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Sideband-resolved resonator electromechanics
based on a nonlinear Josephson inductance probed
on the single-photon level
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Light-matter interaction in optomechanical systems is the foundation for ultra-sensitive

detection schemes as well as the generation of phononic and photonic quantum states.

Electromechanical systems realize this optomechanical interaction in the microwave regime.

In this context, capacitive coupling arrangements demonstrated interaction rates of up to

280 Hz. Complementary, early proposals and experiments suggest that inductive coupling

schemes are tunable and have the potential to reach the single-photon strong-coupling

regime. Here, we follow the latter approach by integrating a partly suspended super-

conducting quantum interference device (SQUID) into a microwave resonator. The

mechanical displacement translates into a time varying flux in the SQUID loop, thereby

providing an inductive electromechanical coupling. We demonstrate a sideband-resolved

electromechanical system with a tunable vacuum coupling rate of up to 1.62 kHz, realizing

sub-aN Hz−1/2 force sensitivities. The presented inductive coupling scheme shows the high

potential of SQUID-based electromechanics for targeting the full wealth of the intrinsically

nonlinear optomechanics Hamiltonian.

https://doi.org/10.1038/s42005-020-00501-3 OPEN

1Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching, Germany. 2 Physik-Departement,
Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany. 3Munich Center for Quantum Science and Technology (MCQST),
Schellingstr. 4, D-80799 München, Germany. ✉email: huebl@wmi.badw.de

COMMUNICATIONS PHYSICS |           (2020) 3:233 | https://doi.org/10.1038/s42005-020-00501-3 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-020-00501-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-020-00501-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-020-00501-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-020-00501-3&domain=pdf
http://orcid.org/0000-0001-9334-1450
http://orcid.org/0000-0001-9334-1450
http://orcid.org/0000-0001-9334-1450
http://orcid.org/0000-0001-9334-1450
http://orcid.org/0000-0001-9334-1450
http://orcid.org/0000-0002-1855-4672
http://orcid.org/0000-0002-1855-4672
http://orcid.org/0000-0002-1855-4672
http://orcid.org/0000-0002-1855-4672
http://orcid.org/0000-0002-1855-4672
http://orcid.org/0000-0003-3023-5209
http://orcid.org/0000-0003-3023-5209
http://orcid.org/0000-0003-3023-5209
http://orcid.org/0000-0003-3023-5209
http://orcid.org/0000-0003-3023-5209
mailto:huebl@wmi.badw.de
www.nature.com/commsphys
www.nature.com/commsphys


Designing, investigating, and understanding the opto-
mechanical interaction plays a key role in tailoring the
light-matter interaction and hence for testing quantum

mechanics1–4. In addition, optomechanics is also the basis for
detection schemes with extreme sensitivity used in gravitational
wave detection5, mechanical sensing6 as well as the creation of
mechanical quantum states7,8. This potential triggered a multitude
of realizations of optomechanical systems4,9 including systems
based on superconducting circuits, which define the field of nano-
electromechanics10–16. Here, the photonic cavity is implemented
as a microwave resonator and the electromechanical interaction is
typically realized using a mechanically compliant capacitance,
which transfers a mechanical displacement into a change of the
resonance frequency of the microwave circuit10–14,17. It was pro-
posed early on that inductive coupling schemes can allow for
higher coupling rates than capacitive ones18–21.

SQUID tunable microwave resonators can be designed to
realize qubits or effective two-level systems22,23. In this context,
electromechanical interactions have also been studied15,24–27

enabling large optomechanical couplings with the potential to
realize quantum interference of massive objects’ trajectories28. In
addition, they provide a route to implement even more complex
coupled quantum systems, which, e.g., allow to create
photon–phonon entanglement, phonon Fock state generation,
and three partite entanglement29–31. However, these systems
employ the effective two-level character and hence go beyond the
traditional optomechanical system.

