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1 Introduction  

Water scarcity is a rising issue worldwide. Agriculture is responsible for 69% of annual 

water withdrawal worldwide, which makes it the largest water consumer (FAO, 2016). 

Global population growth and climate change are putting increasing stress on agricultural 

systems and water resources. Especially in large agricultural areas, droughts have had 

significant impacts. In the states of Texas and California, where agriculture is a crucial 

industry, climate change has led to severe droughts in recent years (S. B. Roy et al., 

2012). The same can be observed in Spain where farmers are suffering from continuous 

dry periods (Peña-Gallardo et al., 2019). Likewise, in Germany drier summers are forcing 

farmers to install irrigation systems (Bundesinformationszentrum Landwirtschaft (BZL) & 

Bundesanstalt für Landwirtschaft und Ernährung, 2020). These are just a few examples 

of global agricultural systems under stress. Adaptation strategies are required for these 

regions and proactive measures must be taken. Varela-Ortega (2016), for example, 

outlines how irrigated agriculture can adapt to climate change in the Guadiana Basin in 

Spain.  

Parallel to adaptation, technological progress in agriculture must also be driven forward 

to satisfy food demand without causing further water stress. Optimal water allocation is 

an urgent matter, and extensive research has been conducted in the field of optimization 

of irrigation systems, which is presented in the literature review. The goal of this work was 

to establish a novel optimization framework for irrigation scheduling based on a physics-

based numerical model. The framework is built around two objectives: minimize water 

consumption and optimize soil moisture conditions. The aim was to successfully reduce 

water stress on agricultural systems by allocating water most efficiently. This was 

achieved by implementing a multiobjective evolutionary algorithm (MOEA), more precisely 

the modified Nondominated Sorting Genetic Algorithm (NSGA-II). The MIKE SHE 

software was used as a physics-based water-balance model to predict soil moisture 

content in the root zone. Single-irrigation events are optimized in alignment with the 

weather forecast while at the same time embedding seasonal specific factors. The 

approach was then extended to multiple fields where sequential irrigation events are 

optimized. 

The NSGA-II has been proven effective to solve the multiobjective optimization problem. 

The optimization framework has been successfully tested for a single event and two full 

seasonal optimizations. The results are further compared to the integrated irrigation 

scheduler of the MIKE SHE software. Besides, an example of how to use the framework 

to test different irrigation strategies is presented. 
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2 Literature Review 

Many researchers have been working on irrigation automation and various approaches 

have been investigated to achieve optimal water allocation. The approaches can be 

divided categorically according to the optimization objectives and the applied optimization 

method. First, I will review the different optimization strategies from the perspective of the 

objectives. Second, the frameworks are reviewed based on the applied optimization 

methods. Last, I will focus on research that investigated similar approaches to the 

optimization framework of this thesis.  

Figure 1 shows the various optimization objectives that researchers have investigated in 

the context of irrigation. The objectives either differ in a spatial (e.g., single, or multiple 

fields) or temporal sense (short-term or seasonal), address specific aspects of the 

irrigation physics (e.g., nutrients or salts), or tackle economic incentives.  

 

 

 

Figure 1: Overview of optimization objectives in the field of irrigation. 

 

Seasonal optimization focuses on the optimization of irrigation over the whole crop 

season. Here, expected dry periods, water resources and growth strategies play a major 

role. Several researchers have followed this optimization strategy (Brown et al., 2010; Fu 

et al., 2014; Kassing et al., 2020). Kassing et al. (2020) proposed a two-level control 
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strategy including a seasonal planner to account for long-term effects while optimizing on 

a daily level. The seasonal planner is based on input data for historic weather data, water 

availability, crop and field information, and seasonal constraints. Fu et al. (2014) focused 

on the crop growth stages, optimizing by allocating the limited amount of water to the 

crucial time of the season.  

Economic optimization aims to maximize the profit of the farm, considering all economic 

factors. Beside fluctuations of product and water prices, García and Fereres (2012) also 

took fluctuations in agricultural policies into account. Their tool is mainly designed to help 

the farmer to make a pre-seasonal decision. Ortega Álvarez et al. (2004) developed a 

model to maximise profit on a farm, based on comparisons of gross margins of crops, cost 

functions, irrigation depths, and the applied irrigation water. Further researchers followed 

similar approaches (Kuo & Liu, 2003). 

Moreover, there are concepts where the regional water allocation is optimized, which is a 

more holistic approach that takes large scale parameter into account, such as water 

supply. One approach is to couple the modelling of reservoir systems to the irrigation 

schedule (conjunctive management). This is often done on a regional scale, too. By 

applying this, fluctuation of water tables and ecological incentives are embedded in the 

irrigation context. (Belaineh et al., 1999; Jiang et al., 2016; M. G. Kang & Park, 2014; 

Singh, 2014) 

Other researchers simply focus on the optimization of the growing conditions for the 

plants. Due to the many factors that play a role in this, different strategies exist. Some 

researchers solely aim to keep the soil moisture content in a stress-free level (Delgoda, 

Malano, et al., 2016). However, nutrients and water stand in a close relationship, as will 

be discussed in 3.1.5. Thus, Roy et al. (2019) modelled the nutrient transport additionally 

to optimize the placement of a subsurface water retention technology. Li et al. also 

concentrated on the water-nutrient coupled modelling to optimize cotton yield, income, 

and nitrogen and water use efficiency (X. Li et al., 2019).  

One strategy that has been discussed by many researchers is deficit irrigation. Here, the 

plant is deliberately exposed to water stress for a certain time of the growing period or the 

whole season to optimize the crop-water production function (Kirda, 2002). This concept 

is crucial in arid or semi-arid regions and will be further discussed in Subsection 3.1.4. 

Lopez et al. (2017) applied deficit irrigation to conduct a seasonal optimization under water 

limitation, based on the growth stages of soya and maize. 

After reviewing the various optimization objectives, I will now delve into the different 

optimization methods that have been applied in the field of irrigation optimization. The 

available literature on irrigation scheduling covers a vast number of optimization 

approaches, which are illustrated in Figure 2. 
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Figure 2: Overview of optimization methods in the field of irrigation. 

 

The methods can be fundamentally divided into four optimization techniques. In 

mathematical optimization and stochastic programming an underlying algebraic model 

exists, while derivative-free and simulation optimization rely on a black-box model 

(Amaran et al., 2016). Furthermore, the approaches can be split up into deterministic and 

stochastic methods. Optimization algorithms must be further separated into single-

objective and multiobjective solvers. In Section 3.3, I will explain the theory of optimization 

in more detail. fphy 

Among others, mathematical optimization strategies comprise Model-Predictive-Control 

(MPC), Linear Quadratic Regulator (LQR), and Proportional-integral-derivative (PID) 

controller (McCarthy et al., 2014). Delgoda et al. (2016) implemented a MPC-based 

strategy to minimize root zone soil moisture deficit under limited water resources. In their 

approach, direct measurements can be included and uncertainty of weather forecasts are 

dealt with by introducing robust MPC techniques. Hence, they achieve feasibility and 

stability, which are crucial aspects of the application of MPC. The optimization is based 

on a linear system model, developed beforehand, which represents the physics of the 

system  (Delgoda, Saleem, et al., 2016). In this context, the root zone soil moisture content 

is optimized in every timestep.  

Fu et al. (2014) also followed this approach in their case study. They developed an 

integrated interval nonlinear programming model for optimal allocation of water under 
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uncertainty during the whole season for different crops. Here, the focus lies on the different 

growth stages of the plant. What made their model special is that the results are obtained 

in intervals and uncertainties of the agricultural system can be considered. The water 

resources were allocated based on 18 stages over the growing season and according to 

the rainfall within the stages.  

Alternative control methods include fuzzy control logic (Giusti & Marsili-Libelli, 2015; M. Li 

et al., 2019; Mendes et al., 2019; Souza et al., 2020) or complex physics-based models 

(Jones et al., 2003; Mannini et al., 2013). AquaCrop is one example of such an irrigation 

model. It is an open-source software developed by the Food and Agriculture Organization 

(FAO) of the United Nations. It is used in several studies (Delgoda, Malano, et al., 2016; 

García-Vila & Fereres, 2012; Hsiao et al., 2009; Linker et al., 2016). Linker et al. (2016) 

based their optimization on an AquaCrop model, whereas García-Vila and Fereres (2012) 

combined an AquaCrop model with an economic model to manage irrigation at farm level.  

As another complex model example, McCarthy et al. (2014) combined MPC with an 

irrigation control simulation framework, which comprises a crop model called OZCOT. 

With their method, they established a strategy that includes spatial and temporal varying 

requirements by defining zones. The control algorithm is applied to each zone and a 

holistic objective function is applied to achieve optimal overall efficiency. The crop model 

is calibrated upfront and then continuously calibrated during application.   

The zoning approach of McCarthy et al. (2014) will be a fundamental idea of this work. 

The MIKE SHE model is highly simplified for a 1D simple soil-column scenario and 

therefore characteristic zones need to be defined, each requiring an adjusted simulation 

model. This is needed in crop fields with heterogeneous soil or varying crops. Parts of the 

farm are split up into zones and the individual zones are optimized separately.  

Simulation Optimization is an approach to optimize under consideration of uncertainty in 

a derivative-free context (Amaran et al., 2016). Alizadeh and Mousavi (2013) created a 

model built on the relationship of stochastic rainfall and irrigation, including shallow water 

table effects. They further considered salt effects on the irrigation, an important aspect in 

arid regions. Linker et al. (2016) published a paper in 2020, which describes the 

implementation of a two-stage explicit stochastic optimization for seasonal optimization.  

Furthermore, I discovered that many researchers and companies integrate or base their 

approach on Internet of Things (IoT) technologies (Fan TongKe, 2013; IoT Based Smart 

Irrigation System, 2020; Togneri et al., 2019). In the scope of these systems, sensors 

measure the soil moisture parameters to ensure optimal growth conditions. Together with 

IoT systems, Machine Learning algorithms and Artificial Intelligence are generally getting 

more popular in the agricultural sector (Liakos et al., 2018). Goldstein et al. (2018) used 

soil moisture sensor data, climate data, and records of actual irrigation strategies that 

have been performed by an expert agronomist to give irrigation recommendations. 

Different regression and classification algorithms were tested.  

The progress in the field of derivative-free and especially evolutionary algorithms (EA) has 

also generated interest in the agricultural sector. Schütze et al. (2006) employed an 
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evolutionary algorithm to optimize deficit irrigation systems. They further compared their 

results with outcomes from simulated annealing, shuffled complex evolution algorithm, 

and differential evolution and found an increase of efficiency and a reduction of 

computational time. Belaqziz et al. (2013, 2014) used a Covariance Matrix Adaptation 

Evolutionary Strategy (CMA-ES) to schedule irrigation based on an Irrigation Priority Index 

and certain constraints, such as canal capacity, tasks timing, distances, and canal flow 

rates. A genetic algorithm (GA) was compared to a linear programming approach by 

Azamathulla et al. (2008). The GA showed a better yield and outperformed the linear 

programming approach. A detailed literature review on irrigation optimization through 

evolutionary algorithms is given by Ikudayisi and Adeyemo (2015). 

In the last part of the literature review, I want to examine approaches which bear 

resemblance to the framework of the optimization approach implemented in this work. 

Many optimization objectives and methods have been discussed but solely in a single-

objective manner. Now, I concentrate on multiobjective optimization. I employed two 

objective functions, which resemble the root zone soil moisture deficit and water 

consumption. The Nondominated Sorting Genetic Algorithm II (NSGA-II) was chosen as 

the multiobjective optimization algorithm. Fanuel et al. (2018) analysed 40 papers on 

agricultural water management, which use a multiobjective optimization technique in the 

form of the multiobjective genetic algorithm, NSGA-II, or multiobjective differential 

evolution. Ikudayisi et al. (2018) applied a similar approach to this works but employed 

the multiobjective differential evolution algorithm instead. The two objectives were 

maximising the total crop net benefit over a season while minimizing water use.  Another 

similar approach was taken by Roy et al. (2019). In their study, they used the HYDRUS-

2D software to simulate water and nutrient flow plus the DSSAT crop simulation software. 

HYDRUS-2D is a software to model two-dimensional water, heat, and solute flow, by 

solving the Richards equation, analogous to MIKE SHE. However, it does not provide a 

crop prediction module. Therefore, DSSAT is used to simulate crop growth over time and 

the overall crop yield. Built on top of these simulation models, they also use NSGA-II for 

optimization. The goal of their study was to integrate a subsurface water retention 

technology, which is often used in sandy soils. The main objectives of the study are 

comparable to the ones of this work: maximising the crop yield, whilst maximising water 

efficiency. (P. C. Roy et al., 2019) 

During the literature review, I found that the list of scientific papers on irrigation scheduling 

is long and the theory behind all the approaches can be challenging.  There is a lack of 

research that compares the different approaches based on computational time, success, 

and applicability to the optimization problem.  
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3 Theoretical Background 

In this chapter, I first explain the physical processes of the unsaturated zone, which are 

relevant to understand the optimization framework. Special attention will be paid to the 

phenology and soil moisture conditions that impact the plant growth. Second, the MIKE 

SHE software is described, with its main features that are important to the optimization. 

Subsequently, I will examine the vast theory of relevant optimization strategies and the 

NSGA-II solver algorithm. Last, a short overview of the Python libraries that were used is 

given. 

 

3.1 Physical Background 

This section deals with the physics of the unsaturated zone. The principle of 

evapotranspiration and the Penman-Monteith method are outlined. The soil moisture 

retention curve is a crucial concept to define the water-soil relationship. It will be discussed 

subsequently. Furthermore, the method of deficit irrigation is explained, and a short 

overview of general plant phenology is given with maize as an example crop. 

 

3.1.1 Evapotranspiration 

Some definitions regarding the physics of water must be discussed to understand the 

principles MIKE SHE is based upon. Evaporation is the process where water changes its 

phase from liquid to gas caused by energy. The main energy source that affects 

evaporation is solar radiation, followed by evaporation caused by air temperature (DHI, 

2019). Furthermore, when water evaporates and the humidity rises, the evaporation will 

decrease. Wind is crucial for the exchange of moist and dry air. If vegetation shades the 

soil, evaporation will decrease due to diminished solar radiation.  

Transpiration is a term used to describe the evaporation from the plant tissues. Pores in 

the plant leaves are the predominant cause of water loss. These pores are called stomata 

and various plants can open or close their pores to regulate the water loss. Wind, solar 

radiation, and humidity also influence the overall transpiration of the plant. (DHI, 2019) 

Evapotranspiration describes the combination of both processes on vegetated soils. While 

shortly after sowing the seed the soil evaporation dominates, the crop transpiration causes 

the main part of water evaporation as the plant growth proceeds. This relationship is 

depicted in Figure 3, where the leaf area index (LAI) indicates the stage of the plant 

growth. The LAI is a dimensionless parameter that quantifies the total upper leaf area of 

a plant per m2 ground area (Allen, 1998).   

Another process related to the water balance in the unsaturated zone is interception. 

While canopy interception defines the retention of precipitation on leaves, branches, and 

stems of plants, the more general term interception further comprises the interception 
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caused by forest floor  (Gerrits & Savenije, 2011). The retained water does not add to the 

soil moisture but is evaporated directly.  

 

 

Figure 3: Partitioning of evapotranspiration over the growth period of a plant. (Allen, 1998) 

 

Different definitions are in use to describe evapotranspiration. Potential 

evapotranspiration is mostly defined as the evapotranspiration that would occur on a 

surface that has unlimited water supply, such as a lake. However, the FAO strongly 

recommends not to use this denomination due to ambiguities in different definitions. This 

is the reason they introduced the so-called reference crop evapotranspiration or simply 

reference evapotranspiration, which is denoted as ET0. This parameter is based on a 

hypothetical grass crop, of 12 cm height, with a surface resistance of 70 s m-1 (indicating 

a dry soil surface) and an albedo of 0.23. In this approach, one assumes that the grass 

crop is fully watered and, hence, ET0 characterizes the maximum ET that can be extracted 

from the reference grass surface. (Allen, 1998; DHI, 2019) 

Reference evapotranspiration solely depends on climate data. Actual evapotranspiration, 

on the other hand, relies on different crop characteristics, such as resistance to 

transpiration, crop height, crop roughness, reflection, ground cover, and crop rooting 

characteristics. Hence, distinct crops can have different ET levels even though they grow 

under identical environmental and climatic conditions.  

Crop evapotranspiration under standard conditions (ETC) is a plant-specific term that is 

used to express evapotranspiration of crops under optimal water, management, 

environmental, and climatic conditions, grown in a large field. ETC is calculated by 

multiplying ET0 by the so-called crop coefficient Kc.  This factor describes the physical and 
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physiological differences between the actual crop and the reference crop. The FAO 

provides values of Kc for all commonly cultivated crops. (Allen, 1998) 

Various stress factors may influence plant growth in a way that prevents optimal 

conditions. This can be in the form of pests and diseases, salinity, low fertility, water 

stress, and spatial limitations of root development (Allen, 1998). These factors depend 

partly on the phenology of a plant, including its water and nutrient storage ability, 

resilience, root depths, and LAI. Further details on this are given in Subsection 3.1.5.  

To improve the accuracy of the crop evapotranspiration the crop coefficient can be 

adapted to field and management practises and growth stages. Additionally, water stress 

is described through a water stress factor Ks. By multiplying ET0 with this factor and the 

modified crop coefficient, one receives the adjusted crop evapotranspiration (ETc, adj). In 

the rest of this work, this parameter will be referred to as actual evapotranspiration (ETa). 

(Allen, 1998) 

A combined approach exists where the water stress factor is adjusted to further account 

for salinity stress, based on the yield-salinity relationship (Allen, 1998). Because salinity 

is neglected in my model, the details of this estimation are not further elaborated. (Allen, 

1998) 

 

 

3.1.2 Modified Penman-Monteith Method 

The modified Penman-Monteith method describes a way to estimate reference 

evapotranspiration from climate data. Under various methods, it is the approach that 

delivers the best results with the minimum error. However, it was found that often the 

values estimated exceed the measurements. Local calibration of the wind function may 

improve this issue. (Allen, 1998) 

The FAO Penman-Monteith method is based on the following equation (Allen, 1998): 

 

 𝐸𝑇0 =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273 𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)
 (1) 

 

where 

 𝐸𝑇0 = reference evapotranspiration [mm day-1], 

 ∆ = slope vapour pressure curve [kPa °C-1], 

 𝑅𝑛 = net radiation at the crop surface [MJ m-2 day-1], 

 𝐺 = soil heat flux density [MJ m-2 day-1], 
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 𝛾 = psychrometric constant [kPa °C-1], 

 𝑒𝑠 = saturation vapour pressure [kPa], 

 𝑒𝑎 = actual vapor pressure [kPa], 

 𝑢2 = wind speed at 2 m height [m s-1], 

 𝑇 = mean daily air temperature at 2 m height [°C]. 

