be used to identify and prioritize
inefficiencies, either in process variants or part-specific value streams. Therefore, actual
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lead times (e.g., mean) are compared to reference values, e.g., predefined standards
(PASZKIEWICZ 2013). In total, three patterns of inefficiencies were identified.

Most frequently, process-specific deviations for process variants were identified (e.g.,
ER et al. 2015b; KNOLL et al. 2019c; VAN CRUCHTEN & WEIGAND 2018). In this
case, waiting or processing times are independent of individual value streams. ER et al.
(2015b), for example, compared the aggregated lead time (mean) of three different
process variants. To address the product complexity, KNOLL et al. (2019c) developed
an approach to compare different process variants using box plots. Based on the lead
times of individual value streams, the distribution within a process variant can be used
for the analysis. The bottleneck analysis can be used to identify and prioritize activities
with unexpected waiting or processing times.

In contrast, PASZKIEWICZ (2013) identified part-specific root causes (e.g., high storage
times caused by inventory). These inefficiencies are independent of the process variant.
The category of the exceptional activity (e.g., storage) can be used to determine further
analysis steps, such as an inventory analysis (NYHUIS et al. 2008).

Frequencies (demand), in combination with underlying process costs, can introduce
inefficiencies and measurable deviations in lead times. For example, processing value
streams with high demands using costly processes are different from processing value
streams with low demands that use cost-efficient processes. The enriched cost informa-
tion can be used for process leveling.

Potential issues. If not combined with frequencies, infrequent process variants without
impact might be prioritized for further analysis steps (ER et al. 2015b). In particular,
time-dependent characteristics (e.g., customer demand) can introduce concept drifts.
Therefore, a normalization step can be useful when integrating frequencies (e.g., demand
per day). Furthermore, leveling requires integrating the physical constraints of the
logistics system, e.g., storage, packages, and part characteristics.

Continue with. Process discovery, bottleneck analysis, or inventory analysis.

5.4.3.6 Bottleneck analysis

Objective. Identify bottleneck activities or variance of processing or waiting times in
the process.
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Lean production. Waste of waiting (before an activity or during the execution).

Process mining. Process discovery (with the time perspective) or activity mapping.

Description. The bottleneck analysis can be used to detect and analyze processing
times of activities or waiting times between activities (VAN DER AALST 2016, p. 292).
Activities that represent a process bottleneck should be addressed first. If available,
reference values (e.g., planned processing times) can be used for prioritization. For
example, ER et al. (2015b) analyzed the processing times of blocked stock or quality
activities. In contrast, ER et al. (2015a) analyzed the waiting time between the material
request and the beginning of the picking activity.

The starting point of the bottleneck analysis is the mean duration. The variance of the
waiting and processing times can also be analyzed. Therefore, activity mapping can be
used to compare simple statistics (e.g., variance or maximum) of different activities.
An advanced technique is the performance spectrum that covers time-dependent dy-
namics and non-static behavior (DENISOV et al. 2018). Notably, the activity mapping
technique is independent of the process variant and can be used to address the process
complexity.

Potential issues. If an activity only captures a start or complete event, the waiting time
cannot be differentiated from the processing times. Another issue is neglecting the
material flow activity: for instance, storage activities with high duration can be caused
by individual value streams and are not necessarily bottlenecks of the process variant.
Furthermore, depending on the process complexity, not every process variant or activity
can be analyzed individually. Activity mapping can be used to prioritize activities with
a high frequency (e.g., activities shared across multiple process variants).

Continue with. Verification (e.g., interview, shop floor).

5.4.3.7 FIFO analysis

Objective. Identify violations of the FIFO rule.

Lean production. Waste of waiting.

Process mining. Dotted chart visualization of the event log, including the start and end
event of each case.
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Description. The dotted chart provides a holistic view for each case of the process from
the time perspective. Each event, or at least the start and end events, is visualized as
a dot and aligned with the case (VAN DER AALST 2016, p. 278). Based on the dotted
chart diagram, deviations of the FIFO rule can be identified. ER et al. (2015a) used the
FIFO analysis to analyze batches in the storage that must be taken out first. In contrast,
PASZKIEWICZ (2013) analyzed the shipping activities of finished products using the
dotted chart.

Potential issues. The performance spectrum can be used in the case of a highly dynamic
system with numerous cases (DENISOV et al. 2018).

Continue with. Verification (e.g., interview, shop floor).

5.4.3.8 Inventory analysis

Objective. Identify value streams with oversized inventories caused by cycle-stock or
safety stock.

Lean production. Waste of inventory.

Process mining. Performance analysis and/or inventory profiling.

Description. The inventory analysis is a detailed analysis of a part-specific value stream.
In general, the inventory analysis can be used to compare if the reality confirms the
expected inventory or to question if the planned inventory is required or oversized.
Depending on the application, the inventory can be measured in demand-independent
metrics (e.g., 30 days of storage time) or relative metrics depending on the demand (e.g.,
three days of inventory range).

Filtering techniques must be applied in advance to reduce the complexity of value
streams. Both cycle-stock and safety stock can be identified separately using the
performance analysis inventory metrics. This step is essential as the cycle-stock and
safety stock depend on a variety of inventory parameters and can occur independently.

To identify waste of inventory caused by cycle-stock, the average cycle-stock can be
compared to a JIT concept, which has a lot size of one and, subsequently, no cycle-
stock. The minimum order quantity can be decreased, and the delivery frequency can
be increased to reduce the cycle-stock waste. The inventory on hand on the delivery
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day must be considered to identify waste of inventory caused by safety stock. Again,
comparing the safety stock to a JIT concept, the optimum safety stock on the delivery
day is zero. Then, related inventory control parameters (e.g., minimum stock) can be
evaluated and reduced. Notably, in both cases, the economic effects of the inventory must
be considered (KLUG 2010, p. 50). Potentially increasing order costs must be compared
to the cost savings (e.g., inventory holding and inventory space), for example.

Potential issues. Both part-specific characteristics and internal and external constraints
and risks must be considered when evaluating the inventory. According to BOYSEN

et al. (2015, p. 110), “determining minimum and maximum stock levels, order sizes,
and/or review periods in all its potential varieties is widely investigated in inventory
theory.” These variables can include demand, replenishment time, criticality, value,
and package size (e.g., BABAI et al. 2015; HORENBEEK et al. 2013; KABIR & HASIN

2013). Furthermore, the variance (e.g., demand) or risks (e.g., forecasting errors, delays)
can influence the actual inventory (e.g., BAKER 2007; KAPUSCINSKI et al. 2004; LUTZ

et al. 2003).

Continue with. Verification (e.g., interview, shop floor).
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This section focuses on the evaluation of the approach. The proposed approach has
been applied in three case studies in an industrial environment. The findings and results
of the application are outlined in Section 6.1. To complete the Descriptive Study II

(cf. Section 1.4), a generally valid evaluation addresses (1) the fulfillment of the
requirements (cf. Section 6.2.1), (2) a cost-benefit calculation (cf. Section 6.2.2), and
(3) existing limitations (cf. Section 6.2.3).

6.1 Industrial application

6.1.1 Industrial environment

The concept was applied at a production plant of a German automotive manufacturer in
2017 and 2018. The three case studies focus on the internal logistics of a mixed-model
assembly line, processing parts from the goods receiving to the line.

Characterizing the internal logistics system

The internal logistics system is characterized by a high product and process complexity.
Due to the fact that multiple products are assembled on the line, more than 10,000 part
numbers with individual value streams exist (KNOLL et al. 2019c). Furthermore, internal
logistics provides a variety of different reference processes (e.g., JIT or warehousing). In
total, more than 30 internal logistics reference processes exist (KNOLL et al. 2019c). To
operate internal logistics, the information system of the company, an ERP system with
a WMS module, takes on a key role. Transfer orders trigger material and information
flow activities across a variety of resources (e.g., storage).

Within the last two decades, the management of the company put great effort into
establishing a lean production and logistics system: e.g., standardizing processes, reduc-
ing inventories, and establishing continuous improvement principles. These initiatives
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resulted in a lean internal logistics system. According to the logistics experts, value
stream mapping is limited due to the product and process complexity.

Setting up the case studies

An interdisciplinary project team consisting of experts from the logistics and information
technology department was created to conduct the case studies. The team included
management, process mining analysts, and logistics and information system experts. In
general, the case studies were executed by the process mining analysts, and additional
roles were integrated on demand. In total, 17,865,792 transfer orders were recorded by
the information system within three months, spread across 13,083 part numbers1. For
reasons of data privacy protection, there are three restrictions. Firstly, the total number
of more than 30 logistics reference processes are sampled to 15 reference processes.
Secondly, the part numbers are sampled to 5,000 parts. Thirdly, sensitive labels such as
parts, storages, packages, and suppliers are anonymized. No comprehensive conclusion
about the company can be made.

6.1.2 Implementing the concept

The concept must be implemented to enable the industrial application. The implementa-
tion requires the three steps of (1) planning and data extraction, (2) data preprocessing,
and (3) mining (cf. Chapter 4). Afterward, three different case studies focusing on
waste analysis and evaluation were conducted separately. Experience gained during the
three case studies has been used to continuously improve the concept.

Step 1: Planning and data extraction

The first step of the concept aims to define objectives and analysis questions, to identify,
extract and standardize data, and to validate data (cf. Section 4.4.1). The interdisci-
plinary project team conducted multiple workshops to define the objectives and analysis
questions. Existing problems within operations and potential improvements were dis-
cussed. By iterating the analysis questions, three case studies were prioritized. A precise

1 The reported results in this thesis are based on the sample of the internal logistics system. Decisions made
during the case studies rely on the holistic picture, e.g., different time frames.
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description of the case studies and the underlying analysis questions are provided for
each case separately.2

• Case Study I: Analyzing deviations of reference processes. Identify and character-
ize systematic deviations of reference processes, e.g., quality issues.

• Case Study II: Demand-based process leveling. Identify inefficient processing of
value streams based on the customer demand for product variants.

