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Abstract

Evolving in groups can either enhance or reduce an individual’s task performance. Still, we

know little about the factors underlying group performance, which may be reduced to three

major dimensions: (a) the individual’s ability to perform a task, (b) the dependency on envi-

ronmental conditions, and (c) the perception of, and the reaction to, other group members.

In our research, we investigated how these dimensions interrelate in simulated evolution

experiments using adaptive agents equipped with Markov brains (“animats”). We evolved

the animats to perform a spatial-navigation task under various evolutionary setups. The last

generation of each evolution simulation was tested across modified conditions to evaluate

and compare the animats’ reliability when faced with change. Moreover, the complexity of

the evolved Markov brains was assessed based on measures of information integration. We

found that, under the right conditions, specialized animats could be as reliable as animats

already evolved for the modified tasks, and that reliability across varying group sizes corre-

lated with evolved fitness in most tested evolutionary setups. Our results moreover suggest

that balancing the number of individuals in a group may lead to higher reliability but also

lower individual performance. Besides, high brain complexity was associated with balanced

group sizes and, thus, high reliability under limited sensory capacity. However, additional

sensors allowed for even higher reliability across modified environments without a need for

complex, integrated Markov brains. Despite complex dependencies between the individual,

the group, and the environment, our computational approach provides a way to study reli-

ability in group behavior under controlled conditions. In all, our study revealed that balancing

the group size and individual cognitive abilities prevents over-specialization and can help to

evolve better reliability under unknown environmental situations.
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Introduction

Intelligence is the ability to adapt to changes. According to this prevalent perspective, possess-

ing general intelligence [1,2] not only enables one to perform a task correctly under already

known conditions, but also to perform well under unexpected conditions. Further, in natural

environments intelligent behavior is not only dependent on the (maybe limited) intelligence of

the individual organism, but also involves interactions with the social and physical environ-

ment [3–5]. The ability to adapt one’s behavior to the behavior of other group members is nec-

essary to act appropriately in case of unforeseen events, not only in the animal world but also

in high-reliability organizations (e.g., aircraft carrier or nuclear power plants) [6–8]–In the fol-

lowing, we use the term “reliability” to denote the ability of an organism to perform well even

under slightly modified, unfamiliar circumstances.

While it seems intuitive that there is a triangular relationship between the individual, the

group, and the environment [9], we discovered a lack of research on how individual behavior

and group behavior are interrelated and depend on spatial attributes of the environment [10].

Several studies have investigated intelligence and knowledge on the group level, and some

have modelled groups of individuals as single agents (e.g., [11–15]). These studies have their

origins in a variety of disciplines and have in common that they seek to elucidate the dynamics

between group members. However, our understanding of how an individual actor in a group

evolves intelligent behavior and reliability is still limited.

Here, we are particularly interested in how an individual’s sensorimotor and memory

capacity, the interaction between group members, and the environment constrain this evolu-

tion. To explore these factors in a controlled experimental setup, we used a simple evolution

simulation, and we tested how specific cognitive and environmental limits influence the

behavior, performance, and reliability of artificial organisms evolved in groups of various

sizes.

Inspired and motivated by Pinter-Wollman et al. [10], we investigated how the behavior

and performance of evolved “animats” (simulated agents with cognitive abilities [16,17]) varies

in different task conditions, such as changes in the proportions of static objects, dynamic

objects (moving group members), and individual sensorimotor and memory architecture.

Using a simulation approach enabled us to manipulate and observe three dimensions which

might influence evolved task performance and reliability: the group size (influencing the den-

sity of animats present in the environment), the animats’ architecture (that is, the maximal

number of available sensors, motors, and memory units), and the environmental design. In

this study, we explicitly distinguish between the final task performance reached in the evolu-

tion environment (“evolved fitness” (EF)) and the post-evolutionary “task fitness” (TF), which

measures the performance of the evolved animats under specific modified conditions (not

encountered during evolution). High task fitness across many modified conditions indicates

high reliability. High evolved fitness, but low reliability could then be interpreted as a form of

narrow intelligence, while high evolved fitness and high reliability would point to more general

intelligence.

We used a genetic algorithm to let the animats’ behavior evolve under various evolutionary

setups. Specifically, the animats were controlled by Markov brains (MBs) [17], which consisted

of computational units whose functions and connectivity were determined by the animats’

adaptive genome. The animats’ task was to navigate through a two-dimensional world com-

posed of two rooms without colliding with other group members (see Fig 1). Each animat

could achieve a maximum score of 4 points within each trial, with a small penalty (-0.075
points) for each collision and a large reward (+1.0 points) for crossing gates between rooms.

After an evolution of 10,000 generations, we tested the final animats under modified task
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conditions modeled as: a variation in group size (the number of animats simultaneously pres-

ent in the environment), the complexity of the static obstacles in the environment, and interac-

tion rules between animats that affect task difficulty. The interaction rules include changes in

the animats’ ability to differentiate between static obstacles and other animats, the imposed

collision penalty, and the possibility to inhabit the same location in the environment. An ani-

mat was considered reliable if its task performance remained high across many variations of

these test conditions.

A predecessor study focused on the influence of group size on the evolution of group fitness

and reliability [18], while the present work (1) extends the reliability experiments, (2) includes

evolutionary setups with variations in the animats’ architecture, and (3) elaborates the mea-

surement of brain complexity by applying measures developed within the framework of the

integrated information theory (IIT) to the evolved MBs [19,20]. There are two additional

works which directly relate to our study: First, Konig et al. [21] provided the original experi-

mental setup. They designed a two-dimensional spatial-navigation task in which a swarm of

robots has to learn to travel between two rooms. Second, Albantakis et al. [20] showed how

single animats evolve in a perceptual-categorization task environment with dynamic objects

under various task difficulties. The primary motivation behind their work was to investigate

the evolution of integrated information [19], which is an indicator for brain complexity, and

its relation to task difficulty and memory capacity. Here, we discuss how the complexity of the

MBs—evolved in the various experimental setups—is related to reliability as a prerequisite for

general intelligence.

Overall, we found that, specialized animats can be reliable under the right conditions, that

feedback from the motor units has an impact on performance and reliability, that animats ben-

efit from passive interaction, and that more sensors enable reliability with simpler and less

integrated brain structures (which challenges the view that higher generalized intelligence is

necessarily associated with more complex cognitive architectures). Generally, our approach

highlights the complexity of the dependencies between the three investigated dimensions:

properties of the individual, group interaction, and environmental design. Even the simplified

conditions of our simulation experiments make this complexity visible, and thus cautions

against hasty generalizations, e.g., across different species or environments.

In the following, we will first present our results on the animats’ task performance, reliabil-

ity, behavior, and brain complexity across varying evolutionary setups. After that, we will dis-

cuss the findings in the broader scope of the literature and also how our work contributes to it.

The last part of the work explains the methods and research design.

Fig 1. The average number of occupations per position in the final generations. The first panel on the left shows the two-dimensional environment, including two

rooms with a total of 72 start positions (32 black dots [not occupied], 32 red dots [occupied]) for reference. In each trial, a subset of position is randomly selected as the

animats’ initial locations. The other six panels show the average number of occupations per position as heat maps. The average is taken across time (500 time steps) and

evolution simulations (30 per evolutionary setup). Red fields indicate high occupancy, and yellow fields indicate low occupancy in the corresponding position

throughout the trial. Generally, well-performing animat groups evolve a wall-following strategy. hEFi indicates the mean evolved fitness of the final generation in the

specific condition (see Results section for formal definition).

https://doi.org/10.1371/journal.pone.0228879.g001
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Results

We simulated the evolution of artificial organisms (“animats”) with diverse cognitive architec-

tures (number and type of available sensors, motors, and memory units) for 10,000 genera-

tions under various conditions. See Table 1 for an overview of all evolution simulations

conducted.

All animats were evolved to travel between two rooms in a two-dimensional environment,

which they shared with other animats of their same type (“clones” with the same genome),

except in the “single” condition (see Fig 1(A) and Table 1). The evolutionary fitness selection

occurs at the level of the genome (each generation consists of a population of 100 genomes)

and is positively dependent on the average number of times that the corresponding animats

(“phenotype”) stepped through the gate (+1.0 points) between the two rooms. After a success-

ful gate crossing, the same animat did not receive another reward for 100 time steps to avoid

crowding at the gate. In addition, we imposed a small penalty each time they collided with

other animats (-0.075 points, if not stated otherwise). Throughout, fitness values are displayed

as absolute numbers with a maximum value of 4 points (corresponding to the maximal num-

ber of possible gate crossings without collisions). A detailed description of the task environ-

ments and the evolutionary algorithm is provided below in the Methods section.

