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Abstract

Two-dimensional (2D) materials including graphene, transition metal dichalcogenides

(TMDs), and black phosphorus (BP) show unique physical properties when controlled

to mono- and few-layer thickness, and therefore are promising for optic and photonic

devices. The optical, electrical, and mechanical properties of 2D materials are largely

dependent on their atomic layer numbers. Optical microscopy is widely implemented to

distinguish 2D flakes but the lack of abundant spectral information makes it difficult to

confirm the exact layer number. Spectroscopic techniques such as Raman and photolumi-

nescence microscopy are time-consuming when applied for large-area flake searches due

to the point-scan mode. Ellipsometry microscopy is an industrial-standard measurement

technique, but modeling and interpretation of spectral ellipsometry data require previous

knowledge of the properties and structures of the measured materials. Line-scan hyper-

spectral imaging microscopy which combines both spectroscopy and imaging techniques

provides both spatial and spectral information, realizing a satisfying trade-off between

the measurement speed and accuracy in layer number identification within a large-area

sample. This work studies the suitability of hyperspectral imaging microscopy for rapid

and accurate atomic layer mapping of 2D materials.

First, a hyperspectral imaging system including a line-scan hyperspectral imaging mi-

croscope, system control, data acquisition, and data processing was custom built. The

control and image acquisition of the system worked in MATLAB. The image processing

for reconstructing layer maps was developed from manual interpretation (MATLAB en-

vironment) to the machine-learning-based method (Python environment). The spatial

and spectral parameters of the system were calibrated and the details of the system were

introduced for rebuilding such a system.

Second, to interpret the multidimensional data set acquired by the hyperspectral system

for 2D materials layer mapping, manual interpretation methods including spectral un-

mixing and peak position mapping were developed. A comparative study was conducted

to process the multidimensional data set of multi-layer molybdenum disulfide (MoS2),

showing advantageous performances of the spectral unmixing method. A complete hy-
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perspectral analysis, including single-band analysis, pixelwise spectral analysis, and image

classification were conducted using MoS2 and hexagonal boron nitride (hBN) with mono-

and few-layer thickness. To test the identification limit of the system for layer mapping,

the hyperspectral data set of MoS2 flakes with monolayer, bilayer, trilayer, multi-layer,

and bulk, was interpreted and spectral fingerprints of all flake categories were extracted

to form a hyperspectral library. The reconstructed maps showed atomic layer maps with

one-atomic-layer resolution.

Third, to further develop an intelligent system for fully automated large-area atomic layer

mapping, a deep fusion neural network based on the U-Net architecture was proposed for

imagery fusion of hyperspectral microscope data sets and RGB microscope images, with

monolayer, bilayer, trilayer, and multi-layer MoS2 employed as a demonstration. Af-

ter multimodal information acquisition, data sets co-registration, network training and

testing, the deep fusion neural network realized one-layer precision and accurate profile

outputs. A quantitative comparison showed advantageous performances of the deep fu-

sion network over the state-of-the-art single-stream U-Net model solely based on RGB

microscope images. This deep-learning-supported technique with high speed, high spatial

resolution, and high accuracy is prominent for fully automated 2D materials characteri-

zation.
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Chapter 1

Introduction

With the development of technical instrumentations, we humans can observe and view

objects of the world in largely different scales from nanometer to thousands of kilome-

ters away. The invention of the microscope opens a new view to observe the world of

micrometer and even nanometer scales which cannot be realized by naked eyes, while the

telescope enables us to observe the far-away world in a large field of view, both largely

extending our understanding in the spatial domain. Spectroscopy, which studies the in-

teraction between matter and electromagnetics by splitting the light and analyzing the

radiation intensity with wavelengths, enables us to interpret our world in the spectral

domain. Spectroscopic imaging is the combination of imaging and spectroscopy, and thus

possesses more advantageous performances as a measurement tool.

As a sub-class of spectroscopic imaging, hyperspectral imaging technology has devel-

oped rapidly since it was first employed for remote sensing in the late last century [1–5].

Nowadays, the application of hyperspectral imaging technology is not only in the field of

remote sensing and earth observation, but also in other wide fields such as agriculture,

food processing, surveillance, eye care, environment, and chemical imaging [6–11]. A hy-

perspectral data set can contain both spatial and spectral information of the detected

substance with very high resolution. Due to a large number of spectral bands, sufficient

spectral information can be extracted from hyperspectral data sets [12]. Hyperspectral

data sets use wavelength as the z-axis, x and y as the spatial axis. Spatial information

of hyperspectral images is useful to analyze the distribution of detected microscale and

nanoscale materials, whereas the spectral information of these images is important for

property analysis. Hyperspectral imaging can reduce both time and resource consump-

tion, and provide abundant information at the same time. The combination of microscopy

and spectroscopy, which is called microscale spectroscopic imaging, provides microscale

spatial information with high resolution and extra spectral information, and therefore
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provides more detailed quantitative information. Hyperspectral imaging microscopy has

been employed in many fields such as materials science and biological imaging.

1.1 Motivation

2D materials possess unique optical properties as compared to their bulk counterparts,

specifically when the thickness is controlled within a few layers. Prominently, a direct

to indirect bandgap transition occurs for the family of semiconducting TMDs when the

layer thickness is increased from monolayer to bulk [13–15]. Van der Waals stacked de-

vices made of individual materials and layers have attracted interests for next-generation

optics and photonics applications [16–18]. 2D materials family can be roughly categorized

as semimetals such as graphene, semiconductors such as TMDs, and insulators such as

hBN from the aspect of bandgap differences [19]. Ultrathin graphene film shows excellent

performances for applications in flexible transparent conductors (FTCs) and field-effect

transistors (FETs) [20, 21]. FTCs made of graphene can be used for flexible touch screens

and displays, printable electronics, and thin-film photovoltaics [22], while FETs made of

graphene can be used for highly-sensitive biosensors [23]. Another 2D material MoS2, a

direct-bandgap semiconductor, has applications in ultrasensitive photodetectors, transis-

tors, and gas-sensing devices [24–27]. Other 2D materials have also shown potential in

photovoltaic devices, memory, and light-emitting diodes (LEDs) [28, 29]. In the molecular

structures of these materials, the atoms are bonded hard in the same plane, but the bond

effect between two lateral layers is weak due to van der Waals forces [30]. Due to the

experimentally practical manipulation of mono- and multi-layer 2D materials, remarkable

optical performances can be realized for a wide range of optical applications.