 

To ensure accuracy, the weather measurements should be taken at two meters above the 

ground with well-watered green grass shading the soil (Allen, 1998). Zotarelli et al. (2018) 

provide a detailed step-by-step guide to calculate the reference evapotranspiration 

according to Penman-Monteith.  

  

3.1.3 Soil-Water Retention Curve - Van Genuchten Equation 

Soil-water retention curve indicates how the volumetric water content behaves to changes 

of the matric potential. This depends on the soil type and grain size. Van Genuchten 

(1980) established an equation to describe this behaviour:  

 

 𝜃(Ψ) = 𝜃𝑟 +
𝜃𝑠 − 𝜃𝑟

(1 + (𝛼|Ψ|𝑛)1−
1
𝑛

 (2) 

 

where 

 𝜃(Ψ) = water content according to matric potential [L3 L-3], 

 Ψ = suction pressure [hPa], 

 𝜃𝑠  = saturated water content [L3 L-3], 

𝜃𝑟  = residual water content [L3 L-3], 

 𝛼 = shape parameter [L-1], 

 𝑛 = shape parameter [-], 

 shape parameter 𝑚 = 1 −
1

𝑛
 [-]. 

 

The empirical shape parameters of this approach depend on the pore size distribution and 

the soil type (van Genuchten, 1980). Another factor that influences the soil moisture 

retention curve is the organic content in the soil. Jong et al. (1983) discovered that 

although the texture of the soil is the main influence on the shape and position of the 
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curve, the organic content affects predominantly the point at which a break of the curve 

occurs. Moreover, rock fragments in the soil are causing variability. Thus, an approach to 

set soil parameters for soil-gravel mixtures is addressed by Wang et al. (2013).  

 

 

3.1.4 Deficit Irrigation 

Increasing water scarcity has led to the establishment of a new water optimization 

strategy, called deficit irrigation (DI). Instead of maximizing the crop yield per unit area by 

satisfying evapotranspiration needs, deficit irrigation aims to maximize the production per 

water unit consumed whilst stabilizing crop yield (Fereres & Soriano, 2006). This means 

that crops are grown under water stress conditions below the evapotranspiration needs. 

It was found that deficit irrigation can be applied during growth stages with low sensitivities 

without influencing the crop yield (FAO, 2002). This approach is becoming more popular, 

especially in arid climates as water becomes less abundant. When deficit irrigation is 

applied the salt-balance in arid climates needs to be managed well to minimize water use, 

while preventing salt problems. Some water loss is unavoidable because salt leaching 

must be achieved by applying excess water (Fereres & Soriano, 2006). 

 

 

3.1.5 Phenology and Soil Moisture Conditions 

Phenology is the study of periodic plant and animal life cycle events correlated with 

climatic conditions and biological phenomena (Demarée & Rutishauser, 2011). In 

irrigation optimization, various phenological aspects are to be considered, such as root 

development, growth stages, threshold air temperatures, flowering, development of 

canopy cover, salinity, and nutrient stress. Not only the development of the roots 

themselves is important, but which specific root parts absorb how much water (Ahmed et 

al., 2018). In Figure 4, a rule of thumb is given for the relationship root depth to water 

uptake according to the Natural Resource Conservation Service of the United States 

(Waller & Yitayew, 2016).  
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Figure 4: Rule of thumb for root water uptake over depth. (Waller & Yitayew, 2016) 

 

Another significant factor is the interaction between water and nutrients. While water 

makes nutrients available to the plant, the nutrients can also affect the soil water uptake 

and the plants' resistance to water stress. Droughts lead to a reduction of nutrient uptake 

mainly because nutrients are transported to the roots via water films. If the water film is 

discontinuous, the transport will be disrupted. Moreover, the lack of water causes 

diminished microbial activity, which is responsible for the degradation of organic matter, 

releasing nitrogen, phosphorus, and sulphur. (Shaxson & Barber, 2003) 

Nutrients can also be flushed out of the root zone by advection. While plants can generally 

only store a limited amount of water within them, nutrient storage is much higher. Thus, it 

is suggested to prioritize water supply as a limiting factor. (Shaxson & Barber, 2003)  

A lack of nutrients places constraints on water uptake by preventing root growth. 

Predominantly phosphorus is the limiting nutrient for root development. An appropriate 

strategy is to apply phosphorus-based fertilizers in lower rainfall periods to improve root 

growth and water uptake capability of the plant and to prevent high flow rates that can 

flush out the fertilizer. An approach to modify root growth is described by Aibara and Miwa 

(2014). They propose the modulation of the root system according to the nutrient 

conditions. Phosphor, for example, is stored predominantly in the topsoil. Putting the plant 

under phosphor starvation will lead to excessive root development in the upper soil. The 

opposite case would be nitrate and sulphate, which are more water-soluble. Here, the lack 

of them will lead to root growth towards larger depths. In general, it is hard to assess if 

nutrients or water is the limiting factor because it depends on the sensitivity to water stress 

or nutrient stress at the current crop growth stage. (Shaxson & Barber, 2003) 

The water content available for plants depends on the soil texture. By determining the soil 

water retention curve, the relationship between matrix potential and water content can be 

established. If no measured data is available, a model can be used. The most widely used 
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one is the van Genuchten model (van Genuchten, 1980), which was presented before. It 

is also used in the MIKE SHE software. With the help of this model, the volumetric water 

content at the permanent wilting point (PWP) and field capacity (FC) are determined. The 

PWP is the point where the matrix potential is so large that the remaining water cannot 

desorb from the soil matrix and is hence not available to the plants. The PWP was defined 

to be at a matric potential of -15 bar (Veihmeyer & Hendrickson, 1928). The FC is the 

other extreme where the gravity force of the water exceeds the soil matrix holding 

capacity. The field capacity is the available water after 2-3 days of drainage with no 

evapotranspiration occurring as bulk water content remaining in soil at -0.33 bar of suction 

pressure (Israelson, O.W. & West, F.L, 1922). This value has become the default over the 

years. However, other matric potential values have been proposed, such as -0.25 bar, -

0.1 bar, and -0.05 bar (Nemes et al., 2011; Romano & Santini, 2002; Salter & Haworth, 

1961). In MIKE SHE, a value of -0.1 bar is set (DHI, 2017b). As drained water is not 

available to plants either, the amount of total available water is hence defined as (Allen, 

1998): 

 

 𝑇𝐴𝑊 = 1000 (𝐹𝐶 − 𝑃𝑀𝑃) 𝑍𝑟 (3) 

where 

 TAW = total available water content [mm], 

 FC = field capacity [m3 m-3], 

 PWP = permanent wilting point [m3 m-3], 

 𝑍𝑟= rooting depth [m]. 

 

Optimal growing conditions are fulfilled when the crop evapotranspiration equals the 

available water amount in the root zone of the crop. The difference between these two 

parameters is also defined as root zone soil moisture deficit (RZSMD) (Delgoda, Saleem, 

et al., 2016). Because it is unlikely to achieve a constant RZSMD of zero, parameters are 

needed to describe how the plant reacts when this criterion is not fulfilled.  

Theoretically, all of TAW can be used by plants, however, the plant will be under stress 

before the two thresholds PWP and FC are reached. This has several reasons. Most 

plants need oxygen for cell respiration of the root cells (van Bodegom et al., 2008). If too 

much water is introduced into the soil, it will possibly lead to reduced aeration of the soil 

and anaerobic conditions causing the plant stress (Ministerium für Ländliche Entwicklung, 

Umwelt und Verbraucherschutz des Landes Brandenburg, 2005). Hence, upper 

thresholds for the soil moisture content exist to limit stressful conditions.  When the root 

zone soil water content drops, plants experience stress already before the PWP is 

reached. This is caused by increasing soil matric potential, which reduces water transport 

velocity towards the plant. The rate at which water is transported to the plant drops with 
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lowering water content and transpiration demand cannot be maintained. In summary, 

plants will experience water stress before PWP, or FC is reached. This is expressed in 

terms of the readily available water content (RAW) (Allen, 1998): 

 

 𝑅𝐴𝑊 = 𝑝 𝑇𝐴𝑊 (4) 

where 

 TAW = total available water content [mm], 

 RAW = readily available water content [mm], 

 p = depletion fraction [0-1]. 

 

The depletion fraction defines the average fraction of TAW that can be depleted before 

deficit water stress occurs. The ministry of agriculture, environment and spatial planning 

of the state Brandenburg in Germany (2005) recommends the following water stress 

thresholds: 

 

Table 1: Guideline for water stress thresholds.  (Ministerium für Ländliche Entwicklung, Umwelt und 
Verbraucherschutz des Landes Brandenburg, 2005) 

Share of TAW [%] Growth development 

< 30 plant under water stress. 

30-50  sufficient water supply. 

50-80 optimal water supply. 

80-100 excessive water, danger of oxygen depletion. 

> 100 oversupply  

 

 

Even though Table 1 is a practical first approach, it is not sufficiently accurate.  As 

elaborated before, plants show different characteristics regarding water stress sensibility. 

This depends on the crop itself plus the growth stage. Furthermore, climate-dependent 

potential crop evapotranspiration plays a major role in the depletion fraction. Root depth 

and weather conditions, therefore, affect the depletion fraction greatly. The factor varies 

between 0.30 for shallow-rooted plants at high crop evapotranspiration rates, while deep-

rooted crops at low ETc show depletion fractions of 0.70. Crop specific values for the 

depletion fraction of different crops can be found in Allen et al. (1998). A common value 

used for many crops is 0.50. A common simplified approach is to use one depletion 

fraction per growth stage. (Allen, 1998) 
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Adjustments for weather conditions must be made (Allen, 1998):  

 

 𝑝 = 𝑝𝐸𝑇=5 𝑚𝑚/𝑑 + 0.04 ∗ (5 − 𝐸𝑇𝑐) (5) 

 

where 

 p = weather-corrected depletion fraction [mm] [0.1-0.8], 

 𝑝𝐸𝑇=5 𝑚𝑚/𝑑  = depletion fraction for no stress, 

 𝐸𝑇𝑐 = crop evapotranspiration [mm/d]. 

 

The water uptake further depends directly on the soil matric potential and the 

corresponding hydraulic conductivity of the soil and therefore on the soil. Hence, it is also 

recommended to adjust the depletion fraction to the soil type. Depletion factors of fine-

textured soils should be reduced by a factor by 5-10%, whereas coarse textures an 

increase by 5-10% is suitable. (Allen, 1998) 

The yield-moisture stress relationship was established by the FAO in the Irrigation and 

Drainage paper N°33 (Doorenbos & Kassam, 1979). This so-called crop-water production 

function is the following (Doorenbos & Kassam, 1979): 

 

 (1 −
𝑌𝑎

𝑌𝑚
) = 𝐾𝑦(1 −

𝐸𝑇𝑐,𝑎𝑑𝑗

𝐸𝑇𝑐
) (6) 

 

where 

 𝐾𝑦 = yield response factor [-], 

 𝑌𝑎 = actual yield [kg ha-1 d-1], 

 𝑌𝑚 = maximum yield [kg ha-1 d-1], 

 𝐸𝑇𝑐,𝑎𝑑𝑗 = adjusted (actual) crop evapotranspiration [mm d-1], 

 𝐸𝑇𝑐 = crop evapotranspiration for standard conditions (no water stress) [mm d-1]. 

 

The yield response factor Ky is a crop dependent parameter and may vary over the growth 

stages. It is an indicator of crop sensitivity. Generally, Ky is large during the flowering and 

yield formation period and low during the vegetative and ripening period, which means 
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that plants are more resilient at the beginning of the growing season. Seasonal yield 

response factors are given in Doorenbos & Kassam (1979). (Allen, 1998) 

 

 

3.1.6 Characteristics of Maize  

Maize was used as a test crop for the optimization framework. Thus, the crop 

characteristics are discussed in this section. Maize is one of the most important cereals 

for human and animal consumption and is grown in temperate to tropic climates during 

the period where temperatures are above 15°C. Maize has adapted to various climates 

and the right choice of variety is crucial for successful cultivation. It can withstand high 

temperatures up to 45°C, provided that sufficient water is supplied. However, the plant is 

susceptible to frost during the seedling stages. Maize growth is very reactive to radiation 

and grows on most soils apart from very dense clays and very sandy soils. (FAO, 2020) 

The sensitivity of maize to water shortages is generally medium to high (Allen, 1998). 

Furthermore, the crop is sensitive to waterlogging. Especially, during flowering 

waterlogging must be avoided. Moreover, maize is moderately susceptible to salinity. The 

root depth maximum of maize ranges from 60 cm to 100 cm. A detailed paper was 

published by Ahmed et al. (2018) about root water uptake of maize. It was found that the 

crown roots are the part of the root system that takes up the most water. Seminal roots 

and their laterals also contribute to a lesser extent to the overall water uptake. This is in 

accordance with the rule of thumb in Subsection 3.1.5 and is implemented in the objective 

function. (FAO, 2020; Ministerium für Ländliche Entwicklung, Umwelt und 

Verbraucherschutz des Landes Brandenburg, 2005) 
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Figure 5: Growth stages of maize. (FAO, 2020) 

 

The growth stages of maize are shown in Figure 5. The yield response factors, root depth, 

crop coefficients, and depletion coefficients over the growth stages are given in Table 2. 

The sensitivity to water stress is high during the flowering stage, while it is moderate during 

the establishment and vegetative periods. This is represented by the yield response factor. 

During the flowering stage, RAW must not drop below 50% (Bundesinformationszentrum 

Landwirtschaft, 2017; Ministerium für Ländliche Entwicklung, Umwelt und 

Verbraucherschutz des Landes Brandenburg, 2005).  

 

Table 2: Summary of seasonal crop-characteristic coefficients of maize. (FAO, 2020) 

 

 

Crop characteristic Initial

Crop 

Development Mid-season Late Total

Stage length [days] 25 40 40 35 135

Depletion coefficient p [-] 0.50 0.50 0.50 0.80 -

Root Depth [m] 0.30 >> >> 1.00 -

Crop Coefficient Kc [-] 0.30 >> 1.20 0.50 -

Yield Response Factor Ky [-] 0.40 0.40 1.30 0.50 1.25

Growth Stage
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Maize is a suitable crop for deficit irrigation. No significant reduction of the crop yield was 

found when maize was kept at 30-40% depletion of TAW between irrigation events 

(Stegman, 1982). Kang et al. (2000) confirmed that when applying deficit irrigation during 

certain periods, the maize crop yield can be maintained.  

 

 

3.2 MIKE SHE Software 

The MIKE software products are developed by the company DHI. One of the products is 

the MIKE SHE software, which is used for water balance modelling and simulation of 

surface-groundwater interactions. It integrates all significant processes at the catchment 

scale, such as evapotranspiration, infiltration, overland flow, unsaturated flow, 

groundwater flow and channel flow (MIKE SHE, 2020). Physical, stochastic, and data-

driven methods are provided to model individual processes. MIKE SHE models can hence 

be considered as a holistic approach for the implementation of the whole hydrological 

cycle with its influences on the crop field.  

All MIKE products are using the proprietary Data File System (DFS) format to handle 

spatial time series data. DFS is a binary format that can be split into three parts: A header 

section comprises general information such as start time, geographic map projection, etc. 

The static section saves time-independent static data for certain items. An item could be, 

for example, a parameter such as soil moisture content. The section that takes the most 

storage space within the file architecture is the dynamic data section, which contains time-

dependent data. The Data File System format can be sub-divided into spatial-dimension-

dependent sub-formats. (DHI, 2020) 

The MIKE SHE model itself has the DHI proprietary file format PFS (DHI, 2017a). It can 

be understood as a setup file where all the information of the model is stored.  

In the following chapters, I will provide a theoretical overview of the MIKE SHE software 

functionalities that are crucial in the irrigation optimization context and which are part of 

the setup of the inherent model.  

 

3.2.1 Unsaturated Flow 

MIKE SHE is a software to simulate hydraulic processes with its focus on the unsaturated 

zone. However, an iterative coupling approach is established to account for processes 

related to the saturated zone. Further, the software neglects horizontal flow due to strong 

vertical gravity forces during infiltration processes. This can become a problem for steep 

hill areas but it is stated that in most cases this approach is sufficiently accurate. (DHI, 

2017b) 

Three options are available to calculate the flow in the unsaturated flow through MIKE 

SHE: the Richards’ equation, gravity flow, and a two-layer water balance. I will focus on 
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the Richards equation, which is the most sophisticated method that was applied in the 

underlying model of this work. (DHI, 2017b) 

The Richards equation was established in 1931 and is based on the soil moisture retention 

curve and the hydraulic conductivity function (Richards, 1931). The tension-based 

equation is defined by (DHI, 2017b):  

 

 

 𝐶 
𝜕𝜓

𝜕𝑡
  =

𝜕

𝜕𝑧
(𝐾(𝜃)

𝜕𝜓

𝜕𝑧
) +

𝜕𝐾(𝜃)

𝜕𝑧
− 𝑆 (7) 

 

where 

 𝐶 = 
𝜕𝜃

𝜕𝜓
  , which is the slope of the soil moisture retention curve, 

 𝐾(𝜃) = hydraulic conductivity function, 

 𝑆 = root extraction sink term, 

 𝜓 = matrix potential, 

 𝜃 = volumetric soil moisture content. 

 

The extraction sink term S comprises the water loss through root transpiration in the entire 

root zone and the direct soil evaporation. The direct soil evaporation is computed in the 

top node of the discretization (DHI, 2017b).  

MIKE SHE solves the differential Richards equation by applying a fully implicit finite-

difference method (DHI, 2017b). The spatial derivatives are described at time level t+1, 

whereas 𝐶(𝜃) and K(𝜃) are defined at time level t+1/2. The numerical solution of the 

Richards equation is the following (DHI, 2017b): 
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𝐶𝑥
𝑡+1 (

𝜓𝑥
𝑡+1 − 𝜓𝑥

𝑡

Δ𝑡
) = 

 

|𝐾
𝑥+

1

2

𝑡+
1

2 ∗ (
𝜓𝑥+1

𝑡+1 −𝜓𝑥
𝑡+1

Δ𝑧x+1
) − 𝐾

𝑥−
1

2

𝑡+
1

2 ∗ (
𝜓𝑥

𝑡+1−𝜓𝑥−1
𝑡+1

Δzx
)| ∗

1
1

2
∗(Δ𝑧x+1+Δ𝑧x)

− 𝑆𝑥
𝑡+1  

(8) 

 

where 

 𝐶 = 
𝜕𝜃

𝜕𝜓
  , which is the slope of the soil moisture retention curve, 

 𝐾 = hydraulic conductivity, 

 𝑆 = root extraction sink term, 

 𝜓 = matrix potential, 

 Δz = physical distance between neighbour nodes, 

 Δ𝑡 = time step interval. 