Only recently, an electromechanical coupling on-par with
capacitive approaches was demonstrated by using an inductive
coupling scheme based on a lumped-element microwave reso-
nator and a mechanically compliant Josephson inductance32. By
design, the linear inductance of the resonator was chosen much
larger than the Josephson inductance, limiting the coupling
strength in favor of tolerating large photon numbers. Com-
plementary, it was shown that a distributed resonator with an
embedded Josephson inductance allows to design arbitrarily large
nonlinearities and can be used to realize two-level systems33.

Here, we present such an inductive coupling scheme based on a
Josephson nonlinearity integrated into a coplanar waveguide
resonator (CPW). For this device, we find a magnetic field tun-
able electromechanical vacuum coupling of up to 1.62 kHz.

Moreover, we find a proportionality factor of 3.1 MHz T−1,
between the coupling rate and the applied magnetic field,
exceeding the one reported in ref. 32 by a factor of 120. In
addition, the high coupling rate allows us to detect the mechan-
ical motion with probe powers of 2.7 fW corresponding to an
occupation of the microwave resonator with only a few photons.
Hence, our device concept is naturally compatible with quantum
microwave sources, which typically offer only a limited output
power, and quantum-limited amplifiers with low saturation
powers. These benefits make the device class ideally suited to act
as a building block for the realization of inductively coupled
devices integrated in more complex quantum circuits. Our results
represent a significant step toward reaching the single-photon
strong-coupling regime in electromechanics, allowing the inves-
tigation of quantum mechanical effects such as single-photon
single-phonon blockade4,34, the creation of mechanical quantum
states35, and the generation of non-classical light36.

Results and discussion
Circuit concept and fabrication. The nano-electromechanical
device discussed here is based on a λ/4 superconducting CPW
resonator which is shunted to ground at one of its ends via a
direct-current superconducting quantum interference device (dc-
SQUID) (cf. Fig. 1). As the SQUID acts as a flux-dependent
inductance, the resonance frequency of the microwave circuit
becomes flux sensitive. In addition, the SQUID loop is partly
suspended and contains two nanomechanical string oscillators.
Any displacement x of the strings translates into a change of the
magnetic flux Φ threading the SQUID loop and, in turn, into the
microwave resonance frequency ωc. The mechanically induced
frequency shift can be described by the electromechanical inter-

action Hamiltonian Ĥint ¼ _g0â
yâðb̂y þ b̂Þ, where â (b̂) are the

ladder operators of the microwave resonator (mechanical oscil-
lator). The electromechanical coupling constant18,19,21,37

g0 ¼
∂ωc

∂Φ
δΦ ¼ ∂ωc

∂Φ
γBextlxzpm; ð1Þ

scales with the length l of the string, the zero-point displacement
xzpm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_=2meffΩm

p
, and the mode-shape γ of the mechanical

resonator. Note, that g0 is tunable as the applied magnetic field
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Fig. 1 Sample schematic and device images. Panel a shows a schematic of the device. The superconducting λ/4-coplanar microwave resonator is coupled
capacitively with a coupling rate κext to a microwave transmission line acting as feed-line, where Sin and Sout denote the microwave input and output signal.
A dc-SQUID with two freely suspended arms, which are separated by w, shunts the resonator to ground on the other end. The resonance frequency is
tunable by varying the flux through the SQUID loop, e.g., by adjusting the external magnetic field Bext. In addition, the freely suspended SQUID arms
(strings) modulate the SQUID inductance with the mechanical frequency via a change in the area of the SQUID loop and hereby realize the
electromechanical coupling. In total, we expect the presence of four mechanical modes (one in- and one out-of-plane for each of the two strings) in our
device. In our experiments, we focus only on one of them as sketched in panel (a). Panel b shows a microscope image of the aluminum resonator with the
SQUID located at one end fabricated using a lift-off process. Panel c shows a tilted scanning electron microscope (SEM) image of a similar partly
suspended SQUID structure. Note that the strings investigated in this work have dimensions of 20 μm× 110 nm × 200 nm.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00501-3

2 COMMUNICATIONS PHYSICS |           (2020) 3:233 | https://doi.org/10.1038/s42005-020-00501-3 | www.nature.com/commsphys

www.nature.com/commsphys


Bext and the flux to resonance frequency transfer function ∂ωc/
∂Φ, which we call in the following flux responsivity, can be
controlled in situ.