A conventional method to fabricate individual mono- and few-layer 2D structures is mi-

cromechanical cleaving of bulk crystals using Scotch tape. Typically, this method pro-

duces a wide array of flakes with varying thickness over a macroscopic area. Although it

is in principle possible to identify the thickness of the layers by optical contrast, search-

ing for a specific flake of determined layer thickness is arduous and time-consuming [31].

CVD method is a method to grow large-area 2D materials with atomic-layer thickness

[32–35]. For quick evaluation of the layer distribution to optimize parameters during the

CVD process, there is a high demand to rapidly scan the large area and distinguish the

layer number of crystals both in the laboratory and industrial applications.

Conventional optical techniques to determine the layer thickness of 2D flakes include op-

tical microscopy, atomic force microscopy, Raman spectroscopy, photoluminescence spec-

troscopy, and ellipsometry. Optical microscopy is widely implemented in the laboratory

to search the sample and distinguish 2D flakes from monolayer to few-layer based on the
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optical contrast [36, 37]. The challenge is the lack of abundant spectral information be-

cause of the RGB-based design, which makes it difficult to confirm the exact layer number

of flakes [38, 39]. Raman spectroscopic mapping has been used for automated identifica-

tion of 2D materials on Au and Si substrates based on the relation between the Raman

frequency shifts of E1
2g and A1g peaks (TMDs), and those of D and G peaks (graphene)

[40–46]. However, the time-consuming scan due to small spot sizes of Raman imaging

microscopes (around 1 µm) and the weak Raman signals make this technique not suit-

able for rapid large-area measurement. The same challenge exists for photoluminescence

microscopy in 2D flakes search and layer number identification. Spectral ellipsometry is

a standard technique used in the thin film industry and has been adapted for mapping

the thickness distribution of graphene and MoS2 with fast scanning speed [47–49]. An

advantage of spectral ellipsometry is the versatility of imaging 2D materials with very low

contrast such as hexagonal boron nitride. Nevertheless, modeling and interpretation of

spectral ellipsometry data require previous knowledge of the properties and structures of

the measured materials [50]. Time-domain Terahertz spectroscopic imaging is an emerg-

ing technique for 2D materials imaging, but the comparatively large spot size hinders the

identification of laterally small flakes [51, 52].

With the fast development in both theory and practice, machine-learning techniques have

shown advantages in addressing computer vision tasks such as image segmentation and

object classification based on automated feature learning [53–56]. Optical microscopy has

been further developed by combining fully convolutional neural networks to realize the

pixelwise classification of the imagery for 2D materials layer number identification. Here,

the state-of-the-art reports are updated. An unsupervised machine-learning clustering

analysis based on feature extraction algorithms used the optical microscope images for

thickness identification of exfoliated graphene flakes [57]. A deep neural network was ap-

plied for hBN flakes classification with “good” and “bad” labels [58]. U-Net was trained

to distinguish monolayer and bilayer (together as one category) MoS2 and graphene from

the other flakes [59]. A convolutional neural network, Mask-RCNN, was implemented

for image segmentation of 2D crystals (graphene, hBN, MoS2, and WSe2) with mono-

layer, few-layer (2-10 layers), and thick (10-40 layers) categories [60]. Another report

implemented with VGG16 for thickness mapping of graphene, TMDs, and hBN uses also

rough categories including monolayer, few-layer (2-6 layers), and multi-layer (>6 layers),

making this technique suitable for initial scanning and screening of 2D materials identifi-

cation [61]. Those methods have not reached one layer number accuracy when identifying

few-layer flakes. The lack of abundant spectral data can be one reason for this limitation

and the bottleneck of the RGB-based microscope images for more accurate identification.

So far, automatic search and sorting of flakes within the haystack of a large number of

randomly distributed thicknesses have not yet been realized.
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1.2 Objective

The objective is to employ hyperspectral imaging microscopy for atomic layer mapping of

2D materials and study the suitability according to the laboratory and industry require-

ments. The development of the methodology can be summarized into three aspects:

First, a hyperspectral imaging microscopy system including optical setup, system control,

and image acquisition needs to be developed. The system should be able to balance

two contradictory requirements of a relatively large field of view for rapid scanning and

relatively high spatial resolution for microscale 2D flakes identification. The working

modes of transmission and reflection should be considered for specific circumstances.

Furthermore, the system should be robust to different types of 2D materials with varying

thicknesses fabricated by different methods (mechanical exfoliation and CVD).

Second, due to the large amounts of hyperspectral data sets acquired by the system, image

processing algorithms need to be developed to interpret the multidimensional data sets,

extract the characteristic spectral information of 2D flakes with varying thicknesses, and

to conduct pixelwise classification to reconstruct the atomic layer distribution maps. A

practical pixelwise classification method should be developed with a graphic user interface

for laboratory interpretation of experienced operators in 2D materials research.

Third, the system should be intelligent for fully automated large-area layer number map-

ping of 2D materials. To realize this function, machine learning techniques can be im-

plemented for automated feature learning using the data acquired from the hyperspectral

imaging microscopy system. The trained network should provide accurate flake profiles

and the identified atomic layer information.

1.3 Thesis Organization

Chapter 2 introduces the advances of microscale spectroscopic mapping techniques in-

cluding photoluminescence spectroscopy, Raman spectroscopy, infrared (IR) spectroscopy,

terahertz (THz) spectroscopy, and spectral ellipsometry for 2D materials characteriza-

tion. Different forms of graphene, MoS2, and black phosphorus including intrinsic and

engineered structures made by different methods were selected as representatives, from

bandgap and anisotropy perspectives.

Chapter 3 contains the principles of hyperspectral imaging and the multidimensional data

set processing methods. A hyperspectral imaging microscope system including a line-

scan hyperspectral imaging microscope, system control graphic user interface (GUI), data

acquisition GUI, and the manual data processing GUI, was custom built and calibrated
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for characterization of distinct micron-sized 2D materials. The hyperspectral data set

processing studies were based on the discussed spectral unmixing method (Chapter 4, 5)

and the deep fusion neural network (Chapter 6).

In Chapter 4, a comparative study to process multidimensional data sets using abundance

mapping based on linear unmixing calculation, and peak position mapping based on

differential reflectance spectra, was conducted. Multi-layer MoS2 flakes fabricated on the

SiO2/Si substrate with 100 nm oxidation film were employed as a demonstration. The

main work of this chapter is to find an effective multivariate data analysis method, linear

unmixing.