 

The spatially centred hydraulic conductivity K is calculated as follows (DHI, 2017b): 

 

𝐾𝑥+1/2
𝑡+1/2

=
𝐾𝑥+1

𝑡+1/2
+ 𝐾𝑥

𝑡+1/2

2
 

𝐾𝑥−1/2
𝑡+1/2

=
𝐾𝑥

𝑡+1/2
+ 𝐾𝑥−1

𝑡+1/2

2
 

 

3.2.2 Evapotranspiration 

MIKE SHE performs the computation of the actual evapotranspiration through an 

evapotranspiration (ET) model based on the method Kristensen and Jensen (DHI, 2017b; 

Kristensen & Jensen, 1975). This approach is built on the assumption that actual 

evapotranspiration (ETa) cannot exceed ET0 and that the temperature remains above the 

frost point. Due to this limitation, it is not required to differentiate between transpiration 

and evaporation, a separation that can be difficult. The dominating influences that reduce 

the actual evapotranspiration are assumed to be lack of water in the root zone and density 

of the vegetation, defined by the leaf area index. Kristensen and Jensen developed this 

method based on empirical equations derived from field data. (Kristensen & Jensen, 1975) 
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3.2.2.1 Plant Transpiration 

The transpiration of the crop depends on the density of the vegetation, which is a function 

of the LAI, the root zone soil moisture content, and the root density. The underlying 

equation is (DHI, 2017b):  

 

 𝐸𝑎𝑡 = 𝑓1(𝐿𝐴𝐼) ∗ 𝑓2(𝜃) ∗ 𝑅𝐷𝐹 ∗ 𝐸𝑇𝐶  (9) 

 

where 

 𝐸𝑎𝑡 = actual transpiration, 

 𝑅𝐷𝐹 = root distribution function, 

 𝐸𝑇𝐶 = crop evapotranspiration, 

 𝑓1(𝐿𝐴𝐼) = 𝐶2 + 𝐶1 ∗ 𝐿𝐴𝐼     (10) 

   

where  

   𝐶1 𝑎𝑛𝑑 𝐶2 are empirical values [-], 

   𝐿𝐴𝐼 =  leaf area index [-], 

 

 𝑓2(𝜃) =  1 − ( 
𝜃𝐹𝐶−𝜃

𝜃𝐹𝐶−𝜃𝑊
)

𝐶3
𝐸𝑇𝑐    (11)  

   

where  

   𝜃𝐹𝐶 = volumetric moisture content at field capacity [-], 

   𝜃𝑊 = volumetric moisture content at wilting point [-], 

   𝜃 = actual volumetric moisture content [-], 

   𝐶3 = empirical value [-],  

   𝐸𝑇𝐶 = crop evapotranspiration. 

 

The function 𝑓1 expresses the dependency relation of the transpiration on the leaf area, 

whereas 𝑓2 describes the soil moisture content in the root zone. C1 and C2 are empirically 

derived and dimensionless parameters. C1 is the slope of the linear function 𝑓1 at the 
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current value of LAI. It influences the ratio of soil evaporation to transpiration and is a 

plant-dependent value. The MIKE SHE handbook proposes a C1-value of 0.3 for 

agricultural crops and grass, whereas Kristensen and Jensen defined a more specific 

value of 0.31 for barley, fodder sugar beets, and grass. Large values of LAI cause the 

function to be 1.0. The dependency is depicted in Figure 6. C2 is the basic evaporation 

that occurs when the soil moisture content in the root zone is above PWP due to diffusion 

processes between the moist soil atmosphere and the drier atmosphere above the soil. 

The parameter does neither depend on vegetation density nor soil dryness. A value of 0.2 

is used in MIKE SHE based on the assumption that the crop is cultivated in clayed loamy 

soils. However, in the paper of Kristensen and Jensen, a value of 0.15 is proposed for 

these soils. C2 is reduced linearly for soil moisture values below the PWP. (DHI, 2017b; 

Kristensen & Jensen, 1975) 

 

 

Figure 6: ETa/ETc relationship to LAI regarding the empirical constants C1 and C2.  
(Kristensen & Jensen, 1975) 

 

The influence of C2 in MIKE SHE is best understood if we look at how the software handles 

evapotranspiration within the discretization. Soil evaporation is only considered in the top 

node of the unsaturated zone (UZ) soil profile. This is a crucial detail because it implies 

that the soil evaporation can solely occur in the top node. Therefore, this node strongly 

influences the total actual evapotranspiration in dry conditions. If the ratio soil evaporation 

- transpiration is shifted towards soil evaporation by increasing C2, it will lead to an overall 

drop of total actual evapotranspiration, because of higher extraction rates from the topsoil 

node and lower extraction at the bottom nodes (see Figure 7). This is caused by the topsoil 

drying out, while the bottom moisture content is not evaporated. Thus, by increasing the 

constant C2, the model is made dependent on capillary action that brings water up to the 

upper nodes. (DHI, 2017b)   
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Figure 7: Distribution of actual evapotranspiration over depth for different values of C2. 
C2=0 corresponds to pure transpiration. (DHI, 2017b) 

 
 
The function f2 returns a factor for the current volumetric soil moisture content in the root 
zone. The factor depends on the parameters field capacity, permanent wilting point, crop 
evapotranspiration and the constant C3. No experimental data is available for C3. 
However, the parameter depends on the root density and the soil type. A great value of 
C3 should be chosen for soils with high water release at low matrix potential. MIKE SHE 
sets a default value of 20 mm/day for C3, which is double the rate suggested by Kristensen 
and Jensen. After all, the value should be set according to experience. (DHI, 2017b; 
Kristensen & Jensen, 1975) 
 

The root distribution function (RDF) specifies the root development over depth. This is a 

complex process that depends on climatic, environmental, and phenology conditions. 

Root development has been discussed in 3.1.5. MIKE SHE offers to choose between 

user-defined inputs or to use a vertical root density function (DHI, 2017b): 

 log 𝑅(𝑧) = log(𝑅0) − 𝐴𝑅𝑂𝑂𝑇 ∗ 𝑧 (12) 

where 

 𝑅(𝑧) = root extraction at depth z. 

 𝑅0 = root extraction at the soil surface. 

 𝐴𝑅𝑂𝑂𝑇 = root mass distribution factor. 

 𝑧 = depth below the surface.  
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The root mass distribution factor (AROOT) controls the root distribution. As shown in  

Figure 8, the closer AROOT is to zero, the flatter the distribution of ET extraction becomes. 

As in the case of the constant C2, AROOT also influences the total actual 

evapotranspiration strongly. If it is chosen to be high, which means that most water 

extracted by the roots is done in the upper part of the plant, the topsoil will dry out fast and 

the total actual transpiration will drop because the remaining water below is not used by 

the roots. (DHI, 2017b)  

 

Figure 8: Fraction of ET extracted as a function of depth for different values of AROOT.  
(DHI, 2017b) 

 

The value for the root distribution function is layer-specific and is estimated by dividing the 

extracted water in the layer by the total amount extracted by the roots (DHI, 2017b):  

 

 𝑅𝐷𝐹𝑖 = 
∫ 𝑅(𝑧)𝑑𝑧

𝑧2

𝑧1

∫ 𝑅(𝑧)𝑑𝑧
𝐿𝑅

0

 (13) 

 

where 

 𝑧1/ 𝑧2   = layer boundaries. 

 𝑅(𝑧) = root extraction at depth z. 

 𝐿𝑅 = maximum root depth. 
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3.2.2.2 Soil Evaporation 

As mentioned before, MIKE SHE considers the soil evaporation only in the upper node of 

the discretised model. The soil evaporation comprises two parts: the basic amount of 

evaporation (𝐸𝑇𝑟𝑒𝑓 ∗ 𝑓3 ) and evaporation from excess soil water as the soil moisture 

content exceeds field capacity (DHI, 2017b):  

 

 
𝐸𝑆 =  𝐸𝑇𝑟𝑒𝑓 ∗ 𝑓3(𝜃) + (𝐸𝑇𝑟𝑒𝑓 − 𝐸𝑎𝑡 − 𝐸𝑇𝑟𝑒𝑓 ∗ 𝑓3(𝜃)) ∗ 

 
𝑓4(𝜃) ∗ (1 − 𝑓1(𝐿𝐴𝐼))  

(14) 

 

where 

 𝐸𝑠  = soil evaporation. 

 𝐸𝑇𝑟𝑒𝑓 = reference evapotranspiration. 

 𝐸𝑎𝑡 = total actual transpiration. 

 𝐿𝐴𝐼 = leaf area index. 

 𝑓3(𝜃) =  {

𝐶2, 𝜃 ≥  𝜃𝑊

     𝐶2 ∗
𝜃

𝜃𝑊
,  𝜃𝑟 ≤  𝜃 ≤  𝜃𝑊

0, 𝜃 ≤ 0𝑟

 (15) 

 𝑓4(𝜃) =  {
 

𝜃−
𝜃𝑊+𝜃𝐹𝐶

2

𝜃𝐹𝐶−
𝜃𝑊+𝜃𝐹𝐶

2

, 𝜃 ≥  
𝜃𝑊+𝜃𝐹𝐶

2

0, 𝜃 <  
𝜃𝑊+𝜃𝐹𝐶

2

 (16) 

 

3.2.2.3 Evapotranspiration from Canopy Interception 

MIKE SHE models the canopy interception as storage. Before the storage is not full, no 

water is added to the soil moisture budget. The maximum storage capacity depends on 

the growth stage of the plant and the type of the plant per se. The equation is the following 

(DHI, 2017b):  

 𝐼𝑚𝑎𝑥 = 𝐶𝑖𝑛𝑡 ∗ 𝐿𝐴𝐼 (17) 

where 

 𝐼𝑚𝑎𝑥 = interception storage capacity [mm]. 

 𝐶𝑖𝑛𝑡 = interception coefficient [mm].  

 𝐿𝐴𝐼 = leaf area index [-]. 
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The interception coefficient is typically set to about 0.05 mm, but calibration is 

recommended to increase accuracy (DHI, 2017b). An important aspect of how the 

interception is displayed in MIKE SHE is that the interception storage is set as a unit of 

length, not a rate. The full interception storage capacity is added for every timestep, given 

that precipitation is available. This means that the total intercepted water depends on the 

timestep defined, as stated in the MIKE SHE handbook (DHI, 2017b). Hence, doubling 

the number of timesteps in a simulation will also double the intercepted water, provided 

that the interception storage does not fill up completely. The evaporation from the canopy 

is estimated as (DHI, 2017b): 

 

 𝐸𝑐𝑎𝑛 = min (𝐼𝑚𝑎𝑥, 𝐸𝑇𝑟𝑒𝑓 ∗ ∆𝑡) (18) 

 

where 

 𝐸𝑐𝑎𝑛 = canopy evaporation [LT-1]. 

 ∆𝑡 = time step length. 

 

MIKE SHE offers an alternative method to estimate the actual evapotranspiration where 

the unsaturated zone is split up by applying a Two-Layer UZ/ET model established by Yan 

and Smith into the root zone and the zone below where no ET occurs (DHI, 2017b; Yan 

& Smith, 1994). This method was not applied in the MIKE SHE model of this work. Hence 

it is not further elaborated. 

 

3.2.3 Irrigation Module 

The MIKE SHE software offers a module to include irrigation. The user can define where 

the water originates from and how it is applied to the field. Various sources are available, 

such as a river, single well, shallow well, and external. The available water amount can 

be limited by adding a licence limited irrigation file that sets the maximum amount of water 

available per timestep. This is usually applied to account for water permits but it can be 

generally applied to set an upper limit for irrigation rates. Irrigation sources can also be 

limited by a constant maximum rate. Important to mention is that unused water in one 

timestep is not accumulated and added to the next timestep. (DHI, 2019) 

Three irrigation systems are applicable in MIKE SHE: sprinkler, drip, and sheet irrigation. 

According to the chosen method, the introduction of water to the field modelled differently. 

If the user sets sprinkler as the water application method, the irrigation water will be added 

to the precipitation, whereas for drip irrigation it will be appended to the ground as pond 

water. The main difference between these two methods is the canopy interception. Sheet 

irrigation requires an additional data item for defining where the water is added within the 
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command area, under the objective to calculate overland flow. The water is then added to 

the cells as ponded water. (DHI, 2019) 

The irrigation demand module lets the user define a deficit compensation method. Four 

options are available: user-specified, crop stress factor, ponding depth, and maximum 

allowed deficit. User-specified means that no optimization strategy is applied. The user 

can set a constant value or create an irrigation time series. This setup was used in the 

optimization framework. The crop stress factor method is based on ETc and the ETa. This 

factor describes the allowed fraction ETa/ETc before irrigation is started. The ponding 

depth method is specially developed for irrigation systems where crops are under water, 

such as rice fields. 

The method that was used to compare the MIKE SHE model to the here developed multi-

objective optimization approach is the maximum allowed deficit method. This method is 

based on the readily available water content, a parameter that has been explained in 

Subsection 3.1.5. Deficit limits can be set, which define at what soil moisture levels the 

irrigation starts and ends. The user chooses a reference value, which can be either field 

capacity or saturation. If the field capacity is chosen, the difference between the moisture 

deficit start and end corresponds to the depletion factor, described in Subsection 3.1.5. 

(DHI, 2019) 
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3.3 Optimization  

The goal of optimization is to find the best available solution from a set of feasible 

solutions. An optimization problem consists of a real function that is either minimized or 

maximized. Input values, also known as control variables, are systemically chosen and 

the output of the function is computed. The function of the optimization problem can be 

found under various names in literature. It has been denoted as objective function, loss 

function, or cost function for minimization and utility function or fitness function for 

maximization. (Boyd & Vandenberghe, 2004; Erwin Diewert, 2008)  

In this work, it will be referred to as objective function. The standard continuous 

deterministic optimization problem is defined as follows (Larson et al., 2019):  

 

 minimize
𝑥 

𝑓(𝑥) (19) 

 subject to  

 𝑥 ∈ 𝐴 ⊆ ℝ𝑛  

where 

𝑓(𝑥) = objective function. 

𝐴 = domain search space. 

 

The domain search space is some subset of the Euclidean space that lies in the 

boundaries of optimization constraints. A feasible set is characterized as the elements 

within this search space. One can distinguish optimization problems according to the 

variable type. An optimization that is based on discrete variables is called discrete 

optimization, whereas continuous optimization addresses optimization problems with 

continuous variables. One challenge in optimization is to find the global minimum. A local 

minimum is defined as at least as good as any nearby elements, whereas the global 

minimum is at least as good as every feasible element. In the case of a convex objective 

function, there is only one global minimum, while nonconvex objective functions may have 

various local minima. (Boyd & Vandenberghe, 2004) 

The underlying optimization framework is based on the MIKE SHE soil-moisture 

prediction. Hence, no derivative information is available, which makes it a black-box 

optimization problem. The lack of this information makes it difficult to find descent 

directions, to proof convergence, and generally to identify characteristics of optimal points 

(Amaran et al., 2016).  
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Different approaches exist to solve this kind of optimization problem. One option is 

numerical differentiation, where the derivative of every timestep is computed, with 

subsequent algorithms that rely on derivative information, such as the gradient descent 

algorithm. Alternative solutions are derivative-free optimization (DFO) and simulation 

optimization (SO). Here, the algorithms do not rely on mathematical information and are 

therefore suitable for black-box optimization. As depicted in Table 3, the fundamental 

difference between DFO and SO is that DFO is built on deterministic outputs while SO is 

applied for uncertainties in the output data.  

 

Table 3: Terminology of optimization problems. (Amaran et al., 2016) 

  

Algebraic model available Unknown/complex problem 
structure 

Deterministic 
Traditional math 

programming (linear, integer, 
and nonlinear programming) 

Derivative-free optimization 

Uncertainty 
present 

Stochastic programming, 
robust optimization 

Simulation optimization 

  

 

The present irrigation scheduling optimization problem relies on two objective functions to 

account for water scarcity and optimal soil moisture conditions. Hence, it is a 

multiobjective optimization problem (MOOP). Due to their strength in solving MOOPs and 

their ability to handle black-box optimization, I chose DFO as the strategy to develop an 

irrigation scheduling multiobjective optimization framework based on MIKE SHE. The 

mentioned concepts are elaborated in detail within this chapter. 

 

3.3.1 Constraints 

In an optimization problem, constraints can be set, which makes it a constrained 

optimization. Constraints can be defined as soft or hard constraints. Hard constraints imply 

that some boundaries cannot be exceeded, while soft constraints are based on 

penalization within the objective function. In other words, soft constraints can be exceeded 

but a penalization method will be applied for the values that exceed the boundaries. 

(Larson et al., 2019) 

Constraints can be also divided into algebraic constraints and simulation-based 

constraints. Algebraic constraints are used if the constraints are algebraically available, 

which means that gradient information is available to the optimization method. If the 

constraint depends on a black-box simulation, simulation-based constraints will be 

applied. (Larson et al., 2019) 
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There are several methods to deal with both algebraic and simulation-based constraints. 

For example, filter approaches attempt to synchronously minimize the objective and the 

constraint violation. Another method is penalization, as mentioned already. The original 

penalization strategy was an extreme-barrier approach, where the output of the objective 

function is set to infinite when values are out of the set constraints (Audet & Dennis, 2006). 

Later, Audet and Dennis (2009) developed the progressive-barrier method, which 

employs a quadratic constraint penalty for simulation-based soft constraints and an 

extreme-barrier for simulation-based hard constraints.  

 

 

3.4 Multiobjective Optimization 

Multiobjective problems are a vast occurrence in many sectors and our daily lives. Imagine 

a situation where you are in a supermarket comparing various products of the same type. 

Your objective is to buy the product that is cheap but also healthy and eco-friendly. Since 

all these criteria usually cannot be fulfilled at the same time, a compromise must be found.  

For example, the cheapest product is usually not produced eco-friendly, but buying the 

product with the highest eco-standards comes at a higher price. These kinds of problems 

require multiobjective optimization. 

