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Abstract: Amazonian ecosystems are major biodiversity hotspots and carbon sinks that may lose
species to extinction and become carbon sources due to extreme dry or warm conditions. We
investigated the seasonal patterns of high-resolution solar-induced chlorophyll fluorescence (SIF)
measured by the satellite Orbiting Carbon Observatory-2 (OCO-2) across the Amazonian ecoregions to
assess the area´s phenology and extreme drought vulnerability. SIF is an indicator of the photosynthetic
activity of chlorophyll molecules and is assumed to be directly related to gross primary production
(GPP). We analyzed SIF variability in the Amazon basin during the period between September
2014 and December 2018. In particular, we focused on the SIF drought response under the extreme
drought period during the strong El Niño in 2015–2016, as well as the 6-month drought peak period.
During the drought´s peak months, the SIF decreased and increased with different intensities across
the ecoregions of the Amazonian moist broadleaf forest (MBF) biome. Under a high temperature, a high
vapor pressure deficit, and extreme drought conditions, the SIF presented differences from −31.1%
to +17.6%. Such chlorophyll activity variations have been observed in plant-level measurements of
active fluorescence in plants undergoing physiological responses to water or heat stress. Thus, it is
plausible that the SIF variations in the ecoregions’ ecosystems occurred as a result of water and heat
stress, and arguably because of drought-driven vegetation mortality and collateral effects in their
species composition and community structures. The SIF responses to drought at the ecoregional scale
indicate that there are different levels of resilience to drought across MBF ecosystems that the currently
used climate- and biome-region scales do not capture. Finally, we identified monthly SIF values of
32 ecoregions, including non-MBF biomes, which may give the first insights into the photosynthetic
activity dynamics of Amazonian ecoregions.

Keywords: SIF; Amazonia; El Niño; photosynthesis; OCO-2; seasonality; drought; extreme events;
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1. Introduction

Vegetation in the Amazon region is highly diverse and contains about one-half of the biomass
stored in tropical forests [1,2]. Tropical forests play an important role in the global carbon cycle by
intaking up to ~1.2 Pg of carbon (C) per year [3]. In recent decades, the Amazon region was hit by
repeated severe drought events in 2005, 2010, and 2015–2016 [4–6]. Such events have the potential to
alter the carbon cycle of the Amazon rainforest through biomass losses from, for example, increased
tree mortality, and may thus lead to increased carbon emissions to the atmosphere [5,6].

For the 2005 and 2010 droughts, C emissions from the Amazon rainforest were estimated to be
~1.6 Pg C and ~2.2 Pg C, respectively [5]. During the period from September 2015 to March 2016,
the terrestrial water storage in the Amazon basin was lower by one standard deviation (sd) than
the 1900–2016 climatological seasonal cycle, and in August 2016, the rainfall remained 10% below
the average values, leading to strong reductions in gross primary productivity (GPP; [7]). Such repeated
drought events have the potential to turn the forest into a C source [5,8]. Quantifying the GPP for
the Amazon region remains a challenge due to the area´s large spatial extent, remote field sites, and
difficulties in installing long-term monitoring sites. Only recently have remotely sensed solar-induced
chlorophyll fluorescence (SIF) tools become available, which may help overcome spatial and temporal
gaps in the model-based up-scaling of GPP fluxes from eddy covariance measurements.

SIF refers to the fluorescence radiance (photons) emitted from the chlorophyll molecules during
plant photosynthesis. The emitted fluorescence wavelength ranges up to 600–850 nm, and constitutes
both photosystems (I and II). This is proposed to be a remote sensing proxy for gross photosynthesis [9]
that allows the constraining of carbon balance estimates [10]. The remotely sensed GOME-2 mission’s
SIF and the GPP measured using a network of carbon flux towers (FLUXNET-GPP) show a high
correlation globally (r2 = 0.74), albeit with regional variations [11]. For the Amazon region, high
correlations (Pearson correlation coefficient = 0.80) were found between GOME-2’s SIF, and an up-scaled
GPP product that extrapolated the eddy covariance estimations using machine learning [7]. Within
the Amazonian region, the phenological seasonality in vegetation communities has been attributed to
climate factors; 76% of the SIF seasonality of Amazonia is explained by seasonal radiation variation,
while 13% and 11% are explained by precipitation and a combination of both [12]. In contrast, when
vegetation factors are disentangled from the climate variability of multiple forest types, two-thirds of
Amazonian GPP variations are shown to be due to a forest´s composition, structure, and nutrients,
while just one-third is due to intra-annual climate variability [13]. Such GPP patterns agree with
remotely sensed SIF from the GOSAT satellite [13].

The photons take in by the photosystems of plants rely on the incident photosynthetically active
radiation (PAR) and the fraction of that radiance absorbed by the leaves (fPAR). The PAR absorbed
by leaves is partitioned into photochemistry, heat dissipation (non-photochemical quenching; NPQ),
and fluorescence emission (SIF). In general, SIF satellite measurements at the canopy surface result
from the absorbed photosynthetically active radiation (APAR; the combination of fPAR and PAR),
the fluorescence quantum yield in the band of measurement (ΦF), and the probability that photons can
escape the canopy (Equation (1); ΩC, [9]):

SIF = PAR· f PAR·ΦF·ΩC (1)