We fabricate the electromechanical system as an all-aluminum
superconducting circuit using electron beam lithography, double-
layer shadow evaporation, and reactive ion etching (cf. Fig. 1 and
Supplementary Note 3 for details). The SQUID contains two
freely suspended mechanical string oscillators as well as the two
Josephson junctions. Each string has a length l= 20 μm, a width
w= 200 nm, and a thickness t= 110 nm, corresponding to an
effective mass of meff= 0.6 pg (all parameters of the device are
summarized in Table 1). During the device fabrication, we anneal
the entire chip at 350 ∘C resulting in tensile stressed aluminum
strings with mechanical resonance frequencies Ωm≃ 6.3 MHz at
millikelvin temperatures. Thus, we obtain a zero-point fluctuation
of xzpm= 47 fm. The microwave resonator is coupled capacitively
at one of its ends to a microwave CPW feed-line, enabling the
microwave spectroscopy of the device. The other end, is shunted
to ground via the SQUID. In this way, we obtain a flux-tunable
resonator with large flux responsivity ∂ωc/∂Φ, which is essential
for the realization of a large electromechanical coupling strength.

Microwave resonator characterization. We start the character-
ization of the microwave circuit by performing microwave
transmission measurements as shown in Fig. 2 (see Supplemen-
tary Note 1 B for details). Figure 2a shows the data as a function
of the applied flux Φ, where the resonator appears as an
absorption signature in dark blue. Figure 2b, c shows transmis-
sion data for two selected flux bias. For a quantitative analysis of
the evolution of the microwave resonance frequency ωc, we locate
the transmission minimum for each flux bias and plot ωc as well
as ∂ωc/∂Φ versus the applied flux in Fig. 2d, e. We find that ∂ωc/
∂Φ reaches values of up to 10 GHz/Φ0, underlining the perfor-
mance of this coupling scheme. In addition, the ωc(Φ) depen-
dence allows us to extract the single-junction critical current of
the SQUID, Ic= 0.44 μA, and the minimum Josephson induc-
tance, LJ= 0.36 nH, at ∂ωc/∂Φ= 0 (see Supplementary Note 2).
Recording transmission data for selected flux bias points with
higher frequency resolution (as shown in Fig. 2b, c) allows to

determine the external coupling rate κext between the resonator
and the feed-line as well as the internal loss rate κint of the
microwave circuit. At ∂ωc/∂Φ= 0, we find a total linewidth of κ/
2π= (κint+ κext)/2π= 2.5 MHz. Figure 2f shows κext and κint as a
function of the flux responsivity. While κext remains nearly
constant, κint increases for large ∂ωc/∂Φ, which is attributed to the
increased sensitivity of the circuit to flux noise. However, even at
the bias point K, the device remains in the resolved sideband
regime (Ωm > κ).

Quantification of the electromechanical readout performance.
Next, we investigate the mechanical properties including the
electromechanical coupling rate. For this experiment, we probe
the microwave sideband fluctuations originating from the inter-
action of the incident probe tone with the mechanics. The probe
tone is set to a blue sideband configuration (ωp= ωc+Ωm) to
enable a sensitive detection of the scattered photons4. The
resulting signal is down-converted with ωp. Figure 3a shows the
voltage power spectral density SUU(Ω) detected using a spectrum
analyzer (cf. Supplementary Note 1) for a temperature of 185
mK, when the microwave resonator is biased to working point K
at ωc/2π= 6.887 GHz with Bext=−470 μT. We find a mechanical
signature with a resonance frequency Ωm/2π= 6.34311MHz and
a full-width at half-maximum linewidth of Γm/2π= 33.6 Hz. In
addition, we modulate the frequency of the incident microwave
probe tone resulting in a calibration peak visible in panel a at
~−2 kHz. Similar to refs. 12,38, the comparison of the calibration
tone amplitude SUUðΩmodÞ with the mechanical response
SUU(Ωm)Γm/2 allows us to quantify the electromechanical cou-
pling rate g0. Due to the specific detection scheme used for this
experiment, we need to account for an additional factor Y, which
relates the transfer function of the mechanical motion to the
transmission function of the calibration tone (refer to Supple-
mentary Note 4 for details). From this data, we obtain g0/2π=
(1.62 ± 0.12) kHz. This value exceeds the highest coupling rate of
280 Hz17 achieved for capacitive coupling by a factor of 5.8 and
corresponds to a single-photon cooperativity C0 of about 0.1. This
large coupling strength allows us to use ultra-low probe powers
for the detection of the mechanical sidebands. In fact, we use a