• Case Study III: Analyzing the inventory. Identify value streams with waste of
inventory levels that can be reduced.

The internal logistics ontology was used as a fundamental source for identifying, ex-
tracting, and standardizing the data (cf. Section 5.1.1). The team identified the required
classes and properties in the application-specific information systems. In total, the
team identified four relevant information systems with multiple tables. The information
technology department completed the extraction of the event data (transfer orders). Two
application-specific attributes were required: activity categories and activity duration to
provide the required input data for preprocessing. Occurring activities (events) were
identified using activity mapping and prioritized by the event frequency to classify
the activity category (cf. Section 5.3.3). The team classified activities with at least
100 events3. The remaining 526 activities, or 0.01% of all events, were classified as
unclassified. Existing planning department reference data were used to complete the
activity duration. Master data (e.g., packaging) were extracted using end-user reports,
and the data were standardized using the taxonomy of the ontology. The practical
guideline for event data validation was used to validate the data (cf. Section 5.1.2).

1. Observe the process on the shop floor. Based on multiple visits on the shop floor,
existing material and information flow activities were uncovered, and the data
creation was captured. Most of the time, mobile bar code scanners and terminals
(e.g., tugger train) were identified as data creation points.

2. Record your own data for each process. Fifteen different storage locations
were prioritized based on the case studies. The activities were observed and
documented for each location (e.g., part, location, and time). At no time was

2 The workshops and iterations were completed within 2017 and 2018.
3 This includes transfer orders from April 1, 2018 to October 15, 2018.
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any personalized information recorded. This step showed that the start and end
timestamp of activities was not always documented with a separate bar code scan.
However, the completion of a transfer order was always documented.

3. Talk to people who execute the process every day. In the third step, logistics
operators were interviewed. The interviews confirmed the fact that only the
completion of an activity is reliable. However, the logistics operators confirmed
that all material flow activities are triggered by transfer orders, except the picking
activities of parts in the supermarket (separate information system).

4. Compare the findings with existing documentation. Additional documentation
was considered to extend the understanding gained on the shop floor. In particular,
the documentation of reference processes, storage locations, and layouts of the
production plant provided significant value. Furthermore, invisible activities
within the storages (e.g., automated conveyor lines) were uncovered.

5. Compare the findings with the event data. The recorded data were compared to the
event data extracted from the information systems, and the imperfection patterns
were compared with the event data. In total, three imperfection patterns were
identified: (1) scattered event (e.g., only one reliable timestamp), (2) scattered
case (e.g., picking in the supermarket), and (3) collateral events (e.g., low-level
activities of the automated conveyor lines).

Furthermore, the inventory of five value streams was validated by manually counting the
packages. The product-related master data (e.g., product) were not further validated.

Step 2: Data preprocessing

The second step of the concept aims to preprocess the extracted data into enriched
event logs suitable for multidimensional process mining. This requires (1) creating
event logs, (2) enriching event logs, and (3) filtering event logs (cf. Section 4.4.2). The
algorithms used to preprocess the extracted event data were implemented in Python4.
Due to the standardized taxonomy of the extracted data, this step only required minor
adjustments. As the transfer orders did not include the start timestamp, the event logs
could only provide the completion event of the standard transactional life-cycle model.

4 Python is an open source language suited for code that is often “fast enough to be immediately useful but
also flexible enough to be sped up with additional extensions.” (OLIPHANT 2007, p. 10)
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The extracted data (e.g., product) were integrated into the event logs to enrich the event
logs, and the event logs were filtered to the internal logistics of the assembly line. Due
to privacy reasons, any personalized data had already been removed during the data
extraction. The outcome of this step is enriched event logs stored for each value stream
individually.

Step 3: Mining

The third step mines and clusters the value streams using process mining techniques
(cf. Section 4.4.3). This process required an initial tailoring of the six process mining
techniques to the requirements of the case studies, selecting metrics for the performance
analysis. Here, standardized lean metrics were used (cf. Section 5.3.5). The five other
process mining techniques required minor adjustments, e.g., to select the precision
δt = 1 day for inventory profiling. A complete list of the parameters can be found in the
Appendix A.3.1. The concept was implemented in Python and Java, which was required
by the ProM framework5 to reuse the process discovery and conformance checking
algorithms. As an outcome, all results, i.e., process models, are created automatically
for each value stream.

6.1.3 Case Study I: Analyzing deviations of reference processes

Case Study I aims to identify and characterize systematic deviations of reference
processes, e.g., quality issues. The team set the objective to quantify deviations of
the process and to understand the underlying root causes. Based on the assumption
that reference processes are aligned with lean logistics theory, any deviation, such as
additional activities, is wasteful. Subsequently, Case Study I refers to the waste of
unnecessary transportation, over-processing, and motion. To support the objective, the
team defined two analysis questions:

• Are the value streams processed according to the reference processes in reality,
and if not, which reference processes show frequent deviations?

• What are the underlying root causes of frequent deviations?

5 ProM is a framework for process mining in research that is sufficiently flexible and open to reuse code during
the implementation of new process mining ideas (DONGEN et al. 2005, p. 444).
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The two analysis questions were addressed in three consecutive stages. Four guide-
lines were applied: filtering, conformance checking, clustering, and process discovery.
Notably, filtering was dynamically applied to each stage.

Stage 1: Conformance checking

The first stage aims to check the conformance of value streams with the planning
department’s reference processes to observe deviations. Therefore, the trace fitness was
calculated for each value stream individually based on the event log. The trace fitness
values of value streams are grouped by the reference process to identify systematic
deviations of reference processes so that a comprehensive view of reference processes
with all individual value streams can be made (cf. Figure 6.1).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Reference process

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ce
 f
it
n
e
ss

 [
-]

N = 5000, median = 0.91

Figure 6.1: Conformance checking of value streams and 15 reference processes

The median trace fitness is 0.91 (Shapiro-Wilk test6, p-value = 0.0 of the null hypothesis).
This high value confirms the expectations of the management. The results demonstrate
the achievement of focusing on a high level of standardization in logistics activities and
processes within the last decade. Figure 6.1 shows three different groups of reference
processes. The first group contains reference processes with a high trace fitness and a

6 The Shapiro–Wilk test is a statistical procedure for testing a complete sample for normality (SHAPIRO &
WILK 1965, p. 591).
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short box plot (cf. Reference process 1-4). The short box plot supports the conclusion
that the individual value streams are executed similarly. Also, the second group can be
characterized by a high trace fitness (cf. Reference process 5-13). In contrast to the first
group, the box plot is comparatively tall. The distribution within the second group has a
larger variance, indicating more process deviations. Consequently, the value streams
within the first and second quartile must be analyzed in detail using process discovery.
If product and process complexity do not allow this step, value stream clustering can
be applied to separate and cluster value streams (cf. Section 5.4.3.2). The third group
shows a low median value for trace fitness (cf. Reference process 14-15). An overall
lower alignment with the reference processes can be identified by comparing the third
group with the other two groups. These reference processes and the root causes for the
systematic deviations must be investigated holistically. It can be concluded that trace
fitness varies depending on the reference process model. In addition to these tendencies,
individual value streams with a low trace fitness can be identified for further analysis
across all reference processes. Nevertheless, the total number of value streams within a
reference process has to be considered.

Stage 2: Value stream clustering

The second stage aims to understand the root causes of the deviations of reference
processes. Reference process 13 has been selected for this thesis due to (1) the lowest
median trace fitness in the second group and (2) the existing product complexity,
including 238 value streams. Value stream clustering in the control-flow perspective
proposes to separate the root causes based on the activity categories (e.g., quality or
rework). For the application, the relative occurrence of cases of an activity category and
the trace fitness values were selected as input for clustering. In addition to the maximum
trace fitness (most likely reference process), the second and third highest trace fitness
values were also used for clustering to separate systematic deviations from deviations
introduced by concept drifts (cf. Section 5.3.6). The gap statistic method was used to
determine the number of clusters. Then, K-means clustering was applied, and the results
were visualized using t-SNE7 (cf. Figure 6.2).

To understand the result, the six clusters are characterized in Table 6.1. The trace
fitness (maximum) is aggregated to the median value of the cluster, and the duration is

7 t-distributed Stochastic Neighbor Embedding is a nonlinear dimensional reduction technique for visualizing
the resulting similarity data (MAATEN & HINTON 2008). Notably, the results are dimensionless.
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normalized based on the reference process without any deviation8.
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Figure 6.2: Value stream clustering for Reference process 13 (goods receiving, high
rack to the assembly line)

Two groups of clusters exist. The first group (c0, c1, and c4) shows a high trace fitness
(from 0.83 to 0.94). The largest cluster c1 represents 135 value streams with a high trace
fitness of 0.94 and very rare deviations (e.g., urgent order). Also, the second-largest
cluster, c4, with 62 value streams, is characterized by a high trace fitness. However,
more frequent deviations with slightly additional effort are introduced (e.g., damaged
packaging). This information supports the conclusion that 201 (84.5%) value streams are
well aligned. In contrast, the second group (c2, c3 and c5) shows a significantly lower
trace fitness. Three different root causes can be identified using value stream clustering.
Firstly, replenishment orders introduce significantly higher effort (c2). Secondly, 13
value streams are affected by damaged packaging (c3). Thirdly, six value streams require
unexpected quality checks (c5). The case perspective reveals that two value streams
are related to the same supplier. Value stream clustering enhances the understanding of
the conformance checking, and further steps can be derived systematically to reduce
replenishment and quality activities.