In canopies of temperate forests, APAR has been found to explain 85% of the variance in SIF [14],
but the evaluation of SIF can be very challenging for a complex canopy (such as tropical ones; [9]). ΦF

is genotype-dependent and affected by shading [15] and by nitrogen availability [16]. The findings
on the genotype dependency of vegetation fluorescence quantum yield in the band of 692 nm [15]
suggest that floristic composition may define the ΦF of the forest. ΦF differences are particularly
pronounced between species with different CO2 fixation paths (C3, C4, and CAM paths; [15]),
while the shading-sensibility suggests that the depth of the forest canopy, the forest structure, and
the variations in leaf display (physical shade precursors) are more related to ΩC (Equation (1); [9]).
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In plants, stress response strategies, such as the adjustment of their stomatal morphology and
changes in their photosynthetic functions, affect the photosynthetic light use efficiency (LUE, [17]),
which in turn may affect the SIF´s relationship with the GPP [9]. However, with satellite-based SIF
measurements, it is not possible to measure LUE [18] or differentiate its effects on the SIF from the effect of
ΦF and ΩC; only the total SIF radiance over the canopy can be studied [9,19]. SIF radiance´s relationship
with GPP, which is more mechanically detailed, involves processes including energy partitioning
between photosystems I and II, the fluorescence properties of these two photosystems, the canopy
structure, the CO2 fixation paths, photorespiration, linear and cyclic electron transports, stoichiometry,
and fluorescence radiative transfer modeling in canopies [20]. Biochemical and biophysical responses
to drought at the plant level through enzymatic activity leads to changes in leaf biochemistry [21]
and reductions in stomatal and mesophyll conductance [22], which result in a lower CO2 uptake.
A reduced CO2 uptake limits photosynthetic activity and results in lower SIF values. Drought can also
cause mortality via carbon starvation, hydraulic failure, and phloem transport failure [23], which alter
the ecological balance by shifting the composition of vegetation communities [24–27].

In 2009, the first global satellite SIF measurements were obtained from the GOSAT mission
instruments [28]; since then, SIF has been employed to study drought´s impacts on vegetation [7,29]
and to assess the diversity in leaf phenology [13,30] across Amazonia. GOSAT-SIF data reveal
a productivity reduction of 15% based on the GPP in Amazonia during the 2010 extreme drought
event [29]. A new retrieval product based on GOME-2’s SIF showed reductions of up to 10%–15%
in the eastern part and up to 2%–5% in the western part throughout the El Niño 2015–2016 extreme
drought [7]. Further, during the 2015–2016 El Niño, the SIF was below its climatological range, and its
reduction was particularly strong in regions with high temperatures and low water availability [7].

The recent NASA Orbiting Carbon Observatory-2 (OCO-2) mission (launched in September,
2014) [31–37] offers a higher-resolution alternative (footprint of 2.25 × 1.3 km) than the previous coarser
SIF measurements [38] by GOSAT (footprint of 10 km diameter) [28,39] and GOME-2 (40 × 40 km) [40].
Along with a high spatial resolution, OCO-2’s SIF provides the opportunity to study the vegetation
responses of specific vegetation types to different climate conditions, thus providing completely new
perspectives for SIF analysis [20,41].

High-resolution SIF products, such as OCO-2, have the potential to resolve climatic and vegetation
type-specific responses to water and heat stress [20], such as at the ecoregional scale. Ecoregions (ERs)
can be defined as units of land containing a distinct assemblage of species and natural communities
of all taxa (beyond plants taxa) with boundaries that approximate the original extent of the natural
communities prior to major land-use changes [42]. For Latin America and the Caribbean, these
boundaries rely on the delineations of major ecosystem types (e.g., tropical broadleaf or tropical
template forests), which contain biomes (e.g., within tropical broadleaf forests there are moist or dry
broadleaf forests, which have also been referred to [43] as major habitat types). These biomes are a set
of ERs that meet climatic, biological, and ecological criteria (Table 1).

Table 1. Dimensions for defining biomes and ERs according to Dinerstein et al. (1995).

Dimension Biomes ER

Climatic Experience comparable climatic regimes Have similar environmental conditions

Biologic Have similar vegetation structure Share a large majority of their species

Ecologic

Display similar spatial patterns of
biodiversity (e.g., levels of beta diversity)

Interact ecologically in ways that are
critical for their long-term persistence

Contain flora and fauna with similar guild
structures and life histories

Although recognized at coarse global biophysical scales [11,30,44], the SIF variability across more
specific vegetation types (e.g., the ER from [42]) remains unresolved. Hence, in this study, we analyze
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the high-resolution OCO2-SIF response across different ERs of the Amazon basin to investigate SIF´s
seasonal phenology patterns. Additionally, we focus on the impact of the 2015–2016 El Niño drought
event on SIF.

Specifically the study aims to (1) depict SIF diversity across forest stands at the climate and ER scale,
(2) discuss Amazonian phenological dynamics through an analysis of SIF in relation to fPAR, (3) present
the drought temporal and spatial extent and development, and (4) estimate the drought-driven
responses of SIF within each MBF-ER by relating it to environmental variables such as the vapor
pressure deficit (VPD), the temperature, and the fraction of APAR (fPAR).

2. Materials and Methods

2.1. Study Region

The study region is the Amazon river basin according to the LBA-ECO CD-06 Amazon River
Basin Land and Stream Drainage Direction Maps [45]. We sub-divide the Amazon basin into 47 ERs,
six biomes and 14 climate zones. For these map delineations, we rely on the ER [42] and biome
regions [43] derived from the RESOLVE Ecoregions 2017 data products [46] and the updated world
map of the Köppen–Geiger (KG) climate classification at a 10-km spatial resolution [47] for the climate
zones (KG-climate zones). A combination of the classes of these three maps is shown in Figure 1 and
Appendix A Table A1.
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Figure 1. (A) Biome types from Dinerstein et al. (1995) in combination with the tropical humid (Af), 
tropical monsoonal (Am), and tropical winter-dry (Aw) Köppen–Geiger climate zones. (B) Ecoregions 
(ERs) from Olson et al. (2001) within the Amazon river basin extent of Mayorga et al. (2012). 

2.2. Datasets and Analysis 

2.2.1. Solar-Induced Fluorescence from OCO-2 

Figure 1. (A) Biome types from Dinerstein et al. (1995) in combination with the tropical humid (Af),
tropical monsoonal (Am), and tropical winter-dry (Aw) Köppen–Geiger climate zones. (B) Ecoregions
(ERs) from Olson et al. (2001) within the Amazon river basin extent of Mayorga et al. (2012).