As in the case of shopping groceries, the farmer has various objectives for irrigation. Every 

farmer has the incentive to save water but must ensure that his crops remain in good 

conditions. Another factor is the nutrient-water interaction in the soil. Water is one limiting 

factor, but as described in  3.1.5, nutrient availability is crucial for plant growth. This leads 

to another objective to minimize nutrient usage while creating optimal nutrient availability 

for the crop. In deficit irrigation, the objective differs inherently since here the aim is the 

highest possible farm yield given the available total water, tolerating some crop water 

stress.  

Several review papers about multiobjective optimization methods in different fields are 

available (Alothaimeen & Arditi, 2019; Cui et al., 2017; Gunantara, 2018). The 

mathematical formulation of a continuous deterministic multiobjective optimization 

problem is defined as (Ehrgott, 2005):   

 

 minimize
𝑥 

𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑛(𝑥) (20) 

 
 
 
subject to 

 

 𝑥 ∈ 𝐴 ⊆ ℝ𝑛  
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where 

𝑓(𝑥) = objective function. 

𝑛 = number of objective functions. 

𝐴 = domain search space. 

 

Gunantara (2018) points out two methods that are most commonly applied in MOO. These 

methods are the Pareto method and Scalarization. Scalarization describes the 

transformation of the multiobjective functions into a single objective, by applying weights 

to the individual objective functions. The Pareto optimization on the other hand is a 

performance indicator component that solves the multiple objectives separately and gives 

a compromise solution. The optimal solutions can be displayed as the so-called Pareto 

optimal front (POF). An example POF is visualized in Figure 9.  The optimal front is the 

set of parameterizations, which are Pareto optimal solutions, also called Pareto efficient 

or Pareto non-dominated. Optimal solutions are defined as points where no objective can 

be improved further without impacting another objective. Points that do not provide a 

Pareto optimal solution are called Pareto dominated solutions or Pareto non-efficient. 

These points represent solutions where an objective function can still be improved without 

influencing another objective. Some researchers define the solution of a multiobjective 

optimization problem as computing of all or a representative set of the POF values 

(Ehrgott, 2005). (Gunantara, 2018) 

 

 

Figure 9: Pareto optimal front for two objective functions with characteristic points. (Gunantara, 2018) 
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Characteristic points of the Pareto method are the Anchor Point, which is the best value 

of a corresponding objective function, and the Utopia Point, depicted in Figure 9. The 

solution that shows the shortest Euclidean distance from the Utopia point to the POF is 

also known as knee point, which in Figure 9 is p3. (Gunantara, 2018; Ramirez-Atencia et 

al., 2017) 

In multiobjective optimization methods, the decision-maker (DM) plays a crucial role. The 

decision-maker is expected to be an expert in his field. According to the role of the DM, 

multiobjective optimization methods are generally distributed into four classes (Zhang, 

2014). The first is the no-preference methods, which assume that no DM is accessible 

(Miettinen, 1999). In this method, a neutral compromise is determined without any 

preferences. Second, are the a priori methods. They are based on preferences of the DM, 

which are established beforehand and a solution is found accordingly. Third are the a 

posteriori, which rely on estimating a set of Pareto optimal values. Upon this information, 

the DM can decide according to her/his preferences. The last method is the interactive 

one, meaning that the DM is part of the process and the Pareto front is estimated 

iteratively. Applying this method has the advantage that the DM can explore his options 

and focus on feasible solutions. (Braun, 2018; Zhang, 2014) 

As mentioned before, scalarization functions are one simplified method to aggregate 

multiple objective functions into multiple single-objective problems. This represents an a 

priori method because the weights are set beforehand and only one optimal output is 

estimated. Different approaches exist to achieve this, for example, equal weights, rank 

order centroid (ROC) weights, and rank-sum (RS) weights (Gunantara, 2018). For 

scalarization the objective functions must occur in the same range, thus, normalization 

must be applied (Blank & Deb, 2020; Marler & Arora, 2010).  

Weighting methods can also be used a posteriori to receive one optimal solution from the 

Pareto optimal front. The naïve linear weighted-sum method was used in the implemented 

optimization framework. In this method, relative scalar weights are applied. A 

disadvantage of this method is that the weighted-sum method only works for convex 

Pareto fronts (Blank & Deb, 2020).  
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The equation is the following (Yang, 2014): 

 

 𝑈(𝑥) =  ∑𝑤𝑖𝑓𝑖(𝑥)

𝑖=1

 (21) 

 
 

subject to  
 

 

 ∑𝑤𝑖 = 1,𝑤𝑖 > 0

𝑖=1

  

 

 where  

𝑈(𝑥) = weighted sum. 

𝑓𝑖(𝑥) = objective function. 

𝑥 = control variable. 

𝑤 = weight. 

 

 

3.4.1 Multiobjective Derivative-Free Algorithm Classes 

Many solvers for MOOP that are based on the described Pareto and Scalarization method 

have been developed over the years. As stated in Custódio et al. (2012), derivative-free 

algorithms can be subdivided into the following groups: meta-heuristic algorithms, direct 

search methods (DSM), line-search algorithms for DFO, and trust-region interpolation-

based methods. Meta-heuristic algorithms and DSM are the most advanced in 

multiobjective optimization, thus, the other approaches are not discussed.  

 

3.4.1.1 Heuristics, Meta-heuristics, and Hyper-heuristics 

In contrast to mathematical optimization or iterative methods, a heuristic method defines 

any strategy that seeks to find a solution to a problem, which is not necessarily optimal 

but delivers a sufficient approximation (Bianchi et al., 2009). Well-known examples are 

the rule of thumb or trial and error. While heuristics are a problem-dependent technique 

that takes advantage of the problem characteristics, meta-heuristics are problem-

independent (Bianchi et al., 2009). Another difference lies in the greediness of the 

algorithms. A greedy algorithm is defined as an algorithm that makes a distinct optimal 

choice at each stage, which can cause a reduction of diversity and randomness (Paul E. 

Black, 2005). Since heuristic techniques are greedier than meta-heuristics, this leads to 

them tending to get stuck in a local optimum. Meta-heuristics outperform simple heuristics 

in their computational time and because many meta-heuristics implement some stochastic 
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optimization with sets of random variables, they are more successful in finding the global 

optimum (Bianchi et al., 2009).  

Evolutionary Algorithms (EA) are the predominant meta-heuristic approach for solving 

MOOPs (Braun, 2018; Deb, 2001). They are described in an individual chapter. A sub-

field of evolutionary algorithms is swarm intelligence. Examples of algorithms that apply 

swarm intelligence are the Ant Colony Optimization (ACO) and Particle Swarm 

Optimization (PSO). Moreover, other meta-heuristic approaches to solve MOOP are 

simulated annealing, tabu search, and extremal optimization. 

Hyper-heuristic can be imagined as a process of optimizing the operators of simpler 

heuristics to solve an optimization problem. A hyper-heuristic itself is inherently a heuristic 

search method that often embeds machine learning. The idea is to organize and apply 

simpler heuristics according to their strength and weaknesses and build a system that can 

handle classes of problems instead of solving merely one problem. While meta-heuristics 

search in the problem-solution space, hyper-heuristics search in the search space of 

heuristics. (Burke et al., 2003) 

Apart from these methods, other strategies can be used to solve a MOOP. In contrast to 

DFO, various gradient-descent-based methods exist for MOOPs that provide derivative 

information (Désidéri, 2012; Giacomini et al., 2014; Montonen et al., 2018; Peitz & Dellnitz, 

2018). If uncertainties are inherent to the problem, multiobjective simulation optimization 

is applied (Hunter et al., 2019). Furthermore, a relatively new field is to achieve MOO 

through machine learning. Li et al. introduced a deep reinforced learning strategy to solve 

MOOPs (K. Li et al., 2020).  

 

3.4.2 Multiobjective Evolutionary Algorithms  

The underlying principle of Multiobjective Evolutionary Algorithms (MOEA) is the use of 

search agents that collectively estimate the Pareto-optimal front. EAs are bio-inspired 

meta-heuristic methods capable of solving non-convex numerical optimization problems 

(Emmerich & Deutz, 2018). They apply principles of Darwin’s evolution theory, such as 

selection, recombination, and mutation to lead the search agents towards the optimal 

solutions (Emmerich & Deutz, 2018). One must distinguish between single-objective 

evolutionary algorithms (SOEA) and MOEA. The selection schemes between these two 

differ because, in contrast to single-objective optimization algorithms, multiobjective 

optimization algorithms intend to find multiple nondominated optimal solutions in one 

single optimization run (Deb et al., 2002). 

Standard solvers for MOOP are Non-dominated Sorting Genetic Algorithms-II (NSGA-II) 

(Deb et al., 2002), Strength Pareto Evolutionary Algorithm Version 2 (SPEA2) (Zitzler et 

al., 2001), Multiobjective selection based on dominated hypervolume (SMS-EMOA) 

(Beume et al., 2007), and Multiobjective Evolutionary Algorithm Based on Decomposition 

(MOEA/D) (Emmerich & Deutz, 2018; Qingfu Zhang & Hui Li, 2007). 
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The main distinction between different classes of MOEA is the method used to define 

selection operators. Emmerich and Deutz (2018) define three classes of MOEAs, Pareto-

based, indicator-based, and decomposition-based: 

1. Pareto-based MOEAs (e.g., NSGA-II): These algorithms found on a two-level 

ranking scheme, where Pareto dominance controls the first ranking and diversity 

the second.  

2. Indicator-based MOEAs (e.g., SMS-EMOA): The indicator-based MOEAs are 

governed by an indicator that assesses the performance of a set. The indicator is 

the base of the selection or ranking of an individual.  

3. Decomposition-based MOEAs (e.g., MOEA/D, NSGA-III): The underlying theory of 

these algorithms is to split up the optimization problem into subproblems. Each of 

these tackle distinct parts of the Pareto front. These algorithms are based on 

scalarization and weighting. Every subproblem is assigned with a weight that 

specifies what part of the Pareto front is laid focus on.  

 

3.4.2.1 Genetic Algorithm Theory 

Genetic Algorithms (GA), like genetic programming, evolutionary programming, evolution 

strategy, and others, belong to the category of evolutionary algorithms.  I briefly present 

the method of the standard genetic algorithm to provide fundamental knowledge for the 

more complex nondominated sorting genetic algorithm (NSGA-II).  

Some terms must be defined when discussing genetic algorithms. A standard genetical 

algorithm is initialized by choosing a randomly selected population within the full range of 

the search space. These candidate solutions will evolve over certain generations. They 

are also referred to as chromosomes. With every new generation, the fitness of every 

individual chromosome is estimated, based on the objective function. The size of the initial 

population and the offspring is a user-defined parameter, which should correspond to the 

problem characteristic (Mitchell, 1996). (Baluja & Caruana, 1995) 

The new generations are created by applying the concepts of selection, crossover, and 

mutation. Selection describes the process of choosing the individuals that will create 

children for the generation (Mitchell, 1996). Crossover defines the merging of information 

from the selected parents by transferring random characteristics of them to the offspring. 

Mutation is a principle applied to maintain diversity in the population by adding some 

random changes to the population. (Baluja & Caruana, 1995) 

According to Mitchell (1996), crossover can be interpreted as a variation and innovation 

tool, whereas mutation prevents permanent fixation on any particular point. While it has 

been argued about which operator is the most important, the right balance between 

selection, crossover, and mutation and how it corresponds to the objective function is 

crucial for success.  
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3.4.2.2 Operator Balance and Parameter Setting 

After outlining the basic principle of a standard genetic algorithm, parameter setting 

strategies, which are crucial to establish a well-designed operator balance, are now 

discussed. Selection has the purpose to amplify the impact of the fitter individuals. 

However, it can lead to populations consisting of the local fittest individuals without 

considering other areas of the search space. A certain diversity needs to be maintained. 

On the other hand, a too weak selection will cause slow evolution. (Mitchell, 1996) 

Apart from the selection, crucial parameters to balance the operators are population size, 

crossover rate, and mutation rate. Unfortunately, there are no conclusive reports on the 

effectiveness of parameter settings (Mitchell, 1996). In 1986, a GA was applied to find the 

optimal parameter settings of another GA (Grefenstette, 1986). The results showed an 

optimal performance when setting population size to 30, crossover rate to 0.95, the 

mutation rate to 0.01, and using an elitist selection. Despite its popularity, this setting is 

not optimal for all fitness functions (Mitchell, 1996). Schaffer et al. (1989) proved the 

problem-independence of their optimal parameter setting and suggested a population size 

of 20-30, crossover rate of 0.75-0.95, and a mutation rate of 0.005-0.01. However, the 

common view on EA is that distinct problems require specific EA parameter setups for 

good performances (Lobo et al., 2007). 

This is the reason why in more recent years, the research has been shifted towards 

adaptive parameter settings. Lobo et al. (2007) name the two forms of parameter setting 

“parameter tuning” and “parameter control”. Parameter tuning describes what I have 

discussed until now: the search for good parameter values before the run of the algorithm. 

This can be very computationally expensive if it is done by experimenting (Lobo et al., 

2007). Parameter control on the other side is done during the run. The approaches here 

can be split up into deterministic, adaptive, and self-adaptive. In this context, deterministic 

means that the value of a parameter is changed by some deterministic rule that is 

predefined and does not take any intermediate outputs into account. Adaptive parameter 

control is defined by some feedback-based function that uses the information of the 

current state to adjust the parameter values. Self-adaptive control is built upon the idea of 

evolution, meaning that the parameters themselves undergo an optimization process with 

mutation and crossover and are embedded within the encoding of the chromosomes. 

(Lobo et al., 2007) 

 

3.4.2.3 Operators 

Over the years, vast amounts of operator methods have been established to solve issues 

of operator balances. Among others, developed selection strategies include Roulette 

Wheel Selection (RWS), stochastic universal sampling (SUS), linear rank selection (LRS), 

sigma scaling, Boltzmann selection, exponential rank selection (ERS), tournament 

selection (TOS), and truncation selection (TRS) (Jebari & Madiafi, 2013; Mitchell, 1996). 

Similarly, the number of crossover methods has increased drastically. Simulated binary 

crossover (SBX), 1-point crossover, K-point crossover, reduced surrogate crossover,  
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shuffle crossover, average crossover, discrete crossover, flat crossover,  uniform 

crossover, half uniform crossover, exponential crossover, and differential crossover are 

just a few to mention in a much wider spectrum, summarized by Umbarkar and Sheth 

(2015). Popular mutation methods are mirror mutation, binary bit-flipping mutation, 

random uniform mutation, directed mutation, and polynomial mutation (Lim et al., 2017). 

The number here is comparatively high and corresponding review papers are 

recommended for further details (Lim et al., 2017). The operators that are used in the 

implemented algorithm are described in this chapter.  

 

Simulated Binary Crossover: 

Simulated Binary Crossover (SBX) is one popular recombination approach for real-value 

parameters. It was originally introduced by Deb and Agrawal (1995). Deb et al. (2007) 

extended the operator to a self-adaptive form. First, I will explain the original operator 

before I refer to self-adaptive SBX that was used within the NSGA-II. 

The SBX method uses two parent vectors and a so-called blending operator to produce 

two offspring solutions (Deb & Agrawal, 1995). A crucial parameter in this method is the 

fixed distribution index ηc. A large distribution index value will lead to a resulting offspring 

that is similar to the parent, whereas a smaller value causes the offspring to differ more 

strongly from the parents (Deb & Agrawal, 1995). The computation of this method is 

described as follows.  

A spreading factor bi is defined as a measure for the spreading of the parents and the 

children: 

  

 

 

 

Here, the denominator shows the difference of the offspring solutions, while the nominator 

represents the difference of the parents. As a first step, a random number 𝑢𝑖  between zero 

and one is created. A specific probability distribution that is used to create offspring is 

given as follows (Deb & Agrawal, 1995):  

 

 

 

 𝛽𝑖 = |
𝑥𝑖

(2,𝑡+1)
− 𝑥𝑖

(1,𝑡+1)

𝑥𝑖
(2,𝑡)

− 𝑥𝑖
(1,𝑡)

| (22) 
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𝑃(𝛽𝑖) = {

0.5(𝜂𝑐 + 1)𝛽𝑖
𝜂𝑐 , 𝛽𝑖 ≤ 1  

0.5(𝜂𝑐 + 1)
1

𝛽𝑖
𝜂𝑐+2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  (23) 

 

 

where  

 𝜂𝑐 = distribution index. 

 𝛽𝑖 = spread factor. 

 

Based on this probability distribution, an ordinate 𝛽𝑞𝑖
 is estimated that sets the area under 

the probability curve from zero to 𝛽𝑞𝑖
 to the chosen 𝑢𝑖. The offspring is then calculated 

with the following equation (K. Deb et al., 2007):  

 

 

 
where  

𝛽𝑞𝑖
= ordinate value that sets the area under the probability curve from zero to 𝛽𝑞𝑖

 to 

the chosen 𝑢𝑖 . 

 

Figure 10 clarifies the influence of the distribution index. The higher 𝜂, the more likely 

offspring is close to the parent value of 0.2 and 0.8. Setting the index close to zero will 

lead to a random distribution.  

 𝑥𝑖
(1,𝑡+1)

= 0.5 [(1 + 𝛽𝑞𝑖
) 𝑥𝑖

(1,𝑡)
+ (1 − 𝛽𝑞𝑖

) 𝑥𝑖
(2,𝑡)

] (24) 

 𝑥𝑖
(2,𝑡+1)

= 0.5 [(1 − 𝛽𝑞𝑖
) 𝑥𝑖

(1,𝑡)
+ (1 + 𝛽𝑞𝑖

) 𝑥𝑖
(2,𝑡)

] (25) 
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Figure 10: Influence of distribution index on the offspring probability density. 
𝜂: distribution index. 

 

In conclusion, the SBX operator favours solutions near to the parents, because of the 

probability density. Furthermore, the spread between the offspring solutions is 

proportional to the spread of the parent solution (Deb et al., 2007). The consequence is 

that, once the solutions converge towards an optimum, more distant solutions are 

neglected (Deb et al., 2007). Hence, it was implied that the SBX operator is not 

satisfactory alone to solve complex, large set problems.  

In the self-adaptive version of the operator, a procedure is introduced to update the 

distribution index based on the extension-contraction concept. This means that if the 

offspring has better objective results than the parent, the child solution is embraced by 

increasing the distribution index whilst maintaining the same probability (extension). If 

worse results occur, the distribution index will be decreased. (Deb et al., 2007) 

 

Polynomial Mutation: 

This mutation operator was established in 1996 by Deb and Goyal (Deb & Goyal, 1996). 