8 The duration reflects the effort to complete an activity according to the planning department. The normaliza-
tion is required to due data privacy reasons of the company.
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Table 6.1: Supporting metrics for value stream clustering of Reference process 13
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c0 4 0.90 2.92 0.01 0.00 0.00 0.00 0.00 0.01
c1 135 0.94 1.00 0.02 0.00 0.00 0.00 0.01 0.00
c2 18 0.60 3.33 0.04 0.00 0.89 0.00 0.00 0.01
c3 13 0.58 1.23 0.14 0.01 0.00 0.00 0.04 0.06
c4 62 0.83 1.09 0.06 0.02 0.00 0.00 0.02 0.02
c5 6 0.69 1.52 0.01 0.49 0.00 0.00 0.08 0.03

Stage 3: In-depth process discovery and evaluation

In the third stage, process discovery was applied to map the value stream and to identify
potential for improvement. Figure 6.3 shows an example of a wasteful value stream
(trace fitness = 0.72) from cluster c5. The event log contains 439 cases and 1,898 events.
At first glance, process discovery shows one main material flow that is well-aligned
with the reference process: the material flows from the goods receiving area to the line
feeding using a tugger train. Notably, packages starting in the high rack are caused by
inventory available before the event log is recorded. The process discovery uncovered
three types of deviations. Firstly, 73 packages are processed to the quality area directly,
and 36 packages are processed from the high rack to the quality area. If quality activities
are required, the process shows a variety of outgoing material flows: to the high rack, to
the damaged packaging area, or to the assembly line. The underlying quality checks
must be standardized and reduced, e.g., by improving the part quality to reduce logistics
effort. Secondly, 26 packages are processed from the goods receiving to the damaged
packaging area. Then, line feeding is different to the reference process, and introduces
non-standard activities. The logistics experts explained that these packages could not be
stored in the automated high rack. Thirdly, the process discovery shows urgent orders
are moved from the high rack to the assembly line with a forklift rather than the efficient
tugger train. According to the lean philosophy, these movements are wasteful.
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Figure 6.3: Process discovery for a wasteful value stream (trace fitness = 0.72)
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6.1.4 Case Study II: Demand-based process leveling

Case Study II aims to identify inefficient processing of value streams based on the
customer demand for product variants. The team set the objective to identify individual
value streams that can be leveled between costly, e.g., requiring multiple handling
activities, and cost-efficient, e.g., direct line feeding, processes. The value streams are
planned based on the demand forecast. However, the logistics experts acknowledged
that customer demand is dynamically changing over time. Not every individual value
stream can be analyzed and evaluated continuously to identify the potential for im-
provement. Subsequently, Case Study II refers to waste of unnecessary transportation,
over-processing, and motion. To support the objective, the team defined two analysis
questions:

• Which value streams can be characterized by high demand in a costly process?

• Which value streams show a low or medium demand in a cost-efficient process?

The two analysis questions were addressed in two consecutive stages. Firstly, suitable
reference processes and related value streams were selected for a detailed analysis. Sec-
ondly, value streams were analyzed using process discovery and case perspective. These
steps were supported by three different guidelines: filtering, lead times and frequencies
(for each process variant), and process discovery. Notably, the case perspective (e.g.,
packaging) is required for decision-making.

Stage 1: Filtering & lead times and frequencies (for each process variant)

In the first stage, suitable reference processes and value streams were selected. Compar-
ing the approach with pen-and-paper-based value stream mapping, the logistics experts
used (1) the additional attributes (e.g., packaging), (2) the actual reference process and
the required effort, and (3) statistically representative metrics (e.g., average demand
over three months) for the selection. The logistics experts suggested focusing on ref-
erence processes with small loading carriers (N = 4,417 value streams). To cover the
product complexity, the demand is compared on the level of packages per day within
a value stream. In contrast, comparing the quantity per day, which is available in the
ERP system, would not reflect the logistics effort for each package. The demand of
packages per day was calculated for each value stream and grouped by the reference
processes. Within the case study, the box plot was selected because of its ability to
compare multiple reference processes (cf. Figure 6.4).
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Figure 6.4: Demand (packages per day) for each reference process, filtered to small
loading carriers and ordered by the effort (ascending)

Figure 6.4 shows two different groups of reference processes. The first group includes
value streams with a line-side presentation (cf. Reference process 1-6). The second
group includes value streams that are processed into kits in supermarkets (cf. Reference
process 7-11). Hence, further effort is introduced by additional activities (e.g., picking)
and shifting value streams between supermarkets would affect the part kit. The team
selected value streams with a high demand, which mapped to Reference process 3, and
value streams with a low demand, which mapped to Reference process 1. This allows a
reduction of 27% effort for each package based on the planned processing times.

Stage 2: Process discovery & evaluation

In the second stage, 29 selected value streams were analyzed using process discovery
and the case perspective. Again, process discovery provided a holistic view from
goods receiving to the assembly line. In particular, the precise location and shelf at the
assembly line can be determined. The case perspective provides packaging and supplier
specifications and demand metrics (e.g., forecast) to enhance the process understanding.
As a result of the analysis, the target policy was proposed (cf. Table 6.2). The results
were discussed in seven weekly logistics experts’ group meetings and evaluated by the
responsible logistics experts afterward (cf. Appendix A.3.3).
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Table 6.2: Identified value streams for demand-based process leveling

Target policy Current state and improvements (n value streams)

Direct line feeding High demand in costly process:
• Remove additional storage and picking activities (12)
• Free up the small parts storage (3)

Small parts storage Low & medium demand in cost-efficient process:
• Free up the automated high rack storage (14)

In total, three value streams were approved for direct improvement, and eight value
streams were scheduled for adjustment during the upcoming production break. Two
value streams were instantly shifted from the high rack storage to direct line feeding.
Further improvements might require a modification of the line-side presentation. How-
ever, 18 value streams were declined due to a variety of physical logistics process
restrictions. The three dominant restrictions relate to:

1. Spatial restrictions. The spatial restrictions at the assembly line prevented the
shift of nine value streams. However, five value streams were scheduled for the
production break as further modifications of the line feeding were required.

2. Packaging restrictions. The packaging characteristics prevented the shift of seven
value streams to the automated small part storage. The limitations were caused by
the conveyor line system that cannot process specific package types or packaging
dimensions above a certain size.

3. Other restrictions. A variety of other restrictions impeded demand-based process
leveling. For instance, similar parts cannot be stored next to each other due to an
increased likelihood of picking failures.

6.1.5 Case Study III: Analyzing the inventory

Case Study III aims to identify value streams with waste of inventory, caused by cycle-
stock or safety stock, which can be reduced. The team set the objective to create
transparency about the actual inventory and to investigate whether reality confirms
the expected inventory. This case study allows questioning if the planned inventory is
required or oversized. In the application, the amount of inventory for each value stream
is the result of a variety of control parameters (e.g., customer demand, order quantity,
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and frequency) that can be set in the ERP system. Aside from the product complexity,
dynamics, i.e., multiple deliveries per week and fluctuation in demand, prevent value
stream mapping without process mining. Subsequently, Case Study III provides support
for continuous monitoring and reducing the amount of inventory. The team defined two
analysis questions:

• Which value streams introduce waste of cycle-stock or safety stock?

• What are the root causes, and can the inventory be reduced?

The two analysis questions were addressed in two consecutive stages. Firstly, value
streams with waste of inventory caused by cycle-stock or safety stock were identified.
Secondly, inventory profiles of wasteful value streams were analyzed and enhanced by
the case perspective to enable decision-making. These steps were supported by two
guidelines: filtering and inventory analysis.

Stage 1: Filtering

In the first stage, filtering provides an approach for reducing complexity. The logistics
experts specified that the analysis should focus on value streams with suppliers from
Europe. Otherwise, the risk of supply shortages could offset the benefits. The value
streams were filtered based on the case perspective. The cycle-stock and safety stock
must be identified separately using performance analysis (cycle-stock and safety stock
inventory metrics) to reduce waste of inventory. The cycle-stock refers to the inventory
caused by orders (e.g., frequency), and the safety stock defines the minimum inventory
and the risk of supply shortages on the delivery day (cf. Section 5.3.5).

To cover the product complexity, 100 value streams with small loading carriers and large
loading carriers each were analyzed separately9. An extract of the sample is shown in
Table 6.3, please refer to the Appendix (cf. Table A.4 and Table A.5) for statistics. The
demand (mean) and the inventory (mean) were calculated on the case level (packages),
and the mean lead time includes the storage time. The sample highlights the product
complexity: the demand of packages per day, the inventory, and the lead time vary across
the value streams. Uncovering the actual inventory characteristics using performance
analysis provided a formerly unknown holistic picture of all value streams.

9 For each loading carrier, half the value streams were selected based on the inventory metrics and the other
half were sampled randomly. The results do not represent the population.
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Table 6.3: Characterizing value streams with inventory waste metrics (extract of small
loading carriers, ordered by inventory (mean))
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Z0ZJN3K 1.07 111.28 7.88 28.41 15.09 30.00 11.36
0LQ2A8M 3.41 88.34 21.03 16.90 9.12 23.00 17.88
SHKS04D 8.80 77.76 7.36 14.96 2.19 42.00 4.62
H2VUPC7 10.96 62.12 5.04 23.50 3.00 19.00 1.43
REB6T56 6.99 56.05 6.81 23.50 5.85 13.00 3.08
RJMAE8V 6.42 38.23 5.19 8.69 1.47 4.00 2.75
70YMS4F 3.78 33.64 7.26 12.96 5.00 7.00 3.62
QHNY6RM 1.33 33.59 14.74 23.50 23.67 6.00 4.00
ELJ4JAW 0.24 15.20 27.97 5.25 44.00 2.00 26.50

Either the cycle-stock or the safety stock can be reduced to address inventory levels.
The company defines the safety stock for European suppliers between two and five
days of inventory according to customer demand, mainly depending on the supplier
reliability or the distance to the production plant. However, Table 6.3 shows value
streams with up to 27 days of inventory. Notably, the demand-depending inventory
range provided little value itself and must always be set in relation to the demand. The
absolute number of packages (minimum) can be used to determine the risk of a supply
shortage. For example, value stream 0LQ2A8M never falls below 23 packages. Lean
production theory proposes the JIT concept with the lot size of one to reduce cycle-stock
(cf. Section 5.4.3.8). In industry, the cycle-stock is always a trade-off between the
amount of inventory and many external restrictions (e.g., order costs or transportation
costs). Therefore, the cycle-stock waste metric can be used to compare and prioritize
value streams for the inventory analysis rather than evaluating waste. In this stage, the
logistics experts agreed on the usefulness of the statistical metrics but were required to
analyze the inventory profile before acting. Thus, 35 value streams, including small and
large loading carriers, were prioritized for the inventory analysis.
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Stage 2: Inventory analysis & evaluation

In the second stage, two logistics experts from the production plant supported the
inventory analysis for 35 value streams (cf. Appendix A.3.4). The inventory profiles
with the case perspective were discussed for each value stream separately. During the
workshops, a variety of questions arose from the logistics experts: e.g., “What is the
logistics process, and how much space can we actually save if we reduce the order
quantity?” The case perspective provided valuable information about the process, the
supplier, and the packaging to answer these questions. In addition, the time frame of
three months uncovered the actual inventory in reality, including unexpected effects
of overlapping cycle-stock and safety stock. In contrast, the case perspective does not
include historical values of control parameters. These variations made it difficult to
explain the given behavior. The result of the inventory analysis is shown in Figure 6.5.