Table 1. Definition of simulation conditions (“evolutionary setups”). Evolutionary setups are indicated by a label Gi, where the index i specifies the respective type of

evolutionary setup. Differences compared to baseline configuration (top row, G0.50, group size of 36 animats) are highlighted in bold.

Label Gi Absolute Group

Size1
Cognitive

Architecture2
Interaction Condition3 Sensor Configuration2 Results in

Figs

Varying group size 1.004 72 4 memory units

2 motors with feedback

Active Penalty, blocking

disabled

1 animat sensor,

1 wall sensor

2/3/4

0.75 54

0.50 36

0.25 18

single 1

random random

Varying cognitive

architecture

bigbrain 36 8 memory units Active Penalty, blocking

disabled

1 animat sensor,

1 wall sensor

5/6/7

smallbrain 2 memory units

no-
feedback

4 memory units

2 motors without

feedback

Varying

interaction conditions

no-penalty 36 4 memory units

2 motors with feedback

No Penalty, blocking

disabled

1 animat sensor,

1 wall sensor

8/9/10

blocked/
no-penalty

No penalty, blocking

enabled

blocked Active Penalty, blocking

enabled

Varying sensor

configuration

no-agent 36 4 memory units

2 motors with feedback

Active Penalty, blocking

disabled

1 wall sensor 11/12/13

3sides 3 animat sensors, 3 wall

sensors

w = a 1 universal sensor

1 Absolute group size, 72 animats corresponds to 100% coverage of available starting slots.
2 See Methods section for detailed architecture. Numbers indicate maximally available sensors, motors, or memory units, not the actually evolved number, which may be

less.
3 If penalty is active, animats receive penalty (-0.075 points) for colliding with other animats. If blocking is active, animats are not able to share the same position,

otherwise they can occupy the same position, albeit with a penalty.
4 Numeric indices correspond to relative group size: 1.00 corresponds to 100% coverage of available starting slots (100% ≙ 72 animats). The indicators 0.75, 0.50, and

0.25 correspond to 75%, 50% and 25% of available starting slots, respectively.

https://doi.org/10.1371/journal.pone.0228879.t001
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In many evolutionary setups (Table 1), high final fitness values (EF> 3, “evolved fitness”)
were reached. Fig 1(B) displays six different heatmaps visualizing several evolved movement

patterns. It is observable that animat groups with reasonable evolved fitness (EF) converge

towards a “swarm”-like wall-following behavior, which is determined by both, interactions

with fellow animats and interactions with the environment [4,10].

Once evolved, the best genome of each final generation was selected for post-evolutionary

tests under modified conditions. Specifically, we modified the following three environmental

factors: (1) the number of co-existing animats, (2) the complexity of static obstacles compared

to the original two-dimensional environment (see Fig 1(A), and the Methods section for

details on the environmental design), and (3) the interaction conditions between agents (see

Table 2). For each test condition we assessed the “task fitness” (TF) achieved in the particular

post-evolutionary test environment (to be distinguished from the animats’ evolved fitness (EF)

reached after 10,000 generations in its original evolutionary setup). In addition, we evaluated

the animats’ behavior and quantified their reliability (average task fitness across modified con-

ditions) across varying group sizes in the original environment (R).

Finally, we quantified the complexity of the evolved MBs using two measures developed

within the framework of integrated information theory (IIT) [19,20]: the integrated informa-
tion (FMax) and the corresponding number of concepts (#Concepts(FMax)). The analysis was

performed using “PyPhi”, the IIT Python toolbox [22], using the standard settings according

to [19]. PyPhi takes the evolved MBs as an input in form of their “transition probability

matrix” (TPM). The TPM specifies how the states of the MB’s computational units (e.g.,

motors and memory units) update, given the state of their inputs. In this study, all computa-

tional units are binary and deterministic (see Methods “Animat Architecture”). Briefly, F

quantifies how much of the information specified by all components of a system would be lost

under a partition of the system. F has been proposed as a measure of complexity, as it will be

high for systems with many different components (functional differentiation) that are also

highly integrated [19,23]. For a particular MB we identify the subset of computational units

with the maximal amount of integrated information as FMax. For this subset, we also measure

the number of components (“concepts”) #Concepts(FMax). A “concept” in IIT is a subsystem

that has a causal role within the system—a mechanism within the system. A concept causally

constraints both, the past and future states of the system, and is irreducible to its parts. #Con-
cepts(FMax) thus captures the number of internal functions performed by the subsystem with

FMax. For details please refer to the original publication [19] and to [20] for an application of

Table 2. Overview of the eight environments in which reliability tests were performed. They differ in environmen-

tal conditions and in the complexity of the world design.

Label Environmental Conditions Environment (see Methods)

Original Active penalty1, blocking disabled2 See Fig 16(A)

No Penalty No penalty, blocking disabled See Fig 16(A)

Blocked Active penalty, blocking enabled

Blocked and no Penalty No penalty, blocking enabled

Noisy Corners Active penalty, blocking disabled See Fig 16(B)

Small Gates See Fig 16(C)

4 Rooms See Fig 16(D)

4 Messy Rooms See Fig 16(E)

1 If penalty is active, animats receive penalty (-0,075) when colliding into each other.
2 If blocking is active, an animat cannot move onto the location of another animat.

https://doi.org/10.1371/journal.pone.0228879.t002
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these measures to evolved MBs. While there may be simpler, less computationally demanding

options for evaluating the causal complexity of the evolved MBs (see [16,17,24]), the chosen

measures are fairly well established [20,22,23,25] and are theoretically motivated as part of the

formal framework of the integrated information theory (IIT) [19].

We organized the presentation of our results into four sections categorized according to the

evolutionary setups, as shown in Table 1 (varying “group size” (Figs 2–4), “cognitive architec-

ture” (Figs 5–7), “interaction conditions” (Figs 8–10), and “sensor configuration” (Figs 11–13),

respectively). Each section contains three figures displaying (1) the fitness evolution across

generations and final evolved fitness values, (2) the task fitness, reliability, and behavioral fea-

tures under modified post-evolutionary test condition (see Table 2), and (3) a complexity anal-

ysis of the evolved MBs. Since the figures are redundant in their construction, we will briefly

introduce their attributes:

Evolved fitness: Figs 2, 5, 8 and 11 show (a) the mean fitness hFi evolution across genera-

tions and (b) the distribution of evolved fitness values (EF) of the final generation across the

N = 30 evolution simulations that we performed per evolutionary setup. The shaded areas in

(a) visualize the standard error of the mean (SEM). The boxplots in (b) visualize the evolved fit-

ness per condition Gi:

EF ¼ FðAi
10;000
Þ; ð1Þ

Where Ai
10;000 is the group of animats of the final generation of evolution simulation i2N and

FðAi
10;000Þ its fitness value (see Methods for more details on the fitness function).

Fig 2. Fitness evolution and distribution of the final evolved fitness. (a) Gsingle is the condition which evolves the highest fitness on average. Larger group sizes during

evolution apparently impede the animats’ fitness evolution and lead to lower final evolved fitness values. (b) The evolutionary setup with randomized group sizes at each

generation (Grandom) demonstrates similar properties as those setups with fixed, intermediate group sizes (G0.25 and G0.50).

https://doi.org/10.1371/journal.pone.0228879.g002
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Post-evolutionary tests: Figs 3, 6, 9 and 12 visualize the results of testing the final genera-

tion of animats across different group sizes (GS = [1, 4, 7, . . ., 65, 68, 72]), Panel (a) in Figs 3,

6, 9 and 12, shows the mean task fitness hTFi of testing the animats under different group sizes

in their original environment and under additional modifications of the interaction conditions

between animats or the environment design, listed in Table 2. Note that the condition under

which a group of animats evolved is indicated by their Gi label (see Table 1). hTFi is an average

fitness across the N = 30 evolution simulations per experimental setup for a specific group size

GS and (modified) condition M:

hðTFÞMGSi ¼
PN

i¼1
FM
GSðA

i
10;000
Þ

N
: ð2Þ

Next, we quantified reliability for one test dimension, across modified group sizes in the

“Original” test condition. We denote this specific measure of reliability as R, computed as:

R ¼ hðTFÞOriginali
GS
¼

P
gFgðAi

10;000
Þ

jGSj
: ð3Þ

Fig 3. Post-evolutionary tests under modified conditions. (a) Overall, only Gsingle failed to generalize across group sizes, presumably because animats that

evolved without other group members did not develop strategies to avoid collisions (compare Original to No penalty test condition, where Gsingle performs well

throughout). There is a large difference in the Blocked environment between Grandom, G0.25, and G0.50, while in other environments their task fitness is comparable,

pointing to somewhat different navigation strategies. (b) On average, Grandom is the most reliable condition across varying group sizes, followed by G0.50 and G0.25.

