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Mast cells are a major component of the immune microenvironment in

tumour tissues and modulate tumour progression by releasing pro-tumori-

genic and antitumorigenic molecules. Regarding the impact of mast cells

on the outcomes of patients with lung adenocarcinoma (LUAD) patient,

several published studies have shown contradictory results. Here, we aimed

at elucidating the role of mast cells in early-stage LUAD. We found that

high mast cell abundance was correlated with prolonged survival in early-

stage LUAD patients. The mast cell-related gene signature and gene muta-

tion data sets were used to stratify early-stage LUAD patients into two

molecular subtypes (subtype 1 and subtype 2). The neural network-based

framework constructed with the mast cell-related signature showed high

accuracy in predicting response to immunotherapy. Importantly, the prog-

nostic mast cell-related signature predicted the survival probability and the

potential relationship between TP53 mutation, c-MYC activation and mast

cell activities. The meta-analysis confirmed the prognostic value of the mast

cell-related gene signature. In summary, this study might improve our

understanding of the role of mast cells in early-stage LUAD and aid in the

development of immunotherapy and personalized treatments for early-stage

LUAD patients.

Abbreviations

DEG, differently expressed gene; GEO, Gene Expression Omnibus; GO, gene ontology; GSEA, gene set enrichment analysis; HR, hazard

ratio; LUAD, lung adenocarcinoma; PCA, principal component analysis; ssGSEA, single-sample gene set enrichment analysis; TCGA, The

Cancer Genome Atlas; WGCNA, weighted correlation network analysis.
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1. Introduction

Lung adenocarcinoma (LUAD) is one of the most

complex and heterogeneous malignancies, both in

molecular and phenotypic terms (Li et al., 2016; Mao

et al., 2016; Wang et al., 2019a). The incidence of

LUAD has been increasing in recent years. The treat-

ment for early-stage LUAD includes operation,

chemotherapy and radiotherapy (Besse et al., 2015).

Additionally, immunotherapy serves a promising ther-

apeutic strategy in many cancer types (Bao et al.,

2019b; Couzin-Frankel, 2013; Purwar et al., 2012;

Schumacher and Schreiber, 2015; Wasiuk et al., 2012)

as well. However, there is still a long way to go for

immunotherapy in LUAD. A clear understanding of

the tumour immune microenvironment may aid in the

development of immunotherapy for LUAD patients.

Mast cell is widely distributed in different tissues

and is a major component of the immune microenvi-

ronment in tumour tissues. Mast cells modulate

tumour initiation and progression through the secre-

tion of pro-tumorigenic and antitumorigenic molecules

(Varricchi et al., 2017). The controversial roles of mast

cells result in conflicting effects among different

tumour types (Al�ı et al., 2009; Carlini et al., 2010;

Gounaris et al., 2007; Jeong et al., 2013; Nordlund

and Askenase, 1983; Sinnamon et al., 2008; Welsh

et al., 2005; Yang et al., 2011). Regarding the impact

of mast cells on LUAD patient clinical outcomes, sev-

eral contradictory results have been published (Carlini

et al., 2010; Imada et al., 2000; Kurebayashi et al.,

2016; Li et al., 2018; Nagata et al., 2003; Takanami

et al., 2000). Although the results of these studies are

quite different with respect to the prognostic values of

mast cells, previous studies have shown that mast cell

infiltration is more intensive in well-differentiated

tumours and low-grade histologic subtypes than in

poorly differentiated and high-grade subtypes (Carlini

et al., 2010; Nagata et al., 2003). Thus, in this study,

we focused on the effect of mast cells in early-stage

LUAD patients. We analysed the potential role of

mast cell, mast cell-related genes and immunotherapy

outcomes in early-stage LUAD using bioinformatics

models and machine learning methods.

2. Method

2.1. Data processing

The Cancer Genome Atlas (TCGA) transcriptome

data, mutation data and clinical information were

downloaded via the UCSC Xena Browser (https://xe

nabrowser.net/). GSE11969, GSE13213, GSE29013,

GSE30219, GSE31210, GSE37745, GSE42127,

GSE50081 and GSE72094 were downloaded from the

Gene Expression Omnibus database (http://www.ncbi.

nlm.nih.gov/geo/). The detailed TCGA clinical infor-

mation is summarized in Table 1 and Appendix S1.