Small loading carriers Large loading carriers

18 value streamsAnalyzed value streams17 value streams

Waste of safety stock2 value streams 7 value streams

Waste of cycle-stock 3 value streams10 value streams

No improvement 8 value streams5 value streams

Figure 6.5: Result of the inventory analysis with logistics experts (N = 35 value streams)

In total, the logistics experts identified 22 of 35 (63%) value streams with the potential
for improvement. The cycle-stock was dominant for small loading carriers. Here, the
logistics experts suggested reducing the order quantity, e.g., by reducing the packages
per pallet. This concept has already been adapted for many value streams. In contrast, the
large loading carriers mostly provided the potential to increase the delivery frequency:
a number of value streams receive a multiple of one pallet. When comparing the cycle-
stock waste metric to the demand-depending range of the cycle-stock, different value
streams were identified. In particular, value streams with minimal demand highlight
the limitation of the inventory range metric when identifying value streams with little
inventory on hand (e.g., one package). In conclusion, the cycle-stock waste metric
identified value streams that can be reduced for both the small and large loading
carriers.
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For the safety stock, the seven value streams with large loading carriers offered potential
for improvement. Primarily, value streams from local suppliers in Germany were
identified as having more than three days of inventory. The absolute number of packages
(minimum) clearly showed the actual potential for improvement, while the demand-
depending range of safety stock provided an approximation for the actual risk of shortage.
It must be mentioned that the absolute numbers of the minimum safety stock can be
significantly lower than the mean inventory within a daily period (e.g., high demand).
An example of the inventory analysis of a value stream with cycle-stock and safety stock
waste is shown in Figure 6.6. Dimensionless metrics, i.e., the demand or inventory level,
refer to packages (case level).
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Figure 6.6: Inventory profile of a wasteful value stream (cycle-stock and safety stock)

The remaining 13 value streams that did not show potential for improvement were
declined due to different causes: for example, (1) supplier restrictions, (2) parts at the
end of the life-cycle, or (3) peak effects within a historical time frame. In conclusion,
the inventory analysis provided value to uncover the actual behavior and to analyze the
inventory. The logistics experts characterized this as a suitable tool that can enable a
continuous monitoring and improvement process.
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6.2 Evaluation of the approach

This section aims to identify whether the approach provides the expected impact. There-
fore, the approach is evaluated with respect to the fulfillment of the eight requirements
specified in the conceptual design (cf. Section 4.1). Because of its central role for
an industrial application, the requirement to reduce manual effort (cf. R4) is assessed
within a cost-benefit calculation (cf. Section 6.2.2). Both theoretical and practical
existing limitations are critically discussed (cf. Section 6.2.3).

6.2.1 Fulfillment of requirements

Value stream mapping

R1. Creating a holistic view of the value stream using process mining. A holistic view
of the value stream includes the process, data boxes, inventory, and associated
specifications (ROTHER & SHOOK 1999). Hence, the approach supports creating
a holistic view in these dimensions. The value stream, including the material and
information flow of internal logistics, can be observed from the goods receiving
up to the assembly line using process discovery. In addition, extensible data
boxes are provided using performance analysis and process discovery in the time
perspective. Similarly, the algorithm developed to mine for the actual inventory
profile fulfills the inventory dimension. Associated specifications about the
supplier, the product, and the customer (assembly line) are provided to complete
the holistic view. The steps to create a holistic view and to identify waste are
provided in an applicable methodology (cf. R5-R8).

R2. Scaling to cover product and process complexity. The application must be able to
address the product and process complexity in terms of both technical feasibility
and usability. Firstly, multidimensional process mining is tailored to internal
logistics. The value stream-specific event logs (e.g., definition of cases) and
algorithms create a holistic view for each value stream. Secondly, the concept
allows horizontal scalability independent of the number of products and processes.
Thirdly, the algorithms can be applied for complex processes with thousands
of events, shifting the complexity to the analysis itself. Here, eight practical
guidelines provide support for the analysis and to identify waste (cf. R8).
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6.2 Evaluation of the approach

R3. Capturing dynamics. The static pen-and-paper-based value stream mapping tool
does not capture dynamics; only a limited snapshot is recorded on the shop
floor. In contrast, the proposed approach takes advantage of the ground truth
of occurring events, as shown in the event logs. Hence, the proposed approach
provides a reliable view of dynamic reality, covering fluctuation in demand and
inventory and unobservable activities that do not create value. In addition to
the ground truth itself, the flexibility of the proposed approach (e.g., filtering)
supports reconstructing any time and perspective, if required.

Process mining

R5. Supporting the planning stage according to lean production theory. Process
mining theory identified that defining concrete objectives and analysis questions
is important for a successful process mining project (ECK et al. 2015). The
concept includes a generic process mining methodology, and the planning stage
is tailored to internal logistics. This tailoring includes (1) an interdisciplinary
project team with lean experts and the management and (2) the alignment of
objectives and analysis questions with lean production theory. The established
types of waste can be used to identify suitable guidelines for the analysis and
overcome the challenges of application-specific objectives.

R6. Providing a domain ontology for internal logistics. An internal logistics ontology
was developed using the methodology of NOY & MCGUINNESS (2001) to support
data identification, extraction, and standardization. A literature review of 42
relevant publications presenting ontologies in the manufacturing and logistics
domain was used to enumerate important terms and to define the objects and
(data) properties and hierarchy. In particular, this step was aligned with the
main purpose of process mining: focusing on the material and information flow
of internal logistics. Further extensions, including relations, were iteratively
documented.

R7. Providing algorithms for creating and enriching event logs for internal logistics.
Standardized event logs are required to apply process mining techniques. Firstly,
the approach includes an algorithm to create event logs for internal logistics,
including the characteristics of domain-specific activities (e.g., de-palletizing unit
loads). Secondly, the concept specifies domain-specific attributes to enrich the
event log. Standardized data can be provided using the internal logistics ontology
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for this. The algorithms are organized to process each value stream individually
and scale to cover the product and process complexity (cf. R2).

R8. Supporting the analysis according to lean production theory. The eight practical
guidelines enable an iterative analysis according to lean production theory. As
each practical guideline integrates lean production with process mining tech-
niques, a goal-oriented answer for each analysis question can be supported.
Furthermore, the extendable guidelines with standardized properties provide
lessons learned from other case studies to handle product and process complexity,
to provide potential outcomes, and to avoid common pitfalls. Nevertheless, the
analysis remains challenging and requires the interdisciplinary project team.

6.2.2 Cost-benefit calculation

The evidence for lean production and the benefits of value stream mapping have been
successfully demonstrated across the manufacturing and logistics industry (cf. Chap-
ter 1). In addition, an industrial application with three case studies and the fulfillment
of requirements highlights the effectiveness of the process mining-based approach to
address existing shortcomings (cf. Section 6.2.1).

A cost-benefit calculation will be discussed in detail (cf. R4: Reducing manual effort).
The three case studies in the industrial application confirmed the benefits in terms of
reduced transportation and inventory. However, the three case studies do not allow a
generally valid statement about resulting benefits. The cost-benefit calculation focuses
on the break-even analysis of pen-and-paper-based and process mining-based value
stream mapping in the industrial application.

Cost structure

The cost structure of pen-and-paper-based and process mining-based value stream
mapping is required for a break-even analysis. The cost structure covers the initial effort
and continuous efforts and includes the working days of the interdisciplinary team (cf.
Table 6.4). The experiences gained and discussed with practitioners in the industrial
application, student assistants, and estimations of the author were used to quantify the
effort of the two approaches.
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Table 6.4: Effort in working days of pen-and-paper-based and process mining-based
value stream mapping

Value stream mapping

Item Description Pen and paper Process mining

Initial effort (working days)

1 Planning and data extraction 0 30
2 Data preprocessing 0 20
3 Mining 0 25
4 Overhead 0 9

Continuous effort (working days per value stream)

5 Create the current state map 2 0
6 Analyze the value stream 1 0.5
7 Improve the future state - -
8 Monitoring of the future state 2 0.5

Continuous effort (fixed working days per year)

9 Software maintenance 0 15
10 Overhead 0 5

The initial effort to set up the two approaches shows contradictory features. Pen-and-
paper-based value stream mapping can be used without any initial effort. In contrast,
the process mining-based approach requires an initial effort to deploy the concept.
Planning and data extraction require effort to identify, extract and standardize, and
validate the data (cf. Item 1), requiring all roles of the interdisciplinary project team.
Technical tasks, such as reviewing the database model, and logistics tasks, such as five
days of validation on the shop floor, were considered. Notably, the logistics experts
suggested that the definition of objectives and analysis questions is comparable for
both approaches; therefore, that effort is not considered. It is assumed that a process
mining software is available, e.g., the open source software ProM framework. The
proposed algorithms for data preprocessing and mining are implemented on site (cf.
Item 2-3). For example, this includes company-specific tailoring of performance metrics.
Additional overhead is required to cover additional effort, such as training the process
analysts on the software (cf. Item 4).