Except for Gsingle, EF correlates with R in all groups. (c) Note that G0.50 and G0.25 change their behavior more with increasing animat density compared to Grandom.

https://doi.org/10.1371/journal.pone.0228879.g003

Fig 4. Distribution of brain complexity measures. Differences in (a) FMax and (b) the corresponding number of concepts was found between the most (Grandom and

G0.50) and the least (Gsingle) reliable setups. Due to the large variance in the data and the low sample size (30 simulations per evolutionary setup), differences in the mean

between the remaining conditions did not reach statistical significance (see Tables C and D in S1 Text).

https://doi.org/10.1371/journal.pone.0228879.g004
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Note that in this case, the average is calculated across group sizes not evolution simulations

as indicated by the subscript “GS”, which stands for group size with |GS| = 21 (see above).

Panel (b) shows the distribution of these reliability values (R) and their dependency on evolved

fitness (EF). Finally, panel (c) shows how the animats’ behavior depends on the relative group

size in the “Original” test environment, evaluating the probability of an animat to stand still

(“no movement”), turn, or move forward. Percentages are displayed in a scale from 0–100%.

MB Complexity analysis: Figs 4, 7, 10 and 13 show two types of metrics for MB complexity:

(a) the distribution of integrated information (FMax) [19,20], and (b) the corresponding num-
ber of concepts (#Concepts(FMax)) [19] per evolutionary setup. F and #Concepts(FMax) are

dimensionless quantities and therefore have no unit.

Varying group size: Evolution under specialized conditions can produce

reliable agents

In a first set of experiments, we compared animats that evolved within groups of different,

fixed sizes (1–72 animats), using the baseline animat and environment design in all cases, see

Table 1: G1.0-single. Preliminary results, including a comparison of the reliability R of evolution

conditions G1.0-single, were presented in [18]. As shown in Fig 2(A) and reported in [18], group

size during evolution does impact the animats’ ability to perform the gate crossing task (see

Fig 1(A)), which impacts the final evolved fitness EF.

In our spatial-navigation task, animats in condition Gsingle (group size of 1 animat) fre-

quently find an optimal solution within 10,000 generations. We assume that this is due to the

Fig 5. Fitness evolution and distribution of the final evolved fitness. (a) Less capacity for memory and internal computations impairs fitness evolution. Despite their

similar capacity for memory, Gsmallbrain evolved higher task fitness than Gno-feedback. (b) Ceiling outliers suggest that animats in Gno-feedback are generally capable of

performing as well as the average animat in Gsmallbrain but that this is less likely. The performance of Gbigbrain is comparable to G0.50 with more distributed outcomes.

https://doi.org/10.1371/journal.pone.0228879.g005
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decreased difficulty of the task in this condition since colliding is impossible, and walls (static

obstacles) may still guide the animat towards the gate. Increasing the number of animats in the

environment seems to make it more difficult to navigate. Animats have to develop not only the

ability to cross the gate, but also to avoid collisions with other group members, which would

cause a penalty [18]. Reliability R across group sizes was found to be high if the animats

evolved in an environment where the density of animats was balanced (G0.50 and G0.25) (see

(Fig 3A and 3B) and [18]).

In our study, we included an additional comparison setup (Grandom), for which group size

varied randomly during evolution. We hypothesized that animats evolved in this setup should

achieve high reliability R in the post-evolutionary tests since variation in group size would

already be part of their evolution. As shown in Fig 2(B), the final fitness values EF for Grandom

were comparable to those evolution setups with fixed, intermediate group sizes (G0.50 and

G0.25)–though still significantly different (p< .05), see Tables A-G in S1 Text) for all statistical

tests).

As hypothesized, R was found to be highest for Grandom (see Fig 3). Notably, however, ani-

mats that evolved under specialized conditions with intermediate group sizes (G0.50 and G0.25)

Fig 6. Post-evolutionary tests under modified conditions. (a) Gsmallbrain shows higher<TF> than Gno-feedback across group sizes. Gbigbrain is overall comparable

to the baseline condition G0.50, but shows worse performance in the Blocked test condition and some of the modified environments for larger group sizes. (b)

Reliability R correlates with EF for all setups. The lower R values of Gsmallbrain and Gno-feedback compared to baseline can thus be explained by their already lower

evolved fitness values. Note, however, that Gsmallbrain and Gno-feedback perform better than G0.50 across group sizes in the 4 (Messy) Rooms test conditions (see (a)).

(c) For larger group sizes, Gsmallbrain remains static more often than Gno-feedback.

https://doi.org/10.1371/journal.pone.0228879.g006

Fig 7. Distribution of brain complexity measures. Compared to the baseline, the smaller MBs (Gsmallbrain and Gno-feedback) have lowerFMax and fewer corresponding

concepts. Animats in Gsmallbrain show higherFMax and have more corresponding concepts compared to Gno-feedback animats, many of which haveFMax = 0. Due to

computational reasons, the brain complexity of Gbigbrain could not be calculated (see text).

https://doi.org/10.1371/journal.pone.0228879.g007
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reached R values comparable to animats that already encountered variable group sizes during

evolution (Grandom) (see Fig 3). G0.50 and Grandom show similar hTFi values in the original

environment setting, particularly for larger group sizes (> 50% relative group size) (see Fig 3

(A)). Nevertheless, Grandom animats evolved to higher TF for smaller group sizes, leading to

comparable but still significantly different average R values (p< .05) (see Fig 3(B)).

While R quantifies reliability across modified group sizes in the Original test condition, the

other post-evolutionary tests (see Table 2) may reveal further differences between evolutionary

setups. For example, Blocked (in which animats cannot overlap) suggests a difference in strat-

egy between G0.50, G0.25, and Grandom (see Fig 3(A)): G0.50 and G0.25 are more severely affected

by this deviation from baseline settings in which animats can overlap, albeit under a penalty.

While animats evolved in Grandom also experienced large group sizes with a higher likelihood

of a penalty during evolution, G0.50 and G0.25 animats consistently faced only intermediate

probabilities of colliding with other animats, which may have led to less effective strategies for

avoiding collisions. In addition to varying group sizes, we also tested the final generation of

animats in four environments with different wall arrangements (see Fig 3(A), bottom row).

hTFi decreased to similarly low levels in all conditions, but least for evolutionary setups with

larger group sizes. Note also that Grandom demonstrated relatively low hTFi under modified

wall arrangements. Thus, high reliability across one dimension (here, modified group sizes as

evaluated by R) does not necessarily transfer to other dimensions (e.g., modified wall

arrangements).

Fig 8. Fitness Evolution and distribution of the final evolved fitness. The animats in conditions without a penalty (Gblocked/no-penalty and Gno-penalty) evolved to

relatively high fitness levels. In particular, Gno-penalty evolved like Gsingle, which can be explained by the fact that animats in both of these conditions were not impacted at

all by other animats. Similarly, Gblocked seemed equivalent to the baseline setup G0.50, while Gblocked/no-penalty evolved to slightly higher fitness values, comparable to

Grandom.

https://doi.org/10.1371/journal.pone.0228879.g008
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In terms of their behavior (see Fig 3(C)), animats in Grandom were less idle and showed

fewer turns and more steps forward in comparison with animats in G0.50, particularly for large

group sizes. This suggests that the movement in Grandom is more fluid overall (see also

Table 3). By contrast, the specialized animats display larger differences in behavior across

group sizes. Please refer to [18] for a more detailed discussion of behavioral differences across

evolutionary setups with fixed group sizes G1.0-single.