The name polynomial mutation (PM) is based on the polynomial probability distribution in 

the method. As in SBX, PM also relies on a user-defined distribution index 𝜂. Additionally, 

a perturbance factor d is used (Deb & Goyal, 1996):  
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 𝛿 =
𝑐−𝑝

∆𝑚𝑎𝑥
 . (26) 

 

where  

 𝑐 = mutated offspring value. 

 𝑝 = parent value. 

 ∆𝑚𝑎𝑥 = maximum allowed perturbance in the parent value. 

 𝛿 = perturbance factor. 

 

Following the principle of the crossover operator SBX, a probability distribution is applied, 

which is dependent on the distribution index and the perturbance factor (Deb & Goyal, 

1996):  

 

𝑃(𝛿) = 0.5(𝜂 + 1)(1 − |𝛿|)𝑛. (27) 

 

where  

 𝛿 = perturbance factor. 

 𝜂 = distribution index. 

 

A random value 𝑢 within the range zero to one is generated. The perturbance factor is 

calculated with this value: (Deb & Goyal, 1996) 

   

𝛿̅ = {
(2𝑢)

1
𝜂+1 − 1, 𝑢 < 0.5.

1 − (2(1 − 𝑢))
1

𝜂+1 , 𝑢 ≥ 0.5.  

  (28) 

 

where  

 𝑢 = randomly generated number in range 0 - 1. 

 𝜂 = distribution index. 

 𝛿̅ = perturbance factor. 
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The mutated child value c is estimated by transforming Equation 26 to: (Deb & Goyal, 

1996) 

𝑐 = 𝑝 + 𝛿̅ ∗ ∆𝑚𝑎𝑥. (29) 

 

 

3.4.2.4 Elitism 

Elitism is an important principle to be able to understand and compare MOEA. Elitism 

ensures that a number of optimal individuals are preserved, which otherwise could be lost 

because they are not selected to reproduce or if they are corrupted by crossover of 

mutation effects (Mitchell, 1996). It can be understood as a storage method that 

guarantees that solution quality cannot decrease from generation to generation (Grosan 

et al., 2003). Different modalities are applied by algorithms to make use of elitism. SPEA2 

is an example of an elitist EA. The algorithm stores all nondominated solutions found in 

an external archive (Zitzler et al., 2001).  

 

3.4.2.5 Applicability of Genetic Algorithms 

There is no straight answer to the question when genetic algorithms are a good method 

to be used. Nevertheless, most researchers share the intuitive opinion that GAs are a 

suitable method if the problem space is large and known not to be perfectly smooth and 

unimodal. Furthermore, it deems applicable for noisy fitness functions, to find local optima 

or if the solution space is not well understood. In case the space of the problem is well 

understood, search methods that use domain-specific heuristics may produce outputs that 

surpass the solution of a GA. (Mitchell, 1996) 

Even though these intuitions may be helpful, the performance will depend on the 

implementation details itself. The success depends on the chosen algorithm, the 

operators, the parameter settings, and the termination. (Mitchell, 1996) 

 

3.4.2.6 NSGA-II 

The non-dominated sorting algorithm (NSGA), developed in 1994, was one of the first 

MOEA algorithms (Srinivas & Deb, 1994). However, some aspects were criticised, which 

eventually led to the establishment of a more elaborated approach that was named NSGA-

II. It tackles the issues of NSGA, which are high computational complexity of non-

dominated sorting, lack of elitism, and need for specifying the sharing parameter. 

Furthermore, with NSGA-II Deb et al. introduced a technique to embed constraints into 

the optimization paradigm. (Deb et al., 2002) 
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NSGA-II falls into the previous mentioned Pareto-based MOEAs category. It follows the 

general outline of a genetic algorithm with a modification in mating and survival selection. 

The algorithms procedure is the following (Deb et al., 2002; Emmerich & Deutz, 2018): 

The first step is the random initialization of a population of points. This first population is 

sorted based on non-domination, also called non-dominated sorting. Every solution 

receives a rank corresponding to its nondomination. Then variation operators are applied 

to create an offspring population. The procedure differs for subsequent steps of the 

algorithm because elitism is introduced by always merging previous populations with the 

offspring population.    

A loop is started consisting of two parts. In the first, the population is subjected to variation. 

Then a selection process is conducted in the second part, which leads to a new 

generation-population. The loop is run until a certain criterion is reached, which can be 

generation amounts, a time limit, or a convergence criterion.   

The variation part consists of the generation of offspring based on two parents. This is 

achieved through binary tournament selection. The simulated binary crossover was 

suggested to recombine the parents (Deb et al., 2002). However, the self-adaptive 

simulated binary crossover is a more elaborate option today and was therefore used in 

this works optimization framework (Blank & Deb, 2020). As mutation strategy, a 

polynomial mutation is used. After the variation, the offspring population is merged with 

the parent generation and the second part of the loop is started.  

The selection part is what makes the NSGA-II special. The ranking process comprises 

two parts: Non-dominated sorting and crowding distance sorting, which is depicted in 

Figure 11. Pt is the parent generation and Qt the offspring that are both merged into Rt. 

The goal is to select a new generation Pt+1 of the same size as the parent population.  

The non-dominated sorting works as follows. Two parameters are estimated for each 

individual: the domination count, which provides the information of how many solutions 

dominate the individual, and a list of the set of solutions that are dominated by the 

individual. This method splits up all solutions into different fronts. In Figure 11, F1-3 are the 

fronts that are obtained by the sorting process. First, all individuals are compared with 

each other. The first front will comprise only solutions with a domination count of 0. From 

there, the algorithm continues going individual by individual through all sets of solutions 

of the first front. The domination count of the individuals that are found in the sets is 

reduced by one for every appearance in a set. After this process, all the individuals that 

have a domination count of zero, excluding the first front solutions, will form the second 

front. The procedure is continued until the last front is obtained. 
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Figure 11: Ranking procedure of NSGA-II. (Deb et al., 2002) 

 

After obtaining the fronts, crowding distance sorting is applied. The crowding distance is 

a solution density estimation that implies how closely other solutions are surrounding an 

individual. The nearest neighbours are used to calculate the average distance between 

the closest solutions of the same front. The procedure is the following: (Deb et al., 2002) 

First, all distances of the front are set to zero. Then a loop through all the objectives is 

initialized. Within the loop, the solutions are first sorted according to the objective function 

values in ascending magnitude and a distance value of infinite is assigned to the maximum 

and minimum values of the solution set. The values  𝑓𝑚
𝑚𝑎𝑥 and 𝑓𝑚

𝑚𝑖𝑛 are the maximum and 

minimum values of the m-th objective function. By adding up the distances of S[i], the 

overall crowding distance of S[i] will be the sum of individual objective solution distances. 

The pseudo-code of the computational estimation of the crowding distance is given below: 
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Algorithm 1: Estimation of crowding distance. 

 

𝑙 = number of solutions 

for i:     set 𝑆 𝑖 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0  

for each objective m:  

    S = sort (S, m) 

    𝑆 0 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  = 𝑆 𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = inf 

    for i = 1 to (𝑙 -1): 

            𝑆 𝑖 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑆 𝑖 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +
𝑆 𝑖+1 𝑚 −𝑆 𝑖−1 𝑚

𝑓𝑚
𝑚𝑎𝑥 −𝑓𝑚

𝑚𝑖𝑛   

 

 

Figure 12 shows a visual example of the crowding distance calculation for a problem with 

two objectives. The crowding distance of the solution i is the average side length of the 

cuboid depicted as a dashed box. (Deb et al., 2002) 

 

 

Figure 12: Estimation schema of the crowding distance in a 2-dimensional objective space. Filled circles 
are solutions of the same nondominated front. The axis ff and f2 are the objective function values. (Deb et 

al., 2002) 

 

After receiving the selection parameters, which are the nondomination rank (front number) 

and the crowding distance, the new population Pt+1 can be formed. This is done with the 

crowded-comparison operator, which fundamentally sets the preferences of solutions: the 
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dominant parameter is the nondomination rank. Thus, solutions with a better rank are 

selected for the new generation. Only if two solutions are within the same front, the 

crowding distance is considered and the lesser crowded individual is chosen. (Deb et al., 

2002) 

With the selection part, the main loop of the algorithm is complete. The working scheme 

of the NSGA-II algorithm is shown below: (Emmerich & Deutz, 2018) 

 

Algorithm 2: Non-dominated Sorting Genetic Algorithm II (NSGA-II).  
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3.5 Python Libraries  

In this section, I briefly want to present the most important code libraries that are used in 

the implemented Python code. An overview of the code itself is given in Section 4.3. 

 

Mikeio (https://github.com/DHI/mikeio)   

This library, which was developed and is further improved by DHI, represents a MIKE SHE 

model wrapper. It enables Python developers to interact with the model, set parameters, 

and get outputs. In this work, the library is used to update and DFS files, which is relevant 

for the weather forecast data and the simulation results.  

 

Pfsreader (https://github.com/red5alex/pfsreader)  

As mentioned in 3.2, the MIKE SHE model setup is fundamentally a PFS-file. 

Unfortunately, mikeio does not implement functionality yet to interact with this file. Thus, 

certain model parameter, mostly when creating the model, cannot be adjusted. Therefore, 

another library was developed within DHI WASY to deal with this issue. The pfsreader 

library is used to assign setup parameters to the MIKE SHE models.  

 

Pymoo (https://pymoo.org) 

The pymoo multiobjective optimization framework for Python was developed by Blank & 

Deb (2020). K. Deb is also the main developer of the NSGA-II algorithm and the self-

adaptive SBX (Deb et al., 2002, 2007). The pymoo optimization framework offers 

implemented algorithms, operators, visualizations, and test problems. It is especially 

effective for the optimization framework of this thesis because it is easily extendable and 

customizable (Blank & Deb, 2020).  
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4 Implementation 

In this chapter, I explain the specifics of the chosen optimization approach and how it was 

implemented. A short overview is given before going into detail in the individual sections.  

In the literature review, many objectives were discussed that have been applied in the 

past in the context of irrigation optimization. Various aspects were picked out to develop 

a novel optimization framework. An overview of this framework is shown in Figure 13. As 

discussed before, the MIKE SHE software was used as a system model to predict soil 

moisture content. The optimization approach is, thus, based on a physics-based model 

with no derivative information available. Because uncertainties are neglected, a 

deterministic derivative-free optimization is a suitable approach in this scenario (compare 

Table 3).  

Two objective functions were chosen, which makes the irrigation scheduling a 

multiobjective optimization problem. On the one side, one objective function aims to keep 

water consumption at a minimum. On the other side, optimal soil moisture conditions in 

the root zone are to be maintained, which is addressed by another objective function. The 

Pareto optimal front is computed with the multiobjective evolutionary algorithm NSGA-II. 

Moreover, an a posteriori decision-making strategy was chosen. According to 

preferences, the optimal solution is obtained by applying either the weighted-sum method 

or by computing the knee point solution.   

Many researchers focused on seasonal optimization, considering growth stages and 

phenological aspects. Seasonal planning can result in misleading strategies because of 

uncertainties in long-term weather forecasts. Hence, I decided to aim at optimizing over a 

shorter time horizon in alignment with reliable weather forecast data. Nevertheless, 

seasonal factors are included in the method. Using the MIKE SHE software offers huge 

advantages here. On the one side, soil and crop attributes may be adjusted over the 

season, possibly through measurements or sensor data, thus improving the accuracy of 

the model. On the other side, parameters such as root development, LAI development, 

water stress, actual evapotranspiration, etc. are estimated as part of the MIKE SHE 

simulation runs. In addition to the soil moisture data, this data offers further options for the 

objective functions and the general optimization approach. For instance, the root depth 

output is established in the objective function to define in what depth the soil moisture 

conditions are optimized and the estimations of ETa and ETc are used to develop a water 

stress indicator. The optimization approach is further brought into a seasonal context by 

putting seasonal specific weights on the objectives. According to the crop growth stage 

and the water stress sensitivity during the corresponding stage, either saving water or 

ensuring optimal soil moisture condition is prioritized in the weighted-sum a posteriori 

decision-making process. For example, due to the high sensitivity of maize during the 

flowering period, the weight in the weighted-sum method is put on maintaining optimal soil 

moisture conditions during this time.  

In general, the focus was laid on single-field optimization. However, an extended multi-

field approach was implemented and tested for a two-field scenario. The idea is to have 
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one model for every individual field or crop. By adjusting the control variables and 

weighting the objective function outputs of the individual models a priori, a multifield-

optimization has been successfully established. More detailed information on the multi-

field approach is given in Subsection 4.2.4.  

 

 

Figure 13: Overview implemented optimization framework. 

 

Before talking about the optimization, the black-box MIKE SHE system model is 

described. Second, the optimization framework with an analysis of the system behaviour, 

single-field optimization, objective functions, and multi-field optimization is explained. 

Last, the structure of the implemented code is briefly presented. 
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4.1 MIKE SHE Model 

In this section, I will explain the parameter and the general setup of the test model that 

was created to validate the optimization. This also serves as a general example on how 

to set up a MIKE SHE models for the optimization purpose in other locations. An overview 

of the crucial model parameters is given in Table 4. It is important to stress that all these 

parameters can easily be changed and adapted for other scenarios. The model is 

completely decoupled from the optimization itself and could be theoretically replaced by a 

different system model that predicts soil moisture content.  

 

Table 4: Overview setup of the physics-based system model created in MIKE SHE.  

Model Parameter   

Simulation Period 7 days 

Simulation Timestep 6 min 

Vegetation Start Date 1st of May 

Groundwater Table  4.1 m 

Irrigation Type Sprinkler 

Soil Type Brown Earth 

Crop Type Maize 

Initial Conditions Flexible - based on excel sheet 

 
Climate Inputs:   

Reference Evapotranspiration 
Penman-Monteith based on DWD 
weather data  

Precipitation Rate DWD weather data 

 
 
Discretization:   

Depth Cell height 

0 - 0.2 0.05 

0.2 - 1.0 0.1 

1.0 - 2.0 0.25 

2.0 - 10 0.5 

 

 

A one-week optimization horizon was chosen to test optimization in alignment with 

sufficiently reliable weather forecasts. At the same time, this is the simulation period 

because in the objective function all simulation outputs within the simulation period are 

evaluated. The longer the simulation period is set, the higher the uncertainty in the 

optimization due to the increasing uncertainty of the weather forecast. Furthermore, the 

chosen framework only optimizes the next best irrigation event. Therefore, the simulation 
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period must be adjusted to how the physics-based system reacts to an event, which 

means how fast the water infiltrates and distributes in the soil. The infiltration velocity 

depends highly on soil characteristics. This must be kept in mind when choosing the 

optimization horizon in cases of different soils with deviating hydraulic conductivities.  

Two irrigation methods were tested in this work: sprinkler and drip irrigation. Furthermore, 

brown earth (German: “Braunerde”) was selected as a test soil. The Van Genuchten soil-

water retention curve for brown earth was computed based on the soil database of MIKE 

SHE and is plotted in Figure 14. The saturation is reached at a volumetric soil moisture 

content of 38.5 %. Using the default field capacity matric potential of MIKE SHE (-0.1 bar), 

it was computed that FC is reached at 16.54 %, while the permanent wilting point starts 

from 2.65 % volumetric water content at a matric potential of -15 bar. This means that 

according to Equation 3, TAW is estimated to be 13.89 cm per meter root depth.  

 

 

Figure 14: Van Genuchten soil-water retention curve of soil type: brown earth. 

 

Maize was the crop of choice in the optimization test scenario. The phenology of maize 

was discussed in detail in Subsection 3.1.6. In Figure 15, the development of the plant is 

plotted in the form of root depth and LAI development. These progressions are predefined 

by the MIKE SHE database itself but could be manually adjusted. 
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Figure 15: Root depth/LAI/crop coefficient development of maize 
over a crop season computed with MIKE SHE. 

 

The soil depth is discretised according to Table 4. In the upper part, the resolution is 

chosen higher because of a stronger variation of moisture content. I implemented a 

Microsoft Excel spreadsheet to assign the initial soil moisture content. Measurements in 

any depths can be filled in and are linearly interpolated to fit the discretization of the model.  

The input weather data is taken from the German meteorological service (DWD). They 

provide weather forecast for ten days in their Model Output Statistics-Mix (MOSMIX). This 

data can be downloaded from their server (https://opendata.dwd.de/) manually. This 

process has been automated for the optimization framework. Furthermore, historical data 

was downloaded from their server for the testing and validation of the optimization. Based 

on this data, the Penman-Monteith method was applied to estimate the hourly reference 

evapotranspiration.  

 

 

 

https://opendata.dwd.de/
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4.2 Optimization 

4.2.1 Analysis of the Optimization Problem 

The implementation of a successful optimization framework depends on various factors, 

such as scientific expertise, knowledge of customer demands, and knowledge of 

operational and general limitations. The behaviour of the system must be well understood 

to choose the right approach and adapt the optimization to the system. Therefore, I will 

discuss the behaviour of the system model and then the optimization problem in this 

section.   

Figure 16 shows the results of a seasonal simulation in 2018. No irrigation was set in this 

scenario and it was expected that at the time of seeding, the soil moisture content in the 

root zone was close to field capacity, representing an ideal scenario. Further details on 

this simulation run are given in Appendix A.1. 

I observed that the soil moisture varies most in the top node in 5 cm depth, which is due 

to the soil evaporation that is estimated solely in the upper node (see 3.2.2). With 

increasing depth, the soil moisture lines are smoother. At the beginning immediately after 

seeding, the soil moisture content remains relatively stable, decreasing mainly due to soil 

evaporation. As soon as the roots and leaves begin to develop, a general drop of the soil 

moisture content is observed and the evaporation ratio shifts from soil evaporation to 

transpiration, as elaborated in Figure 3. Having a closer look at the average water content 

in the root zone, it is noticeable that even though the soil water content drops in the upper 

root zone, the average root zone soil moisture content is equalized. This is caused by the 

root growth of the plant. In the first stages, the soil remains close to field capacity below 

the root zone. With further expansion of the roots, this water is available.  