The continuous effort is split up into a variable amount for each value stream, such as
creating the current state map, and fixed costs per year, such as operating the software,
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independently of value stream mapping itself. A visit on the shop floor is required to
map each value stream (with pen and paper) to record the material and information flow
from the goods receiving up to the assembly line and to document the results, including
calculating metrics (cf. Item 5). In contrast, this task does not have any effort in the
proposed approach. Later, the analysis (cf. Item 6) is simplified as the algorithms and
metrics highlight deviations and enhance the understanding with additional perspectives
(e.g., supplier or packaging). The improvement of the future state requires the same
effort for both approaches (cf. Item 7). Additional effort is introduced for pen-and-
paper-based value stream mapping to monitor the effects of improvements (cf. Item 8).
The proposed approach introduces a fixed effort per year, e.g., for software maintenance
(cf. Item 9-10). More details about the cost structure can be found in Appendix A.3.5.

Break-even analysis

The break-even analysis compares the total effort for both approaches depending on the
number of value streams. This assumption is beneficial as the number of value streams
was identified as the main cost driver for pen-and-paper-based value stream mapping
(cf. Section 1.1). Figure 6.7 shows a break-even of 36 value streams, including a fixed
amount of continuous effort for three years. The proposed approach is beneficial if
value stream mapping is done monthly (12 value streams per year).
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Figure 6.7: Break-even analysis of pen-and-paper-based and process mining-based
value stream mapping (including a continuous effort of three years)
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6.2.3 Limitations

The underlying assumptions of the approach were defined in the conceptual design (cf.
Section 4.2) to specify the validity range. Possible limitations occur if the assumptions
cannot be validated or if simplifications are required. In the following section, possible
limitations are theoretically discussed against the assumptions. In addition, the general
limitations of the evaluation approach are critically reflected.

L1. Lean production and lean logistics. The approach is only valid if the system is
designed and operated according to lean philosophy. A common understanding
of objectives (e.g., short lead times), principles (e.g., continuous improvement),
and the reduction of waste (e.g., inventories) is necessary. Otherwise, the lean
philosophy must be established first. Standardized material and information flow
activities are essential; otherwise, no improvements for the future state can be
derived using the recorded value stream. However, this limitation also exists for
static pen-and-paper-based value stream mapping.

L2. Product and process complexity and dynamics. The approach is an extension
of pen-and-paper-based value stream mapping and only suitable if existing chal-
lenges of value stream mapping are significant. The case studies demonstrated
the capability to create transparency about a logistics system with product and
process complexity and dynamics. However, the challenges of value stream
mapping are shifted from the mapping to the analysis of the value stream. Even
though the approach includes eight practical guidelines to support the analysis,
this step remains challenging. While the approach demonstrates its value, further
effort is introduced, and a cost-benefit calculation between the approach and the
pen-and-paper-based value stream mapping is necessary. Without any product
and process complexity or dynamics, the effort exceeds the benefits.

L3. Data availability. The approach utilizes event data created within the material
and information flow, based on the assumption that event data is created and
recorded. If the logistics processes are not operated by information systems or do
not create event data, the approach cannot be applied. However, if the logistics
system can be operated without information systems, existing product and process
complexity is comparatively low, and pen-and-paper-based value stream mapping
might be suitable (cf. L2).
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L4. Data reliability. The approach assumes that the data is reliable. The event data
represent the actual behavior in reality by recording events frequently and storing
events without exceptions. Although the imperfection patterns, such as different
information systems, can be identified during the data validation step, further
effort might be required to fix the issues and to ensure data reliability.

L5. Interdisciplinary project team. The approach requires an interdisciplinary project
team, including logistics experts and process analysts. In contrast to pen-and-
paper-based value stream mapping, additional IT competencies are required. This
affects the logistics experts, who understand where data is created, and process
analysts familiar with the process mining software who must be trained.

The nature of the evaluation approach, an application evaluation, introduces additional
limitations to the identified limitations of the proposed concept. An application evalua-
tion aims to identify whether support can be provided for the task for which it is intended
(BLESSING & CHAKRABARTI 2009, p. 37). The application evaluation focuses on the
identified shortcomings of pen-and-paper-based value stream mapping. While the three
case studies confirm the benefits in terms of effectiveness and efficiency, the outcomes
do not allow a generally valid statement that equal benefits for each value stream, case
study, or manufacturing company can be achieved.

The cost-benefit calculation focuses on the break-even analysis to overcome these
limitations. Nevertheless, the underlying cost structure of the two approaches is based
on the author’s estimations. The estimated effort depends on the available skills and
roles, resources, and information systems in the industrial application. This limitation
is lessened in this case because the three case studies were carried out within one
production plant of one manufacturing company. Thus, individual experiences and
decisions of the interdisciplinary project team also affected the estimation.
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7.1 Summary

Pen-and-paper-based value stream mapping is the established tool for recording pro-
cesses, identifying waste, and deriving recommendations for action. Today, however, its
application in the manufacturing and logistics industry requires a high level of effort and
is challenging due to product and process complexity and issues involving dynamics.

Process mining is a relatively young research discipline that helps to utilize event data
to discover, analyze, and improve processes. Process mining connects business process
modeling and analysis with data mining. Today, the day-to-day business of internal
logistics is based on information systems that create a vast amount of event data.

Therefore, the overarching objective of the thesis is to enable an effective and efficient
application of value stream mapping in internal logistics using process mining. The
thesis contributes (cf. Research Contributions (RCs)) to the synthesis of the research
streams of value stream mapping and process mining (cf. Research Questions (RQs)).

RQ1. Which data is required, and how must that data be prepared for value stream

mapping for internal logistics using process mining?

RC1. Process mining theory proposes ontology-based data extraction and prepro-
cessing. Therefore, an internal logistics ontology for process mining has
been developed using a systematic review approach. The ontology includes
the main classes, object properties, and data properties of internal logistics.

RC2. Many data quality issues have been reported in the field of process mining.
A practical guideline to validate the data has been developed to close the
gap between event data, processes, and activities on the shop floor.
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RC3. Process mining requires event logs as input. Algorithms that create, enrich,
and filter event logs for each value stream have been developed to prepare
the event data of internal logistics for value stream mapping.

RQ2. Which process mining methods, concepts, and algorithms are capable of ex-

tracting and characterizing process models while capturing product and process

complexity?

RC4. Many algorithms, techniques, and concepts exist in process mining theory.
Existing literature on process mining, with applications in manufacturing
and logistics, has been reviewed systematically and evaluated in terms of
support for the thesis.

RC5. The process discovery and conformance checking techniques have been
tailored to provide a holistic view of each value stream. As process mining
does not cover the inventory perspective of value stream mapping, an
algorithm for inventory profiling using event logs has been developed.

RC6. Performance analysis, activity mapping, and clustering have been tailored
to provide a comprehensive picture of all value streams so that a systematic
analysis in the context of product and process complexity can be made
possible.

RQ3. Which steps are required to enable a systematic analysis according to lean

production theory?

RC7. Eight practical guidelines that enable a systematic and iterative analysis
have been developed and organized using an Activity-based DSM. These
guidelines integrate lean production theory (e.g., types of waste) and process
mining (e.g., techniques and perspectives). Existing findings of process
mining applications in manufacturing and logistics have been integrated
using a review-based approach.

RC8. A methodology for practitioners has been developed to apply the developed
concepts for value stream mapping using process mining. The methodology
focuses on the practical outcomes according to lean production theory.
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The concept has been implemented in industry, and three case studies have been con-
ducted to evaluate the practical benefit. The findings have been used to evaluate the
strengths and limitations of the approach.

7.2 Future research

This thesis concludes with an outline of three potential directions for future research: (1)
extending the approach, (2) evaluating the concept in other applications and domains,
and (3) linking the concepts to other research streams.

Extending the approach

Planning and data extraction. The research stream of value stream mapping can
provide further support for defining objectives and analysis questions. For example,
by reviewing case studies or carrying out a survey with manufacturing companies,
frequently used objectives and analysis questions can be extracted, linked to process
mining, and integrated as a set of best practices. Data extraction and validation can
be further supported by integrating algorithms to check data failure patterns (VAN

CRUCHTEN & WEIGAND 2018, p. 3). Further research can also improve the data
availability itself by specifying how and which data must be created and recorded on
the shop floor. For instance, when integrating mobile devices or replacing forklifts with
autonomous transport robots, process mining requirements can be included.

Data preprocessing. The proposed approach focuses on event data (transfer orders)
created by the WMS. Today, promising concepts have been developed that use the
RFID data available in internal logistics (e.g., GERKE et al. 2009; ZHONG et al. 2016).
This direction can be used to improve the precision of value stream mapping.

Mining. The developed approach covers time-dependent dynamics using the event logs
and allows a manual analysis of different time frames. However, process mining theory
proposes concepts to detect concept drifts automatically. Then, time-dependent patterns
across multiple value streams (e.g., increasing inventory) can be identified. During
mining, further support can be provided by integrating additional domain-specific
characteristics, e.g., waste types, into process discovery algorithms (cf. YAHYA et al.
2016). Another promising research direction is the prediction of future states. Bayesian
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networks, for example, could be used to predict the lateness of line feeding activities to
avoid production shutdowns (cf. SUTRISNOWATI et al. 2015).

Analysis and evaluation. The proposed approach includes eight practical guidelines to
support the analysis with the main objective of eliminating waste. Here, future research
activities can focus on further principles of lean production theory: e.g., synchronizing
the takt time, or developing continuous flow or supermarket pull systems. Also, the
analysis could be enhanced using advanced visualization techniques. For example,
process analysts can be guided during the analysis by highlighting critical wastes in
the process model. Recent literature on process mining proposes other data mining
approaches to correlate various features, such as attributes. For example, clustering
can be combined with decision trees or frequent itemset mining to identify the most
dominant attributes for each cluster (e.g., LEONI et al. 2016; SYAMSIYAH et al. 2017).