Fig 4 shows the distribution of FMax and #Concepts(FMax) [19,20] as a measure of the com-

plexity of the evolved MBs across evolutionary setups with different group sizes Gsingle-1.0 and

Grandom. While the evolutionary setups with the highest R values (Grandom and G0.50) do show

the highest average values of FMax and the largest number of concepts (internal mechanisms),

differences between conditions generally do not reach statistical significance (p> = .05) due to

the large variance in the complexity values (see Tables C and D in S1 Text). We assume that it

would require more data (simulation experiments per evolutionary setup) to refine the mean

of the intervals enough to verify the observed trend. In our predecessor study [18], a correla-

tion of high evolved fitness EF and reliability R with high brain complexity was found using a

simplified measure of brain complexity based on anatomical connectivity only. The integrated

Fig 9. Post-evolutionary tests under modified conditions. (a) There was a significant difference between conditions in which interactions with other agents

played a role for fitness evolution (G0.50, Grandom, Gblocked, Gblocked/no-penalty) and those conditions in which it did not (Gsingle and Gno-penalty) (see text). (b) With a

collision penalty imposed, Gno-penalty showed similarly low reliability as Gsingle, whereas Gblocked showed similarly high reliability as G0.50. Gblocked/no-penalty
retained some reliability under collision penalty even though animats were evolved without it. (c) Similarities between G0.50 and Gblocked, as well as Gsingle and

Gno-penalty were also reflected in the animats’ behavior. The behavior of animats in Gblocked/no-penalty was more reactive to changing group size than Gno-penalty.

https://doi.org/10.1371/journal.pone.0228879.g009

Fig 10. Distribution of brain complexity measures. In evolutionary setups where crossing each other was not possible (Gblocked and Gblocked/no-penalty), the brain

complexity was comparable to the complexity of G0.50. By contrast, animats in setups where the reaction to fellow animats had no reasonable effect on their performance

(Gsingle and Gno-penalty) showed lower brain complexity. Still, there was high variance in the data of brain complexity.

https://doi.org/10.1371/journal.pone.0228879.g010
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information measures employed here are sensitive to the causal interactions within the MBs

and thus also capture functional aspects in addition [19,20] In the present data, significant

pair-wise differences could be found between Gsingle and the most reliable setups (Grandom and

G0.50). As explained above, the task environment experienced by animats in Gsingle is less

demanding than for setups with larger group sizes. Our observations are thus in line with [20],

which demonstrated higher FMax and #Concepts(FMax) for animats evolved in more complex

environments.

Varying cognitive architecture: Brain size and memory dependencies

In a second set of experiments, we used the same environmental setup as for G0.50 in all tested

conditions, but varied the number of available computational units in the animats’ MBs. In the

baseline design G0.50, it is possible for the motor units to act as additional memory units (see

Methods section). In one condition, Gno-feedback, the ability of the motor units to provide feed-

back was disabled, which reduced the absolute capacity for memory from six to four binary

units. Moreover, we designed animats with similarly small memory capacity but with feedback

motors as a reference group (Gsmallbrain). Those animats had the original type of motors with

the possibility of evolving feedback loops, but only two memory units instead of four. Finally,

we included a condition with larger MBs with eight memory units and motor feedback

(Gbigbrain).

We observed that evolved fitness EF and reliability R across group sizes in the original envi-

ronment decreased for animats with fewer memory units (see Figs 5 and 6). However, while

Fig 11. Fitness Evolution and distribution of the final evolved fitness. The average evolved fitness showed that animats in evolutionary setups without specific sensors

for other animats (Gno-agent and Gw = a) achieved no reasonable fitness. By contrast, animats in G3sides outperformed G0.50, and Grandom, but also had more outliers with

lower fitness and performed worse than the baseline condition G0.50 in early generations (up to ~10,000 generations).

https://doi.org/10.1371/journal.pone.0228879.g011
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animats in Gsmallbrain still evolved to reasonably high fitness and reliability, Gno-feedback was lacking

in both. This observation indicates that motor feedback facilitates evolution in our task environ-

ment. One reason could be the fact that motor feedback allows the animats to utilize information

about past movements directly (e.g., like the sensation of one’s legs). One behavioral difference

between Gno-feedback and Gsmallbrain was the reduced movement in the animats of Gsmallbrain (see

Fig 6(C)). Furthermore, the state transition analysis shows that the motor units of animats in

Gsmallbrain tend to change their behavior more often, while animats in Gno-feedback stay in the same

state more often (see Table 4). Notably, Gno-feedback and, particularly, Gsmallbrain performed better

thanG0.50 in the 4 Rooms and 4 Messy Rooms test conditions (see Fig 6(A), bottom row).

By contrast, more memory units (Gbigbrain) do not improve the fitness evolution or the task

fitness TF in any of the tested conditions (see Figs 5 and 6). While Gbigbrain achieves similar

results compared to the baseline setup G0.50, differences can be observed in the Blocked and

Small Gate test conditions, as well as 4 (Messy) Rooms for large group sizes (see Fig 6(A)). In

principle more computational units should allow for better performance. However, the larger

space of possible solutions may also impede fitness evolution (note the larger variance for Gbig-

brain compared to G0.50 in Fig 5(B) and Fig 6(B)). Here, this trade-off may explain the similar

mean hEFi and R values for G0.50 and Gbigbrain.

Fig 12. Post-evolutionary tests under modified conditions. (a-b) The G3sides condition had the highest hTFi in most test conditions, except in Blocked and Noisy
Corners. In terms of R, sensing everything (Gw = a) with one sensor is still better than only sensing the walls (Gno-agent). (c) Setups with few sensors evolved no

typical behavior (high variance of movement between the 30 different evolutions, shaded area). The G3sides setup becomes more reactive as soon as the animat

density starts to rise and thus evolved a different behavioral strategy than G0.50 and Grandom.

https://doi.org/10.1371/journal.pone.0228879.g012

Fig 13. Distribution of brain complexity measures. Animats in the G3sides condition showed the lowest brain complexity of all setups despite having the highest

evolved fitness and reliability. By contrast, animats with limited sensor information (Gno-agent and Gw = a) had lower than baseline complexity values, but also low

evolved fitness (EF, see Fig 11).

https://doi.org/10.1371/journal.pone.0228879.g013
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Considering brain complexity, the evolutionary setups with smaller MBs (Gsmallbrain and

Gno-feedback) have significantly lower FMax and fewer concepts than the baseline condition

(G0.50). Between those two conditions, Gsmallbrain shows significantly higher FMax and more

concepts as compared to Gno-feedback (see Fig 7). This correlates with the larger evolved fitness

values of Gsmallbrain in Fig 5 and its associated higher reliability R in Fig 6. Note that calculating

FMax and the corresponding number of concepts was not possible for Gbigbrain since exhaus-

tive evaluations across many systems and states are not currently feasible when using the pyphi
software package to compute measures of integrated information theory for networks of that

size (>10 units) [22].

Varying interaction conditions: Evolution of beneficial interaction

In our baseline configuration for the evolution simulations (G0.50), individuals could occupy

the same physical location but received penalties for colliding with other group members (see

Methods section). We manipulated these features in the third set of simulations to evaluate

how they influence both evolved fitness and reliability. Specifically, we considered three addi-

tional evolutionary setups: Gno-penalty, Gblocked, and Gblocked/no-penalty (see Table 1 for a detailed

description). Gsingle, Grandom, and G0.50 are also included in the figures for comparison.

Among the novel setups, only animats in Gblocked were subject to the collision penalty dur-

ing evolution. Not being able to share the same position (as in Gblocked) hardly influenced the

evolved fitness EF, the mean task fitness hTFi across post-evolutionary conditions, or the

behavior of the evolved animats compared to G0.50 (see Figs 8 and 9). Likewise, Gno-penalty,

Table 3. Absolute difference between the state transition probability P of G0.50 and Grandom (P(G0.50)–P(Grandom)).

The first digit (S) describes whether anything (wall or other animat) is sensed (1) or not sensed (0), and the second

digit (M) describes whether the animat moved/turned (1) or did not move/turn (0). Most notably, Grandom animats

performed more movements even in the absence of sensor inputs than G0.50 (“01!01”).

SM t+1

00 01 10 11

t 00 0.0000 -0.0074 0.0000 -0.0001

01 -0.0079 -0.06061 0.0136 0.0088

10 0.0005 0.0100 0.0063 0.0063

11 -0.0001 0.0119 0.0031 0.0157

1 Negative values indicate that the transition is more frequent in Grandom, while positive values indicate the opposite.

https://doi.org/10.1371/journal.pone.0228879.t003

Table 4. Absolute difference between the state transition probability P of Gsmallbrain and Gno-feedback (P(Gsmall-

brain)–P(Gno-feedback)). The first digit (S) describes whether anything (wall or other animat) is sensed (1) or not sensed

(0) and the second digit (M) describes whether the animat moved/turned (1) or did not move/turn (0). Most notably,

animats in Gsmallbrain switched more often between sensing and moving than animats in Gnofeedback (“01!10”,

“10!01”, but “11!11”).

SM t+1

00 01 10 11

t 00 0.0000 0.0001 0.0000 0.0000

01 0.0000 -0.01671 0.0237 -0.0046

10 0.0000 0.0194 0.0011 0.0029

11 0.0001 -0.0004 -0.0015 -0.0241

1 Negative values indicate that the transition is more frequent in Gno-feedback, while positive values indicate the

opposite.

https://doi.org/10.1371/journal.pone.0228879.t004
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where reacting to other animats had no direct effect on the fitness evolution, showed very simi-

lar EF, hTFi, and behavior as Gsingle, with one exception: hTFi decreased with increasing group

size in the No Penalty test condition for Gsingle but not for Gno-penalty which had evolved with a

group size of 36 animats, as in G0.50 (see Fig 9(A)). Note that R in Fig 9(B) was evaluated in the

Original task condition with penalty, as for all other simulations sets.