Once the leaves and roots are fully developed in July, the soil water content in 5 cm depth 

has reached the permanent wilting point. Since now the roots are not expanding into new 

depths where water is still untouched, the overall water content in the root zone starts 

dropping. Furthermore, soil evaporation is decreased because of the LAI reaching its 

maximum, which leads to canopy interception.  
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Figure 16: Analysis system model - 2018 seasonal simulation without irrigation. Initial conditions were set 
approximately to field capacity. 
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The water stress can be expressed in form of root zone water deficit, which is the 

difference between ETc and ETa, also shown in   

Figure 16. The deficit is mainly found during the flowering and in mid-season once the 

water stored in the soil is exhausted and when the crop has developed all its roots and 

leaves. At this point in late June, irrigation becomes crucial to assure optimal growing 

conditions, especially because maize is sensitive to water stress during flowering. The 

total water deficit from seeding until the 1st of October lies at 363 mm. In other words, the 

maize requires this amount of water for optimal yield, which must be added in form of 

irrigation. By considering seasonal sensitivities and specific crop growing strategies, the 

allocation of the water can be optimized. As I have discussed the system's behaviour 

without irrigation, I now want to examine how the system reacts to different irrigation 

events.  

First, I compared the soil moisture contents of an irrigation event that occurs during a 

precipitation event to a preceding irrigation event. The results are shown in Figure 17 and 

indicate that asynchronous irrigation leads to water reaching deeper into the soil, whereas 

a simultaneous irrigation event shows higher soil moisture contents in the upper soil. The 

whole analysis with the model parameters is in Appendix A.2.  

 

Figure 17: Comparison of irrigation events that occur synchronous vs. asynchronous to a precipitation 
event. Y-axis: average soil moisture for a weekly prediction, X-axis: depth below the soil surface. 

 

At the same time, this implies that gradual irrigation instead of short-term flooding should 

have the same effect. To prove this, I conducted three test runs: one scenario where no 

irrigation method was applied, another wherein a short time a lot of water is introduced 

into the field, and third, a long-term irrigation event over a period 4 times larger than the 

short-term scenario. The total amount of water in the irrigation scenarios was kept at the 
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same level. The results are given in Figure 18 and show that indeed the long-term 

irrigation leads to a better distribution of water in the ground. The parameter settings and 

detailed plots of the test are in Appendix A.3. 

 

Figure 18: Comparison of long-term vs. short-term irrigation as average soil moisture content over depth. 
y-axis: average soil moisture for a weekly prediction, x-axis: depth below the soil surface. 

 

After giving an overview of the system's behaviour, I will now talk about further aspects of 

the optimization problem. A general question is how to deal with seasonal characteristics. 

One issue here is how to address the initial stage, where no leaves and roots exist, yet. 

The soil evaporation is high during this stage and unnecessary water losses may occur. 

Furthermore, a problem that was observed during the mid-season is that it is not possible 

to allocate water in a way that deeper soil parts of the root zone are replenished without 

exceeding the upper water stress constraint in the root zone close to surface. Hence, 

during this time the soil moisture levels cannot be maintained at an optimal level in all 

depths. It is a trade-off between placing the top roots under stress due to excessive water 

or allowing water depletion in the bottom root zone.  

The impacts of irrigation over a longer period than a week are hard to qualify but are 

crucial for the irrigation schedule. One of my research objectives was to analyse if it is 

more efficient to fill up the water storage before the season starts or if more water is stored 

and effectively used by applying weekly irrigation. This analysis is presented in 5.1.4. 

Other factors that influence the optimization paradigm are operational limits. How often 

can the farmer water one field in a week and how long is the duration of an irrigation 

period? Furthermore, the optimization depends on the available pump and irrigation 

system on site. A solar pump will show fluctuating pumping rates depending on solar 

radiation and limits the irrigation to daytime. It is favourable to make the optimization 
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parameters flexible so that the framework can be scaled and customized to distinct 

preferences. This was achieved by applying an objective-oriented code structure and 

generally decoupling the optimization from the MIKE SHE software. The parameters can 

be easily adjusted, and constraints can be set individually. This is further elaborated in 

Subsection 4.2.3. 

 

4.2.2 Objective Functions 

As discussed in the theoretical background in Section 3.3, an optimization problem is 

solved by minimizing one or in the context of MOO multiple objective functions. In the 

context of irrigation, the objective functions must inherit all necessary irrigation parameters 

that require evaluation for optimal scheduling. The main goal of this optimization 

framework was to ensure optimal growth conditions under limited water supply. Therefore, 

the parameters soil moisture, root zone depth, sensitivity to water stress, and water 

consumption are considered. The objectives were split up into two functions, one 

addressing the water use and the other the optimal moisture conditions in the soil. The 

water consumption objective function is the following: 

 

 min
𝑄,𝐼𝑃 ∈Θ

𝑓(𝑄, 𝐼𝑃) =
𝑄 ∗ 𝐼𝑃

𝑄𝑚𝑎𝑥 ∗ 𝑡
 (30) 

   

 where 

𝑓(𝑄, 𝐼𝑃) = water consumption objective function. 

𝐼𝑃 = Irrigation duration period. 

𝑄 = irrigation rate. 

𝑄𝑚𝑎𝑥 = maximum possible irrigation rate. 

𝑡 = total amount of timesteps in the simulation.  

 

This objective function simply quantifies the water consumption in the form of a linear 

relationship between irrigation duration period and irrigation rate. The amount is further 

normalized to keep it in an interpretable range between 0 and 1.  

The objective of optimal conditions is formed by implementing a function that comprises 

the resulting soil moisture data from a whole simulation run. Every estimated soil moisture 

value of the simulation period within the root zone is evaluated by taking the difference 

from the predefined optimal value. Following the progressive-barrier method, the function 

is built with the cost quadratically increasing with the said difference. This way, soil 

moisture value results that are further away from the optimum are penalized to a higher 
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extent. The root depth itself depends on the growth stage and is automatically adjusted 

based on the MIKE SHE output. The equation is as follows:  

 

 min
𝜃∈Θ

𝑓(𝜃) =
√∑ ∑ 𝑓𝑖(𝜃𝑖,𝑡 − 𝜃𝑜𝑝𝑡)𝑒𝑛

𝑖𝑡

𝑡 ∗ 𝑛 ∗ 𝜃𝑜𝑝𝑡
 (31) 

   

 where 

𝑓(𝜃) = soil moisture condition objective function. 

𝑛 = current root depth index according to discretization.  

𝑡 = simulation time step. 

𝑖 = depth index within the root zone. 

𝜃 = volumetric soil moisture content. 

𝜃𝑜𝑝𝑡 = optimal volumetric soil moisture content for maize. 

𝜃𝑙 = lower constraint of volumetric soil moisture content. 

𝜃𝑢 = upper constraint of volumetric soil moisture content. 

 

 penalty exponent:      𝑒 =

{
 
 
 
 

 
 
 
 
2, 𝜃𝑙 ≥ 𝜃𝑖,𝑡 ≤ 𝜃𝑢

2, 𝜃𝑖,𝑡 > 𝜃𝑢 𝑎𝑛𝑑 𝑖 = 1

4, 𝜃𝑖,𝑡 > 𝜃𝑢 𝑎𝑛𝑑 𝑖 ≤
1

2
𝑛

4, 𝜃𝑖,𝑡 < 𝜃𝑙 𝑎𝑛𝑑 𝑖 ≤
1

2
𝑛

3, 𝜃𝑖,𝑡 < 𝜃𝑙 𝑎𝑛𝑑 𝑖 >
1

2
𝑛

3, 𝜃𝑖,𝑡 < 𝜃𝑙 𝑎𝑛𝑑 𝑖 >
1

2
𝑛

     . 

 

root extraction factor:      𝑓i =

{
 
 

 
 
 0.4, 𝑖 ≤ 𝑛/4

0.3,
1

2
𝑛 ≥ 𝑖 >

𝑛

4

0.2,
3

4
𝑛 ≥ 𝑖 >

1

2
𝑛

0.1, 𝑛 ≥ 𝑖 >
3

4
𝑛

      . 

 

 

The soft constraints are established by using a penalty factor. This is achieved by 

increasing the exponent when a soil-moisture value exceeds the water stress levels. 
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Because maize extracts most water at the upper root zone the focus is laid more on 

optimizing in this depth. In the lower half of the root zone, the exponent is therefore only 

increased by one if the water stress levels are exceeded. A special case is the top node 

of the soil. As discussed in 4.2.1, it was found that limiting the water content in the topsoil 

prevents replenishing lower depths of the root zone. To deal with this issue the upper 

constraint penalty is lifted for the top node. This strategy showed good results where 

neither the roots close to the surface nor the lower roots are experiencing extensive water 

stress. Moreover, a general weighting of the root zone is applied based on the rule of 

thumb, discussed in Subsection 3.1.5. The root extraction factor embeds this by splitting 

up the root zone into four parts and weighting it accordingly. The term is further normalized 

to reduce the output to a similar range as the water minimization objective function 

outputs.  

 

 

4.2.3 Single-Field Optimization 

The presented approach is a deterministic multiobjective optimization. Three control 

variables were optimized: the irrigation rate, the start time of irrigation, and the irrigation 

duration. The approach is a mixed discrete-continuous optimization because the irrigation 

rate was set as a continuous control variable, whereas the start and interval are set as 

integer to represent hourly values. The solver NSGA-II was implemented to compute the 

Pareto optimal front. The framework of this single-field optimization is explained in this 

subsection.  

A set of variables need to be defined for the optimization process. These can be divided 

into seasonal constants and seasonally varying variables. This way, phenological 

changes and growth stage-specific changes, as discussed in the section before, can be 

considered. Table 5 shows all significant variables of the optimization framework with 

example values of the test simulation of 2018 (see 5.1.2). I want to stress that all given 

values in the table can be changed freely according to application or needs. The individual 

parameters of the table are discussed now. 

The soil-water characteristics are described in the section before. However, the water 

stress levels have not been discussed because they are not relevant for the MIKE SHE 

model itself but the optimization as variables in the objective functions. According to the 

guideline values found in the literature (see Subsection 3.1.6), the water stress levels were 

set as shown in Table 5. The optimal value was defined as 65% of the field capacity. The 

optimal value, the lower, and the upper threshold were constant apart from the late 

season, where I penalize only very low water contents to avoid waste of water close to 

harvest.  

The optimization interval was set to one week for the test runs. This means that every 

week the optimization algorithm was executed in the seasonal test optimization. The 

minimum watering depth is crucial for the initial crop stage immediately after seeding. It 

defines at what depth the soil moisture is optimized before the plant has even started 
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growing. The range of the control parameters sets the domain search space. On the one 

side, this is the irrigation rate minimum and maximum. On the other side, the possible 

values for the irrigation start time, which is limited by the total simulation period, and the 

range of the irrigation duration are defined. The range of irrigation duration is set growth 

stage-specific and according to the guideline provided by the German Association for 

Water, Wastewater and Waste (2019). This has proven to be a successful approach. After 

winter, water is abundant in the soil and during the initial growth stage, only the topsoil is 

slowly depleted of water. As examined in Subsection 4.2.1, shorter irrigation events lead 

to a higher increase in the topsoil as compared to long irrigation intervals. Thus, short 

irrigation events are the right approach in the initial stage, whereas with increasing root 

depth and transpiration, longer irrigation intervals are favourable to replenish soil moisture 

content in the whole root zone.  

 

Table 5. A general overview of the optimization parameters with example values. 

 

 

 

The parameters that are specific to the algorithm NSGA-II have been tested and the 

values were chosen under consideration of the computational time and the 

recommendation in the literature (see 3.4.2.2). Population size and offspring size were set 

to 10 in the test runs. Distribution indices of SBX and PM were both set to 1 to increase 

the randomness in each new generation.  

Optimal Soil Moisture Level 11.68% NSGA-II:

Optimization Interval 7 days Population Size 10

Maximum Pumping Rate 2 mm/h Offspring Size 10

Minimum Watering Depth 10 cm SBX distribution index η 1

PM distribution index η 1

Control Variables Ranges: Manual Sampling:

Upper Limit Start Time ≙ total timesteps - 

irrigation interval 

maximum Start Time Range 0 - 12 hours

Lower Limit Start Time 0 ( ≙ current time) Range Irrigation Interval ≙ seasonal value

Upper Limit Pumping Rate ≙ max pumping rate Pumping Rate Range 0.3 - 1.0 mm/h

Lower Limit Pumping Rate 0 Stress Indicator 0.2 mm/h

Parameter Initial Stage Crop Development Flowering Mid-season Late season

Days after seeding 30 70 90 105 130

Depletion Factor 0.5 0.5 0.5 0.5 0.8

Lower Stress Level 8.27% 8.27% 8.27% 8.27% 3.31%

Upper Stress Level 13.76% 13.76% 13.76% 13.76% 13.76%

RAW [cm/m root depth] 8.27 8.27 8.27 8.27 13.23

Range Irrigation Interval [h] 4-36 48-96 48-96 48-96 48-96

No. of generations 4 7 8 7 4

Objective Weights f1/f2 0.5/0.5 0.3/0.7 0/1 0.3/0.7 0.4/0.6

Constants

Seasonal Dependent Variables
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I also implemented the option of an initial manual sampling that differs from the defined 

control variable ranges. This means that the first generation that is evaluated by the 

NSGA-II is set to a narrower range of values to direct the algorithm to the range where 

the expected global minimum lies. Manual sampling is used in the following way. Before 

running the NSGA-II, the model is simulated without irrigation. Based on a water deficit 

indicator, it is then decided if the manual sampling is activated or not. If the field is 

predicted to be under water stress, the optimal irrigation start point will not lie far ahead in 

the future. The range of the initial parent generation is set accordingly so that the NSGA-

II focuses on values close to the current time. By including this domain knowledge, manual 

sampling helps the algorithm to work more efficiently by starting the search in the 

presumably correct range.  

A way to minimize the computational time during the test runs was to set the termination 

criterium of NSGA-II according to the growth stage. While in the initial stage and the late-

season fewer generations were computed, the amount was increased during the other 

stages. During the flowering stage, a lot of factors influence each other, and the 

optimization is more complex than at previous crop stages, thus the total generation 

amount is set higher.  

I implemented two methods to deal with the a posteriori weighting of the objective 

functions. One is to receive the knee point of the Pareto Optimal Front by computing all 

Euclidean distances from the utopia point to the solutions and choosing the one with the 

shortest. The other approach is the weighted-sum method, which was deployed in the test 

optimization runs. The weighting is seasonally adjusted to the sensitivity of maize to water 

stress. For example, during the flowering stage, the solution is picked that delivers the 

best results for the optimal conditions objective.   

 

 

4.2.4 Multi-Field Optimization 

Another objective was to optimize the schedule in the case of multiple fields with different 

crops. For this purpose, the approach was altered. The control variables that are optimized 

are different now. The irrigation rate is predefined and set as constant to reduce 

complexity. Instead, multiple irrigation intervals are optimized sequentially. This means 

that for a two-field optimization there are 3 control variables: start time and irrigation 

interval of the first field, and the irrigation interval of the second field. Since all the values 

are discrete integers that represent hourly intervals, it is a discrete optimization. The 

framework is depicted in  

Figure 19. Every field is represented in an individual MIKE SHE model file, which must be 

set up according to Section 4.1.  
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Figure 19: Multi-field optimization framework with example values. 

 

Before the optimization, the irrigation urgency of each field is evaluated. This is achieved 

by assigning a field water stress indicator. Like the single-field manual sampling approach, 

the water deficit average is used for this purpose. Each model is simulated once without 

considering any irrigation. According to the water needs of each field, one is prioritized. 

One assumption in this framework is that the fields are watered consecutively without 

stopping. Furthermore, the simulation horizon must be extended according to how many 

fields exist. In the case of more than two fields, one-week simulation horizon is not 

sufficient because during the flowering period each field should be irrigated for a time 

interval of two to four days.  

In this approach, one control variable is added per extra field. This limits this approach. 

Because of this, I recommend splitting up the optimization for more than two fields and 

optimize sequentially. For instance, in the case of a farm with four fields, prioritization 

would be done based on the stress indicator. According to this, the fields are ranked. The 

first two in line are then optimized together. Towards the end of the irrigation period of the 

second-ranked field, the other two fields can be optimized. This also ensures that 

sufficiently reliable weather forecast data is used.  

Field Prioritization   

-> water stress indicator. 

Model/Field 1 
• Set model parameter. 
• Run simulation 

without irrigation. 

Model/Field 2 
• Set model parameter. 
• Run simulation without 

irrigation. 

Model/Field X 
• Set model parameter. 
• Run simulation without 

irrigation. 

Soil type 

A

Soil type 

B

Soil type 

C

Crop A Crop B Crop C 

Sprinkler Drip Furrow Sowing April Sowing May Sowing June 

Optimization - NSGA-II 

• Control Variables: Start, Irrigation Interval Field 1, Irrigation Interval Field 2, Irrigation 
Interval Field X – Order of fields according to prioritization. 

• Objective Function: Average of outputs from individual model objective functions. 
• Limitation: Start of irrigation field X = End of irrigation field X-1. 
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The objective functions were defined as follows: 

 

 𝐹1 =
∑ 𝑤𝑖𝑓𝑖(𝑄, 𝐼𝑃)𝑛

𝑖

∑𝑤𝑖
 (32) 

   

 𝐹2 =
∑ 𝑤𝑖𝑓𝑖(𝜃)𝑛

𝑖

∑𝑤𝑖
 (33) 

   

 where 

𝐹1 = overall water use objective function, 

𝐹2 = overall soil-moisture condition objective function, 

𝑓𝑖(𝑄, 𝐼𝑃) = water use objective function of model i, 

𝑓𝑖(𝜃) = soil moisture condition objective function of model i, 

𝑤𝑖 = weights of model i, 

𝐼𝑃 = Irrigation duration period, 

𝑄 = irrigation rate [mm/h], 

𝑛 = number of fields that are optimized, 

𝜃 = volumetric soil moisture content [-]. 

 

This enables the user to weigh the model-specific objectives. The weights are to be 

oriented on the sensitivities of the corresponding crop growth stage of the corresponding 

model. As in the single-field optimization, the NSGA-II algorithm is applied to compute the 

Pareto optimal front and the algorithm-specific parameter can be freely chosen.  
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4.3 Python Code  

Three python files were created with a total of approximately 2700 lines of code that 

contain all functionality to set up a MIKE SHE model entirely in Python, run optimizations, 

get weather forecast data and plot results. An object-oriented approach was taken to make 

it scalable and to make it easy to set model and optimization parameters for other 

scenarios. An overview of the structure and each file’s purpose is depicted in Figure 20. 

The she_model.py file comprises all functions to set up the water-balance model with all 

parameters described in Table 4. The code is based on the pfsreader library. Furthermore, 

within the she_model.py file, functions were established to run simulations and to receive 

and visualize simulation results. The precipitation rate, reference evapotranspiration, and 

irrigation are handled in MIKE SHE with dfs0 – files. These can be accessed and adjusted 

with the mikeio library, which was also integrated into the she_model.py code. The import 

and wrangling of weather forecast data are done in the weather_forecast.py file. Data from 

the German meteorological service was imported. The calculations of the Penman-

Monteith method are implemented and applied to estimate hourly reference 

evapotranspiration.  