In Chapter 5, to further investigate the suitability and robustness of the line-scan hyper-

spectral imaging microscope system with spectral unmixing for atomic layer identification,

MoS2 and hBN crystals with mono- and few-layers prepared by micromechanical exfo-

liation were employed. A step-by-step analysis including single-band analysis, pixelwise

spectral analysis, and image segmentation was conducted. To further test the identifica-

tion limit of the system, the spectral fingerprints of all the flake categories of a reference

MoS2 sample (monolayer, bilayer, trilayer, multi-layer, and bulk) were extracted to form

a hyperspectral library. The library was implemented to quantitatively identify and map

the distribution of distinct flakes from a new MoS2 sample.

In Chapter 6, a dual-stream U-Net neural network was proposed to fuse RGB images (high

spatial resolution) and hyperspectral images (high spectral resolution) for identification

and segmentation of atomic layer flakes with monolayer, bilayer, trilayer, and multi-layer

thickness grown by CVD. The deep fusion network was trained using a small number of

samples, reaching high accuracy and one-layer precision for atomic layer identification. A

quantitative comparison showed advantageous performances of the deep fusion network

over the single-stream U-Net which used only RGB microscope images.





Chapter 2

Fundamentals and State of the Art

In this chapter, advances of microscale spectroscopic mapping instrumentations and meth-

ods covering a broad range of electromagnetic spectrum were introduced. 2D materi-

als such as graphene, MoS2, and black phosphorus including intrinsic and engineered

structures made by different methods were selected as representatives from bandgap and

anisotropy perspectives. A detailed discussion between the microscale spectroscopic im-

ages and the unique optical property findings including spatial adsorption and emission,

excitonic behavior, light sensitivity, and plasmonic effects was carried out.

2.1 Microscale Hyperspectral Imaging

As an emerging technique, spectral imaging, which combines both advanced spectroscopy

and imaging techniques, provides sufficient information for spectral and spatial analysis

and is suitable for distribution and property investigation of microscale and nanoscale

materials. Due to the small size of these materials, they are difficult to be located, char-

acterized, and quantified [62–64]. To solve this problem, researchers have utilized different

modalities including scanning electron microscope (SEM) [65], transmission electron mi-

croscopy (TEM), atomic force microscope (AFM) [66–68], X-ray diffraction (XRD)[69].

These are currently useful tools to obtain high-resolution images of surface morphology

of nanoscale materials. Samples for these characterization methods should be specifically

made, and the samples sometimes cannot be used for further research because of the dam-

age caused by the equipment [70], which is a large waste of nanoscale materials, especially

with respect to expensive and uncommon materials. Another drawback of these methods

is that they are usually time-consuming and expensive. The third demerit lies in the fact

that, when one sample is damaged by characterization methods, a new sample has to be
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used to finish the complete characterization, which cannot avoid the effects caused by a

small difference of samples on the final results.

Optical modalities can be the alternatives for nondestructive microscale and nanoscale

characterization. Hyperspectral imaging is a combination of spectroscopy and imaging

techniques, containing both spatial and spectral information of the detected substance

with very high resolution, where sufficient spectral information can be extracted. A

comparison among conventional imaging, conventional spectroscopy, and spectroscopic

imaging is shown in Figure 2.1.

400 nm 700 nm

Hyperspectral imaging microscopy

Spectrum

Imaging Microscopy

Light

source
Sample

Wavelength 

dispersion 

device

Point 

detector

Area 

detector

Conventional 

imaging

Conventional 

spectroscopy

Multi- and hyper-

spectral imaging
Light

source
Sample

Wavelength 

dispersion 

device

Area 

detector

Light

source
Sample

(a)

(b)

Figure 2.1: Hyperspectral imaging microscopy. (a) Comparison among imaging, spec-
troscopy and spectroscopic imaging. (b) The combination of imaging, spectrum, and
microscopy.

Because of the enhancement of both spectral and spatial resolution when using hyper-

spectral imaging technology, researchers have found many applications of this technique.

For example, M. S. Kim et al. built a hyperspectral imaging system for food quality and
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safety purposes [71]. Using the abundant information offered by hyperspectral images, it

is applicable to find disease and defects in apples. Anton J. Tremmel et al. developed an

online hyperspectral system for thickness measurement of thin films [72]. It is suitable for

industrial applications to obtain thickness distribution of the polymers used for electronic

devices. The application fields of this technology have transferred from macro objects to

nanoscale materials [73–75]. Spatial information of hyperspectral images is useful to ana-

lyze the distribution of detected nanoscale materials, whereas the spectral information of

these images is important for property analysis. Hyperspectral imaging can reduce both

time and resources consumption, and provide abundant information at the same time

[76, 77].

Although there are differences between spectroscopic methods, a hyperspectral imaging

system typically consists of a light source, a wavelength modulation system, and a detector

[78]. Figure 2.2 shows a typical hyperspectral imaging system [79, 80]. The light source

can be halogen lamps (broadband illumination sources), LEDs, and lasers. A wavelength

modulation module consists of different dispersion devices such as imaging spectrographs

and acousto-optic tunable filters. The detector can be a charge-coupled device (CCD)

and complementary metal oxide semiconductor (CMOS) cameras. In order to analyze

characteristic optical spectra of different materials, a wide range of wavelengths (visible,

near infrared, far infrared) can be selected according to physical and chemical properties

of the tested materials. Working modes (transmittance, reflectance, and luminescence)

are changeable depending on the specific measurement requirements. Furthermore, some

special techniques have also been utilized specifically for nanoscale materials imaging

based on the unique optical performance caused by the really small size. Systematic

introductions to components of a hyperspectral imaging system can also be found in

published articles and books [81–85].

Reflectance was the working mode of hyperspectral imaging systems in the 1980s for

remote sensing and earth observation [86], which has been developed as an effective way

for identification in the visible and the near-infrared (VNIR) range. This non-destructive

imaging method has proven to be effective for materials and paint layers diagnosis [87].

Transmittance with similar systematic arrangements is also a way for hyperspectral image

acquisition. Studies show that hyperspectral transmittance imaging works efficiently for

internal damage detection such as insect-damaged vegetable soybeans and internal quality

of blueberries [88, 89].

Furthermore, photoluminescence (PL) and Raman hyperspectral imaging are employed

for measuring nanoscale materials. Materials such as single-walled carbon nanotubes

(SWNTs) possess excellent photoluminescent property, which means photoluminescence

can be emitted when the material is photoexcited [90]. Researchers including Jack A.
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Figure 2.2: Diagram of a typical hyperspectral imaging system.