Table 1 Summary of all sample parameters.

Parameter Value Comments

String Mechanical eigenfrequency Ωm/2π= 6.34316MHz Mode 4
Mechanical linewidth (FWHM) Γm/2π= 25 Hz T= 110mK
Length of the string l= 20 μm
Cross-section of the string S=w × t= 110 × 200 nm2

Tensile stress of the string σ= 170MPa T= 110mK
Young’s modulus (aluminum) EY= 70 GPa 49

CPW Bare CPW eigenfrequency ω0/2π= 9.85 GHz
CPW length lc= 2.930mm
CPW dimensions (width, gap) wc= 10 μm, sc= 8 μm
CPW resonator inductance, capacitance Lc= 1.17 nH, Cc= 224 fF
CPW impedance Z= 56Ω
Eff. dielectric constant ϵeff= 6.45

SQUID SQUID inductances Lkin= 41 pH, Lgeo= 19 pH
Josephson inductance LJ= 0.36 nH At sweet spot
Critical current Ic= 442 nA Single junction
Loop area Aloop= 44.6 μm2

Screening parameter βL= 0.013
FTR Sweet spot frequency ωc/2π= 7.445 GHz

Sweet spot intrinsic linewidth κint/2π= 2MHz T= 110mK
External microwave coupling κext/2π= 0.5MHz

For clarity, we have structured the sample’s characteristics in terms of the mechanical nanostring (String), the coplanar waveguide resonator (CPW), the employed superconducting quantum
interference device (SQUID), and flux-tunable resonator (FTR).
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Fig. 2 Flux tuning of the microwave resonator. Panel a shows the calibrated microwave transmission as a function of the normalized applied magnetic flux.
The tunable resonator exhibits a maximum frequency of 7.45 GHz and remains visible down to ≈6.7 GHz. Around 7.3 GHz, we find a parasitic resonance,
which we avoid in our experiments. In addition, we perform a detailed analysis of the electromechanical coupling rate at the operation points indicated.
Panels b and c display the transmission data at points D and K as well as a fit, which allows to quantify the internal and external loss rates of the microwave
resonator. Panel d displays the evolution of the microwave resonance frequency as function of the flux bias. The flux to resonance frequency transfer
function ∂ωc/∂Φ is computed from this data and shown in panel (e), demonstrating responsivities exceeding 10 GHz/Φ0. To judge whether the device
operates in the resolved sideband regime, we analyse the transmission data for all operation points and extract the internal and external loss rates as
depicted in panel (f). While the external coupling rate is rather constant, the internal loss rate increases with increasing responsivity ∂ωc/∂Φ.
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Fig. 3 Thermal mechanical displacement noise. Panel a shows the voltage noise spectral density SUU of the down-converted microwave spectroscopy
tone. At Ωm/2π= 6.34311 MHz, we observe the mechanical signature with a peak amplitude of SUU(Ωm)= 1.26 μV2 Hz−1 and a linewidth of Γm/(2π)=
33.6 Hz. In this experiment, we configure the microwave spectroscopy tone to the blue sideband configuration (ωp=ωc+Ωm) to efficiently detect the
Stokes field within the bandwidth of the resonator. However, we suppress back-action induced heating by using an ultra-weak probe tone corresponding to
an average photon number of �nr ¼ 1:6 in the microwave resonator. The sharp peak at (Ω−Ωm)/2π≈−2 kHz with an amplitude of SUUðΩmodÞ ¼
2:56 μV2 Hz�1 stems from the phase modulation of the microwave spectroscopy tone (ϕ0= 3.94 × 10−4). Combining the information of the mechanical
signature and the calibration peak, we find an electromechanical vacuum coupling of g0/2π= (1.62 ± 0.12) kHz. We further show the mechanical
displacement density Sdetxx in panel (b) for T= 126mK (blue), 186mK (green), and 232mK (red dots) including the Lorentzian fits to the data (solid lines).
The peak area scales as expected with temperature via the mechanical linewidth. All spectra are recorded with the same averaging. Panel c shows the
spectral force sensitivity SdetFF at T= 126 mK for the microwave probe powers as indicated. On-resonance, we reach sub-attonewton force sensitivities even
for these ultra-low microwave probe powers.
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probe power corresponding to an average photon number of �nr ¼
1:6 in the microwave resonator for the spectrum shown in Fig. 3a.
At this power level, we suppress back-action induced heating of
the mechanical mode. In particular, for the parameters used in
our experiment, we estimate an electromechanically induced
damping rate of ∣Γem=−2.6 Hz∣ ≪ Γm, resulting in an increase in
the thermal phonon occupation by 4%4, as we probe with a
cooperativity of C≃ C0≃ 0.1. This contribution is already
accounted for in the stated value of g0 (for details see Supple-
mentary Note 5). The background of SUU(Ω) shows the experi-
mental imprecision noise Simp