The optimizer.py file contains all functionality of the multiobjective evolutionary 

optimization. It is built on top of the pymoo library that implements the NSGA-II algorithm 

with all necessary operators. The optimizer.py file also makes uses of the functionality of 

the she_model.py file. All optimization relevant inputs must be defined. Furthermore, 

functions are implemented to visualize the optimization results.  

 

 

Figure 20: Overview of the code structure. 

she_model.py 

• Set model parameter 
• Run simulation 
• Get simulation results 
• Visualize simulation 

results 

optimizer.py 

• Optimization 
algorithms 

• Objective functions 
• Irrigation simulation 
• Visualize 

optimization results 

weather_forecast.py 

• Download latest DWD weather forecast 
• Convert/format data 
• Penman-Monteith method 

MIKE SHE Files 

• DFS climate files 
• DFS result files 
• Model setup file (.she) 

mikeio 

pfsreader pymoo 
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5 Results 

In this chapter, I present the results of the optimization tests. These are split up into three 

main parts. First, I will give an overview of the single-field optimization including single 

event analysis, whole seasonal optimizations for the year 2017 and 2018 and a 

comparison to pre-seasonal watering. Then, the framework is compared to the integrated 

irrigation optimizer module of the MIKE SHE software. Third, multi-field optimization 

results are shown.  

A few constants were set for all test runs. As soil type, I picked brown earth and maize 

was chosen as a test crop. The groundwater level was set to 4.1 meters below the surface 

and is, hence, not significantly impacting the root zone.   

 

 

5.1 Single-Field Optimization 

5.1.1 Optimization of Single Irrigation Event 

I conducted a test run to optimize a single sprinkler irrigation event. The detailed 

information of the model and optimization setup are given in Appendix A.5. The simulation 

start time was set to the 15th of June, 46 days after seeding. At that time, the maize is in 

the crop development stage with a root depth of approximately 60 cm. An artificial weather 

forecast was set up with a long rain event starting 15 hours after simulation start and 

ending 70 hours after, with a total rainfall of 2.92 mm. The precipitation plus the reference 

evapotranspiration for the simulation period are shown in Figure 22. The initial soil 

moisture conditions are set as critical with the top 20 cm depth under significant water 

stress, which is depicted in Figure 21. 

 

 

Figure 21: Single irrigation event test optimization - initial soil moisture conditions. 
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The optimization horizon is set to 7 days with an irrigation duration constraint of 4 to 96 

hours, while the irrigation rate is limited to a range of 0 to 2 mm/hour. Manual sampling 

was deactivated during this test run. The termination criterium of NSGA-II was set to 50 

generations to test how the algorithm behaves over a large number of generations.  

 

Figure 22: Single irrigation event test optimization - artificially set precipitation and reference 
evapotranspiration rates of the simulation period. 

 

In Figure 23, the running metric of the optimization is plotted. It shows how the objective 

functions evolve over the optimization process by estimating the difference of the 

objectives from one generation to another. The slope is steepest during the first three 

generations. Nevertheless, the objective functions can still be further minimized even after 

many generation runs. The more generations are set, the better is the resulting quality of 

the solution.   
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Figure 23: Running metric of the single-event optimization. t: termination criterium in the number of 
generations. 

 

Figure 24 visualizes the resulting Pareto optimal front. It can be observed that the front is 

convex apart from two outliers. The corresponding control variables, pictured as a 

schedule plot, are shown in Figure 24. Most solutions of the Pareto Optimal Front are 

irrigation events occurring before the rain. This makes sense when considering the 

advantages of asynchronous irrigation, analysed in 4.2.1. Nevertheless, the solution that 

delivers the best soil moisture conditions in the soil is an irrigation rate of 0.35 mm/hour 

from midnight the 15th to 7 pm on the 17th. This is a reasonable solution because the initial 

conditions are critical and water in larger depths must be replenished. 
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Figure 24: Result Pareto optimal front of the single-event test optimization. f1: water consumption 
objective function, f2: soil moisture objective function. 

 

 
 

 

Figure 25: Result Pareto optimal control variables of the single-event test optimization. 
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5.1.2 Seasonal Optimization 2018 

After the single irrigation had been tested successfully, the next step was an optimization 

of a whole season based on historic climate data from a climate station of the German 

Meteorological Service in Peine, Germany. The whole setup of model and optimization 

with detailed results is available in Appendix A.6. Here, the approach that was explained 

in 4.2.3 was implemented with seasonally changing variables. The result is shown 

in Figure 26.  

The year 2018 was the warmest in Germany since the beginning of records in 1881  

(Friedrich & Kaspar, 2019). Additionally, precipitation was very low and the total days of 

sunshine reached all-time highs. As initial soil moisture conditions, values close to the 

field capacity were assigned to all depths in this scenario, which represent ideal initial soil 

moisture conditions. The objective weights were set conservatively in alignment with the 

water stress sensitivity.  

The total amount of irrigation water that was used added up to 247.6 mm. It can be 

observed that over the season the duration of the irrigation events lengthens. This is due 

to the constraints that are set during the corresponding growth stages and, on the other 

side, the decrease of water content in lower parts of the root zone that the optimizer tries 

to replenish. The plot of the soil moisture content shows that even though a rather high 

amount of water is added over the whole season, it is not possible to maintain an optimal 

water level in all depths. This is due to the water needs of the plant and the evaporation 

from the soil that prevents water from reaching further into the ground. Only high infiltration 

rates that exceed the evapotranspiration rate would achieve an increase. As discussed 

before (see 4.2.1), these high rates are constrained by the upper soil moisture levels of 

the optimization framework. Therefore, the total remaining water deficit is at 139.2 mm. 
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Figure 26: Overview optimization result of a seasonal simulation of the dry year 2018. 
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5.1.3 Seasonal Optimization 2017 

I performed another seasonal optimization test for the year 2017 to test the algorithm 

under different conditions. The year 2017 was also a warm year with a high amount of 

total sunshine hours but with a surplus of rain (Deutscher Wetterdienst, 2017). A different 

approach was tested at the same location but with critical initial soil moisture conditions 

at the beginning of the season. This represents a scenario, where a dry winter failed to 

replenish a sufficient amount of water in the soil. The objective weights were adjusted 

more in favour of saving water compared to the optimization of the dry year of 2018. The 

results are plotted in Figure 27 and the detailed simulation can be found in Appendix A.7. 

This setup resulted in total water consumption of 168.2 mm between the 1st of May and 

the 25th of August. The optimizer achieved to maintain good soil moisture levels even 

though the initial soil moisture content was low. After the crop development stage, the 

water supply for the roots comes mainly from the top 20 cm. The optimizer managed to 

keep the levels in the topsoil at an optimal level without wasting too much water. The 

overall water deficit is at approximately 117 mm. As in the optimization before, this is due 

to the impossibility of replenishing water at higher depths during mid-season.  
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Figure 27: Overview optimization result of a seasonal simulation of the year 2017. 
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5.1.4 Optimization with Pre-seasonal Watering of the Field 

In the previous seasonal test runs, I discovered that the soil moisture content in lower 

parts of the root zone is generally difficult to raise. Therefore, I analysed a scenario where 

the field is irrigated before seeding. This analysis is presented here and a detailed 

overview is given in Appendix A.8. The parameter setup of the model and optimization is 

identical to the seasonal optimization 2017 but in this case, the field was watered for two 

weeks in a row before planting the maize, as shown in the results in Figure 28.  

The total water used for this pre-seasonal watering lies at 60.5 mm. The total irrigation 

water that the optimizer recommends after seeding is 144.7 mm. This means that overall, 

only an additional 37 mm of water is used in this pre-seasonal watering strategy. However, 

looking at the average water content in the root zone, this approach shows by far better 

results. The total water deficit (ETa - ETc) of the optimization without pre-seasonal watering 

lies at 116.9 mm, while by bringing up the water content before seeding the overall water 

deficit was lowered to 77.4 mm. In conclusion, 37 mm water used in a sophisticated way 

of pre-seasonal watering led to a strong reduction of water deficits over the whole season. 

Especially in the flowering period, the pre-seasonal watering had a strong impact. The 

deficit during this period dropped from 21.2 mm to 13.2 mm. 

A problem with this approach is that during the initial stage the water level in the top part 

of the root zone is above the upper water stress threshold, which leads to water stress 

due to oxygen depletion and other factors described in Subsection 3.1.5. This excess 

water is, however, evaporated or transpired briefly after the seeding and should therefore 

not impact the overall yield. Hence, in cases where the initial soil conditions are dry, a pre-

seasonal watering strategy should be considered but the amount of pre-seasonal watering 

must be modelled to prevent long-term stress in the initial stage due to too high moisture 

levels. 
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Figure 28: Overview optimization result of a seasonal simulation of the year 2017 with pre-seasonal watering. 

 



 
 

74 

5.2 Comparison with Integrated MIKE SHE Optimization  

The MIKE SHE software provides a module to recommend an irrigation schedule to 

balance the water deficit. Different methods are available, which were discussed in 3.2.3. 

The deficit method was used, which is the most comparable approach, also based on 

water stress limits. The same conditions were set as in the optimization of 2018 with a 

constant maximum allowed irrigation rate of 2 mm/hour, an upper water stress constraint 

of 80 % TAW, and a lower water stress constraint of 50 % TAW.  

The results in Figure 29 show that the optimizer recommends only three irrigation events 

in the whole season. The total water consumed by applying this schedule is 350.8 mm. 

This is 103.2 mm more than the schedule that my optimization framework recommended. 

The total water deficit over the season is 131 mm. In this approach, the upper and lower 

stress constraints and water losses are not considered by the MIKE SHE irrigation 

scheduler. The soil moisture content is increased to saturation during the three irrigation 

events, as lack of oxygen and general water stress factors are disregarded.  

MIKE SHE offers solely a static irrigation scheduling, in which for every timestep the root 

zone soil moisture deficit is evaluated and compensated accordingly. This has the 

disadvantage that no future or past events or uncertainties are considered. In the case 

that a rain event occurs shortly after the irrigation was started, the MIKE SHE irrigation 

optimization approach would result in overwatering.   

Comparing my framework to the embedded scheduler of MIKE SHE, significantly higher 

efficiency in the allocation of water was achieved with a similar overall deficit. The flexibility 

of adjusting operational preferences, seasonal variables, and root depth prioritization are 

favouring my method over the MIKE SHE optimization. Furthermore, the general objective 

of saving water is not part of the MIKE SHE irrigation module. All these advantages come 

at the price of higher computational cost. While the optimization with MIKE SHE requires 

only one simulation run, my optimizer relies on multiple soil moisture predictions runs. The 

details of the optimization with MIKE SHE are given in Appendix A.10. 
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Figure 29: Overview optimization with MIKE SHE - result of a seasonal simulation for the dry year 2018. 
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5.3 Multi-Field Optimization 

Two models were set up for the test of the multi-field optimization. Different initial 

conditions and vegetation start dates were chosen to characterise different fields. The 

detailed description of both models and optimization parameters are in Appendix 1.10. An 

artificial weather forecast was set with constant reference evapotranspiration of 4 mm/day 

and no predicted rain event. The population size and offspring size were doubled to 20 for 

the multi-field optimization because of the rising complexity that is caused by the 

increased number of influencing objectives.  

The Pareto optimal schedule solutions are visualized in Figure 30. Field 1 was prioritized 

with an average water deficit of approximately 2 mm/day, while field 2 was in a better 

condition with 0.4 mm/day average water deficit. The resulting schedules indicate that for 

optimal overall conditions field 1 urgently needs to be irrigated. At the same time, field 2 

needs irrigation from the beginning, too. Therefore, short irrigation of field 1 is 

recommended but not for very long to prevent field 2 from dropping below the water stress 

threshold. Field 2 is irrigated for a longer time since it is not restricted by another field. 

The results validate the applicability of this approach for multi-field optimization. However, 

an efficient strategy for more than two fields must be put in place. This is further discussed 

in 6.2.1.  

 

Figure 30: Multi-field test optimization – Pareto optimal solutions. f2: soil moisture objective function.  
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6 Discussion 

In this chapter, I will discuss the strengths, weaknesses, and possible improvements in 

the implemented optimization framework. First, the accuracy of the system model is 

evaluated. Then, I review the whole optimization framework. Last, possible improvements 

of the computational time are discussed.  

 

6.1 System Model – MIKE SHE Simulation Model 

The MIKE SHE software was described in detail in the theoretical part and the test model 

was presented in Chapter 4. In this section, I examine general weaknesses and 

discrepancies of, first, the software and, second, the chosen simplified model approach.  

MIKE SHE has proven to be a viable system model for the optimization of irrigation 

schedules. Nevertheless, inherent weaknesses and shortcomings of the software exist.  

The way MIKE SHE estimates interception storage is timestep-dependent (DHI, 2017b). 

This means that the smaller the chosen time step, the more influence interception will 

have, which is not physically correct. This is especially important for the sprinkler irrigation 

simulation, which is strongly influenced by canopy interception. The functionality of the 

software should therefore be changed to avoid this dependency. Another shortcoming is 

the neglection of hysteresis effects (DHI, 2017b). Hysteresis in the context of water flow 

in the unsaturated zone means that the soil water retention curve behaves differently for 

wetting than it does for drying processes. Small pores control drainage, while large pores 

control wetting processes. Other factors that cause hysteresis are changing liquid-solid 

contact angles, air entrapment during wetting, and potential shrink and swell events of 

distinct soils. Various hysteresis models for soil-water characteristics are available and 

may be implemented in the MIKE SHE software. An overview is given by Pham et al. 

(2005). (Sławiński, 2011) 

I conducted a comparison between the sprinkler and drip irrigation methods in MIKE SHE 

to analyse how the software embeds the irrigation system into the model. The detailed 

output and setup of the test simulation are shown in Appendix 1.4. The results show that 

the canopy interception storage for drip irrigation is verifiable zero, as expected. However, 

this does not cause a visible change of average soil moisture content in the root zone. I 

discovered the cause of this by examining the water balance. The water, which is 

intercepted when sprinkler irrigation is used, leads to a decrease of transpiration rate. In 

the case of drip irrigation, the total amount of water is transpired. The water evaporated 

either way just through different mechanisms. Logically, sprinkler irrigation would 

therefore cause the plant to be under more water stress due to interception losses. 

However, I found that at the same time for sprinkler irrigation the actual evapotranspiration 

increases. It seems as if the interception evaporation is added to the actual 

evapotranspiration. Consequently, sprinkler irrigation shows lower water deficits than drip 

irrigation. This is not plausible and must be investigated.  
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Some characteristics of the irrigation system are partly neglected in MIKE SHE. In 

sprinkler irrigation, the water will not be equally spread over the field due to wind and 

imprecision of the sprinklers. Furthermore, some water evaporates in the air before it 

reaches a surface. Drip irrigation on the other side is a very precise technique where 

almost no water is lost. However, it is a point irrigation system, and the soil is watered only 

in a small radius around the emitters. These factors are usually summarized as the 

efficiency factor of the irrigation system and shall be included in the system model to 

improve its accuracy.  

A further possible improvement of the software would be the consideration of agricultural 

soil practises. Tillage and mulching cause the soil to show strongly different characteristics 

than presumed in the simplified model. This is for example considered in other simulation 

software, such as DSSAT (Jones et al., 2003). Allen et al. (1998) provide guidelines on 

how to embed agricultural practices into the crop coefficient.  

All the issues that have been discussed and the suggested improvements to the 

computational time (see Section 6.3) have been reported to the development department 

of DHI. They will be addressed in the further development of the MIKE SHE software. The 

enhancement of MIKE SHE will also lead to an improvement in optimization.  

After evaluating weaknesses and discrepancies within the software, itself, I want to talk 

about the test model that has been set up and general limitations. A successful 

optimization relies on the accuracy of the system model.  Apart from the weather forecast 

data, the test model is not referring to a distinct location yet. In a real-life test scenarios 

calibration is crucial to improve the accuracy of the model. Furthermore, I recommend that 

soil probes are taken and evaluated to adjust the soil characteristics. Other options to 

increase the quality of the MIKE SHE system model are to embed satellite information or 

data from remote sensing to adjust, for instance, LAI and Kc. Moreover, I have not yet 

talked about the significant impact of accurate initial conditions. Until now, values have 

been set artificially. In a real case, the idea is to update the initial conditions before every 

optimization run according to sensor measurements on-site. However, this means the 

system would rely on hardware. Alternatives are soil moisture data from nearby climate 

stations or satellite data.   

In my approach, I used a very simple water-balance model. However, there are specific 

scenarios where the system model must be more complex to ensure accuracy. For 

example, if a subsurface water membrane is applied in the field, as described by Roy et 

al. (2019), the system model will not be accurate. Neither will it be applicable to advancing 

farming technologies, like agroforestry or permaculture. The water processes that occur 

in these modern farming systems are hard to model and computationally expensive. 

Burgess et al. (2019) discussed agroforestry models and gave an overview of existing 

models. One of the existing models could be used to replace the MIKE SHE model in an 

agroforestry optimization context. Another issue arises for fields located on steep slopes, 

for example, vineyards. In this case, the horizontal flow would occur and lead to a 

profoundly different water flow behaviour in the system.  
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In the implemented system model nutrient transport and solubility have been neglected. 

However, nutrient availability is a crucial point to ensure optimal growth conditions for the 

crop. As discussed in Subsection 3.1.5, water and nutrients are closely related. Therefore, 

a system model that embeds this relationship is desirable and the optimization should 

address nutrient availability as another objective. MIKE SHE possesses with ECOLAB a 

related water quality module, which may enable such simulations (DHI, 2017b). Another 

viable option is the HYDRUS-2D software that was already used in a similar optimization 

context to simulate nutrient and water flow (P. C. Roy et al., 2019). 

A crucial issue that has not been addressed is how heterogeneities are incorporated in 

the simplified model. The general idea is to have one model per crop field, as in the multi-

field optimization. If different soil characteristics exist between fields, the model will be 

adjusted in the corresponding model. However, if heterogeneities exist within a field, these 

must be addressed differently. Since the model should not be extended to further 

dimensions due to computational expenses, another approach is needed. Geostatistical 

methods are an option to correlate the different soil-water behaviours in a field, which can 

be based on soil moisture sensor data, satellite data, or various simplified models that 

compute soil moisture in different areas of the field.  