2.2. Datasets and Analysis

2.2.1. Solar-Induced Fluorescence from OCO-2

We used the SIF retrievals from the bias-corrected OCO-2 Lite SIF v8 Level 2 product [48] for
the period from September 2014 to December 2018, which are available from the OCO2 Data Portal [49].
OCO-2´s nominal footprint is 1.3 × 2.25 km [38]. OCO-2 provides global coverage with a 16-day
temporal resolution and gives information on the physiological state of the canopy at ~1:30 p.m. local
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time [37,50]. Thus, it captures the sensitivity of the fluorescence yield (PAR·fPAR·ΦF; Equation (1))
to water stress, which generally peaks in the afternoon [51]. For the Amazon basin, 2,543,447 SIF
retrievals were available for the period from September 2014 to November 2018 (Figure S1). The SIF
retrieved at a wavelength of 757 nm (SIF757) is used in this study. For each area and time period
retrieval, the OCO-2 product includes an uncertainty range for each bandwidth.

2.2.2. Forest Cover Data

To sample the SIF values from non-disturbed forested areas since the year 2000, we used
a LANDSAT global forest change dataset for the period 2000–2018 ([52]; “canopy cover” and “forest
loss” data sets, respectively, in the following). The canopy cover dataset defined trees as vegetation
taller than 5 m in height at a 30 × 30 m spatial resolution by the year 2000 and specified the percentage
of canopy cover per pixel. The forest loss dataset indicated the first year of stand disturbance since 2000,
and the characterization did not include selective removals within the forest stands that do not lead to
a non-forest state. We focused on areas that were covered 95% or more by tree canopies according to
the canopy cover data set and used the forest loss dataset to identify stand-replacing disturbances.
Each pixel is encoded either as a 0 (no forest loss) or a value in the range of 1–18, representing the first
respective loss detection times in 2001–2018. The dataset was recoded as 0 (a forest with 95% canopy
cover by the year 2000 and without disturbances since then), and 1 (disturbed area) for each year
between 2014 and 2018. Focal statistics on 0.98-km2 moving windows were used to determine which
windows had at least 95% undisturbed forest cover. Finally, we sampled SIF retrievals only from
these areas.

2.2.3. Drought Indicator

We used the self-calibrating Palmer Drought Severity Index (scPDSI; [53]) to assess the drought
severity over the study region. The scPDSI indicates the variations in soil moisture, terrestrial water
storage, and runoff [54,55]. Because of the self-calibration procedure, the scPDSI improves the original
PDSI by maintaining the consistent behavior of the index over diverse climatological regions, which
makes spatial comparisons over wide regions more meaningful. Additionally, we used the climatic
water deficit (Precipitation – Potential Evapotranspiration; P – PET) to account for the potential
spatio–temporal mismatch of standardized scPDSI values and actual water shortage [56]. The PET and
precipitation values, as well as the scPDSI dataset used in this study, were based on climatological data
from the ERA-Interim reanalysis [57] and soil water holding capacity values from the digital world
soils map of the Food and Agriculture Organization of the United Nations [58]. We selected the scPDSI
dataset because it has already been successfully used to quantify drought conditions in the Amazon
basin area [4].

scPDSI drought severity is categorized at the pixel level depending on the index value. From one
extreme to the other, the scPDSI follows a standard normal probability distribution function, where −4
and +4 values are extremely rare events [59]. Similar to previous studies employing the scPDSI [4,53],
we define two drought levels from scPDSI and focus on them. These levels are dry and normal, with
five relevant scPDSI thresholds and drought classes (Table 2). This study defines drought affected
sub-regions as areas with an scPDSI < −2 and P – PET < 0 and non-drought as areas with an scPDSI
between −1.0 and 1.0 with P – PET ≥ 0.



Remote Sens. 2020, 12, 1202 7 of 23

Table 2. Drought index categories derived from the self-calibrating Palmer Drought Index (scPDSI)
based on Jiménez-Muñoz et al. (2016), Wells et al. (2004), and Zang et al. (2019).

Status

Level Dry Non-Drought

scPDSI thresholds ≤−4.0 >−4.0, ≤−3.0 >−3.0, ≤−2.0 >−2.0, ≤−1.0 >−1.0, <1.0

P and PET
thresholds P – PET < 0 P – PET ≥ 0

Drought
classification Extreme Severe Moderate Mild Normal

2.2.4. Temperature and Vapor Pressure Deficit (VPD)

Two important environmental factors that regulate plant photosynthesis are temperature and
the vapor pressure deficit (VPD). Accordingly, for each SIF measurement, the temperature and VPD
from the European Centre for Medium-Range Weather Forecasts (ECMWF) were available in the OCO-2
Lite SIF v8 level 2 dataset.

2.2.5. Absorbed Fraction of the Photosynthetically Active Radiation (fPAR)

To analyze the dynamics of the fPAR apart from SIF757, we used the MODIS Aqua fPAR product
(MYD15A2H) version 6 [60,61], which is an 8-day composite dataset with a spatial resolution of
500 meters.

2.2.6. Determining the Beginning of the Wet Season

The beginning of the wet season period for the different KG-climate zones is defined based on
the last months of the dry season between the years 2007 and 2015 [12]. We assume that the last month of
the dry season indicates the beginning of the wet season. Consecutive months with precipitation values
below 100 mm accounted for dry season months, and their classification was based on the monthly mean
precipitation of the resampled TRMM/3B43V7 product for each year and month [62]. The KG-Zone
“Af” (Figure 1A) has been reported to have no dry season [12].

2.3. Evaluation of SIF757 Patterns

To investigate the SIF757 seasonal dynamics of different vegetation types, we explored the monthly
means of SIF757 for the period between September 2014 and November 2018 within the ERs (47 classes),
biomes (6 classes), and KG-climate zones (14 classes). We calculated the monthly means for the biomes
and KG-climate zones only if five or more SIF757 retrievals were available per month in the forest areas.
To characterize the ER-SIF757 inter-annual temporal dynamics on the basis of the monthly means,
we analyzed the distribution of the monthly means across the ERs on the basis of their medians and
interquartile ranges (IQRs).