2.2. Estimation of the abundance of immune cell

populations and implementation of weighted

correlation network analysis

Transcriptome file of TCGA early-stage LUAD was

applied on xCell to estimate the abundance of different

immune cell populations (Aran et al., 2017; Newman

et al., 2015). Weighted correlation network analysis

(WGCNA) was accomplished with the R package

‘WGCNA’ (Bao et al., 2019a; Langfelder and Hor-

vath, 2008; Wang et al., 2019b). The expression profile

of immune-related gene (from https://www.innatedb.c

om/redirect.do?go=resourcesGeneLists) was applied as

the input of WGCNA. Gene significance quantified

the association of individual genes with mast cell den-

sity, and module membership represented the correla-

tion between module eigengenes and gene expression

profiles. A power of b = 3 and a scale-free R2 = 0.95

were set as soft-threshold parameters to ensure a

signed scale-free co-expression gene network. A total

of six nongrey modules were generated. Among these

modules, the yellow module depicting the highest cor-

relation (r = 0.92, P = 4.2e-115) was considered the

most correlated with mast cell density. Survival analy-

sis was performed using the R package ‘survival’. Cox

regression analysis was used to determine the hazard

ratio (HR). All genes in the yellow module were sub-

jected to univariate Cox regression. The 110 genes that

significantly associated with the survival of early-stage

LUAD patients in the yellow module were identified

as the mast cell-related gene signature. These identified

genes were applied on gene ontology (GO) analysis

with the ‘clusterProfiler’ package (Yu et al., 2012) to

elucidate the potential mechanism behind the gene

Table 1. Patient information.

Variable Number

Gender (female/male) 166/142

TNM stage (stage I/stage II) 212/96

Lymph node metastasis (positive/negative) 61/247

Age (> 60/≤ 60/missing) 221/78/9

KRAS status (WT/MUT) 210/98

EGFR status (WT/MUT) 271/37

Smoking (no/yes/missing) 15/93/200
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signature. R software (version: 3.5.3) was used for all

the analyses in the manuscript.

2.3. Molecular subtype identification

The R package ‘CancerSubtypes’ was applied to per-

form molecular subtype identification (Xu et al., 2017).

Transcriptome profile and gene mutation data sets

were used to perform cancer subtype analysis. The

default parameters were used to perform the classifica-

tion. The cluster number was selected as 2. Gene set

enrichment analysis (GSEA) was performed with

GSEA software from Broad Institute.

2.4. Differently expressed gene analysis

The differently expressed gene (DEG) analysis was per-

formed with ‘Limma’ package (Smyth, 2005). An empiri-

cal Bayesian method was applied to estimate the fold

change between the molecular subtype 1 and 2 using mod-

erated t-tests. The adjusted P-value for multiple testing

was calculated using the Benjamini–Hochberg correction.

The genes with an adjusted P-value < 0.05 and absolute

log2 (log to base two of) fold change > 1.5 were identified

as DEGs between two molecular subtypes. GO analysis

was performed based on the significant genes.

2.5. Prognostic gene signature-based risk score

and ssGSEA implementation

The genes in the WGCNA yellow module were anal-

ysed with univariate Cox regression analysis. The com-

prehensive mast cell-related signature was calculated

by principal component analysis (PCA). The PCA-

based risk score MastCellpca was derived from the first

principal component of the 110 genes from mast cell-

related gene signature. Let Ei,j represent the

log2(RSEM + 1) value of the key gene i in tumour

sample j, and Ci represents the corresponding coeffi-

cient of the mast cell-related genes. The risk score

MastCellpca was calculated as follows:

MastCellpca ¼
E11 � � � E1j

..

. . .
. ..

.

Ei1 � � � Eij

2
64

3
75 C1. . .Ci½ �T

2.6. ssGSEA implementation and clinical

response prediction

The enrichment scores of the hallmark genes were

evaluated using single-sample GSEA (ssGSEA) with R

package ‘GSVA’ (H€anzelmann et al., 2013). The

hallmark gene sets were obtained from MSigDB.

Spearman’s coefficient analysis was performed to anal-

yse the correlation between prognostic gene signature-

based risk score and each hallmark. The Tumor

Immune Dysfunction and Exclusion algorithm was

used to predict the clinical response to immune check-

point blockade (Jiang et al., 2018).