 

 

6.2 Optimization Framework 

Many aspects of the system model have been analysed. Now, I want to discuss the 

complete optimization framework with its strengths and weaknesses. One important 

advantage of the proposed framework is flexibility. The MIKE SHE software is treated as 

a black-box system model within the optimization. The parameters of the model can be 

changed without impacting the optimization but solely the behaviour of the system. 

Exchanging crop type, soil characteristics, and all physically relevant factors are therefore 

made very easy. Using a complex physics-based model based on numerical methods is 

more accurate than a simplified water-balance system model, as applied in other 

frameworks (Delgoda, Saleem, et al., 2016; Kassing et al., 2020), but comes with the price 

of higher computational time.  

The timeframe of the optimization can theoretically be chosen freely. This means that the 

optimization can be shifted from a weekly run with a monthly optimization horizon to a 

daily run with weekly optimization horizon simply by adjusting two parameters. The 

limitation of the approach in this context is, however, that only one irrigation event can be 

predicted. This makes the method only applicable to an optimization horizon that 

resembles the reaction of the system to the irrigation event, as explained in 4.2.1. For 

example, in the case of a monthly optimization horizon, the optimizer will search for the 

optimal time to water the crop within that month. This means that most probably excessive 

irrigation will be scheduled at the beginning of the month to deliver a long-term water 

supply. This is not the optimal approach. Thus, the optimization horizon must be in 
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alignment with the reaction of the system. Besides, a monthly weather forecast shows 

high uncertainties, limiting the optimization horizon further.  

The optimization interval can be chosen according to the preference of the user. 

Theoretically, the shorter the chosen interval, the better because alterations and updates 

on the weather forecast are considered. However, the computational time is a limiting 

factor here. Therefore, I recommend analysing the weather forecast before every 

optimization run to check if significant changes in the forecast are present that may lead 

to significantly different soil moisture predictions. If this is not the case, the previously 

estimated schedule should be maintained. I recommend ranges from one to three days 

for the interval to take new weather predictions into account.  

Another strength of the framework is the handling of seasonal variables. Water stress 

levels and weighting of the objectives can be adjusted freely. This allows the adjustment 

of these factors to the crop phenology including water stress sensitivity during certain 

growth stages. This approach of the adaptable seasonal parameter could be extended 

following the approach of Kassing et al. (2020). In their framework, a seasonal planner is 

implemented that estimates the water allocation over the season based on historical data 

and experience. This way, overall maximum water use can be set. By implementing a 

similar approach in this works approach, this maximum water constraint could be 

considered. Especially in arid climates, this would be a significant extension. The 

optimization parameters could generally be adapted to deficit irrigation practises by 

lowering the stress values and adjusting the seasonal variables. However, in arid climates, 

the objective of eliminating salt problems in the soil should be addressed. 

As described in Subsection 4.2.3, the control variables are constrained. The start time of 

the irrigation is limited by the simulation period of the MIKE SHE model. I successfully 

tested limiting the start time to certain times of the day. This can be useful for farmers that 

cannot irrigate their fields during the daytime, as it is the case in the state of Bavaria, 

Germany, or simply to set preferred times.  

I chose a bi-objective optimization approach to minimize water use while optimizing soil 

moisture conditions. I reviewed various research papers that focused on different 

objectives in their irrigation scheduling approach (see Chapter 2). Potentially, the 

alternative objectives of these researchers may be added to the optimization paradigm of 

this work. For instance, economic objectives could be included, such as minimization of 

energy use on the farm, thus reducing fuel use. By considering various cost factors that 

come hand in hand with irrigation (nutrient price, fuel price, investment cost, etc.), the 

overall farm income can be optimized.  
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6.2.1 Multi-Field Optimization 

The implemented multi-field approach is computationally expensive. With every additional 

field, another control variable is added, and the optimization relies on an extra simulation 

run. Hence, computational time optimization (see 6.3) is crucial for the successful 

application of this approach. 

In 5.3, I explained that every field carries with it two objective functions that need to be 

minimized. The total amount of objectives therefore is rising linearly with every additional 

field. The implemented strategy is to weigh the water consumption objective and the soil 

moisture condition objective of all fields a priori to maintain two general objective functions. 

The nondominated results are then weighted a posteriori as in the single-field optimization. 

Weighting all the objectives a posteriori instead is difficult and a multi-dimensional Pareto 

optimal front would be obtained. The opposite strategy may be more suitable by weighting 

all objective functions a priori. This would make it easier for the decision-maker to prioritize 

fields or incentives. The resulting single objective function that considers all the fields 

would be the following: 

   

 𝐹 =
∑ 𝑤𝑖,1𝑓𝑖,1(𝑄, 𝐼𝑃)𝑛

𝑖 + 𝑤𝑖,2𝑓𝑖,2(𝜃)

∑𝑤𝑖,1 + 𝑤𝑖,2
 (34) 

   

 where 

𝐹 = total objective function. 

𝑓𝑖,1 = water use objective function of model i. 

𝑓𝑖,2 = soil moisture condition objective function of model i. 

𝑤𝑖 = weights of model i. 

𝐼𝑃 = Irrigation duration period. 

𝑄 = irrigation rate [mm/h]. 

𝑛 = amounts of fields that are optimized. 

𝜃 = volumetric soil moisture content [-]. 

 

By applying scalarization, we only have one objective function to minimize, which would 

make this a single-objective optimization problem. For this purpose, other algorithms than 

the NSGA-II are required. Particle Swarm Optimization (PSO) is an example of a suitable 

single-objective solver algorithm. Following this approach, an option of how to deal with 

the weights is to relate them to the water stress indicator. This way, more emphasis can 

be put on the fields under stress in addition to prioritizing them in the irrigation sequence.  
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6.3 Computational Time Optimization 

As proven in 5.1.1, there exists a distinct trade-off between the solution quality and the 

computational time, which rises linearly with the generations set. If this optimization is 

applied on a large scale, it will become very computational and energy demanding. This 

trade-off must be generally considered when debating optimization in the water-energy-

nexus. The run time of the optimization must therefore be minimized. In the context of this 

framework, different strategies can be pursued to achieve this. One is the parallelization 

of the model runs. For a population size of 10, also ten simulation runs must be conducted 

for every new generation. These simulations could be run simultaneously. Another 

potential to reduce numerical effort is to optimize the runtime of the MSHE system model 

itself for repeatedly executed short model runs. At this point, this is not the case and 

initializing the software every run requires unnecessary computational resources. 

Moreover, the way the algorithm computes the results may be adjusted from an 

elementwise evaluation to a vectorized evaluation, as described in the pymoo getting 

started guide (Blank & Deb, 2020). Furthermore, the discretization of the depth in MIKE 

SHE and the simulation timestep are the crucial parameters for not only the numerical 

stability but also the computational time. Hence, the model could be further simplified to 

make it faster.  

 

 

7 Conclusion and Outlook 

A multiobjective optimization framework based on the software MIKE SHE has been 

developed and tested successfully. The solver algorithm NSGA-II has proven to be 

effective in the context of irrigation scheduling. Good results can be obtained already with 

a low number of simulation runs and domain knowledge was embedded in the algorithm 

to make it more efficient. Seasonal and short-term optimization aspects were put into a 

combined approach. The results showed that by adjusting the optimization parameters 

the objective focus could be shifted from either saving more water or ensuring optimal soil 

moisture conditions.  

Due to the decoupling of the system model and optimization, and the object-oriented code 

implementation the approach is highly flexible. This offers huge advantages for testing 

different scenarios and further extending the framework for other purposes than shown in 

the tests. The remaining task is to optimize the computational time so that the general 

result quality can be further improved without consuming excessive energy and time. 

Besides, with the reduction of computational time, the multi-field approach can be applied 

and further expanded.  

The presented approach outperformed the software integrated irrigation scheduler. 

Through its dynamic approach with consideration of future weather events and growth 

stage-specific phenological changes, the optimizer delivers a realistic irrigation schedule 
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that is adjustable to the farmers' preferences. Furthermore, it offers a framework to 

perform pre-seasonal assessments to compare different irrigation strategies due to its 

flexibility and physics-based system model.  

All the test optimizations that have been performed were based on fixed historical data. 

Thus, the optimization must be still tested in a real-life scenario with fluctuations of the 

weather forecast prediction. Furthermore, the effectiveness of the approach must be 

validated on a real farm. 
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Appendix 

 

A.1  System Behaviour Analysis: Seasonal Simulation without Irrigation 

 

Model Setup   

Irrigation Method Sprinkler 

Groundwater Table 4.1 m 

Crop Maize 

Vegetation Start Date 1st of May, 2018 

Simulation Start Date 1st of May, 2018 

Simulation End Date 

1st of October, 

2018 

    

 

Initial volumetric soil moisture content: 

 

  



 

 

Full simulation result overview: 

  



 

 

A.2 System Behaviour Analysis: Asynchronous and Synchronous Irrigation 

A.2.1 Parameter Setting 

 

 

Model Setup   

Irrigation Method Sprinkler 

Crop Maize 

Vegetation Start Date 1st of May 

Simulation Start Date 15th of June 

Simulation End Date 22 of June 

Groundwater Table 4.1 m 

 

 

Initial Soil Moisture Content: 

 

 

 

 

  



 

 

A.2.2 Simulation Run without Irrigation 

  



 

 

A.2.3 Simulation Run with Irrigation just before Precipitation (Asynchronous) 



 

 

A.2.4 Simulation Run with Irrigation during Precipitation (Synchronous) 

 

 



 

 

A.2.5 Comparison of Behaviours - Average Soil Moisture Content over Depth 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

A.3 System Behaviour Analysis: Large vs. Small Irrigation Intervals 

Model parameters are identical to A.1.2. 

A.3.1 Simulation Run without Irrigation  

 

 

  



 

 

A.3.2 Simulation Run – Large Irrigation Interval  

 

  



 

 

A.3.3 Simulation Run – Short Irrigation Interval 

 

  



 

 

A.3.4 Comparison of Behaviours - Average Soil Moisture Content over Depth 

 

  



 

 

A.4 System Behaviour Analysis: Sprinkler vs. Drip Irrigation  

Model parameters as in A.1.2. 

A.4.1 Simulation Run – Sprinkler Irrigation 



 

 

A.4.2 Simulation Run – Drip Irrigation 

  



 

 

7.1.1 Comparison of Behaviours – Sprinkler vs. Drip Irrigation 

 

  



 

 

A.5 Optimization – Single Irrigation Event 

 

Model Setup 

  

Irrigation Method Sprinkler 

Crop Maize 

Vegetation Start Date 1st of May 

Simulation Start Date 15th of June 

Simulation End Date 22 of June 

Groundwater Table 4.1 m 

 

Weather Data – Artificial: 

 

Initial soil moisture conditions: 

 



 

 

 

 

Results: 

Pareto optimal front:  

f1 refers to water consumption objective function (Equation 30), f2 equals soil-moisture 

conditions objective function (Equation 31) 

 

Optimal Soil Moisture Level 11%

Optimization Interval 7 days

Lower Stress Level 14%

Upper Stress Level 8%

Control Variables Ranges: NSGA-II:

Upper Limit Start Time ≙ total timesteps - 

irrigation interval 

maximum Population Size 10

Lower Limit Start Time 0 h Offspring Size 10

Upper Limit Pumping Rate 2 mm/h SBX distribution index η 1

Lower Limit Pumping Rate 0 PM distribution index η 1

Range Irrigation Interval [h] 4-96 Termination Criterium 50 generations

Optimization Setup



 

 

Running Metric:  

 

 

Overview of resulting schedules: 

 

 

 

 



 

 

Result - best schedule for optimal conditions: 



 

 

A.6 Seasonal Optimization – Extremely Dry Year (2018)  

 

Model Setup 

  

Irrigation Method Sprinkler 

Crop Maize 

Vegetation Start Date 1st of May, 2018 

Simulation Start Date 1st of May, 2018 

Simulation End Date 18th of Sep, 2018 

Groundwater Table 4.1 m 

Location Peine, Lower Saxony 

 

  

 

 

Optimal Soil Moisture Level 11.68% NSGA-II:

Optimization Interval 7 days Population Size 10

Maximum Pumping Rate 2 mm/h Offspring Size 10

Minimum Watering Depth 10 cm SBX distribution index η1

Control Variables Ranges: PM distribution index η1

Upper Limit Start Time ≙ total timesteps - 

irrigation interval 

maximum

Lower Limit Start Time 0 ( ≙ current time) Start Time Range [h] 0 - 12

Upper Limit Pumping Rate ≙ max pumping rate

Range Irrigation 

Interval [h]

corresponding to 

seasonal value

Lower Limit Pumping Rate 0 Pumping Rate Range 0.3 - 1.0 mm/h

Stress Indicator 0.2 mm/h

Parameter Initial Stage Crop Development Flowering Mid-season Late season

Days after seeding 30 70 90 105 130

Depletion Factor 0.5 0.5 0.5 0.5 0.8

Lower Stress Level 8.27% 8.27% 8.27% 8.27% 3.31%

Upper Stress Level 13.76% 13.76% 13.76% 13.76% 13.76%

RAW [cm/m root depth] 8.27 8.27 8.27 8.27 13.23

Range Irrigation Interval [h] 4-36 48-96 48-96 48-96 48-96

No. of generations 4 7 8 7 4

Objective Weights f1/f2 0.5/0.5 0.3/0.7 0/1 0.3/0.7 0.4/0.6

Manual Sampling: (indicator based)

Optimization Setup

Constants

Seasonal Dependent Variables



 

 

 

Initial soil moisture content: 

 

Results: 

Total water used: 247.6 mm 

A result overview is given on the following page. 
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A.7 Seasonal Optimization – Moderate Year (2017)  

 

Model Setup 

  

Irrigation Method Sprinkler 

Vegetation Start Date 1st of May, 2017 

Simulation Start Date 1st of May, 2017 

Simulation End Date 18th of Sep, 2017 

Groundwater Table 4.1 m 

Location Peine, Lower Saxony 

  

 

 

  

Optimal Soil Moisture Level 11.68% NSGA-II:

Optimization Interval 7 days Population Size 10

Maximum Pumping Rate 2 mm/h Offspring Size 10

Minimum Watering Depth 10 cm SBX distribution index η1

Control Variables Ranges: PM distribution index η1

Upper Limit Start Time ≙ total timesteps - 

irrigation interval 

maximum

Lower Limit Start Time 0 ( ≙ current time) Start Time Range [h] 0 - 12

Upper Limit Pumping Rate ≙ max pumping rate

Range Irrigation 

Interval [h]

corresponding to 

seasonal value

Lower Limit Pumping Rate 0 Pumping Rate Range 0.3 - 1.0 mm/h

Stress Indicator 0.2 mm/h

Parameter Initial Stage Crop Development Flowering Mid-season Late season

Days after seeding 30 70 90 105 130

Depletion Factor 0.5 0.5 0.5 0.5 0.8

Lower Stress Level 8.27% 8.27% 8.27% 8.27% 3.31%

Upper Stress Level 13.76% 13.76% 13.76% 13.76% 13.76%

RAW [cm/m root depth] 8.27 8.27 8.27 8.27 13.23

Range Irrigation Interval [h] 4-36 48-96 48-96 48-96 48-96

No. of generations 4 7 8 7 4

Objective Weights f1/f2 0.5/0.5 0.5/0.5 0/1 0.5/0.5 0.5/0.5

Constants

Manual Sampling: (indicator based)

Seasonal Dependent Variables

Optimization Setup



 

 

Critical initial soil moisture conditions: 

 

Results: 

Total water used (from seeding until 25th of August): 168.2 mm. 

Total water deficit (from seeding until 25th of August): 116.9 mm. 

Total water deficit during flowering: 21.2 mm. 

 

An overview is depicted on the following page. 
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A.8 Seasonal Optimization – Pre-seasonal Watering  

Parameter setting of model and optimization are identical to 2017 simulation. 

Results: 

Before seeding: 60.5 mm of water used. 

Total water used (from seeding until 25th of August): 205.17 mm. 

Total water deficit (from seeding until 25th of August): 77.4 mm. 

Total water deficit during flowering: 13.2 mm. 
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A.9 MIKE SHE Optimization – Integrated Scheduler 

Conditions are the same as in the 2018 simulation. 

Lower water stress threshold: 50 % TAW. 

Upper water stress threshold: 80 % TAW. 

Results: 

Total water used: 323.7 mm. 

Total water deficit: 131.0 mm. 

  



 

 

 

  



 

 

A.10 Multi-Field Optimization 

 

 

 

 

 

 

Model Parameter Model 1 Model 2 

Soil Type Brown Earth Brown Earth

Irrigation Method Sprinkler Sprinkler

Vegetation Start Date 1st of May, 2018 1st of April, 2018

Simulation Start Date 1st of August, 2018 1st of August, 2018

Simulation End Date 14th of August, 2018 14th of August, 2018

Optimization Parameter

Optimal Soil Moisture Level [% TAW] 11.68 11.68

Lower Stress Level [% TAW] 13.76 13.76

Upper Stress Level [% TAW] 6.82 6.82

NSGA-II:

Population Size

Offspring Size

SBX distribution index η

PM distribution index η

Termination Criterium

Control Variables Ranges:

Pumping Rate (constant)

Lower Limit Start Time [h]

Range Irrigation Interval Field 1 [h]

Range Irrigation Interval Field 2 [h]

Weighting of objective functions 0.5/0.5

4-96

Upper Limit Start Time [h]
144 (≙ total timesteps - irrigation intervals 

maximum)

0

4-96

1

1

20 generations

0.4 mm/hour

20

20



 

 

Initial Soil Moisture Conditions - Model 1: 

 

 

Initial Soil Moisture Conditions - Model 2: 

 

 

 

 



 

 

Water Stress Indicator Result:  

Field Priority:  

field 1 – water deficit average of 2.069 mm/day 

field 2 – water deficit average of 0.3887 mm/day 

➔ Field 1 is prioritized.  

 

Optimization Results 

Schedule Overview: 

 

 

 

 

 

 

 

 

 

 



 

 

 

Pareto Optimal Front:  

f1 refers to water consumption objective function (Equation 32), f2 equals soil-moisture 

conditions objective function (Equation 33). 

 

 

 

Running Metric: 

 

 

 



 

 

Results optimal soil moisture condition solution 

Model 1 – Climate Parameters: 

 

 

Model 1 – Soil Moisture Content: 

  

 

  



 

 

Model 2 – Climate Parameters: 

 

 

Model 2 – Soil Moisture Content: 

 

  

 

 