The SIF757 variability during the 2015–2016 El Niño drought event was analyzed for the Amazonian
moist broadleaf forest biome (MBF) of the Af, Am, and Aw KG-climate zones for the period between
September 2014 and December 2016 because the scPDSI and OCO-2 datasets overlapped only during
this period. We define this period as the baseline period. For the drought estimation, we define
the period from October 2015 to June 2016 as the climatological and rain anomaly (CARA) period [7].

SIF variations (%)CARA period =

∑
20(SIFCARA − SIFbaseline without CARA) ∗ 100∑

20 SIFbaseline without CARA
(2)

We estimated the means of SIF757 and fPAR, as well as the positive and negative SIF757 variations
during the CARA period, using 18 timesteps for 9 months at each KG-climate zone. Each time-step
refers to the mean SIF757 from the first 15 days or from the rest of the days in each month. The mean
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SIF757 from each time-step of the CARA period was subtracted from the means of the other related
yearly time-steps outside the CARA period in the baseline period. Finally, the percentage of SIF757

variation was estimated for each time-step (Equation (2)).
The analysis of the SIF variation during the CARA period (Equation (2)) focuses on forest stands

within the MBF biome due to the sample sizes of the forest stands at the other biomes (Figure S2). For
the combined analysis of SIF757 and fPAR, we focused on the forest surfaces of all biomes within the Af,
Am, and Aw KG-climate zones. In parallel, we analyzed the spatial and temporal distribution of three
drought indicators at a monthly resolution at the basin scale, including scPDSI values below −2, PET
– P < 0, and the combination of both. In this study, the drought categories represent data only from
pixels that include a combination of both.

The yearly phenological variation of SIF757 in the KG-climate zones between 1 October and
31 March was smaller than that during the other half of the year during 2014–2018. Thus, to
avoid quantifying this variation in our ER scale drought analysis, we sampled the SIF757 from that
6-month period during the 15 months of the baseline period. This period additionally includes
the record-breaking heat of 2015–2016 [4]. Hence, we defined these 6 months within the baseline
period as the El Niño 2015–2016 peak. In our final analysis, we particularly focused on the El Niño
2015–2016 peak drought conditions. We compared drought-driven SIF757 changes with changes in
the VPD and temperature during the climatological anomaly peaks for different ERs. To estimate
the drought impacts on SIF757, we averaged the SIF757 under non-drought, “moderate”, “severe”, and
“extreme” drought conditions over a period of 15 months.

SIF anomaly (%) =

(
SIFdroughted − SIF“normal”

)
∗ 100

SIF“normal”
(3)

We then estimated the El Niño 2015–2016 peak drought effects on the SIF757 by subtracting
the average SIF757 of the retrievals in the non-drought areas from the average at moderately, severely,
and extremely “droughted” areas. Then, we estimated the percentile variation with respect to
non-drought to determine the drought effects in percentages per ER (Equation (3)). Furthermore, aside
from SIF757 differences, we analyzed the percentual differences between the fPAR means of the El Niño
2015–2016 peak, with respect to other 6-month periods in the January 2014–December 2018 time frame.

Additionally, we analyzed the temporal dynamics of SIF757, VPD, and surface temperature
variations at a 15-day resolution within the MBF biome of the Af, Am, and Aw KG-climate zones.

3. Results

3.1. SIF757 Phenological Diversity across ER and Climate Zones

The SIF757 across ERs showed different spatial (Figure 2A) and temporal (Figure 2B) dynamics
over the period from September 2014 to December 2018. We find subtle differences in SIF757 phenology
across different forest regions. MBF-ER (green values in Figure 2A) showed the highest SIF757 values,
but we also found that the SIF757 from the DBF and GSS biomes was equal to or higher than that of
the MBF-ER on reiterated occasions. We acknowledge that this SIF757 variability, particularly that from
GSS and DBF ER, may arise from natural or disturbed grasslands type vegetation, which we could not
differentiate in the scope of our study. Moreover, we found a relatively higher temporal variability in
the ERs close to the Andes (ERs 13 and 30), in those in the south and south-west (ER 9 and 18), and in
those neighboring the non-MBF ERs, where forest cover is uncommon (Figure S2).
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decreasing SIF757 values in a gradient from top to bottom. In the boxplots, the boxes show
the interquartile ranges, the solid lines indicate the median, the whiskers show values 1.5 times
higher (upper whisker) and lower (lower whisker) than the interquartile range, and the black dots
indicate outliers. The numbers on the right side of each boxplot are the number of months reported per
ER. (B) The time-series of the monthly SIF757 means and their standard errors for the observation period
from September 2014 to December 2018. The colors in (A) and (B) indicate the biome type to which
each ER belongs. The ERs belonging to the moist broadleaf forest (MBF) biome are stratified using
three different levels of green based on their monthly means medians, with the thresholds <0.95; [0.95,
1.05]; and >1.05 W/m2/sr/µm. (C) Orbiting Carbon Observatory-2 (OCO-2) solar-induced chlorophyll
fluorescence (SIF) and MODIS Aqua absorbed fraction of the photosynthetically active radiation (fPAR)
15 day-resolution time-series for the period of September 2014 to December 2018. The signals are
aggregated in Af, Am, and Aw Köppen–Geiger climate zones within the Amazon river basin.

Although we did not determine the dry or the wet season for each ER, we observed a yearly
phenological variation that resembles that of the climate zones in most ERs (Figure 2B), except for those
with <0.95 W/m2/sr/µm. These MBF-ER-SIFs remain relatively stable throughout the year compared to
all other ER-SIFs from the MBF biome.

The MBF-ERs cover approximately 5.2 million km2 (~ 87% of the Amazon basin) and five of
these ERs are some of the most productive regions, with a monthly median SIF757 of more than
1.05 W/m2/sr/µm (ER 1, 2, 4, 5, and 6; ~1.3 million km2). The gradient of the SIF757 medians across
the ERs (Figure 2A) indicates that the first five ERs, with a monthly median >1.05 W/m2/sr/µm, may
have a relatively higher contribution to SIF757 within the basin. Among the 32 ERs under analysis, only
13 ERs reached or exceeded a monthly median of 1.25 W/m2/sr/µm (ER 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 18,
20, and 28; ~2.6 million km2). Five presented a notably wider interquartile range (≥0.24 W/m2/sr/µm),
indicating a stronger seasonality (ER 1, 4, 7, 15, 26; ~1.7 million km2).