Alexander-Webber and Jacques Lefebvre have adopted PL for hyperspectral imaging

of carbon nanotubes, proving PL mapping a significantly powerful tool to character-

ize SWNTs [91]. Such research ideas can also be conducted on other fluorophores like

ultrathin MoS2 films of which the PL property has also been studied [14]. Although Ra-

man signals are very low, Raman spectroscopy can provide characteristic information like

molecular components and defects of materials. With some special techniques such as

surface-enhanced Raman, stimulated Raman, and coherent anti-stokes Raman scattering

[92, 93], Raman hyperspectral imaging becomes more popular among experimental stud-

ies of nanoscale materials. Brandon M. Davis et al. built a Raman hyperspectral imaging

system which greatly enhanced the operational speed by utilizing programmable optical

filters and thus producing a high-throughput spectrometer [94].

Some techniques have been adopted to improve the signal-to-noise ratio (SNR) of hy-

perspectral imaging. For example, hyperspectral imaging with an enhanced darkfield

method is currently an advanced image acquisition way of nanoscale materials. Due to

the small size of nanoscale materials, imaging them faces many difficulties, especially

when there are many types of materials with different sizes. The brightness of particles

in darkfield environment can be largely enhanced to reach 150-fold, providing a solution

to the above problem. Darkfield shows its useful suitability in nanoscale materials mea-

surement [95]. Surface plasmon resonance (LSPR), where a strong interaction between

metal nanoparticles and light leads to a specific spectrum, has enabled the recognition of

chemical components [96–98]. For example, J.-S. Bouillard et al. developed a hyperspec-

tral scanning near-field optical microscope using a gold-sputtered fiber probe for image
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acquisition. Experiments were conducted on plasmonic crystals, a square array of circular

holes made of gold, showing that near-field spectral behavior is suitable for physical mech-

anism interpretation [99]. Dominic Lepage et al. employed the hyperspectral technique

to directly map the diffracted surface plasmons of semiconductor substrate in a buffered

solution, allowing for implementing full dispersion mapping. A pseudo coni approach was

also applied to simplify the hyperspectral imaging system, which greatly enhances the

monitoring speed [100]. Additionally, surface-enhanced spectroscopy for hyperspectral

image acquisition possesses higher SNR when detecting nanoscale materials. Microfilms

with drug content over nanostructured gold substrates were fabricated, with hyperspec-

tral images acquired for qualitative and quantitative analysis. Surface enhanced Raman

spectroscopy (SERS) has proven a powerful thermometric tool for distribution assess-

ment of analyses [101]. Because infrared vibrations of molecules can be enhanced at the

nanometer scale due to resonant excitation of metal nanostructures, Frank Neubrech et

al. reviewed surface-enhanced infrared spectroscopy using resonant metal nanoantennas

[102], in which hyperspectral infrared chemical imaging is demonstrated to be an ideal

characterization method for molecular species.

2.2 2D Materials and Applications

2D materials have shown unique optical properties due to their ultrathin layered struc-

tures, and are emerging as promising materials for optoelectronic devices. Graphene,

MoS2, and black phosphorus were chosen as representatives of the 2D materials fam-

ily. Figure 2.3 shows the electronic structures of graphene, MoS2, and black phosphorus.

Graphene is a one-layer, zero-gap semimetal material with all the carbon atoms arranged

in the same plane. MoS2 is a wide-bandgap semiconducting 2D TMD material with a

typical X-M-X unit in its molecular structure. M refers to the transition metal atoms in

the same plane; X is the chalcogen atoms in the same plane, and two X planes are in the

upper and lower positions of M plane to form a sandwich structure [103]. Black phos-

phorus is another 2D material with a narrower bandgap, and the phosphorus atoms are

arranged in a puckered honeycomb lattice to form one layer sheet [104]. Figure 2.4 shows

the diagrams of preparation methods of 2D materials including mechanical exfoliation

and CVD grown method (MoS2 is taken as an example).

Three typical 2D materials can be compared from the perspective of band structure and

interaction with the electromagnetic spectrum. Graphene is zero-bandgap 2D material

and therefore can interact with a broad range of electromagnetic spectrum from visible

to infrared to terahertz range. MoS2 has a wide bandgap from 1.0 eV to 2.5 eV showing

excellent optical performances in the visible and near-infrared ranges. The bandgap of
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Figure 2.3: Electronic structures of 2D materials including boron nitride, MoS2, black
phosphorus, and graphene.

black phosphorus is a value between those of graphene and MoS2, making black phos-

phorus suitable for mid- and far-infrared ranges. A unique property of BP different as

compared to graphene and MoS2 is the anisotropy, which has drawn considerable atten-

tion for direction-dependent optical devices. However, due to the zero-bandgap property,

graphene is not suitable for some applications such as logic switches, in which both MoS2

and black phosphorus can be utilized. The selection of these three representatives cov-

ers both the bandgap range and also satisfies the necessity of involving the studies of

anisotropic 2D materials.

Optical and optoelectronic applications of these three types of 2D materials are broad

in device development. Layered 2D graphene or TMDs are deposited on substrates of

Si/SiO2 or hBN and then transferred to flexible substrates such as polyimide for de-

vice fabrication. Graphene and graphene-based heterostructures have shown potential as

candidates for conventional semiconductor devices including flexible photodetectors and
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Figure 2.4: Preparation methods of 2D materials using Mechanical exfoliation and CVD
grown method (MoS2 is taken as an example).

modulators [105, 106], energy-related units such as photovoltaic devices [107], as well as

LEDs, polarizers and saturable absorbers [108]. TMDs have been studied for optical and

optoelectronic devices including photodetectors, excitonic LEDs, flexible optoelectronics,

tunable excitonic devices, and optical generation of spin-valley currents. Two typical

examples are the applications of monolayer MoS2 for phototransistor devices with high

photoresponsivity in a broad spectral range and in the integration with CMOS imaging

sensors. As a revisited 2D material, BP is considered a suitable candidate for graphene

and TMDs due to the flexible bandgap modulation and anisotropic property and has been

studied for phototransistors [109], photodetectors [110], and solar cells [111].

The broad potential of 2D materials for optical and optoelectronic applications are gen-

erally based on the newly-discovered optical properties. Due to the unique molecular

structure of 2D hexagonal lattice [112], graphene can interact with a wide range of the

electromagnetic spectrum and possesses high carrier mobility. The unique property of

physical flexibility has also rendered graphene an ideal choice for flexible optoelectronics,

which is a strong advantage as compared to other 2D materials. The optical bandgap

values enable 2D TMDs to show remarkable performances for near-infrared absorption

and emission. When 2D TMDs are controlled in monolayer form, they could become

direct bandgap material from indirect bandgap material in bulk form, showing strong
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photoluminescence performance. 2D TMDs have been modified to make their bandgap

tunable, which promotes the suitability for optical and optoelectronic devices. Strong

and long-lived excitons from 2D TMDs is another advantage for applications like LEDs.