UU of the experiment, which is
presently limited by the performance of the cryogenic microwave
amplifier used as the first amplification stage.

Our calibration technique allows us to express SUU(Ω) as the
mechanical displacement spectrum Sxx(Ω) (see Supplementary
Note 4). Figure 3b displays these spectra for various temperatures.
We observe the expected increase in the phonon number with
temperature in the form of an enlarged peak area. This manifests
itself as an enhancement of the linewidth Γm with temperature
(cf. Supplementary Information, Fig. S10a). This behavior has
been observed for aluminum nano-strings and is attributed to the
reduced dimensionality (1D) of the phonon mode39. In addition,
we find a non-monotonic dependence of the imprecision noise
floor on the environmental temperature. This behavior correlates
with the temperature-dependent quality factor of the microwave
resonator, which decreases above 185 mK. We speculate that this
observation is connected to its population with thermal
microwave photons, the presence of quasiparticles, and the
motion of flux vortices (for details see Supplementary Note 4B).

The detected displacement power spectral density Sxx directly
relates to the force sensitivity SdetFF via SdetFF ¼ 2SxxðΩÞ=jχj240 with
the mechanical susceptibility χ ¼ ½meff ðΩ2 �Ω2

m � iΓmΩÞ��1

(cf. Supplementary Note 6). For T= 126 mK, we find an on-

resonance force sensitivity of ðSdetFF Þ
1=2 ¼ 0:70 aNHz−1/2 (0.98

aNHz−1/2) for a probe tone power of 5.3 fW (2.7 fW)
corresponding to �nr ¼ 1:7 (0.86) photons. Here, the large
electromechanical coupling rate (cf. Fig. 3c) allows to operate
the device at much lower power compared to capacitive
electromechanical devices having demonstrated 0.54 aNHz−1/2

at probe powers of 1 pW40.