2.7. Neural network construction

PyTorch was employed to construct the neural net-

work to predict the immunotherapy response by the

mast cell-related gene signature in PYTHON (Version:

3.5) (Paszke et al., 2017). Stochastic gradient descent

method and learning rate 0.001 were chosen for the

optimizer of the model. Five layers were built with dif-

ferent input and output numbers. Batch normalization

was performed in each layer. Dropout function (drop-

out rate: 0.2) was used in the training process but not

in the testing process. Relu function was applied as the

activate function. A logistic sigmoid function was used

in the output layer. The Python script is provided in

Appendix S2.

2.8. Random forest algorithm for feature

importance ranking

A random forest algorithm was applied to find the

most critical mutations associated with the mast cell

signature-based risk score. Briefly, the gene mutation

data set (Appendix S3) and mast cell signature-based

risk score were applied to find the most important

gene mutations associated with the mast cell signature-

based risk score. First, the ‘ranger’ package was used

to find the best hyperparameter in the regression pro-

cess (Wright and Ziegler, 2015). Then, the ‘random-

forest’ package was applied for the construction of the

regression model (Liaw and Wiener, 2002). The R code

for the analysis in the manuscript is provided in

Appendix S4.

3. Results

3.1. High mast cell abundance in early-stage

LUAD benefits the survival of patients

The workflow of the manuscript is shown in Fig. 1A.

To illustrate the correlation between mast cells and

survival in early-stage LUAD patients, we first anal-

ysed the abundance of immune cell populations in

early-stage LUAD tumour samples. We identified

twenty-two immune cell populations, and the

919Molecular Oncology 14 (2020) 917–932 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

X. Bao et al. Mast cells predict outcome in early-stage LUAD



Fig. 1. The association between mast cell abundance and clinical outcomes in early-stage LUAD patients. (A) Schematic diagram of the

study design. (B) The correlation among immune cell populations. (C–E) Kaplan–Meier curves for the OS of early-stage LUAD patients

showed that the patients with high mast cell abundance had a favourable outcome compared with the patients with low mast cell

abundance in the TCGA, GSE31210 and GSE50081 cohorts.
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correlations between these populations are shown in

Fig. 1B. We found that high mast cell abundance ben-

efited the survival of early-stage LUAD patients in the

TCGA cohorts (Fig. 1C). To further confirm the asso-

ciation between mast cells and the survival of early-

stage LUAD patients, we estimated the abundance of

mast cells in two external cohorts (GSE31210 and

GSE50081). The results showed that high mast cell

abundance is associated with prolonged survival of

early-stage LUAD patients, as we observed in the

TCGA early-stage LUAD cohort (Fig. 1D,E).

3.2. Identification of a gene signature associated

with mast cells

The immune-related genes were determined with

WGCNA. Genes were clustered into seven modules

(Fig. 2A). The correlation between the modules and

mast cell abundance was calculated by Pearson’s corre-

lation coefficient (Fig. 2B). The yellow module showed

the highest correlation coefficient with mast cells (cor:

0.73). The plots of module membership and gene sig-

nificance illustrated a significant correlation for each

gene in the yellow module (cor: 0.92; Fig. 2C). Then,

each gene in the yellow module was analysed with a

univariate Cox regression analysis. We identified 110

genes that were significantly associated with the sur-

vival of early-stage LUAD patients (Fig. 2D). The

heat map shows the expression level of the 110 genes

(Fig. 2E). The 110 genes were defined as a mast cell-

related gene signature (Appendix S5) in early-stage

LUAD patients. GO analysis revealed that cellular

metabolic pathways, WNT signalling, antigen process-

ing and presentation, and other enriched pathways

were associated with the mast cell-related key genes

(Fig. 2F).

3.3. Molecular subtype identification based on

the mast cell-related gene signature in early-

stage LUAD

As we observed, two expression patterns were identi-

fied in the expression profiles of mast cell-related genes

from expression heat map of mast cell-related gene sig-

nature. We asked whether the mast cell-related gene

signature could distinguish the molecular subtypes of

early-stage LUAD. Using a combination of gene

mutation data sets (genome characteristics) and the

expression profiles of mast cell-related key gene signa-

ture (genetic characteristics), we performed molecular

subtype identification on early-stage LUAD patients.