The suitability of BP used for optical and optoelectronic applications lies in its prop-

erties of high carrier mobility, moderate on/off ratio at room temperature, and tunable

bandgap [113, 114]. As compared to the zero bandgap of graphene and direct bandgap

of monolayer MoS2, the bandgap of BP could be changed with the thickness, showing

an improved thickness-bandgap dependence [115]. Due to the changeable bandgap, BP

possesses higher photoresponse performances in near- and mid-infrared ranges [116].

Optical and optoelectronic performances tightly rely on the electronic structure and

unique physical properties. For example, experimental observation of photoluminescence

property in single- and few-layer 2D TMDs may lead to applications in optoelectronic de-

vices. The spectral range of primary emissions of photoluminescence is currently limited

to visible and near-infrared, restricted by the excitons, energy bandgap, and the number

of layers [117]. The range of photoluminescence in 2D materials has been extended by

modifying intrinsic band structures [118, 119]. To overcome the limitations of intrinsic

layered 2D materials and expand the optical and optoelectronic applications, the opti-

cal properties are modulated by linear tuning of Schottky barrier height, photoexcited

electron transfer, and uniaxial tensile strain to realize better tunable bandgaps [120–122].

2D materials have been used for various optical and optoelectronic applications due to

their unique optical, mechanical, and electrical properties [123]. The broad application

potential of 2D materials in optoelectronic devices, photonic devices, and optical sensors

is mainly based on their unique optical performances [124]. 2D materials can be fabricated

based on their layered structure. In the molecular structures of these materials, the atoms

are bonded hard in the same plane, but the bond effect between two lateral layers is weak

due to van der Waals forces. 2D materials can be roughly categorized as semimetals like

graphene, semiconductors like TMDs, and insulators like hBN from the aspect of bandgap

differences. Due to the experimentally practical manipulation of mono- and multi-layer

2D materials, remarkable optical performances can be realized for a wide range of optical

applications. For example, the number of layers of 2D materials can strongly influence

the photoluminescence performance.

The unconventional optical performances including adsorption and emission, light sensi-

tivity, as well as plasmonic effects of 2D materials are closely related to their physical

properties such as carrier mobility, density of states, and band structure based on the

interaction of atoms, structural symmetry, and stacking patterns [125, 126]. Through the

control of layer number which could influence the bandgap value, 2D materials could react

to the different spectrum ranging from ultraviolet to infrared light [127]. Doping strate-
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gies are also effective to modify intrinsic 2D semiconductors and improve the response

with respect to an extended range of spectrum [128]. The assessment of the optical prop-

erties of 2D materials is indispensable for device and sensor development [129]. Based

on detailed surface mapping and spectral information, the suitability of 2D materials for

optical devices or sensor applications can be thoroughly studied. Microscopy, direct 2D

mapping of materials, can provide basic spatial information [130], while spectroscopy can

offer one more dimensional spectral information which is called the fingerprints of mate-

rials [131]. Both microscopy and spectroscopy are essential approaches for analysis based

on the interaction of light and materials including absorption, reflection, luminescence,

and fluorescence [132].

2.3 Microscale Spectral Imaging of 2D Materials

To characterize and study the properties of 2D materials, spectral imaging microscopy

has been developed to provide abundant spatial and spectral information. This part

introduces the applications of spectral imaging microscopy for 2D materials characteri-

zation. Advances of both mature and developing methods covering broad ranges of the

electromagnetic spectrum were introduced (Figure 2.5). A detailed discussion between

the microscale spectroscopic images and the unique optical property findings including

spatial adsorption and emission, excitonic behavior, light sensitivity, and plasmonic ef-

fects was carried out. The analysis also provides a generic view of microscale spectroscopic

mapping selections in 2D materials imaging.
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400 nm 700 nm

Figure 2.5: Electromagnetic spectrum.
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The 2D material family includes zero-gap structures (graphene), semiconducting struc-

tures (TMDs), and insulating structures (hBN) from the bandgap perspective. Due to

the large bandgap, insulating hBN is mostly utilized as substrates for semimetal or semi-

conducting 2D materials which perform unique optical properties to form heterogeneous

structures [133, 134]. Therefore, this part focuses on semimetal and semiconducting 2D

materials including intrinsic and engineered structures by CVD and mechanical exfolia-

tion. Three typical representatives of the 2D material family, graphene, MoS2, and BP

were chosen to discuss how the microscale spectroscopic mapping techniques are used to

promote the unique optical and optoelectronic properties findings such as spatial pho-

toluminescence, long-lived excitons, anisotropic absorption, and excitons. The reviewed

spectroscopic imaging techniques cover a wide range of the electromagnetic spectrum,

sufficient for showing spatial performances of light-matter interactions.

2.3.1 Spectral Imaging Techniques for 2D Measurements

Microscale spectroscopic mapping techniques including PL excitation spectroscopy, Ra-

man spectroscopy, infrared (IR) spectroscopy, THz spectroscopy, and spectral ellipsometry

are described.

Based on the working position between the light source and the imaged sample, there

are three types of working modes including reflectance, transmittance, and absorptance

for spectroscopic imaging. Reflectance, transmittance, and absorptance spectroscopy can

be utilized individually based on these three types of working modes. For example,

differential reflectance has been adopted for thickness-dependent optical property investi-

gation of intrinsic and chemically doped MoS2 across the electromagnetic spectrum. The

setup of micro-reflectance spectroscopy could be upgraded from reflectance microscopy for

studying MoS2 flakes [130]. Micro-reflectance and transmittance spectroscopy has been

used to acquire spectra of a wide range of single- and multi-layer TMDs such as WS2,

MoS2, WSe2, and MoSe2 on different substrates. Individual reflectance and transmittance

spectroscopies have been used to examine samples grown by the CVD method. A laser

scanning reflectance microscope with an acousto-optic tunable filter to acquire the im-

ages of an area at different specific wavelengths [135]. Furthermore, these three modes

are also working modes of other spectroscopies such as IR absorption spectroscopy, THz

transmission spectroscopy, and spectral reflectance ellipsometry [136].