Evaluating the approach in other applications and domains

For now, the approach has been implemented in an industrial application, and three
case studies have been conducted. However, further evaluation in internal logistics
with different objectives and analysis questions, teams, or information systems must be
completed. The approach, for example, can be applied in different companies or in a
long-term study. Then, a cross-case analysis can provide further insights about strengths
and limitations.

Aside from internal logistics, the approach must be tailored to manufacturing pro-
cesses, (1) providing a manufacturing ontology for process mining, (2) extracting and
preprocessing data from manufacturing processes (e.g., MES or MRP), (3) and tailor-
ing the concept of value stream mapping and the analysis for manufacturing-specific
requirements.

Adapting the techniques to other research streams

The concepts of the thesis can support related research streams, such as performance
measurement, simulation, or operations research. These research streams require
accurate and valid input data. Here, the manual effort can be reduced, and the quality
can be improved if event logs and process mining techniques are applied.
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Appendix

A.1 Fundamentals

A.1.1 Analysis of eight Warehouse Management Systems (WMS)

The event data in internal logistics are essential for the proposed approach. Fundamentals
of logistics refer to WMS that operate internal logistics (cf. Section 2.1.3). While
business processes are controlled by workflow systems, internal logistics does not
record high-quality event logs explicitly. Instead, every physical material movement
within the material flow is controlled by a transfer order. (KNOLL et al. 2019b, p. 133)
To ensure the theoretical findings, an analysis of eight WMS, both commercial and open
source systems, was completed. Available data models were searched on the internet
and were requested on February 8, 2019. The analysis focused on the underlying data
models and is summarized in Table A.1.

Table A.1: Analysis of eight Warehouse Management Systems (WMS) in terms of transfer
orders and the underlying data models

- Category Product Transfer orders Tables (columns)

1 Commercial SAP R3 ERP WM Yes 8 (39)
2 Commercial Microsoft Dynamics Yes 3 (37)
3 Commercial Oracle SCM Yes 1 (13)
4 Commercial Fishbowl Inventory Yes 3 (17)
5 Open source Odoo Inventory Yes 4 (40)
6 Open source Apache OFBiz Yes 5 (43)
7 Open source openWMS Yes 5 (22)
8 Open source myWMS Yes 5 (26)
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A.2 Detailed design of the approach

A.2.1 Planning and data extraction

A.2.1.1 Literature-based development of the internal logistics ontology

This section provides further details about the literature-based development of the
internal logistics ontology. The Ontology Development Guide by NOY & MCGUINNESS

(2001) has been used in this thesis. The Ontology Development Guide consists of seven
steps and is often used for developing ontologies.

Step 1: Determining the domain and scope

In the first step, the domain and scope of the ontology are defined. The ontology must
support the ontology-based data extraction and preprocessing in the field of process
mining (cf. Section 2.3.3). The ontology must create a shared understanding of the
process perspective of internal logistics and required concepts (e.g., case identifier) that
must be annotated. In addition, related attributes to enrich the event logs (e.g., costs)
must be defined.

Step 2: Considering reusing existing ontologies (a systematic review)

In the second step, reusing existing ontologies is considered, as the work of NEGRI et al.
(2017) provides evidence that relevant ontologies exist. NEGRI et al. (2017) recently
carried out a literature review of ontologies related to internal logistics. The purpose of
the review of NEGRI et al. (2017) is to develop an internal logistics ontology focusing
on the resource perspective. The systematic review builds on the findings of NEGRI

et al. (2017) and provides an overview of work that focuses on the process perspective
of internal logistics. Similar to Chapter 3, the literature review approach consists of
three stages and eight steps. Based on the objectives of the thesis, the literature review
provides support for RQ1 (cf. Section 1.3). The unit of the analysis is specified as
ontologies in the area of internal logistics. The articles are classified and evaluated in
terms of the coverage of the main concepts of internal logistics.

The work of NEGRI et al. (2017) is extended to collect the articles by a keyword search
for ontology AND (“internal logistics” OR “production logistics”), which found 45
articles published before April 10, 2018. Further literature was identified by selectively
going forward and backward in the articles (e.g., three upper ontologies or articles
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available in German). Articles that did not provide support for the process perspective
of internal logistics or enriching event logs were excluded to limit the number of
publications. For example, 24 articles focus on the inter-organizational perspective of
logistics. After excluding these articles and removing duplicates, 42 relevant articles
were reviewed in detail. Fourteen articles were compared and (partially) reused for
merging or extending existing concepts in support of the development of the internal
logistics ontology. (cf. KNOLL et al. 2019a)

Step 3: Enumerating important terms

In the third step, important terms are enumerated based on the frequency of their
occurrence in the literature.

Step 4-6: Define the classes, properties, and facets

The ontology is modeled in the fourth, fifth, and sixth steps (cf. Section 5.1.1.2). If
possible, concepts of existing domain ontologies and upper ontologies, i.e., PSL, were
integrated.

The PROMPT methodology has been selected to merge ontologies, based on the re-
view of KALFOGLOU & SCHORLEMMER (2003). PROMPT is designed to integrate
formalized ontologies (NOY & MUSEN 2003) and maintain classes, object, and data
properties. Annotations for process mining were extended to complete the modeling.

Step 7: Create instances

In this context, the last step of creating instances is skipped as instances are stored in
information systems (JAREEVONGPIBOON & JANECEK 2013).

A.2.2 Data preprocessing

A.2.2.1 Further specification of the enriched event log

The algorithms to create, enrich and filter event logs were developed in Section 5.2).
An extract of the enriched event log Le (XES Standard Definition 2.0) is shown in
Table 5.10. Table A.2 completes the extract of the enriched event log Le with additional
attributes.
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Table A.2: Additional attributes to be enriched into event log Le (Extensible Event Stream (XES) Standard Definition 2.0)

Extension Level Key Type Description

resource event location_id_source integer The ID of the start location.
resource event location_id_destination integer The ID of the destination location.
resource event location_name_source string The name of the start location.
resource event location_name_destination string The name of the destination location.
resource event location_section_source string The section of the start location.
resource event location_section_destination string The section of the destination location.
packaging trace id integer ID of the packaging.
packaging trace size float Size of the packaging.
supplier trace id integer ID of the supplier.
supplier trace address string Address of the supplier.
supplier trace zip integer Zip code of the supplier.
supplier trace city string City of the supplier.
part trace quantity integer Quantity of the part.
part trace part_family string The part family.
part trace reference_process string The (assigned) reference process.
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A.2.3 Mining

A.2.3.1 Conformance checking

Various approaches and algorithms for conformance checking exist in process mining
theory. According to VAN DER AALST (2016, p. 256), the token-based replay is easy to
understand and implement but has some limitations (cf. VAN DER AALST 2016, p. 256).
Therefore, alignments are introduced. Using alignments, log moves and model moves

are compared to the optimal alignment. For this thesis, the implementation in ProM

refers to the plugin PetrinetReplayerWithoutILP, which is an implementation of the
Escaping Edges Precision algorithm. Please refer to BUIJS et al. (2012), TAX et al.
(2018), & VAN DER AALST et al. (2012) for further discussion.

The basic approach of token-based replay is presented in the following equation. The
trace fitness of a case with the trace σ on a process model M is defined as follows (VAN

DER AALST 2016, p. 250):

f itness(σ,M) =
1
2

(
1 −

m
c

)
+

1
2

(
1 −

r
p

)
(A.1)

where:

p = produced tokens
c = consumed tokens
m = missing tokens (consumed in the event log)
r = remaining tokens (produced in the model)

The precision of an event log L on a process model M is defined as (VAN DER AALST

et al. 2012, p. 193):

precision(L,M) =
1
|E|

E∑
e

enL(e)
enM(e)

(A.2)

where:

E = events in the event log L

enL(e) = behavior in the event log L

enM(e) = behavior in the process model M
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The generalization of an event log L on a process model M is defined as (VAN DER

AALST et al. 2012, p. 193):

generalization(L,M) = 1 −
1
|E|

E∑
e

pnew(|di f f (e)|, |sim(e)|)) (A.3)

where:

E = events in the event log L

pnew(w,n) = estimated probability that a next visit
= to state s = stateM(e) will reveal a new path not seen before

w = |di f f (e)| = number of unique activities observed leaving state s

n = |sim(e)| = number of times s was visited by the event log L

A.2.3.2 Inventory profiling: demand and delivery algorithms

This section specifies the algorithms of the demand (cf. Algorithm 7) and delivery
profile (cf. Algorithm 8), which are additions to inventory profiling.

Algorithm 7 Demand profile

Input: 〈Le,1, ...,Le,N〉... Enriched event logs
Input: k... Time-intervals
Output: 〈DP1, ...,DPN〉... Demand profiles

1: procedure CREATEDEMANDYPROFILE

2: for all Le in 〈Le,1, ...,Le,N〉 do
3: DP← range_zeros(k)
4: for all E in filter(Le, category = outgoing_goods) do
5: E← remove_duplicates(E) . remove duplicate

events
6: DP(E(date),quantity) = DP(E(date),quantity) +

E(date,quantity)
7: end for
8: end for
9: return 〈DP1, ...,DPN〉

10: end procedure
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Algorithm 8 Goods receiving profile

Input: 〈Le,1, ...,Le,N〉... Enriched event logs
Input: k... Time-intervals
Output: 〈RP1, ...,RPN〉... Goods receiving profiles

1: procedure CREATERECEIVINGPROFILE

2: for all Le in 〈Le,1, ...,Le,N〉 do
3: RP← range_zeros(k)
4: for all E in filter(Le, category = goods_receiving) do
5: E← remove_duplicates(E) . remove duplicate

events
6: RP(E(date),quantity) = RP(E(date),quantity) +

E(date,quantity)
7: end for
8: end for
9: return 〈RP1, ...,RPN〉

10: end procedure

A.2.4 Analysis and evaluation

A.2.4.1 Literature-based development of the analysis

This section provides supporting material that was used for the literature-based develop-
ment of the analysis (cf. Section 5.4.1).