Three methods were applied to show the classification

effect of the molecular subtypes: (a) a clustering heat

map was generated to intuitively visualize the effect of

sample clustering (Fig. 3A); (b) univariate Cox and

Kaplan–Meier analyses were used to evaluate the sig-

nificance of the difference in survival profiles between

subtypes (HR = 0.59; Fig. 3B); and (b) the average sil-

houette width, a measure of cluster coherence, was cal-

culated to appraise whether samples were more similar

within or across subtypes (Fig. 3C). The results above

indicated that mast cell-related key genes could stratify

early-stage LUAD into two molecular subtypes (sub-

type 1 and subtype 2) with distinct clinical and molec-

ular characteristics. Tumours of molecular subtype 2

had greater average mast cell densities compared with

tumours of molecular subtype 1.

Differently expressed gene analysis was performed

to identify the DEGs between the subtype 1 and sub-

type 2 molecular subtypes. The heat map shows the

expression profile of the DEGs (adjusted P-

value < 0.05 and log2 (FC) > 1.5; Fig. 3D). Then, the

DEGs were subjected to GO analysis (Fig. 3E). The

results revealed enrichments in cell cycle-related terms.

GSEA was performed on the subtype 1 and subtype 2

of early-stage LUAD. Upregulated pathways included

pathways related to coagulation, inflammatory

response and myogenesis in the subtype 1 (Fig. 3F).

Downregulated pathways included pathways related to

E2F targets, G2M checkpoints and MYC targets in

the subtype 1 (Fig. 3G). The immune cell population

distribution in the subtype 1 and subtype 2 further

illustrated the different tumour immune microenviron-

ments in the two molecular subtypes of early-stage

LUAD (Fig. 3H). Among all immune cell populations,

mast cells showed the most significant difference

between the subtype 1 and subtype 2 (Fig. 3I).

3.4. Neural network-based model to identifying

immunotherapy treatment outcomes

To further utilize the mast cell-related gene signature

we identified, we built a neural network-based frame-

work to predict which patient would respond to

immunotherapy according to mast cell-related key

genes. The detailed code is provided in Appendix S2.

Figure 4A illustrates a diagram of the neural network.

Briefly, the early-stage LUAD data set was divided

into training and testing data sets. We constructed the

neural network with the mast cell-related gene signa-

ture by the training data set. The test data set was

applied to evaluate the accuracy of the neural network.

With the increased epoch number for training, the loss

value of the model in the testing set decreased

(Fig. 4B). The confusion matrix showed only one sam-

ple was recognized wrongly in the testing set (Fig. 4C).
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Fig. 2. Mast cell-related gene signature identification. (A) WGCNA was performed to identify seven modules by unsupervised clustering. (B)

A total of six modules (nongrey) were identified. The yellow module had the highest correlation (r = 0.73, P = 8e�53) and was considered

the most correlated with mast cells. (C) The gene significance and module membership of the genes in the yellow module exhibited a high

correlation. (D) A total of 110 mast cell-related genes were identified among the hub genes extracted from the yellow module. (E) The

expression profile of the 110 mast cell-related genes. (F) GO analysis was performed based on the 110 mast cell-related genes.
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Fig. 3. Molecular subtype identification according to the mast cell-related gene signature. (A) Clustering heat map for intuitively visualizing

the effect of sample clustering. (B) Univariate Cox analysis and Kaplan–Meier curves were used to evaluate the survival difference between

the two molecular subtypes. (C) Average silhouette width between the two molecular subtypes. (D) The DEGs between two molecular

subtypes. (E) GO analysis. (F) Upregulated hallmarks in the GSEA. (G) Downregulated hallmarks in the GSEA. (H) The immune cell

population distribution in the subtype 1 and subtype 2. (I) The difference in immune cell population scores and the significances between

the subtype 1 and subtype 2.
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The receiver operating characteristic (ROC) curve

illustrated a high accuracy rate with the area under the

curve reaching 98.7% (Fig. 4D).

3.5. Mast cell-related signature predicts the

prognosis and clinical outcome of early-stage

LUAD patients

The mast cell-related gene signature was employed to

calculate a prognostic risk score. The risk score

MastCellpca was calculated for each patient using the

PCA method. Figure 5A shows the first principal com-

ponent (PCA1) score for each key mast cell-related

gene. MastCellpca was calculated with the expression

level of each gene and the PCA1 score. The results

showed a highly negative correlation between Mast-

Cellpca and mast cell abundance, which further con-

firmed the correlation between the mast cell-related

key genes and mast cells (Fig. 5B). The Kaplan–Meier

plot revealed that patients with a low-risk score had a

Fig. 4. Neural network-based framework construction with the mast cell-related gene signature. (A) Schematic diagram of the neural

network. (B) The loss value in each epoch during training process in the validation cohort. (C) The confusion matrix in the testing cohort

validated the accuracy of the network’s prediction capacity. (D) The ROC plot in the testing data set validated the accuracy of the network’s

prediction capacity.