3.2. SIF757 and fPAR Dynamics at Climate Scale

About 5.6 million km2 of the Amazon basin is located within the Af, Am, and Aw KG-climate
zones. The temporal SIF757 and fPAR dynamics for these three KG-climate zones show direct temporal
mismatches with each other (Figure 2C). We could not observe a relationship between the inter-yearly
annual peaks in SIF757 and the inter-yearly fPAR dynamics.

We found that SIF757 decreases within the first-half of the year and increases during the second-half
of the year. Furthermore, we observed a bi-yearly alternation in the SIF757 peaks between December
and March in the Af KG-climate zone. There, we also observed increases in the yearly minimum
fPAR through the years, while it remained relatively constant at the Am climate zone. In addition,
the Am KG-climate zone presented a constant decrease in the yearly minimum fPAR between 2014
and 2017. We also found that the cumulative SIF757 at a climate scale follows the relation Af < Am
< Aw. However, the coverage of their areas presents an opposite relationship, with 37%, 30%, and
27%, respectively.

3.3. Drought Extent and Development

Drought conditions occurred predominantly in the north-eastern part of the Amazon basin
(Figure 3A; ER 5, 15, 22, and 26; maximums >13 and ≤21 drought months/pixel (DMP)), ER 32
(maximum ≤ 15 DMP), ER 12 and 4 (maximum ≤ 9 DMP), and ER 19 and 31 (maximum ≤ 7 DMP),
while the other ER pixels had six or fewer maximum DMP. The drought occurred in two waves between
August 2015 and November 2016, with the second wave starting in April 2016 (Figure 3B).
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Figure 3. (A) The number of months and (B) the area in km2 in which pixels meet different drought
indicators thresholds during the period from September 2014 to December 2016.

The scPDSI indicated an anomalous water balance, which started in August 2015, reaching its first
peak in October 2016. The drought conditions remained until January 2016 and decreased by March
2016. Then, a second wave of anomalous water balance conditions began in August 2016, peaked in
July 2016, and decreased until December 2016. We did not find any pixel with PET < 0 or drought
conditions at the western hemisphere of the Af KG-climate zone.

3.4. SIF757 Response during the 2015/2016 El Niño Drought Event

We found different drought effects across the Amazonian MBF-ER in the Amazon basin during
the El Niño 2015–2016 peak (Figure 4A,B; Appendix A Table A2). The drought indicator clearly
captured an increased VPD and increased temperature values across the KG zones and ER. Our
analysis of the SIF757 variations during the CARA period in the Af, Am, and Aw climate zones showed
a net change of −2.42%, −1.46%, and −1.42%, respectively (Figure 4A). For the ER, we estimated that
the drought effects varied from −31.09% (ER 7) to +17.56% (ER 32) during the El Niño 2015–2016
drought peak. We assessed 21 MBF-ER and found that 8 ER showed a decrease in SIF757 below −5%
under moderate and severe/extreme drought conditions (Figure 4B; ER 2, 4, 7, 8, 15, 25, 29, 31), although
the fPAR increased in four of these cases (ER 7, 4, 25, and 15). Drought areas yielded SIF757 increases
above 5% at 4 ER (1, 18, 32, and 6). We found an increased IQR for the temperature values in all ERs
except for ER 9 and 18. Moreover, we also observed increases in the VPD in all ERs under drought
except for ER 15, 9, 5, and 18.
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and rain anomaly period (CARA; see methods). Shown are the standard error and the estimated
SIF757 variations for each time-step. The red dashed lines mark the stages of the CARA period.
The red and blue barplots show the SIF757 increases and decreases during the CARA period based on
the percentual change in respect to the baseline period (Equation (2)). (B) Surface temperature and
vapor pressure deficit (VPD), as well as the percentage change in the SIF757 and fPAR in 20 ecoregions
(ERs) during the El Niño 2015–2016 peak. (C) Spatial distribution of the estimated vulnerability of
SIF757 when affected by El Niño 2015–2016 peak drought conditions. The vulnerability was estimated
as the difference between the means of SIF757 in non-drought and droughted pixels per ER over
a 6-month yearly phenological period of 2.5 years. The inserted pie chart shows the proportional share
of the vulnerable ER within the MBF biome (5,223,985 km2).

The overall results indicate that the largest net MBF-SIF757 change occurred in the Af climate zone.
However, the analysis that also considered drought sub-regions indicated that the most notable SIF757

decreases in vegetation occurred in the Am and Aw climate zones (Figure S3). Moreover, a higher
spread of the time-step means was observed in the Am and Aw climate zones under moderate and
severe/extreme drought than that under non-drought conditions compared to Af.

Figure 4C shows a drought vulnerability map across the Amazonian vegetation ecosystems
including their SIF757 values. All values used for the drought-peak estimation, the number of retrievals,
and the area of each ER are presented in Appendix A Table A2. The drought effects on SIF757 could not
be quantified due to the absence of moderate, or severe and extreme droughted retrievals at ERs 11, 13,
17, 21, 23, and 24 (the black areas in Figure 4C).

4. Discussion

4.1. Phenological Diversity of SIF757

The subtle intra-biome differences in monthly SIF757 patterns across the MBF-ER (Figure 2A,B)
suggest that there is an SIF phenological diversity that is finer in spatial resolution than the currently
applied resolution of climate zones for assessing SIF (such as [7,29]). These phenological differences are
evident between the ERs of different biomes and have been analyzed beyond the extent of the Amazon
basin in Brazil [30]. The KG-climate zones combine the SIF values of areas from different biomes. Such
an approach merges the SIF from plant communities with the different main CO2 fixation pathways
(e.g., the C4 from the GSS with C3 and CAM from the MBF), particularly in the Am and Aw climate
zones. Aggregation on this basis may mislead SIF interpretations for ΦF, which differs considerably
across plants with different CO2 fixation pathways [15].