Considering the post-evolutionary tests in Fig 9(A), the top row shows hTFi across group

sizes in the Original environment (with penalty) and under varying interaction conditions: No
Penalty, Blocked, and both Blocked and no Penalty (from left to right). In the bottom row of Fig

9(A), animats are evaluated under the same interaction rules as they evolved in while only fac-

ing a modified environment (position of static obstacles).

In this context, it is noticeable that Gno-penalty performed relatively poorly for larger group

sizes when tested in 4 (Messy) Rooms despite receiving no penalty for collisions. By contrast, in

evolutionary setups with a collision penalty and/or blocking hTFi increased with group size in

the 4 (Messy) Rooms test conditions. The decline in hTFi of Gblocked/no-penalty for larger group

sizes under test conditions with a collision penalty (Original and Blocked) moreover, suggests

that these animats did not avoid physical interactions with their group members. However,

even Gblocked/no-penalty animats had an advantage compared to Gno-penalty in the 4 (Messy)
Rooms environment. Taken together, these observations let us assume, that any evolutionary

pressure to “pay attention” to fellow animats (through blocking or a collision penalty) could

lead to the evolution of interaction strategies with possible advantages under certain (modi-

fied) conditions (e.g., using other animats for orientation or guidance).

Considering the brain complexity of animats in Gblocked and Gblocked/no-penalty, we can

report similar values compared to G0.50 (see Fig 10). In summary, whether animats received a

penalty for crossing each other, or whether crossing was prohibited to start with, did not sig-

nificantly affect their evolved fitness, reliability, behavior, or brain complexity. Likewise, the

brain complexity measures and behavioral results for Gno-penalty were comparable to those of

Gsingle.

Varying sensor configuration: Sensory capacity influences reliability and

brain complexity

We manipulated the animats’ sensor configuration (see Table 1) in a final set of evolution sim-

ulations. In addition to the baseline architecture (front wall sensor and front agent sensor), we

designed animats with sensors on three sides G3sides (front, left and right wall and agent sen-

sors), without an agent sensor Gno-agent (one front wall sensor only) and with one universal

sensor Gw = a (sensing wall and agent as indiscriminate obstacles). Fig 11 reveals that our task

environment required the ability to sense nearby animats and to differentiate between walls

and animats in order to evolve reasonable EF values. Moreover, animats equipped with sensors

on more sides achieved both higher evolved fitness EF and higher reliability R across group

sizes than the baseline setup G0.50 and Grandom (see Fig 11 and Fig 12B).

Overall, animats in the G3sides condition consistently outperformed the animats in other

groups except in two test conditions: Blocked and Noisy Corners (see Fig 12A). This shows that

animats which are equipped with more sensors do have an advantage on average, but they may

still perform worse than animats with fewer sensors under special circumstances (here: Noisy
Corners). We assume that the sensory signals in these specific environments might have been

too different from the information patterns the animats evolved in and were thus specialized

for. Nevertheless, the additional sensors led to high reliability R across group sizes as well as

relatively high task fitness for most modified wall-arrangements even though the animats

evolved under a specific group size and a fixed wall configuration (see Fig 12A and 12B).

Reliability of simulated animats with group interaction

PLOS ONE | https://doi.org/10.1371/journal.pone.0228879 February 7, 2020 19 / 32

https://doi.org/10.1371/journal.pone.0228879


While Gw = a animats had only one sensor which does not discriminate between the wall

and other animats, Gno-agent was missing the animat sensor completely. Still, Gno-agent showed

better task fitness than Gw = a in test conditions with small group sizes and without a penalty.

Considering the evolved behavior, Gw = a animats (see Fig 12(C)) were not reactive to other

animats, which suggests that they did not evolve the capacity to differentiate between the ani-

mats and the walls internally, e.g., through memory. While Gw = a and Gno-agent moved forward

at similar rates, Gw = a performed proportionally more turns than Gno-agent, which stood still

more often.

Analyzing the brain complexity showed that animats equipped with fewer, but also with

more sensors than in the baseline setup G0.50 evolved MBs with lower complexity (see Fig 13),

albeit for different reasons. Based on the very low evolved fitness for Gw = a and Gno-agent (see

Fig 11) we conclude that their MBs did not develop the necessary structure and mechanisms

to solve the task, as reflected by their low brain complexity. By contrast, animats in G3sides

achieved high EF,<TF>, and reliability R across group sizes, but did not evolve any integrated

information (FMax = 0) in most cases. This observation was in line with previous findings on

the relation between sensory capacity and internal complexity [20] and suggested that high

brain complexity in cognitive systems depends on a need for internal memory and computa-

tion, which may decrease if an animat is equipped with more sensors.

Discussion

The evolution of cooperative multi-agent systems might be the next frontier in the context of

evolving artificial agents. To date, however, not much is known about conditions that give rise

to cooperative behavior and the complex inter-dependencies between individual and group

goals [26]. For example, there might be many factors that influence whether the individuals

either bow to the group or act by egoistic rules [27]. In this study, we used animats equipped

with MBs (introduced by Edlund et al. [24]) to study how group performance and its reliability

under modified conditions depends on the individual, interactions between individuals, as

well as specific features of the MBs’ evolution.

Prior work investigating group evolution

Earlier research that implemented groups of MBs concentrated on predator-prey environ-

ments and showed that animats can (co-)evolve swarm behavior [28–30]. The animat design

in this work was generally based on a design in Marstaller et al. [16], who evolved individual

MBs with the goal of solving perceptual-categorization tasks. Another method of simulating

swarm behavior is neuro-evolution, i.e., the evolution of artificial neural networks (ANN) [31–

33]. As in Olson et al. [29], these neuro-evolution experiments produced agents which evolve

in a swarm to solve a predator-prey task.

Other researchers have investigated the effect of group size in the evolution of groups of

simulated agents beyond predator-prey scenarios in a more general context. They find that the

behavior of the group of agents and the individual agent is dependent on the group size

[34,35]. In another study which changed the group size during evolution, the authors show

that it can be easier for smaller groups than larger ones to organize themselves [5].

The effect of changing swarm sizes has also been investigated in the context of natural bio-

logical systems: Brown [27] examined which factors are decisive for the individual to either

join a swarm or behave egoistically. The study focused on experimenting with environmental

qualities and swarm size. Brown defined optimal swarm size as the best trade-off between the

advantage of balancing costs between individuals in the swarm and the disadvantage of sharing

the resources (energy/food) with the whole swarm. In an earlier study, Pacala et al. [4] report
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that swarm size constrains information transfer and task allocation. They argue that the infor-

mation exchange varies and the task allocation changes, depending on the swarm size of ant-

colonies. Pacala et al. [4] also argue that swarm behavior is the product of social interaction,

individual interaction, and the interaction with the given environment. In a more recent work

[36], we found arguments that swarm behavior arises if there is sufficient density within the

swarm.

Factors that impact evolved fitness and reliability

Generally, the ability to evolve high fitness in a given evolutionary setup depends on the inter-

play between external and internal factors as, e.g., the complexity of the environment and the

animats’ architecture (see also [20]). Exemplary for these factors, we manipulated the group

size and the animats’ sensorimotor and memory capacities across evolutionary setups. Further,

we evaluated how these manipulations affected fitness evolution and post-evolutionary

reliability.

Different group sizes. In the specific evolutionary setup investigated here, evolved fitness

EF negatively correlated with group size, which is a result of the imposed penalty for collisions

with other group members (see Figs 2 and 8, animats that evolved without the risk of penalty

(Gsingle and Gno-penalty) achieved the highest hEFi). On the other hand, animats evolved in

fixed, intermediate group sizes (e.g., G0.50 and G0.25) are most reliable to changes in group size

as measured by R, and, in fact, comparable to Grandom, in which animats experienced random

group sizes during evolution (see Fig 3(B)). The optimal group size for high R in our experi-

ments is thus larger than the optimal group size for high EF, or individual fitness. This obser-

vation suggests, more generally, that unexpected changes in group size during evolution may

sometimes lead to larger group sizes than expected based on what is best for an individual

within the group.

Capacity for memory. Animats with less capacity for memory (Gsmallbrain and Gno-feedback)

evolved to lower EF values than the baseline condition G0.50 (see Fig 5). Further, the low mem-

ory setups were less reliable under changes in group size (low R). A higher memory capacity as

in Gbigbrain did not provide further advantages compared to G0.50. Given the higher variance of

Gbigbrain in EF and R, we suspect that the larger search space made it more difficult for the evo-

lutionary algorithm to converge to an optimal solution.