Fig. 5. Mast cell-related signature-based risk score calculation and the potential mechanism underlying the mast cells in early-stage LUAD.

(A) PCA of the key mast cell-related genes. (B) The correlation between the prognostic signature-based risk score and the mast cell ssGSEA

score in early-stage LUAD patients. (C) Univariate Cox analysis and Kaplan–Meier curves showed prolonged survival in patients with low-risk

scores compared with patients with high-risk scores. (D) The correlation between the ssGSEA score of each hallmark gene and the risk

score. (E) The correlation between the risk score and ssGSEA score in early-stage LUAD patients. (F) The risk score distribution in patients

with wild-type or mutated TP53. P-value was calculated with Mann–Whitney U-test. (G) A Sankey plot was used to reveal the correlation

between mast cell scores, prognostic signature-based risk scores, immunotherapy response and clinical outcome. (H, I) Patients who

received adjuvant therapies, including chemo(radio)therapy and targeted therapy, with low-risk scores, exhibited prolonged overall survival.

924 Molecular Oncology 14 (2020) 917–932 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Mast cells predict outcome in early-stage LUAD X. Bao et al.



925Molecular Oncology 14 (2020) 917–932 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

X. Bao et al. Mast cells predict outcome in early-stage LUAD



better prognosis than patients with a high-risk score

(Fig. 5C). ssGSEA results revealed a high association

of DNA repair and the c-MYC pathway with the mast

cell-related risk score (Fig. 5D). TP53 mutations can

regulate the activation of c-MYC pathway (Frazier

et al., 1998). Due to the high correlation between the

c-MYC pathway and the mast cell-related risk score,

we selected TP53 mutation as an example given its role

in regulating the activation of c-MYC pathway (Fra-

zier et al., 1998) and analysed the mast cell-related risk

score in TP53-mutated and wild-type patients (Fig. 5E,

F). The results showed a high-risk score in the TP53-

mutated patients.

Furthermore, patients with high mast cell abundance

had a low mast cell-related risk score and responded

to immunotherapy (Fig. 5G). In patients who received

chemo(radio)therapy and molecular therapy, the

patients with low mast cell-related risk scores had bet-

ter survival outcomes than those with high mast cell-

related risk scores (Fig. 5H,I).

3.6. The association between mast cell-related

signature and gene mutation in early-stage LUAD

The random forest algorithm was employed to deter-

mine the importance of gene mutations associated

mast cell-related risk score (Fig. 6). The results

revealed that TP53 and CSMD3 were the most impor-

tant gene mutations associated with the mast cell-re-

lated risk score. The patients with TP53 mutations had

significantly higher mast cell-related risk scores than

the patients without TP53 mutations.

3.7. External validation and meta-analysis

Nine external cohorts were used to confirm the associ-

ation between the mast cell-related gene signature and

survival outcomes in early-stage LUAD patients. The

detailed information for each cohort is shown in the

Kaplan–Meier plot (Fig. 7A). A meta-analysis was

performed with a random-effects model, and the

results showed that patients with a high mast cell-re-

lated risk score had poor survival outcomes in the

overall data set (HR = 3.79; Fig. 7B).

4. Discussion

Previous studies have investigated the relationship

between immune cell populations and the clinical out-

comes of cancer patients (Bao et al., 2019b; Bindea

et al., 2013; Chung et al., 2017; Homma et al., 2014).