Similarly to the previous research on Amazonian vegetation SIF phenology [29], we showed that
photosynthetic activity during the dry season is lower than during the wet season. SIF757 variability
at the level of KG-climate zones can be attributed to the beginning of the wet season in our study
(i.e., the beginning of the wet season shown in Figure 2A). The phenological variations in Figure 2B
have distinctive yearly minimums and maximums which allow one to coarsely characterize each
ER-SIF´s signature. Hence, our research findings confirm the great potential of OCO-2 in capturing
the inter-biome temporal variability in the SIFs of different South American biome vegetation types [30].

4.2. SIF757 and fPAR Dynamics at the Scale of Climate Zones

In our study, fPAR and SIF757 showed a temporal mismatch (Figure 2C), which suggests that
the fluorescence quantum yield in the band of measurement (ΦF) and the probability that photons can
escape the canopy (ΩC) play an important role in the SIF of plants compared to fPAR. SIF-fPAR temporal
mismatches were found in 2015 [13], where the land surface temperature (proxy for PAR) and nadir
BRDF (bidirectional reflectance distribution function) adjusted reflectance (NBAR) in the near-infrared
band of the MODIS satellite (an fPAR proxy) showed a temporal mismatch with GOSAT SIF across
the climate zones in Amazonia. We agree with the implications of previous findings on the seasonality
of SIF in the Amazon [13], which showed that there is leaf phenological diversity [63] that cannot be
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captured at the scale of KG-climate zones [7,29] and biomes [30,44]. Thus, it may be valid to aggregate
SIF time-series of retrievals over combined classes of ERs to capture SIF dynamics and magnitude
differences. This is because ERs are based on biomes maps considering the vegetation´s climatological
and ecological dimensions (Table 1) that the OCO-2 captures in terms of ΦF and ΩC [9,19].

The reason behind the inverse relation observed between SIF757 and the fPAR may be related to
the structural effects at canopy level that the seasonal increase in leaf growth [63] can have on ΩC
and fPAR. Research has been done on fitting the parameters of SIF760 with reflectance between 400
and 900 nm from the canopy of crop systems in a SCOPE (Soil Canopy Observation, Photochemistry
and Energy Fluxes) model [64]. They found that the reflectance properties alone fit well with
the SIF in the model, while simulations including a control of ΦF according to the maximum rate of
the carboxylation parameter performed marginally better. These results support the argument that
SIF might be strongly determined by canopy structure, and thus ΩC, and not as much by canopy
biochemistry (i.e., ΦF) [9].

Interestingly, canopies with similar fPAR can emit different levels of SIF and have different levels
of GPP [65]. It has been reported that structural parameters, such as near-infrared reflectance (NIRv),
correlate better with canopy GPP than does fPAR [65] because higher NIRv (as well as more SIF)
corresponds to a larger fraction of sun leaves [65], which gives them a higher maximum rate of
carboxylation than shade leaves. Thus, it is possible that SIF seasonality may be better explained by
forest structural factors that determine the fraction of sun and shade leaves than with fPAR.

4.3. Drought Definition for Assessing SIF Variation during Drought

We applied the scPDSI to define drought, which, in contrast to other drought indicators (e.g.,
CWD, SPI, or SPEI), considers soil characteristics and models water fluxes as runoff or recharge, along
with common water balance drivers, such as precipitation, temperature, and evapotranspiration. Our
drought definition excluded a considerable area of the western Amazon basin region which did not
experience scPDSI ≤ −2 or P – PET < 0 conditions.

When defining drought at a spatio–temporal scale comparable to that of OCO-2 SIF, the main source
of uncertainty is the lack of long-term observational data on common water balance drivers [66] and
the absence of in-depth high-resolution soil descriptors in UN-FAO maps [58]. Unless the Amazonian
measurement station network is upgraded to provide the scientific community with better quality
data, the responses of the Amazon rainforest´s vegetation to climate change at an ER scale will have to
be analyzed and forecasted using other climatological datasets (e.g., ERA-5 from the European Centre
for Medium-Range Weather Forecasts [67]) and soil maps [68] in addition to those analyzed here.

4.4. SIF757 Response during the El Niño 2015–2016 Extreme Drought Event

Although it was proven with plant-level measurements of active fluorescence that, under controlled
environments, the carbon-assimilation of plant species responds differently to drought [69–71], only few
studies have explored the changes in SIF757 during the drought in the Amazonia (e.g., [7]). We showed
that the MBF in the Af KG-climate zone had the highest net SIF757 decreases compared to the Am and
Aw KG-climate zones during the CARA period (Figure 4A). This contrasts with the lowest VPD (higher
humidity) in the Af compared to Am and Aw (Figure S3) and demonstrates that the Af environment is
more humid, but its vegetation’s SIF757 is more sensitive to variations in the water balance.

The estimated drought-driven SIF757 changes across the ERs (Figure 4B) may be indicators of
the changes in GPP dynamics between different drought categories of the same ER. These may also be
indicators of mortality [71] of hydraulically vulnerable species [26] that would lead to variations in GPP.
Such GPP variations have been reported to have enormous impacts on the structure and function of
the Amazonian forest ecosystems [72,73], as well as on their provisioning of ecosystem services [74,75].
However, it is difficult to tell when a plant that contributes with chlorophyll fluorescence radiance
to a SIF retrieval is dead [76] and, as a consequence, its ecological niche has been occupied by better
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adapted species [24–26], or when physiological responses have taken place. This is because an OCO-2
SIF retrieval captures a unit of land with a diverse plant community under constant interaction.

If physiological responses are taking place at the plant level, one can expect a reduced
photosynthesis [63]. However, at the community level, we observed positive and negative ER-SIF757

variations. We hypothesize that the variations could also be related to drought-driven ecological
dynamics with potential for compelling the ERs’ community demography to express a higher or lower
ΦF and ΩC (e.g., the proliferation of tropical plants that increase tree mortality [27], a decrease in
pollinators resulting in decreased natality of specific plant species [77], or a decrease in the fauna’s
floristic resources, thereby affecting the fauna composition [78,79] and leading to changes in ΦF by
limiting the plants’ N availability [16] from manure and urine stock flows). Nevertheless, similar to
previous results [7], we found a widespread SIF757 reduction during the El Niño 2015–2016 phenomena
in which the positive and negative ER-SIF757 variations suggest that both physiological responses and
mortality may be taking place with a higher frequency in ERs with higher SIF757 variations.