Tuning of the vacuum coupling strength. Next, we investigate
the scaling of the electromechanical coupling strength with the
applied magnetic field Bext and the flux responsivity ∂ωc/∂Φ, cf.
Eq. (1). To this end, we excite the mechanical motion using an
oscillatory mechanical force provided by piezo actuators resulting
in a controlled oscillating displacement of the nano-strings. Under
these conditions, the displacement amplitude is much larger
compared to the thermal noise-driven measurements and hence
much easier to detect (details are found in Supplementary Note 7).
Figure 4a shows the measured resonance frequency shift of the
microwave resonator δωc for various flux responsivities using a
coherent excitation force at an approximately constant magnetic
field of Bext ≈−440 μT. As the frequency shift δωc is proportional
to the product (∂ωc/∂Φ)δΦ, we observe a large δωc for large flux
responsivity ∂ωc/∂Φ. Figure 4b summarizes the coupling rates
derived from the peak amplitudes presented in Fig. 4a (dark green
triangles) as well as the results of further experiments with a lower
piezo actuator drive power (light green triangles) and links them
to displacement noise measurements of g0 (red cross). The data
corroborate the predicted linear scaling of the electromechanical
coupling with the flux responsivity of up to 10 GHz/Φ0.

In a similar fashion, we measure the electromechanical
response as a function of the applied magnetic field for a fixed

flux responsivity of ∂(ωc/2π)/∂Φ= 6.6 GHz/Φ0 (bias point K) and
present the data in Fig. 4c. Again, we link these data points to the
thermal displacement measurements (red circles) and corroborate
the linear scaling with Bext.

From Fig. 4c, we extract a scaling factor of (3.13 ± 0.20)MHzT−1

for the electromechanical coupling with respect to the applied
magnetic field Bext. This value exceeds those of previous reports by
two orders of magnitude32 and represents an important figure of
merit as it allows one to estimate g0 at the given physical parameters
of the device. For example, for the 70 nm thin aluminum film, we
expect an in-plane critical field of 130mT41 which extrapolates to
g0/2π= 410 kHz. This coupling rate does not yet satisfy the single-
photon strong coupling condition. However, improved microwave
decoherence rates of up to 400 kHz as reported for superconducting
quantum circuits42 in combination with an optimized critical
current Ic of the SQUID will allow to reach the strong-coupling
regime (see Supplementary Note 9). Nevertheless, ground-state
cooling for �nr ¼ 1 is expected to be within reach for this device
using moderate fields of Bext= 20mT applied in parallel to the
superconducting layer. Overall, we find an improvement of the
vacuum coupling strength by a factor of 7 in comparison to
previous inductive coupling schemes32.

Finally, Eq. (1) includes a mode-shape factor γ. With our
experimental parameters outlined so far, we find γ= 0.99, which
is in good agreement with previous findings16,32.

Besides electromechanically induced transparency (EMIT),
which can be used to measure g0 given quantitative knowledge
of the photon number12,32,43–45, one can utilize the signature of a
modification of the microwave resonator absorption lineshape,
using the strong binding condition δωc >Ωm

46 to confirm g0.
Given our parameters (see Table 1), we use the second strategy.
Here, a large amplitude coherent oscillation of the displacement is
excited by a coherent mechanical drive causing the characteristic
pattern of the microwave resonator absorption lineshape. When
combined with the nonlinear response of the string-oscillator, we
can quantify the displacement and hence g0. Corresponding data
(shown in Supplementary Information, Fig. S12) corroborates the
coupling strengths determined via thermal displacement noise
(data analysis is presented in Supplementary Note 8).

Conclusions. In summary, we present a device implementing an
inductive electromechanical coupling scheme based on a super-
conducting coplanar waveguide resonator and a dc-SQUID
operating in the resolved sideband regime. We demonstrate an
electromechanical coupling rate of 1.62 kHz, exceeding values of
capacitive coupling schemes by almost an order of magnitude.
This high coupling rate enables an ultra-high force sensitivity of
0.70 aNHz−1/2 at an ultra-low microwave readout power of 5.4
fW, making this device a very promising low-power force sensor.
In addition, the maximum electromechanical coupling of 1.62
kHz in combination with the investigated tuning of the electro-
mechanical coupling indicates that this coupling strategy has the
potential to reach the single-photon strong-coupling regime of
electromechanics. Moreover, the tunability of the coupling pro-
vides the access to new features of electromechanical systems
such as state amplification and readout techniques using the
resonator as a parametric amplifier.