The heterogeneity of immune cell populations in

Fig. 6. Association of the immune signature with early-stage LUAD gene mutations. The distribution of gene mutations correlated with the

prognostic signature-based risk score. TP53 was the most important mutation according to the importance of ranking.
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Fig. 7. Meta-analysis and external validation of the prognostic value of the mast cell-related signature. (A) Detailed information for the nine

external validation cohorts. (B) A meta-analysis revealed the overall prognostic value of the mast cell-related signature.
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different cancer types leads to a complicated immune

network in the tumour microenvironment and differen-

tially influences tumour initiation and progression. As

a major component of the immune microenvironment

in tumour tissues, mast cells may play a pro-tumori-

genic or antitumorigenic role by releasing different

mediators (Varricchi et al., 2017). For instance, angio-

genic and lymphangiogenic factors secreted by mast

cells promote tumour angiogenesis and lymphangio-

genesis (Detoraki et al., 2010; Detoraki et al., 2009;

Theoharides et al., 2010). Several matrix metallopro-

teinases released by mast cells regulate the digestion of

tumour extracellular matrix and favour the distant

metastasis of cancer cells (Baram et al., 2001). Specifi-

cally, the activation of MYC triggers rapid recruitment

of mast cells to the tumour site to promote tumour

expansion in pancreatic cancer. MYC directly com-

mandeers and instructs tissue remodelling, angiogene-

sis and inflammation by activation of mast cells

(Soucek et al., 2007). Mast cells release tryptase AB1

and interleukin-1b, which in turn induced pleural vas-

culature leakiness and triggered NF-jB activation in

pleural tumour cells, thereby fostering pleural fluid

accumulation and tumour growth (Giannou et al.,

2015). In contrast, mast cells can exhibit antitumour

activity directly through tumour cell cytotoxicity medi-

ated by TNF-a and ROS or indirectly through the

release of interleukin-9 and heparin and the stimula-

tion of dendritic cell maturation (Varricchi et al.,

2017). The complicated roles of mast cells allow them

to play different functions in different cancer types

and stages.

Regarding the impact of mast cells on LUAD

patient outcomes, several contradictory studies have

been published. One study revealed that mast cells cor-

related with angiogenesis and poor outcome in stage I

LUAD (Baram et al., 2001). Another study has

revealed KIT-competent mast cells fuel KRAS-mutant

LUAD formation, growth and metastasis by providing

interleukin-1b and are associated with LUAD progres-

sion (Lilis et al., 2019). However, one research indi-

cated that only mast cells were found by univariate

analysis to be associated with better prognosis in

LUAD (Kurebayashi et al., 2016). Although the

results of these studies are quite different with respect

to the prognostic value of mast cells, previous studies

have shown that mast cell infiltration is more intensive

in low-grade histologic subtypes than in high-grade

subtypes (Carlini et al., 2010). Understanding the

potential mechanism and roles of mast cells in early-

stage LUAD may be helpful for the development of

immunotherapy. Thus, in this study, we analysed the

potential role and mast cell-related genes in early-stage

LUAD. The abundance of mast cells was estimated in

several cohorts. Cox regression was performed to iden-

tify the prognostic value of mast cells in early-stage

LUAD. WGCNA was employed to identify the mast

cell-related gene signature. Molecular subtypes (sub-

type 1 and subtype 2) were identified according to the

mast cell-related gene signature in a mutation data set

of early-stage LUAD. A neural network-based frame-

work was constructed to predict the immunotherapy

outcome of early-stage LUAD patients according to

the mast cell-related gene signature. A mast cell-related

risk score MastCellpca was calculated by the expression

levels of mast cell-related gene signature using the

PCA method. ssGSEA was performed to identify the

potential molecular mechanism associated with the

mast cell-related prognostic signature. The association

between gene mutations and the risk scores was identi-

fied by a random forest algorithm. A meta-analysis

was performed to validate the mast cell-related signa-

ture in external cohorts.

In our analysis, we revealed that a high abundance

of mast cells was associated with prolonged survival in

early-stage LUAD patients. Two external cohorts con-

firmed this conclusion. The differences and controver-

sial conclusions in different studies (Baram et al.,

2001; Kurebayashi et al., 2016; Lilis et al., 2019) may

be due to the mixture of activated and resting mast

cells. The function of activated mast cells may be

masked by the resting mast cells. Therefore, it is essen-

tial to analyse the activated and resting mast cells sep-

arately. In an alternative way, we employed the

following workflow to identify the potential mecha-

nisms and genes associated with mast cells.