Our analysis also provides insights into the magnitude of VPD changes, their correlation with
temperature across the Amazon region during the El Niño 2015–2016 extreme drought, and the related
SIF response. Notably, the ERs experienced different VPD under drought, which may be related to
whether they are able to decouple photosynthesis from transpiration during heat extremes [80].

The decrease in SIF in combination with increases in fPAR in drought areas has been linked to
a higher heat dissipation of plants through non-photochemical quenching (NPQ; [81,82]). fPAR reflects
the structure of vegetation, whereas SIF is influenced by structural (APAR and ΩC) and physiological
(LUE and ΦF) components. However, to physiologically consider the allocation of APAR in SIF,
NPQ, or photochemistry, PAR measurements are required to calculate APAR. Together with ΩC, these
measurements would allow one to remove the structural components of SIF and provide a proxy
for NPQ. Nevertheless, we found large differences in temperature and VPD between drought and
non-drought areas of the same ER (Figure 4B). In this case, the ER characterization of SIF under
different drought classes (Appendix A Table A2) can help tracking changes in the behavior of the ERs
by comparing their non-drought values over time with their droughted SIF values during the El Niño
2015–2016 anomaly period.

5. Conclusions

Here, we showed SIF757 variability at an ER scale. The extent to which the vegetation communities’
ΦF and ΩC influence the SIF retrievals still requires elucidation. The Amazon region is the most
biodiverse place on Earth. Therefore, uncertainties about the extent to which there is linearity between
SIF and GPP remain for this particular region. However, our study on ERs across the Amazon basin
demonstrates that it is possible to differentiate high-resolution SIF responses, which are related to vital
photosynthetic processes and carbon fixation. This approach, combined with further data on the factors
related to SIF (ΦF and ΩC), and the ER-SIF specific responses to drought in terms of the LUE-SIF-GPP
relationships could help to provide more accurate methods to estimate the carbon stocks and flows
with unprecedented spatial and temporal resolutions.

Finally, due to the extraordinarily high uncertainty about the association of SIF-GPP’s relationship
to OCO-2 SIF and satellite-based GPP products in rainforests and in South America, the next step would
be to compare pertinent high-resolution air- or space-borne data with ground-based measurements,
for example, data from eddy-flux towers or ground-based SIF instruments. Such data are difficult
to acquire in the Amazon region, but might be relevant for comprehensively predicting GPP from
the extremely biodiverse Amazonian ecosystems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/7/1202/s1,
Figure S1. Sun Induced Fluorescence retrievals (OCO-2 Science Team, 2018) inside the Amazon river basin extent
of Mayorga et al. (2012); Figure S2. Forest cover and disturbances inside the Amazon river basin extent of Mayorga
et al. (2012). Based on the “Tree canopy cover for year 2000” (treecover 2000) and “Year of gross forest cover loss
event” (lossyear) of the Global Forest Change products of Hansen et al. (2013), respectively; Figure S3. SIF757
averages and standard error; vapor pressure deficit, and temperature averages, for normal and drought scPDSI

http://www.mdpi.com/2072-4292/12/7/1202/s1
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conditions at sub-regions of the Af, Am and Aw Köppen-Geiger climate zones within the moist broadleaf forest
biome for the baseline period.
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Appendix A

Table A1. Biomes, ecoregions (ERs) and Köppen–Geiger climate zones of the study area. Classifications
are based on those of Dinerstein et al. (1995) and Kottek et al. (2006). The Köppen–Geiger classification
codes consist of 2 or 3 letters describing the prevalent climate conditions (tropical [A], arid [B], warm
temperate [C], snow [D], and polar [E]), precipitation (desert [W], steppe [S], fully humid [f], summer
dry [s], winter dry [w], and monsoonal [m]) and temperature (hot arid [h], cold arid [k], hot summer
[a], warm summer [b] and cool summer [c], and polar tundra [T]).

Biome ER Köppen–Geiger Climate Zone(s)

Moist Broadleaf
Forests (MBFs)

Bolivian Yungas Af - Am - Aw - BWh - BSk - Cfc - Cfa
- Cfb - Cwb - Cwc - ET

Caqueta moist forests Af - Am

Cordillera Oriental montane forests Af - Am - Cfb

Eastern Cordillera Real montane forests Af - Am - Aw - BWh - As - Cfc - Cfb -
Cwb - ET

Guianan Highland moist forests Af - Am - Aw - Cfb

Guianan lowland moist forests Af - Am - Aw

Guianan piedmont moist forests Af - Am - Aw - Cfb

Gurupa várzea Am - Aw

Iquitos várzea Af - Am - Aw

Japurá–Solimões–Negro moist forests Af

Juruá–Purus moist forests Af - Am - Aw

Madeira–Tapajós moist forests Af - Am - Aw

Magdalena Valley montane forests Af - Cfb

Marajó várzea Af - Am - Aw

Marañón dry forests Af - Am - Aw - BWh - BSk - Cfb -
Cwb - Cwc - ET

Mato Grosso tropical dry forests Am - Aw

Monte Alegre várzea Af - Am - Aw

Napo moist forests Af - Am - As

Negro–Branco moist forests Af - Am - Cfb



Remote Sens. 2020, 12, 1202 17 of 23

Table A1. Cont.