Because many articles apply the same process mining perspectives (e.g., control-flow)
and techniques (e.g., process discovery), the added value of integrating all articles
is limited. Consequently, the articles were prioritized by their value in terms of the
practical benefit (e.g., reduce unnecessary transports) or the theoretical contribution
(e.g., novelty of the technique).

The mapping of the resulting 12 articles is shown in Figure A.1 and Figure A.2.
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Figure A.1: Mapping of practical guidelines for the analysis (1 of 2)
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Figure A.2: Mapping of practical guidelines for the analysis (2 of 2)
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A.3 Application and evaluation

A.3.1 Industrial environment

Table A.3 summarizes the parameters of the approach used for the industrial application.
These parameters were set during the implementation and used for each case study.
Other parameters of the clustering algorithm refer to the default values of the Python
library Scikit Learn 0.23 and ProM 6.

Table A.3: Parameters of the approach used for the industrial application

Category Property Value

Event log Time frame 3 months
Process discovery Algorithm Alpha Miner, Inductive Miner
Process discovery Threshold 0.1 - 0.2 (Inductive Miner)
Conformance checking Algorithm Escaping Edges Precision
Inventory profiling δt 1 day
Clustering Algorithm K-means, full
Clustering Number of clusters Individual (gap statistics)
Clustering Iterations (max.) 300

A.3.2 Case Study I: Analyzing deviations of reference processes

Case Study I describes an extract of a quality initiative at a German car manufacturer
between 2017 and 2018. Stage 1: Conformance checking was used to identify de-
viations of reference processes. Stage 3: In-depth process discovery and evaluation

uncovered waste of unnecessary transportation and motion related to quality activities.
The objectives of the project were set in alignment with the organizational and financial
aspects of the company. Within this project, interviews were conducted with experts
from logistics and the procurement department in 2018. The results presented in the
thesis present an update of the results published in KNOLL et al. (2019b). In addition,
value stream clustering was developed at MIT in 2019.
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A.3.3 Case Study II: Demand-based process leveling

This section provides a summary of the seven 15-minute group workshops conducted dur-
ing a weekly meeting of the logistics experts. The notes were captured and anonymized
during the workshops and were supported by the student thesis of Raffaela Rill.

Workshop 1 (December 11, 2018)

Roles: Logistics experts (e.g., process improvements and quality) and data analysts.

Participants: Group of three to five logistics experts and two data analysts.

Findings: Discussion of the proposed value streams:

• Focus on two different reference processes within the same assembly line hall.
The majority of parts are handled and stored within these storage areas, which is
why they are under inspection within the logistics planning department.

• High demand is defined as more than 20-25 packages per day (two shifts). A
medium demand is defined as 10-15 packages per day (two shifts). A low demand
is defined as less than two packages per day (two shifts). However, no clear
distinction is made, and this definition is only used for an initial classification.

• The demand forecast of the value streams should be included due to the dynamics.

• Critical parts refer to a low demand and a high inventory.

Workshop 2 (January 15, 2019)

Roles: Logistics experts (e.g., process improvements and quality) and data analysts.

Participants: Group of three to five logistics experts and two data analysts.

Findings: Discussion of the proposed value streams:

• The automated small part storage is restricted to a maximum of two packages
per part and hour. Value streams with high demand cannot be processed in this
storage/reference process.

• Direct line feeding should be the target for value streams with high demand.
Complementary value streams should be evaluated for a medium demand.
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• In the case of a direct line feeding policy, the analysis should focus on value
streams with one distinct line delivery location. Parts with multiple locations are
out of scope.

Workshop 3 (January 22, 2019)

Roles: Logistics experts (e.g., process improvements and quality) and data analysts.

Participants: Group of three to five logistics experts and two data analysts.

Findings: Discussion of the proposed value streams:

• Confirmation of one value stream that was proposed as direct line feeding.

• Re-scheduling of one value stream for the production break.

• One value stream was not considered for improvement because the employee
responsible for that stream had special workspace requirements and modifications
because of a disability.

Workshop 4 (February 05, 2019)

Roles: Logistics experts (e.g., process improvements and quality) and data analysts.

Participants: Group of three to five logistics experts and two data analysts.

Findings: Discussion of the proposed value streams:

• Confirmation of one value stream that was proposed as direct line feeding.

• Two value streams were impeded due to packaging restrictions. According to
the experts, a change of packaging bins is not practical. Two other value streams
were declined because of spatial restrictions and another because of risks related
to picking failures.

Workshop 5 (February 19, 2019)

Roles: Logistics experts (e.g., process improvements and quality) and data analysts.

Participants: Group of three to five logistics experts and two data analysts.

Findings: Discussion of the proposed value streams:
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• Two value streams were declined because of spatial restrictions (too many racks).
Another value stream was declined because of packaging restrictions.

Workshop 6 (March 3, 2019)

Roles: Logistics experts (e.g., process improvements and quality) and data analysts.

Participants: Group of three to five logistics experts and two data analysts.

Findings: Discussion of the proposed value streams:

• Four value streams were declined because of risks related to picking failures.

• Four other value streams were declined because the packaging bins were either
too high or are not compliant with the company’s standard.

Workshop 7 (March 13, 2019)

Roles: Logistics experts (e.g., process improvements and quality) and data analysts.

Participants: Group of three to five logistics experts and two data analysts.

Findings: Discussion of the proposed value streams:

• One value stream was approved for direct line feeding.

• Another value stream was shifted to the automatic storage system.

A.3.4 Case Study III: Analyzing the inventory

This section provides a summary of six 30–90-minute workshops. The notes were
captured and anonymized during the workshops and were supported by the student
thesis of Quirin Bachmeier.

Workshop 1 (September 27, 2018)

Roles: Logistics experts (procurement/inbound) and data analysts.

Participants: Group of two logistics experts and one data analyst.

Findings:
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Table A.4: Statistical description of the analyzed value streams (small loading carriers)

Cycle-stock Safety stock

Metric D
em

an
d

(m
ea

n)
[1

/d
]

In
ve

nt
or

y
(m

ea
n)

[-
]

L
ea

d
tim

e
(m

ea
n)

[d
]

W
as

te
[-

]

R
an

ge
(m

ea
n)

[d
]

In
ve

nt
or

y
(m

in
)[

-]

R
an

ge
(m

ea
n)

[d
]

count 100.00 100.00 100.00 100.00 100.00 100.00 100.00
mean 2.35 23.00 7.83 8.14 7.88 4.27 4.07
std 2.99 29.00 4.60 9.18 7.68 10.47 5.83
min 0.00 0.30 0.01 -0.09 0.00 -47.00 0.00
25% 0.35 4.15 4.92 1.50 2.40 0.00 0.97
50% 1.10 12.35 7.30 5.06 5.70 2.00 2.26
75% 3.42 31.20 9.23 11.50 10.33 5.25 4.30
max 14.03 190.25 27.97 47.50 44.00 56.00 39.00

• High inventory ranges (in days) are mainly caused by low customer demand
profiles. For value streams with very low demand, typically, the transportation
costs are optimized because of very low effects on inventory (e.g., low absolute
number of packages). Another aspect of high inventories was related to part
numbers at the end of a life-cycle. If a new version is introduced, the supplier’s
remaining inventory will be shipped to the manufacturer. In both cases, the effect
is a high inventory range.

• The logistics experts also mentioned the risk of supply shortages and that parts
with suppliers outside Europe require a higher inventory (safety stock). For ex-
ample, imported goods must be cleared through customs. The inventory analysis
should focus on European suppliers.

Workshop 2 (October 1, 2018)

Roles: Logistics experts (procurement/inbound) and data analysts.

Participants: Group of two logistics experts and two data analysts.

Findings:
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Table A.5: Statistical description of the analyzed value streams (large loading carriers)
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count 100.00 100.00 100.00 100.00 100.00 100.00 100.00
mean 1.19 8.15 4.60 1.22 2.75 2.42 2.87
std 2.20 13.49 3.04 2.37 3.87 7.14 3.58
min 0.03 0.08 0.09 -0.06 0.10 -4.33 0.00
25% 0.20 1.18 2.62 0.03 1.12 0.00 0.39
50% 0.43 3.03 3.71 0.34 1.88 0.00 1.46
75% 1.24 7.99 5.58 1.06 2.59 2.00 3.97
max 17.15 73.05 19.50 14.91 33.00 57.00 19.60

• The logistics experts highlighted that the main objective is to achieve a service
level of 100%.

• The logistics experts discussed the aspects that the cycle-stock is independent
of the safety stock and that the two important control parameters are: (1) order
quantity and (2) delivery frequency. However, the safety stock is controlled by
demand and not in absolute numbers of inventory. Consequently, the actual safety
stock varies over time.

Workshop 3 (October 11, 2018)

Roles: Logistics experts (procurement/inbound) and data analysts.

Participants: Group of two logistics experts and two data analysts.

Findings:

• If the quantity of inventory does not match the ordered quantity, urgent orders are
triggered to cover missing quantities.

• The order quantity can be adjusted in the ERP system.
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Workshop 4 (October 16, 2018)

Roles: Logistics experts (procurement/inbound) and data analysts.

Participants: Group of two logistics experts and one data analyst.

Findings:

• Fluctuation in demand is common due to different production schedules or
seasonal effects. However, the production schedule is frozen within a reasonable
time frame that is longer than the replenishment time. The demand can be
assumed as deterministic.

• The target value of the safety stock inventory in days depends on the supplier.
Variables include the distance between the supplier and the production plant.
The logistics experts stated that the goods are not instantly transferred into and
stored in the warehouse, and additional buffers of inventory may be required,
depending on the logistics reference process. Furthermore, quality issues require
a sufficient time span to check and subsequently block incoming goods or to react
to defective products. The procurement/inbound experts do not consider the value
of the goods.

• Regular orders are scheduled for a specific date but do not include a specific time
on that date. Therefore, the delivery time is unknown and can vary. Furthermore,
critical dates exist that can require additional orders or quantities (e.g., public
holidays).