First, the immune-related genes were clustered into

several modules by unsupervised clustering. The yellow

module was identified as the most important module

correlated with mast cells according to Pearson’s cor-

relation coefficient. The mast cell-related gene signa-

ture was obtained from the yellow module. The genes

in the mast cell-related gene signature were highly

associated with the mast cell density in early-stage

LUAD. According to the mast cell-related gene signa-

ture and genome characteristics, the early-stage LUAD

tissues were stratified into two molecular subtypes

(subtype 1 and subtype 2). Interestingly, the GO analy-

sis and GSEA both indicated enrichments in cell cycle

and c-MYC-related pathways in the subtype 2. Thus,

we concluded the potential involvement of mast cells

in the c-MYC pathway in early-stage LUAD. One pre-

vious study has demonstrated the important roles of

mast cells in MYC activation and the potential tumour

expansion promoted by mast cells in pancreatic cancer.

MYC is a highly pleiotropic transcription factor whose

928 Molecular Oncology 14 (2020) 917–932 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Mast cells predict outcome in early-stage LUAD X. Bao et al.



aberrant activation links tightly with tumour progres-

sion, including both cell-intrinsic proliferation and

extracellular microenvironment alterations such as tis-

sue remodelling, angiogenesis and invasion (Gabay

et al., 2014). Aberrant MYC activities induce the dys-

regulated expression of a chemokine-encoding gene

cluster, therefore chemoattracting mast cells into the

islets of pancreatic cancer (Soucek et al., 2007). In

consistent with the pancreatic cancer study, the tran-

scriptomic and downstream analyses underscore the

importance of mast cell in MYC activation in early-

stage LUAD. Moreover, the differences in mast cells

between the two subtypes were the most significant of

all the immune cell populations studied, which con-

firmed the relationship between the mast cell-related

gene signature and mast cell abundance. The mast cell-

related gene signature may represent targets for further

study to aid in the understanding of the mechanism of

mast cells in early-stage LUAD.

To further utilize the mast cell-related gene signa-

ture, we built a neural network-based framework to

predict response to immunotherapy. The confusion

matrix and ROC plot confirmed the accuracy of the

network’s prediction capability. Hence, we were able

to apply the expression profile of the mast cell-related

genes to predict the response to immunotherapy using

the neural network framework.

In the next step, we calculated the risk score Mast-

Cellpca according to the expression level of the gene

signature for each patient. ssGSEA revealed a signifi-

cant correlation between DNA repair, the c-MYC

pathway and the signature-based risk score. The

ssGSEA results further confirmed the results from the

canonical GSEA of the molecular subtypes. c-MYC

stimulates the expression of target genes that play

important roles in cell proliferation, growth arrest

and apoptosis in lung cancer cells (Dang et al., 2006;

Tong et al., 2004). Additionally, we further identified

TP53 as the most critical mutation associated with

the mast cell-related signature. Dysregulation of the c-

MYC pathway induces the expression of endogenous

TP53. As a cellular gatekeeper, TP53 plays crucial

role in cell cycle arrest and apoptosis (Mogi and

Kuwano, 2011). The close link between the mast cell-

related signature, the c-MYC pathway and TP53

mutation in our analysis may highlight the roles of

mast cells in early-stage LUAD. However, as we sug-

gested, analysing the activated and resting mast cells

separately would be a promising way for understand-

ing the molecular mechanism of mast cells in early-

stage LUAD. The mast cell-related gene signature we

obtained may therefore prove useful information for

further study in this field.

The mast cell-related signature also served as a promis-

ing marker to predict the survival of early-stage LUAD

patients. We performed a meta-analysis by combining

nine cohorts. The results revealed in both each cohort

and the meta-analysis that the mast cell-related signature

stratified the survival of patients with high and low signa-

ture-based risk scores. The results above also confirmed

the pivotal roles of mast cells in early-stage LUAD.

A problem with the mast cell-related signature of early-

stage LUAD as shown is that only in silico analysis is per-

formed. Experimental studies are required to further elu-

cidate the biological functions underlying the mast cell-

related signature in early-stage LUAD. Large, well-de-

signed prospective population-based studies should be

conducted to investigate the complex role of mass cell

and testify our results on mast cell-related signature.

5. Conclusion

In this study, we depicted the correlation between mast

cell populations and prognosis in early-stage LUAD

patients. A mast cell-related gene signature was identi-

fied. A novel molecular subtype classification and a

mast cell-related gene signature-based neural network

were built to help understanding of mast cell activities

in early-stage LUAD and aid in the development of

immunotherapy for early-stage LUAD patients. Poten-

tial pathways associated with the mast cell-related gene

signature provide new directions for determining novel

mechanisms in mast cells in early-stage LUAD. The

results above may facilitate personalized medicine for

early-stage LUAD patients.
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