Photoluminescence measurement exhibits fundamental spatial 2D excitons of the in-

terlayer, in which molecules emit narrow-band light when they are excited to active

states. Based on this unique natural property, different materials can be detected and im-

aged for measurements and analyses, especially in biotechnology and medical diagnostics

[137, 138]. By photoluminescence imaging, the localization and distribution of materials
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on the detected surface can be revealed [139, 140]. Figure 2.6 shows a combination of

both photoluminescence and absorption spectroscopy. For photoluminescence working

mode, a 355 nm pump laser was used as the excitation source, and the laser beam was

focused onto the film by a focus lens, with the luminescence signal from the sample into

a spectrometer and luminescence decay profiles recorded by a multichannel scaler [141].

This setup can also be used as absorption spectroscopy with minor changes.
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Figure 2.6: Schematic of the absorption imaging and luminescence setup.

As a robust characterization method for molecular structure and inner group determina-

tion based on the off-resonance interaction of light and material, Raman spectroscopic

imaging has been widely used in chemical analysis, drug studies, and biomedical imaging

[142]. It has also been proved effective in the property analyses of 2D materials, such as

confirmation of layer number, defect density, and doping level [143]. Raman spectroscopic

imaging has been proven a ubiquitous evaluation technique in optical- and optoelectronic-

property modulation of 2D materials, and is often used as a standard reference to evaluate

the performances of other new setups [121]. As the Raman signals are weak and difficult

to detect, surface enhancement methods are usually adopted to improve imaging perfor-

mance [144], which is also taken into consideration when evaluating the setup design.

Figure 2.7 shows the design of a hyperspectral Raman spectroscopy setup for imaging of

graphene and other low-dimensional materials [42]. A laser beam with a shaping module

is used to illuminate the sample on the stage and the scattered light from the sample is

propagated through the field of view of the microscope objective and across the beam

splitter. By using tube lenses and Bragg tunable filters, the scattered light from the sam-

ple is then filtered and directed to the camera. This hyperspectral Raman imaging setup

realizes global imaging with high efficiency as compared to point-by-point mapping.

IR spectroscopic imaging is based on the molecular vibration of materials and has been
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Figure 2.7: Raman spectroscopy hyperspectral imager with the excitation (green) and
collection (red) beams.

widely used for chemical identification and analysis depending on the characteristic spec-

tra of materials in the infrared frequency region. Because most materials show unique

spectra in the infrared range, IR spectral imaging has shown the great usefulness as an an-

alytical tool, especially in chemical and biological imaging [145–147]. The advances of IR

spectral imaging have thus been pushed over years, and as a mature technique, there are

many types of FTIR-based commercial products. Currently, the developing trend of IR

spectral imaging involves maximizing the spatial resolution, improving image acquisition

speed, and understanding the obtained data [148, 149].

To overcome the diffraction limit from long IR wavelengths and realize beyond-diffraction-

limit spatial resolution, IR spectral imaging has been improved by combination with

AFM [150]. Up-to-date researches focused on scattering-type scanning nearfield optical

microscopy (s-SNOM), photothermal-induced resonance (PTIR), and discrete frequency

infrared (DFIR). For example, to improve the spatial resolution of IR spectroscopic imag-

ing to micro- and nanoscale, an asymmetric Michelson interferometer with a beam splitter

(BS) and a reference mirror (RM), and an AFM cantilever are combined to build an s-

SNOM (Figure 2.8). A difference frequency generator (DFG) and a nonlinear crystal

produce continuum infrared light source. Nanoscale IR spectroscopic mapping of poly-
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mer sample with a spatial resolution of 20 nm in 1000-1500 cm−1 and 1500-1900 cm−1

ranges was realized by scanning the sampled area in one direction [151]. Quantum cascade

laser (QCL) based DFIR spectroscopic microscope working at point-scan mode has been

recently proposed for faster spectral imaging by optimizing the optical parameters and

reducing the overlapped data [152]. Supercontinuum source also promotes the design of a

mid-IR multispectral imaging system for the imaging of component distribution within a

tissue, showing satisfying imaging quality and acquisition speed compared to a commer-

cial instrument [153], which provides new ideas for microscale spectroscopic mapping of

2D materials.
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Figure 2.8: Experimental setup of FTIR operated with a coherent mid-infrared continuum
source [151].

The active research activities of IR spectroscopic imaging in life sciences, polymers, per-

ovskites, and plasmonic metasurfaces have paved the way for spatial optical property

mapping of 2D materials [154–156]. The development and applications of AFM-IR have

been reviewed in polymers, cells and tissues, and energy materials [157]. For 2D materials,

IR spectroscopic mapping has led to the findings of many unique properties such as thick-

ness measurement and plasmonics and now has become an indispensable analytical tool

[158, 159]. For example, an s-SNOM with synchrotron radiation was utilized for plasmonic

property study of single- and double-layer MoS2 grown by the CVD method, showing the

ability to detect distinctly local excitations [160]. A review about infrared vibrational

nano-imaging has been finished concerning the better control of localized excitons, by

focusing on s-SNOM and PTIR [161].

Due to the development of femtosecond laser, it became possible to expand the spec-
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trum range to terahertz. Most materials have specific spectra signatures in near- and

mid-infrared ranges, which has been widely used for material identification and charac-

terization. For the terahertz range, materials might show different spectroscopic effects

as compared to those of the visible and infrared ranges due to the unique photon energy

range of THz frequency [162]. Conventional THz spectroscopy is terahertz time-domain

spectroscopy (THz-TDS), and the principle of THz-TDS is based on the methods designed

for FTIR. Figure 2.9 shows the diagram of a typical THz-TDS method for material mea-

surement. A BS propagates the laser pulses direct in two ways of THz generation and gate

path. The generation of THz pulses relies on the optical rectification (OR) of femtosec-

ond laser pulses in the nonlinear crystals such as ZnTe, GaP, and GaAs [163]. The laser

beam in the THz generation path is delayed and focused on the emitter. The THz pulse

is then collected and focused onto the sample by off-axis parabolic (OAP) mirrors and

transmitted through the sample and the transmitted pulse is measured by the detector

with the pulse of the gate path [164].

THz spectroscopy has been utilized for studying optical and optoelectronic properties

of a wide area of 2D materials, including characterizing the charge carrier mobility of

2D InSe, GaAs, and InP nanosheets under photoexcitation [165, 166], evaluating the

factors that affect the optoelectronic properties of 2D perovskites such as charge transport

properties, thickness, and excitonic effects [167], and also probing the conductivity and

carrier dynamics of other types of layered 2D materials [168]. The spatial resolution

of THz spectroscopic imaging, however, is limited by the diffraction of THz wave, which

means more solutions to improving the spatial resolution are of importance when adopting

THz imaging.