Sensorimotor capacity. Finally, more sensors (G3sides) proved advantageous for both

evolved fitness EF, reliability R across group sizes, and task fitness TF under almost all modi-

fied test conditions, including most modified wall arrangements (Fig 12(B)). By contrast, train-

ing animats on multiple group sizes during evolution (Grandom) led to high R, but did not

translate to high task performance under modified wall arrangements (Fig 3(B)). We speculate

that the additional sensors allowed the animats to evolve more generalizable strategies in our

two-dimensional spatial-navigation task, even though they evolved in a single static

environment.

Note that we did not include a comparison condition in which animats evolved under vari-

ous wall-arrangements, since it is not trivial to determine a statistically representative sample

of all possible environments as part of the evolutionary simulation. For the same reason, we

did not quantify average reliability across modified wall-arrangements, but provided task fit-

ness measures for each tested wall-arrangement (Figs 3, 6, 9 and 12(A)). In addition, Table G

in S1 Text lists hTFi values for all evolutionary setups and test environments evaluated in this

study.

Overall, our findings suggest that, in general, animats that were well-equipped for dealing

with their original task environment (and thus achieved high evolved fitness) also performed
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better under modified conditions that were never encountered during evolution. Within most

evolutionary setups, reliability R was correlated with evolved fitness (see Figs 3, 6, 9 and 12(B),

right panel). The only exceptions were Gsingle and Gno-penalty, which did not adapt to the behav-

ior of other group members at all. The high evolved fitness in Gsingle and Gno-penalty could thus

be interpreted as a form of narrow intelligence. By comparison, intermediate group sizes led to

a somewhat more general form of intelligence.

Nevertheless, our findings also show that evolutionary setups that seem less adapted

(lower evolved fitness) overall may still have advantages under some special modifications. For

example, animats evolved in larger groups (G1.00 and G0.75) or with less memory capacity

(Gsmallbrain and Gno-feedback) performed better than G0.50 under most modified wall-arrange-

ments (see Figs 3 and 6(A), bottom row; Table G in S1 Text). On the other hand, even G3sides

performed worse than the baseline (G0.50) in one of the modified test environments (Noisy
Corners).

Interactions between individuals in the group. In this study, we did not explicitly imple-

ment any form of direct communication between animats. Nevertheless, we found that it was

necessary for animats to perceive their fellow group members and to distinguish them from

static obstacles to achieve reasonable evolved fitness EF and reliability R (see Figs 11 and 12,

where both Gno-agent and Gw = a overall show low values). Moreover, we observed that evolved

interaction strategies provided advantages under certain modified conditions: Animats that

evolved without a collision penalty (Gno-penalty) performed worse in some of the modified envi-

ronments, even if tested without receiving a penalty (see Fig 9(A), 4 (Messy) Rooms). While

animats in Gno-penalty were equipped with an agent sensor, they had no incentive to interact

with or “pay attention” to their fellow agents. By contrast, the task fitness in the 4 (Messy)
Rooms conditions typically increased with group size for animats that evolved in groups and

received either a collision penalty (e.g., G0.25 –G1.0) and/or could not pass other agents

(Gblocked and Gblocked/no-penalty) (see Figs 3(A) and 9(A)). This indicates that they may have

used other agents for orientation or guidance, a form of implicit cooperation. Indeed, animats

evolved in large groups (G0.75 and G1.0) showed higher task fitness than G0.50 in these particu-

lar modified test environments (see Fig 3(A), bottom; Table G in S1 Text).

As we know from previous studies, swarm behavior in nature can be the result of simple

reactions to local neighbors [3,37]. For example, it could be a good strategy to stay close to a

group member without hitting it. Such evolved behavior may then provide additional fitness

advantages under some modified conditions (as in the 4 (Messy) Rooms test condition here).

The observed instances of cooperative behavior can thus be viewed as an emergent phenome-

non of the evolutionary process.

Relation between brain complexity, evolved fitness, and reliability

Previous studies applying measures of integrated information to adaptive animats equipped

with MBs [20,24,38] have observed that, on average, FMax and related measures for brain com-

plexity increase over the course of evolution, which correlates with increasing evolved fitness

EF (see Table G in S1 Text). Moreover, as demonstrated in [20], this increase depends on the

complexity of the environment relative to the animats’ sensor capacity: MBs that evolved in

environments which require more memory and internal computation developed higher aver-

age FMax values and a higher number of concepts.

For the evolutionary setups with the baseline animat architecture as in G0.50, we found the

highest values of FMax and #Concepts(FMax) for medium group sizes G0.50, Gblocked, and for

Grandom. These setups were also among the most reliable across group sizes (see also [18] for

similar results using a simplified measure of brain complexity). By contrast, significantly lower
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FMax values were found for Gsingle and Gno-penalty, the two setups in which task fitness during

evolution did not depend on interactions with other animats. As argued above, Gsingle and

Gno-penalty thus effectively evolved within a simpler task environment than G0.50, Gblocked, and

Grandom, which explains their lower brain complexity FMax.

Compared to G0.50, evolutionary setups with altered animat architectures showed consis-

tently lower values of FMax and #Concepts(FMax). Limiting the animats’ sensor capacity (Gno-

agent and Gw = a) or the number of available memory units (Gsmallbrain and Gno-feedback) inter-

fered with their capacity for successful evolution in the spatial navigation task. Their lower

evolved fitness was thus accompanied by less developed MBs with lower FMax and fewer con-

cepts. Given more time to evolve (more generations), both their performance and their brain

complexity might still increase. By contrast, more sensors allowed for better performance (EF,

TF, and R) based on high amounts of external information, which effectively decreased the

need for internal complexity (memory and computations) and thus may also lead to low FMax,

as observed here for G3sides.

In theory, high fitness in any given environment could be achieved without information

integration (FMax = 0) if no restrictions are imposed on the animats’ architecture (e.g., by a

system with a large feed-forward architecture [19]). Moreover, information integration can be

high even if there is no reasonable fitness, which partially explains the large variance in the

brain complexity measures (see, e.g., outliers for Gno-agent in Fig 13). However, given a certain

requirement for memory and context sensitivity, constraints in the number of sensors and

memory elements may give rise to an empirical lower boundary on the amount of integrated

information necessary to perform a given task [20,24,38,39].

In summary, for a given MB architecture, higher brain complexity seems to be related to

better performance and reliability. However, future work should explore under which environ-

mental conditions additional sensors, or more internal units, become more advantageous for

the evolution of higher fitness (EF) and reliability (R).

Limitations

Our work modeled one particular, small-scale scenario of a multi-agent evolutionary setting.

Future work should consider other types of environments which may strengthen the generality

of our results. Moreover, further evolution or training scenarios for artificial organisms should

be considered as well—here we do not use crossover in the genetic algorithm, for example, and

all animats placed in the same environment are clones. In addition, Markov Brains are just

one type of computational substrate and it would be interesting to see whether other types of

substrates (e.g. Artificial Neural Networks) behave differently under modified test conditions

[40]. Nevertheless, the results obtained in our simulation study could also be directly com-

pared against certain types of biological models (e.g. investigating the behavior of army ants

under environmental modifications [36,37]).

While the measures that we employed to assess the complexity of the evolved MBs are theo-

retically motivated [19], they are also computationally very complex. This made it difficult to

evaluate a larger sample size (number of evolution simulations) or to analyze the brain com-

plexity of more generations (not only the final one). This is why alternative, approximate mea-

sures should be considered, too. For instance, the largest strongly connected component (and

other graph metrics) can be used as a proxy for system integration and thus brain complexity

[18]. Efficient approximations would also enable investigations into how brain complexity

develops across generations as performed in [20] for slightly smaller MBs. Moreover, FMax,

and the associated number of concepts #Concepts(FMax), are causal measures that assess the

degree to which the mechanisms within a MB are differentiated and integrated. Future work
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should also consider and explore alternative informational or dynamical measures (e.g., [41–

43]). In this study, we concentrated on changes in task fitness and reliability under modified

conditions, so the brain complexity analysis was not the subject of more in-depth

investigation.

Conclusion

It is challenging to remain reliable in a dynamic and volatile world while also trying to succeed

in a given task. Investigating the characteristics of this reliability, especially with regards to

cooperative behavior, might also be useful to develop implications and strategies for improving

the reliability of individuals within larger organizations. Despite complex dependencies

between the individual, the group, and the environment, our computational approach offers a

way to investigate reliability in group behavior. Here, we were particularly interested in the

question of how cognitive and environmental constraints influence the reliability of simulated

animats in a group. We were able to isolate essential influencing factors to better understand

possible positive and negative effects of changing group size, environment design, and individ-

ual cognitive ability on reliability and task fitness under modified conditions. In particular,

our study suggests that balancing the number of individuals in a group may lead to higher reli-

ability under unforeseen changes in group size, even if the task itself would be simpler with

fewer group members.