• For the assessment of waste of inventory, the absolute number of loading carriers
must be considered.

Workshop 5 (October 19, 2018)

Roles: Logistics experts (procurement / inbound) and data analysts.

Participants: Group of two logistics experts and data analyst.

Findings:

• The most common inventory control parameters are the inventory range of the
safety stock, the order quantity, and the delivery frequency. The absolute safety
stock is rarely used.
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• The order quantity can be set to a multiple of the small loading carriers on the
pallet. However, this provides only value if the packages are stored separately,
rather than on the pallet.

Workshop 6 (October 23, 2018)

Roles: Logistics experts (procurement / inbound) and data analysts.

Participants: Group of two logistics experts and two data analysts.

Findings:

• Waste of safety stock can be immediately reduced without restrictions. In contrast,
the cycle-stock typically requires evaluating further aspects, for example, the
number of deliveries per day and time.

A.3.5 Underlying assumptions of the cost-benefit calculation

The proposed cost structure of the cost-benefit calculation includes a variety of as-
sumptions about the industrial application. The assumptions about the initial effort and
continuous effort are outlined in this section.

Initial effort

The set-up requires the deployment of the developed approach.

• Planning and data extraction. The logistics experts stated that the definition
of objectives and analysis questions is comparable for both approaches. Subse-
quently, the effort is not considered. For the data extraction, it is assumed that
the ERP is available and can be accessed by the team. The effort for identifying,
extracting, and standardizing the data equals 20 working days. Existing ERP
reports are used. This assumption is based on the personal estimation of the
author and the reported effort in the literature (cf. Chapter 3). It is assumed that
five working days of validation, for example, conducting interviews on the shop
floor, are required to validate the data. Further on, five working days are required
to evaluate the data consistency (e.g., outlier detection). Therefore, the effort to
validate the data equals ten working days.
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• Data preprocessing. This step requires the implementation of the algorithms
by the software engineer. The team discusses critical attributes to specify the
attributes for filtering. The effort to set-up data preprocessing equals 20 working
days.

• Mining. This step requires the implementation of the algorithms by the software
engineer. It is assumed that a process mining software, such as the open source
framework ProM, is available. Existing software implementations can be used
(e.g., the inductive miner for process discovery). The team implements suitable
metrics based on the requirements of the company. The effort to set-up mining
equals 25 working days.

• Overhead. Unpredictable tasks can be required depending on the company-
specific environment (e.g., existing skills of the people). Nine working days are
included to cover any additional effort.

Continuous effort

The continuous effort depends on the variable amount (per value stream):

• Create the current state map. A visit to the shop floor is required to map each
value stream with pen and paper. This step records the material and information
flow from the goods receiving up to the assembly line, visiting at least two
different locations at the production plant. All activities of the value stream are
observed once. The performance metrics must be calculated, and the recorded
value stream map must be drawn, to validate the results. The effort equals two
working days for each value stream.

• Analyze the value stream. Both approaches require effort for the analysis. How-
ever, the process and product complexity and dynamics can be covered using
process mining. Enriched attributes (e.g., supplier specification) are included. In
contrast, the analysis step of pen-and-paper-based value stream mapping requires
further interviews or data collection on the shop floor. The additional effort in
comparison to process mining equals 0.5 working days for each value stream.

• Monitoring of the future state. Monitoring the future state requires creating
or updating the current state map and comparing the different states over time.
Notably, comparing the different states is required for both approaches. The
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additional effort in comparison to process mining equals 1.5 working days for
each value stream.

In contrast to pen-and-paper-based value stream mapping, the proposed approach
introduces fixed costs per year:

• Software maintenance. The software maintenance covers any effort required
during operations, such as implementing additional performance metrics or re-
freshing the data. The effort for software maintenance equals 15 working days.

• Overhead. Any additional effort is covered by five working days.

A.4 Software used

• Camuda BPMN.io. BPMN process modeling tool, including a visualization of
the business process. Available at: https://bpmn.io/

• Fluxicon Disco. Process mining software for professionals and academia. Avail-
able at: https://fluxicon.com/disco/

• Java stack. The software development sack for Java includes many open source
and commercial libraries. In this thesis, the primary libraries applied are the
ProM 6 stack and the Spring framework.

• LaTeX stack. The documentation of the thesis is written in LATEX. The open
source tool Sublime Text 3 was used as an editor. The tool is available at
https://www.sublimetext.com

• Microsoft Office R©. A commercial set of office tools that support various ap-
plications. Work on this thesis used MS Excel R©and MS PowerPoint R©most
often.

• ProM 6. Process mining software for academia. Available at: http://www.promtools.org

• Python stack. The software development stack for Python includes numerous
open source libraries. The libraries used the most often are Docker, Pandas,
PySpark, Numpy, Multithreading, Pyodbc and Jupyter.
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A.5 Theses supervised

Between 2015 and 2019, the author extensively supervised and guided 19 students at the
Institute for Machine Tools and Industrial Management (iwb). The students completed
their master’s theses, bachelor’s theses, or semester projects in the fields of process
mining, value stream mapping, logistics, logistics planning, packaging planning, and
change management in a strong collaboration with the author. In particular, the author
supervised the research clarification, objectives, research questions, approach, activities,
and content. Discussions with the students and selected parts of the results contributed
to this work (cf. Table A.6). The author expresses his great thanks to all students for
their great support.

A.6 Publication list

Preliminary results related to this thesis have been presented at conferences and pub-
lished in conference proceedings or journal publications. These publications are listed
in the following.

KNOLL et al. 2016
Knoll, D.; Prüglmeier, M.; Reinhart, G.: Predicting Future Inbound Logistics Pro-
cesses using Machine Learning. Procedia CIRP 52 (2016), pp. 145–150.

KNOLL et al. 2017
Knoll, D.; Prüglmeier, M.; Reinhart, G.: Materialflussanalyse mit ERP-
Transportaufträgen. wt Werkstattstechnik online 3 (2017), pp. 129–133.

KNOLL et al. 2019a
Knoll, D.; Neumeier, D.; Prüglmeier, M.; Reinhart, G.: An automated packaging
planning approach using machine learning. Procedia CIRP 81 (2019), pp. 576–581.

KNOLL et al. 2019b
Knoll, D.; Waldmann, J.; Reinhart, G.: Developing an internal logistics ontology
for process mining. Procedia CIRP 79 (2019), pp. 427–432.
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KNOLL et al. 2019c
Knoll, D.; Reinhart, G.; Prüglmeier, M.: Enabling value stream mapping for internal
logistics using multidimensional process mining. Expert Systems with Applications

124 (2019), pp. 130–142.

REINHART et al. 2017
Reinhart, G.; Knoll, D.; Teschemacher, U.; Lux, G.; Schnell, J.; Endres, F.; Distel,
F.; Seidel, C.; Berger, C.; Klöber-Koch, J.; Pielmeier, J.; Braunreuther, S.: Anwen-
dungsfeld Automobilindustrie. In: Handbuch Industrie 4.0. Ed. by G. Reinhart.
München: Carl Hanser. 2017.

SCHUH et al. 2019
Schuh, G.; Reinhart, G.; Prote, J. P.; Sauermann, F.; Horsthofer, J.; Oppolzer,
F.; Knoll, D.: Data mining definitions and applications for the management of
production complexity. Procedia CIRP 81 (2019), pp. 874–879.
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Table A.6: List of theses supervised (chronologically sorted)

Name Title Year Related to
chapter

Kral, Marian Identification of potentials for the provision of information within logis-
tics planning departments of the BMW Group

2016 -

Poss, Christian Creating a reference model of inbound logistics in a multi-variant assem-
bly production

2016 5.1.1

Stapff, Susanna Development of a model-based approach for the quantification of struc-
ture complexity in assembly logistics using the example of BMW Group

2016 -

Quitterer, Niklas Verification and validation of a multi-crtierial optimization model for the
configuarion of production networks

2016 -

Ballauf, Maximilian Concept for an automated reconstruction of process chains using the
Digital Shadow in the area of production logistics

2016 2.2

Neumeier, Daniel Development of a machine learning based prediction model for selecting
packaging for products in high model-mix assembly line production

2017 -

Haid, Charlotte A method for the automated derivation of process indicators using move-
ment data from the high model-mix production logistics

2017 5.3.5

Lie, Stephan Analyzing inbound logistics planning processes in the highmodel-mix
assembly line production focusing knowledge transfer

2017 -

Waldmann, Julian Development of an Ontology for production logistics in the automotive
sector

2017 5.1.1

Hoffmann, Philipp Development of a Methodology to quantify and identify Waste due to
oversized Stock Levels in the Production Logistics

2017 2.2.2

Blessing, Robert Designing and Implementing a Process Mining Methodology for an
automated Analysis of Logistics Processes

2017 2.3, 5.3.1,
5.3.2

Roltsch, Floris A Data-Driven Approach for Predicting the Impact of Engineering
Changes on Logistics Processes

2018 -

Schlesinger, Lorena Designing and Implementing a Data-driven Methodology Towards an
Automated Waste Analysis of Processes within Production Logistics

2018 5.3.3, 5.4

Bachmeier, Quirin A data driven approach for identifying and prioritizing oversized inven-
tory levels based on part-specific properties and inventory movements

2018 6.1.5

Walther, Paul Improvement of the automated data-driven change impact prediction in
logistics to reduce economic risk

2018 -

Straßl, Florian Causes of fluctuations in material requirements - Analysis and descrip-
tion of the effects from programme and demand calculations applied to
the example of the automotive industry

2019 -

Greschl, Simon Development of a method for a quantitative evaluation of value streams
and a framework for potential for action

2019 1

Rill, Raffaela Designing and Implementing a Process Mining supported Methodology
for Evaluating Value Streams within Internal Logistics

2019 6.1.3, 6.1.4

Linnenweber, Tim Development of a Systematic Approach to Improve and Maintain a
Productive Machine Learning Model for Change Impact Prediction in
Logistics

2019 -
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