Spectral ellipsometry has been applied for studying the properties of various films and

layers for applications in semiconductors and biology [169–171], and it has become an-

other effective optical technique for the optical- and optoelectronic-property study of 2D

materials [172]. Fundamental optoelectronic properties such as absorption efficiency, op-

tical transitions, and excitonic properties could be measured based on the light-matter

interaction [173]. The ellipsometric angles covering a spectrum range could be obtained

to construct a model of the sample [174]. Figure 2.10 shows an imaging ellipsometry

setup used for layer number and optical constants measurements of 2D materials [175].

The light from the light source is polarized and then illuminates the sample after pass-

ing through the compensator as an elliptically-polarized state. The reflected light from

the sample as a linearly-polarized state is collected by a lens system with an objective.

The ellipsometric angles are then measured by the analyzer and the region of interest is

recorded by a CCD camera.
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Figure 2.9: A typical terahertz time-domain spectroscopy (THz-TDS) system.

2.3.2 Spectroscopic Imaging of Graphene

Techniques utilized for studying material characteristics rely on the electronic structures

of materials. Graphene is a gapless 2D material with all the carbon atoms arranged in one

plane. Several planes can interact with each other to form multi-layer graphene by van der

Waals forces. Therefore, graphene can interact with a wide range of electromagnetic waves

without being limited to the visible or near-infrared range, but also in far-infrared and

terahertz range. Graphene has been characterized and studied by spectroscopic mapping

over the widest range of electromagnetic waves.

Reflectance and transmittance spectroscopies were used for studying the optical properties

of graphene in combination with simulated models. For example, the optical constants

of monolayer graphene on SiO2 films have been studied, by comparing the reflectance

and transmittance spectra with the calculated results [176]. Other studies focused on the

optical absorption spectra, and the wavelength ranges from visible light to terahertz [177].

A laser scanning microscope has been utilized in the visible range from 545 nm to 700

nm to obtain the plane images of few-layer graphene. The spectral information analysis

of monolayer, bilayer, and trilayer graphene implied a nonlinear relation between optical

conductivity and the number of graphene layers [135]. Due to the interactive ability of

graphene with a wide range of the electromagnetic spectrum, reflectance spectroscopy in

the terahertz and the mid-infrared range was also conducted to study the carrier property

of graphene layers on various substrates [178].
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Figure 2.10: Spectroscopic imaging ellipsometry setup.

Raman imaging is a powerful technique for optical property analysis of single-layer and

multi-layer graphene. A tip-enhanced Raman spectroscopy (TERS) working at the line-

scan mode verified the localization of D peak enhancement at the edge of graphene [179].

A hyperspectral Raman imaging was developed by combining Raman spectrometer with

Bragg tunable filter (BTF) for global mapping of graphene, with Raman images and

spectra of layered graphene obtained. Spectroscopic Raman imaging with BTF shows

better efficiency and higher throughput compared to the commercial point by point system

and confocal scanning Raman imaging system with a continuum laser source. Compared

with Raman spectroscopy, Raman spectroscopic imaging has been improved with the

mapping ability for spatial quantitative and qualitative material characterization.

The interlayer rotation and interactions of twisted bilayer graphene (tBLG) which is the

dominant form of production by the CVD method, have been studied [180]. The Raman

spectrum of two single layers, artificial bilayer, and CVD bilayer graphene of different

layer contacts were obtained and quantitatively analyzed by Raman imaging based on the

precise imaging of the twist angle. The direct optical imaging of key parameters including

twist angle and optical transition strength provided tBLG with potential applications in

optical and optoelectronic devices. Such quantitative data demonstrates the utility of

spectroscopic imaging to study the correlation between optical properties and electronic

structure.

IR spectroscopic imaging plays a key role in understanding the surface plasmonics and
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plasmon-phonon coupling of graphene heterostructures. The localization of surface plas-

mons and coupled excitations in graphene were spectroscopically studied, and based on

that, the researchers realized active control of plasmon resonance through the tuning of

the excitation wavelength [181]. A novel practical method was proposed to image the

modulated hyperbolic polaritons of monolayer graphene/h-BN metastructure, based on

the nano-infrared imaging and s-SNOM. The broadband spectroscopic data of the inter-

action region was obtained by tip- and line-scan modes [182]. To better understand the

plasmon-phonon coupling of graphene and substrates and promote fast, compact, and ef-

ficient optical devices fabrication, commercial FTIR microscopy, and s-SNOM have been

utilized to demonstrate the enhancement of phonon lifetime. A new plasmon-phonon

interaction of graphene and hBN plasmonic nanostructures on SiO2/Si substrates was re-

vealed. A new method for tuning plasmon performance of van der Waals heterostructure

was offered [183]. The plasmon reflection of graphene on SiO2/Si substrate and sand-

wiched hBN flakes was studied based on an infrared s-SNOM, with the infrared light from

an AFM tip exciting the edge reflection of graphene. Based on the experimental phase

shift and peak oscillations, theoretical analysis of modeling and simulation was developed

for 2D polaritons [184]. The enhancement of IR active phonon bands of graphene/h-BN

and graphene/SiO2 heterostructures with different graphene layer numbers were observed

and studied based on the morphological and spectroscopic information offered by s-SNOM

[185]. Besides, the combination of IR spectroscopic imaging with THz spectroscopy can

provide information over a larger wavelength range.

Due to the wide optical and optoelectronic applications in photoconductive detectors, ter-

ahertz emitters, and modulators within terahertz range [186], THz transmission imaging

of graphene on Si substrate was conducted using local free carrier dynamic analysis in a

sub-mm resolution in a large area [187]. Other studies mainly focused on the conductiv-

ity imaging of graphene using THz conductivity spectroscopic imaging to assess electrical

parameters such as charge carrier mobility, ionized dopant density, charge carrier life-

time, and surface recombination velocity of graphene [188]. The transmission properties

of large-area graphene films have been studied through time-domain THz and FTIR spec-

troscopy in a frequency range from 10 to 10000 cm−1 [189]. The external gate voltage and

thermal annealing influenced the dynamic conductivity change of single-layer graphene

devices due to their effects of moving the Fermi level. A comparison of photoconductivity

maps with Raman maps also suggested eliminating spatial inhomogeneities in optoelec-

tronic fabrication. This study provided both experimental and theoretical basis for the

potential application of graphene devices in optoelectronics [190]. Such studies not only

show the significance of THz spectral imaging in optical property control, but also offer

ideas of improving the spatial resolution of THz imaging system by spatial modulation.
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Spectroscopic imaging ellipsometry in the visible-range reflectance mode has been utilized

for studying the optical properties including optical constants and complex refractive

index of mechanically exfoliated graphene flake and large-area graphene produced by