Biome ER Köppen–Geiger Climate Zone(s)

Northwest Andean montane forests Cfc - Cfb - ET

Pantepui forests and shrublands Af - Am - Cfb

Peruvian Yungas Af - Am - Aw - BWh - BSk - Cfc - Cfb
- Cwc - Cwb - ET

Purus–Madeira moist forests Af - Am - Aw

Purus várzea Af - Am - Aw

Rio Negro campinarana Af - Am

Solimões–Japurá moist forests Af

Southern Andean Yungas Aw - BWh - BSk - Cfa- Cfb - Cwa -
Cwb

Southwest Amazon moist forests Af - Am - Aw - BWh - Cfb

Tapajós–Xingu moist forests Am - Aw

Uatumã–Trombetas moist forests Af - Am - Aw

Ucayali moist forests Af - Am - Aw - Cfb

Xingu-Tocantins-Araguaia moist forests Af - Am - Aw

Dry Broadleaf
Forests (DBFs)

Beni savanna Af - Am - Aw

Bolivian montane dry forests Aw - BWh - BSk - ET - Cfb - Cwb

Chiquitano dry forests Am - Aw

Magdalena Valley dry forests Af - Cfb

Tumbes–Piura dry forests Cfb - Cwb - ET

Grasslands,
Savannas and
Shrublands

(GSSs)

Central Andean dry puna BSk - Cwc - Cwb - ET

Cerrado Aw

Dry Chaco BWh - Aw

Guianan savanna Af - Am - Aw

Montane
Grasslands and

Shrublands
(MGSs)

Central Andean puna BSk - BWh - Cfb - Cfc - Cwc - Cwb -
ET

Central Andean wet puna ET - Cfb - Cwc - Cwb

Cordillera Central páramo Af - Am - Aw - BSk - Cfc - Cfb - Cwc
- Cwb - ET

Northern Andean páramo Af - Cfc - Cfb - ET

Flooded
Grasslands and

Savannas (FGSs)
Pantanal Aw

Deserts and Xeric
Shrublands

(DXSs)
Sechura desert ET
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Table A2. Data from the drought effect estimation (Figure 4B,C in the main text) aggregated by
ecoregions with scPDSI area sub-classes. In the table, for each ecoregion, information can be found
on the ecoregion surface area within the Amazon river basin (km2), the SIF number of the retrievals
for each scPDSI sub-class presented as per-mil of the total (1%� = 130.4 retrievals), and the means
for each scPDSI sub-class (W/m2/sr/um). The sampling extended from 01 October to 31 March for
the time-frame of September 2014–December 2016.

Ecoregion
Quantity of SIF Samples (%� over

Total SIF Retrievals)/Mean SIF Value
(W/m2/sr/um)

% of Change in SIF in
Respect to

Non-Drought

Ecoregional Area
(km2) within

the Amazon Basin

Drought Classes Moderate/Severe and
Extreme-Drought AreasNon-

Drought Moderate Severe/
Extreme

1. Southwest Amazon
moist forests 746,572 106.62/1.09 0.36/1.15 -/- 5.98/-

2. Tapajós–Xingu moist
forests 335,000 40.99/1.15 5.87/1.09 9.09/1.00 −5.45/−13.43

4. Xingu-Tocantins–
Araguaia moist forests 165,107 12.15/1.23 1.08/0.94 4.83/0.96 −23.64/−22.15

5. Guianan piedmont
moist forests 88,536 29.8/1.04 3.06/1.08 24.85/1.08 4.45/4.45

6. Gurupa várzea 10,170 0.31/1.05 0.22/1.12 0.06/1.29 6.93/23.39

7. Madeira–Tapajós moist
forests 716,661 78.25/1.09 1.87/0.75 1.7/0.83 −31.09/−23.90

8. Napo moist forests 250,652 64.57/1.09 1.02/0.98 -/- −10.29/-

9. Bolivian Yungas 90,330 4.83/1.23 0.12/1.18 -/- −4.54/-

10. Ucayali moist forests 114,259 6.16/1.12 0.01/1.57 -/- 39.76/-

11. Iquitos várzea 114,259 16.81/1.08 -/- -/- -/-

12. Mato Grosso tropical
dry forests 306,884 8.06/1.10 0.92/1.15 1.97/1.03 4.83/−6.36

13. Peruvian Yungas 175,875 2.29/1.00 -/- -/- -/-

15. Guianan lowland
moist forests 34,696 12.54/1.09 18.66/1.02 4.93/0.97 −6.47/−10.48

16. Uatumã–Trombetas
moist forests 444,474 104.98/1.01 68.95/1.01 109.99/1.00 −0.73/−1.66

17. Solimões–Japurá moist
forests 166,902 7.75/1.05 -/- -/- -/-

18. Eastern Cordillera Real
montane forests 81,955 13.69/1.08 0.18/1.18 -/- 9.58/-

19. Purus–Madeira moist
forests 173,482 39.43/1.01 0.37/0.99 2.01/0.99 −1.98/−2.15

20. Marajó várzea 40,080 0.87/1.00 0.54/1.04 4.07/0.95 4.12/−4.67

21. Caqueta moist forests 168,098 0.08/1.02 -/- -/- -/-

23. Purus várzea 176,473 12.13/0.98 -/- -/- -/-

24. Juruá–Purus moist
forests 241,679 19.19/1.02 -/- -/- -/-

25. Monte Alegre várzea 66,402 7.03/1.06 0.53/0.87 1.05/0.96 −18.21/−9.51

26. Guianan Highlands
moist forests 34,098 10.09/1.00 2.03/0.92 5.23/1.01 −8.57/0.62
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Table A2. Cont.

Ecoregion
Quantity of SIF Samples (%� over

Total SIF Retrievals)/Mean SIF Value
(W/m2/sr/um)

% of Change in SIF in
Respect to

Non-Drought

Ecoregional Area
(km2) within

the Amazon Basin

Drought Classes Moderate/Severe and
Extreme-Drought AreasNon-

Drought Moderate Severe/
Extreme

28. Japurá–Solimões-
Negro moist forests 267,402 52.73/0.99 3.83/0.95 6.49/1.00 −3.97/1.27

29. Negro–Branco moist
forests 93,322 29.63/0.95 0.69/0.88 4.11/0.84 −7.01/−11.25

31. Rio Negro
campinarana 80,759 15.46/0.87 1.33/0.77 3.59/0.81 −11.39/−7.13

32. Pantepui forests and
shrublands 6580 4.01/0.84 0.41/0.99 3.52/0.91 17.56/8.16

Total SIF retrievals in this experiment: 130,413
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