Moreover, a minimal number of sensors, the ability and incentive to distinguish static

obstacles from other group members, and a minimal number of memory units were required

to achieve high evolved fitness and reliability in our specific evolution simulations. If these

minimal requirements were met, reliability R across group sizes was found to correlate with

evolved fitness across the tested evolutionary setups. Limited sensor information forced the

animats to evolve more complex brain structures, especially for intermediate group sizes,

which also demonstrated the most reliable behavior across group sizes. Nevertheless, the high-

est task fitness across most modified conditions (varying group sizes as well as modified wall-

arrangements) was observed for the evolutionary setup with additional sensors, which did not

require high internal complexity. Finally, we presented data that support the evolution of

implicit cooperation between animats. In all, this research asserts that task efficiency and effec-

tiveness is not the only goal in dynamic environments; task reliability is also worth striving for.

Materials and methods

We used an evolutionary algorithm to generate simulated animats evolving in groups under

various evolutionary setups (see Table 1), testing different animat architectures and evolution-

ary conditions to evolve animats having heterogeneous behavior, evolved fitness, and reliabil-

ity. Afterwards, we conducted post-evolutionary tests to assess the reliability of the different

evolutionary setups under modified conditions (see Table 2). This section explains the animat

designs, the environment, the evolutionary simulations, and the experiment setup. We used

MABE (Modular Agent-Based Evolver) [44] as a computational evolution framework with the

same parameters as in previous work [18] (see Table in S1 Table).

We chose MBs as a simplified model of an artificial brain, since the basic idea of an MB is

to emulate the recurrent connectivity structure found in real neural networks in a simple man-

ner, while being complex enough to represent a cognitive system [16]. Furthermore, a recent

study showed that MBs can be very compatible against variations of artificial neural networks
and even showed higher performance in general [17]. Nevertheless, it would, in principle, also

be possible to use a finite state machine [21], or artificial neural networks [32] to solve the kind

of task investigated here.
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Individual animats had to solve a two-dimensional spatial-navigation task in the presence

of other animats (clones), thus forcing individuals to react to these other animats in order to

reach a high fitness value. This task was a redesign by Fischer et al. [18] of a task environment

initially developed by Koenig et al. [21]. An animat can usually differentiate between static

(borders and walls) and dynamic objects (animats) in the environment through two distinct

sensors. This design allowed for the evolution of social behavior based on passive interactions

between animats (we observed, e.g., “waiting”, or “following” behavior).

Animat architecture

The evolutionary algorithm evolves animats with MBs, which contain a set of discrete, binary

computational units (“neurons”). Each unit has its own update rules receiving inputs from and

sending their output to other units. In this study, the decision system (the connectivity

between units and their update-rules) was implemented by Hidden Markov Gates (HMGs),
which are encoded in an animat’s genome (string of integers [0–255] with a minimum length

of 2,000 elements and a maximum length of 20,000 elements). The HMGs connect the nodes

of the MB indirectly. Fig 14 visualizes a simple example, in which an HMG is connected to

four units. The decision system inside an HMG can be diverse. In this research, we evolved dis-

crete, deterministic lookup tables. The lookup tables translate the states of the connected input

units at t to the new states of connected output units at t+1. The motor or memory units can

represent the output units of the HMG. The states of the sensor units are set by the input they

receive from the environment.

The integers in an animat’s genome encode the HMGs: the number of HMGs, their lookup

tables, the connected input units, and the connected output units. The MBs evolve by mutating

the genome in each new generation (see [29,40]). Each locus in the genome mutated with a

certain probability (point mutations). In addition, larger sections could be deleted or added to

the genome [24,45] (again, all parameters are listed in Table in S1 Table). We did not use

crossover or recombination (more than one parent per genome), since this would make it

more difficult to trace an animat’s line of descent without obvious computational advantages

in the simple evolutionary setting investigated here. In principle, other optimization algo-

rithms could be employed to develop well-performing MBs. The evolutionary algorithm used

here has the advantage that both the node connectivity and the nodes’ update rules can be

encoded in the genome and jointly adapted through mutation and fitness selection.

Fig 14. Example of an MB. An MB [24] has three components: (1) Units with a binary states (“1”-“4”), (2) HMGs and (3) the connections between

the binary units and the HMGs. The connections between the units can be derived from the connections to the HMGs. HMGs contain the

mechanism, e.g., a lookup table (here deterministic), to transform the brain state of units at t to the state at t+1.

https://doi.org/10.1371/journal.pone.0228879.g014
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All units in the animat’s MB have binary states, either 1 or 0. A sensor turns 1 if an obstacle

is detected and a motor switches to 1 if it is active. Two motors provide the ability to turn 90

degrees left or right, and to move forward (if both motors are in state 1). Since the units within

a MB can be interconnected in a recurrent manner, they have the potential to create internal

memory. We evolved animats with five different animat designs displayed in Fig 15. The base-

line cognitive architecture was introduced already in [18] (one front wall sensor, one front

agent sensor, four memory units, and two motors). Here, further deviations were designed to

investigate the influence of an animat’s sensorimotor and memory capacities on the resulting

evolved fitness and the animats’ task fitness and reliability under modified post-evolutionary

test conditions. The sensors had a detection range of one unit. Typically, the motor units could

also feedback to the memory and motor units, thus acting as additional memory capacity,

Fig 15. Schematic architecture of the five different animat architectures. The top row shows the original animat architecture as defined in

[18]. The animats have two motor units (grey triangles), four memory units (dark grey circles) and one to six sensor units (black/red shapes).

The middle row shows animats with a changed sensor architecture, from the left: The architecture with sensors on three sides, the

architecture with a single sensor unit, detecting wall and animat indiscriminately, and the architecture without an animat sensor. The bottom

row shows animats with changed memory architecture, from the left: The architecture with only two memory units, the architecture with

eight memory units and the architecture without feedback motors (motors cannot be part of the memory network). Note that the

architectures depict the maximal number of units available. Whether any given unit is actually used depends on the evolved connectivity and

logic function. Animats are initialized in the first generation without connections between units.

https://doi.org/10.1371/journal.pone.0228879.g015
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since knowledge about previous motor states is directly available for computing the next state.

One animat design was included that lacked the possibility for motor feedback (Gno-feedback).

Design of the 2D environment

All experiments simulated a two-dimensional environment. The world has 32×32 units (see

Fig 16). All animats started on one of 72 predefined, uniformly distributed, starting positions.

The selection for the starting position, as well as an animat’s initial orientation, was random at

every new generation. The original environment (see Fig 16(A)) had two rooms, which are

connected by a gate. The animats’ goal was to travel between the two rooms in order to achieve

a high fitness value. This design was adapted from the work of Koenig et al. [21]. All evolution-

ary setups evolved in the original environment. As an additional test dimension for evaluating

task fitness under modified conditions, we tested all evolved MBs (the final generation) in four

modified environment designs (see Fig 16(B)–16(E)). Generally, animats were allowed to

inhabit the same location in the environment (albeit under penalty, see below), except in

Gblocked and Gblocked/no-penalty.

Experiment design

We selected G0.50 to be the baseline setup for evolution, to which we compared all other evolu-

tionary setups. This was because G0.50 showed the highest reliability R across group sizes. In

sum, we came up with 15 different setups for the evolution of the animats (see Table 1). Using

the MABE framework, we simulated each evolutionary setup 30 times. In each of these 30 evo-

lutions, the evolutionary algorithm had 10,000 generations to converge on the final solution. A

population of 100 genomes was mutated and evaluated in each generation. Each of these evalu-

ations was repeated 30 times (30 “test runs”) with random starting positions, orientation, and

selection order for simulating the animats movement serially. Random seeds were chosen

using a Mersenne-Twister (mt19937) random number generator (see S2 Text for a more

detailed explanation of the parameter sampling). After a genome was tested 30 times, it

received a fitness score, which was computed based on the mean across the task performance

of 30 single animats, with one being picked randomly from each of the 30 random test runs. In

addition, in setup Grandom the group size varied for each of the 30 tests. The specific group size

was drawn randomly from a vector ([1, 4, 7, 11, 14, 18, 22, 25, 29, 32, 36, 40, 43, 47, 50, 54,

58, 61, 65, 68, 72]). This vector simulates a uniform distribution between 1 and 72.