During the review process, we became aware of similar works
by refs. 47,48.

Methods
Calibration of the electromechanical coupling via thermal motion. For the
determination of the electromechanical coupling constant, we use a scheme similar
to the calibration tone technique discussed by Gorodetsky et al. in ref. 38. In
particular, we use the microwave detection scheme where the frequency modulates
the microwave source to generate the calibration tone. We down-convert the signal
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coming from the dilution fridge with an unmodulated local oscillator and perform
a spectrum analysis of the down-converted signal. This results in the spectra shown
in Fig. 3a. Via this scheme, the vacuum coupling strength is determined by

g20 ¼
1

2nm

Ω2
mϕ

2
0

2
Γm
4

1
Y

1
ENBW

SUUðΩmÞ
SUUðΩmodÞ

: ð2Þ

This is derived in full detail in Supplementary Note 4

Determination of the resonator transfer function. For a quantitative analysis of
Eq. (2), we need to obtain information about the transfer functions Y involved as
well. For our case, we find the transfer function depending in general on the
microwave resonator characteristics and the employed probe tone configuration

Y � 16η2κ2Ω2
m

4Δ2 þ κ2ð Þ 4ðΔ�ΩmÞ2 þ ð1� 2ηÞ2κ2� � ; ð3Þ

as we derive in more detail in Supplementary Note 4A.

Scaling of the electromechanical coupling. Due to the nature of the inductive
coupling, the electromechanical coupling rate is flux tunable (see Eq. (1)). Thus, we
expect a linear scaling of the electromechanical coupling rate with ∂ωc/∂Φ and Bext.
As discussed in the main text, one option to explore the scaling of g0 are thermal
displacement noise experiments. Alternatively, and more time efficiently, one can
measure the frequency shift of the microwave resonator for a fixed mechanical
excitation amplitude. In this experiment, the signal amplitudes are significantly
larger resulting in a faster data acquisition. In detail, we use a piezo actuator
mounted on the outside of the sample enclosure to excite the nanostring. The piezo
actuator is addressed using a fixed excitation voltage. As the displacement strength
is independent of ∂ωc/∂Φ and Bext, the piezo actuator induces a displacement of
constant amplitude. Thus, the recorded frequency shift δωc is determined only by
the coupling strength, without the need for a calibration of the piezo susceptibility.
If a quantification of the vacuum coupling strength is desired, the extracted fre-
quency shift has to be calibrated independently. For that purpose, we use the
spectroscopy of the nanostring’s thermal motion.

Data availability
Experimental data are available upon reasonable request at the corresponding author.
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Fig. 4 Scaling of the electromechanical coupling rate at T= 126mK. Panel a shows the mechanically driven resonator shift δωc close to Ωm for a coherent
mechanical drive at angular frequency Ω generated by a piezo actuator for the various operation points labeled in Fig. 2. The external static magnetic field is
set to Bext≈−440 μT. At magnetic field bias points (e.g., C, D) with low flux responsivity, almost no mechanical signature is observed, in contrast to those
points (E to H) with large flux responsivity. Panel b displays the electromechanical coupling rate g0 deduced from the response in panel (a). The derived
values are plotted versus the flux responsivity for low (light green triangles) and high piezo drive amplitudes (dark green triangles), and are linked to the
thermal displacement measurements (red cross). This data confirms the linear scaling of the electromechanical coupling strength with ∂ωc/∂Φ. In panel c,
we plot the coupling rate g0 obtained both from driven (green) and thermal displacement measurements (red) versus the applied magnetic field Bext for a
fixed flux responsivity of ∂(ωc/2π)/∂Φ= 6.6 GHz/Φ0. In the given experimental configuration, the external field sets the working point of the microwave
resonator. As flux jumps occurred during the experiments the recorded driven measurements could not be performed at identical field bias as the thermal
ones. The error bars on the data in panels (b) and (c) include the standard error originating from the model-fit to the data and errors originating from the
calibration. If not shown, error bars are smaller than the symbol size.
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