Fig 16. Environmental design. (a) The two-dimensional environment is based on a discrete grid architecture and contains two rooms. Animats draw a random starting

position. Their orientation can be up, down, left, and right and is also randomly selected at initiation. (b-e) Four additional environments were used to test the task

fitness of the animats under modified conditions. Red blocks mark the changes/additions in the room and represent walls. In (d), all four gates count as possible

rewards. In (e), only gates on the vertical mid-line provide rewards.

https://doi.org/10.1371/journal.pone.0228879.g016
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The simulated life

The fitness function F that determines the probability of a genome being reproduced depends

on two factors. First, animats A have to travel as often as possible through the gate (change the

room, see Fig 16). Second, the animats need to avoid colliding with each other. Fischer et al.

[18] already included the formal definitions of the fitness function as a weighted sum of the

penalty for collision and the reward for crossing the gate (see Table 5 for the mathematical

notation of Eqs 4 and 5):

f ðaÞ ¼

 
PT� 1

t¼0

(
1; gða; t; t þ 1Þ ¼ 1 and gða; t � 100; tÞ ¼ 0

0; otherwise

!

�

 
PT

t¼0

(
0:075; cðxðaÞ; yðaÞ; tÞ > 1

0; otherwise

!

; ð4Þ

F Að Þ ¼
P30

i¼1
f ðrandðAÞÞ

30
: ð5Þ

The amount of reward (+1.0 points) is higher than the amount subtracted in the case of a

penalty (-0.075 points). These numbers need to be chosen carefully. If the penalty is too low or

the reward is too high, animats will keep moving from one room to the other through the gate

(herding effect) and ignore the penalty. On the other hand, given a high penalty and low

reward, animats will evolve hardly any movement. To further reduce the herding effect around

the gate, there is a refractory period of 100 timesteps after receiving a reward before the same

animat can receive another reward. Since each trial has a duration T of 500 timesteps, any one

animat can receive a total fitness score of at most 4 points [18].

To investigate the coordination and cooperation of animats in groups, we let animats co-

exist in the same environment (in contrast to previous studies in this scope [16,19,24]). Cur-

rently, we have not implemented co-evolution of animats with different genomes and have

only evaluated a genome by generating animats as identical clones (with the same MBs). There

was no active knowledge exchange (“communication”) between animats in this study. Animats

had to develop the ability to distinguish which kind of sensory input to use for decision mak-

ing. As specified above, sensors can only sense one position in front of–or on the side of

(G3sides)–the animat and differentiate between static objects (walls) and dynamic objects (fel-

low animats), except for Gw = a.

Compared to the baseline setup, we included further evolutionary setups in which animats

did not receive the collision penalty and/or were not able to overlap (Gno-penalty, Gblocked,

Gblocked/no-penalty). Those changes in the fitness function represented environmental rules

which influenced the task difficulty. As a result, we were able to test the role that the imposed

interaction conditions between animats played in order to achieve high task fitness under

modified conditions.

Table 5. Mathematical notation as used in the fitness function F(A) and f(a).

a 2 A A single animat a in the set of all animats A in a trial.

f(a) The fitness of a single animat a.

F(A) The average fitness of all animats in A as clones of a single genome.

rand(A) Picks a random animat a from the group A.

g(a, ta, tb) Returns the number of gate-crossings between time ta and time tb for a single animat a.

t 2 T A single time step t, where t 2 T and T = [1, 2, . . ., 499, 500].
c(x,y, t) Returns the number of animats at a specific position (x,y) at time t.

https://doi.org/10.1371/journal.pone.0228879.t005

Reliability of simulated animats with group interaction

PLOS ONE | https://doi.org/10.1371/journal.pone.0228879 February 7, 2020 28 / 32

https://doi.org/10.1371/journal.pone.0228879.t005
https://doi.org/10.1371/journal.pone.0228879


Post-evolutionary evaluation

Modified conditions. Post-evolutionary task fitness tests were designed as follows: First,

we selected the 30 genomes of generation 10,000 (10k) for each of the 15 evolutionary setups

(see Table 1). Second, each genome was tested across 21 conditions varying in group size in

the Original test condition. To this end, we created groups of animat clones of the respective

test group size for each of the 30�15 genomes. Test group sizes were uniformly distributed

between 1 and 72. The interval of the relative group sizes is [1, 4, 7, 11, 14, 18, 22, 25, 29, 32,
36, 40, 43, 47, 50, 54, 58, 61, 65, 68, 72]. A single animat is not a group, but we treat it as one

in order to simplify notation.

In addition to varying group sizes in the baseline task design (Original), we created four

modified test environments, as shown in Fig 16 (Noisy Corners, Small Gate, 4 Rooms, 4 Messy
Rooms). Moreover, we included three additional test conditions in which we varied the inter-

action conditions of the animats (No Penalty, Blocked, Blocked and no penalty). Finally, we

tested each of the 30×15×21 different configurations in each of the eight test environments.

For the statistical analysis and the main reliability evaluations, we defined a quantitative

reliability measure R across group sizes in the Original environment design (see Eq 3 above).

The modified test environments represented four independent samples of possible environ-

mental modifications. For this reason, they were evaluated on their own in terms of the

achieved task fitness TF. The results of the remaining three test conditions with varying inter-

action properties mainly served to highlight differences between the evolutionary setups,

rather than testing reliability per se.

Brain complexity. To evaluate the complexity of the evolved MBs, we employed two com-

plimentary measures provided by integrated information theory (IIT) [19,46], FMax and the

associated number concepts #Concepts(FMax). The core of IIT’s measures is an information

theoretic, and probabilistic graph analysis [19] based on the state-to-state transition probabili-

ties of the units, i.e., their update functions. Please refer to [19,20] for details on the evaluation.

Very briefly, to evaluate the integrated information F (“big phi”) for a particular set of compu-

tational units S in state S = s, the first step is to assess which subsets Y�S specify positive inte-

grated information φ>0 (“small phi”) within the system (the set’s “concepts”). φ captures how

much a set of elements Y within the system in its state y constrains the prior and next states of

other system subsets Vt±1�S. In simplified terms:

φ Y ¼ ytð Þ ¼ mint�1 minC D
p̂ðVt�1jytÞ

Cðp̂ðVt�1jytÞÞ

� �� �� �

ð6Þ

whereC partitions p̂ðVt�1jytÞ into the product distribution p̂ðV1;t�1jy1;tÞ � p̂ðV2;t�1jy2;tÞ, and D
is a distance measure between two probability distributions. The ^ (”hat”-symbol) above the

probability function p indicates that probabilities are interventional (obtained from system

perturbations) rather than observational [19,47]. Vt±1 are chosen such that φ(yt) is maximal.

Second, F is measured as the minimal difference that any system partition CS makes to the

overall information specified by all subsets Y with φ(yt)>0. Again, in simplified terms:

F ¼ min
CS
ðDðfφðytÞgY�S;CSðfφðytÞgY�SÞÞÞ ð7Þ

For a given MB, we search across all sets of computational units S for the one with Fmax =

maxS F.FMax represents the highest possible integrated information the MB can achieve

across all its subsets, which we used as an indicator for brain complexity [19].

All calculations were conducted using the IIT Python package pyphi [22], which we used in

our work to calculate FMax and the corresponding number of concepts. Since the employed
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measures are state-dependent, we evaluated FMax and the number of concepts for every state a

MB experienced during a lifetime (one trial) and selected the maximum value over all states as

in [20]. S1 Fig in Supporting Information shows by way of example that it is essential for high

FMax in a system that many elements are integrated, meaning also maintaining functional

feedback loops within the system. In this study, we only considered the brain complexity of the

final generation (10k) due to the computational complexity of calculations using pyphi.
Statistics. The evolved fitness values EF, the reliability R, and the IIT brain complexity

measures were statistically evaluated across all evolutionary setups using a Kruskal-Wallis test,

which showed a significant difference of the observed statistics between all groups taken

together. Further, we used the Mann-Whitney-U test to evaluate the difference between pairs

of evolutionary setups. Tables A-G in S1 Text lists all statistical tests that are a subject of discus-

sion in the results and discussion section.

Supporting information

S1 Fig. Brain wiring diagram. (a). Best animat in evolution #4 under condition Grandom with

an evolved fitness EF = 3.1 and FMax = 0. The network structure shows only few feedback

loops, which cannot produce integrated information. (b) Best animat in evolution #1 under

condition Grandom with an evolved fitness EF = 2.9 and FMax = 7.77. The network structure

shows much more connections, which integrated the network states and makes them interde-

pendent.

(TIFF)

S1 Table. MABE parameters. Parameters used to configure the Genetic Algorithm with in the

MABE framework.

(DOCX)

S1 Text. Statistical analysis. This file contains Tables A-G listing mean values and correlation

coefficients of evaluated quantities, as well as the results of our Mann-Whitney-U Tests.

(DOCX)

S2 Text. Parameter sampling. Description of the random seeds and random number genera-

tor used in this study.
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