CVD [191, 192]. The optical properties of exfoliated graphene have been studied by

spectroscopic imaging ellipsometry in the visible range [193]. Angle maps of graphene

and the Cauchy water layer on Si substrate with a fixed angle 60° at the wavelength

of 430 nm were measured. After a whole map fitting, the thickness distribution and

corresponding cross sections of graphene and water layer were obtained based on the

Fano model of graphene. The optical properties of mono- and multi-layer graphene such

as refractive index, extinction coefficient, and absorption peaks, have been also studied

over a broadband energy range from 0.7 eV to 9.0 eV [194]. The refractive index and

extinction coefficient were extracted and compared, with absorption peaks and layer-

number dependence observed and analyzed. Spectroscopic imaging ellipsometry working

in the range of 250-1700 nm was used for the imaging of graphene on SiO2/Si substrate,

covering an area about 1.5× 1.2 mm2. Both simulation and experiments were conducted

for monolayer graphene search. Ellipsometric contrast micrography (ECM) mode within

spectroscopic imaging ellipsometry was also used for fast imaging of graphene layers on

SiO2/Si, Si wafers, and rough Cu catalyst foils. This technique could be used for 2D

characterization of graphene on different substrates and also other 2D structures as a

standard approach. Obvious improvements of this report are the quantitative analysis

and systematic suitability for different 2D heterostructures.

2.3.3 Spectroscopic Imaging of TMDs

Bulk MoS2 is an indirect bandgap semiconductor, with a bandgap value of 1.35 eV which

changes with the number of layers [195, 196]. When the thickness of 2D MoS2 decreases

to monolayer, MoS2 will become a direct bandgap semiconductor, with a bandgap value of

1.85 eV. As a result, the photon energy usually ranges from visible to near-infrared at 400-

900 nm (1.4 eV-3.1 eV). As one of the most promising van der Waals semiconductor, MoS2

has been studied by advanced informative methods for intrinsic and enhanced property

performance like surface excitons.

Reflectance optical setups have been used to study the spatial exciton properties of MoS2

on SiO2 films of different thickness [197]. The reflection spectra were compared to analyze

the relation between emission wavelength of A and B excitons and MoS2 layer number

based on different reflection spectra of bare SiO2 substrate and 1-layer, 3-layer, 10-layer

MoS2 on SiO2 substrates of different thickness. The reflection and antireflection prop-

erties of MoS2 flakes and SiO2 substrates were measured. Additionally, the dependence

of exciton property and layer number was studied using reflectance setup and the exci-
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tonic features were analyzed based on the band structure of different layer number [198].

Confocal absorption spectral imaging was also used to study the absorption property of

both intrinsic and doped MoS2 layers on glass substrates, and to quantitatively obtain

the shift of absorption spectra peaks as the atomic thickness changed. The dependence

of the optical transitions and thickness of MoS2 was explained based on band scheme and

simulation results.

The imaging results obtained from reflectance and absorptance modes are usually com-

pared to the information acquired by photoluminescence excitonic imaging setups. For

example, the photoluminescence properties of 2D MoS2 with a thickness of the unit cell

were studied. Normally the ultrathin-layered MoS2 was fabricated on quartz or Si/SiO2.

For spatial identification, reflected optical microscope and atomic force microscopy were

utilized to distinguish the number of MoS2. A combination of photoluminescence and

Raman spectroscopy showed extended photoluminescence of monolayer MoS2 even if the

Raman signal was weak due to a relatively small local field effect. In the following studies,

exciton peaks of ultrathin layered MoS2 were confirmed at photo energies ∼1.90 eV, ∼2.05

eV, and ∼2.3 eV, respectively. The dependence between the positions of these three peaks

and the number of layers was studied based on micro-reflectance and transmittance spec-

troscopies. A hyperspectral spectroscopic imaging setup working in transmission mode

was built with a tunable light source with a wide range of illumination wavelengths, and

the spatial C and A exciton peak positions of single- and few-layer MoS2 were obtained

and analyzed from layer number perspective. The imaging results including absorption

wavelength and exciton peak wavelength are consistent with previous studies obtained

from scanning photoluminescence.

Photoluminescence spectroscopic imaging was utilized to study the excitonic performances

of MoS2 through defect engineering and oxygen bonding, with strong PL enhancement

observed at a high spatial resolution of ∼300 nm [199]. Also, optical property of Er-doped

MoS2 was studied by micro photoluminescence spectroscopic imaging using a continuous-

wave (CW) diode laser with the excitation at 980 nm, covering an area of 200µm×100µm.

Er doping extended the range of photoluminescence of MoS2 . In this research process,

PL spectroscopic mapping plays an essential role in optical property finding of newly-

developed 2D materials. Study of optical-property improvement of single- and few-layer

MoS2 not only involves photoluminescence spectroscopic imaging, but also Raman spec-

troscopic imaging. The results obtained by Raman spectroscopic imaging has been used

as the reference of photoluminescence property. By experimentally induced defects and

oxygen bonding, the photoluminescence property was largely enhanced after imaging and

spectroscopic analysis. Tip-enhanced PL microscopy was utilized to study the influence of

Ag- and Au-coated AFM tips on the excitonic performances of monolayer MoS2, further
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exciton emission mapping and analysis promoted the observation of PL quenching center

[200]. Not limited to the research of MoS2, photoluminescence imaging has also been

demonstrated in the spatial PL intensity imaging and excitonic property study within

local strain engineering of WSe2 [201].

Raman spectroscopic imaging was used to study the optical and optoelectronic properties

of MoS2 with high reliability. By studying the local optical and electrostatic properties

of mono- and multi-layer MoS2, Raman frequency shift and intensity maps of two most

pronounced features, E2g and A1g modes, showed the influence of thickness on the mapping

identification and also the quantitative influence on Raman shifts of MoS2 caused by Si

and Au substrates [40, 42, 202]. Vibrational modes and peak width of MoS2 depended on

the layer number, and the influences of substrates on redshift were also observed. Besides,

TERS was proven strong plasmonic imaging tool in revealing the quantum coupling and

inhomogeneous structural features of few-layer MoS2 on a gold substrate [203]. The shear

and breathing modes in related TMDs like MoSe2 and ReSe2, and the spatial excitation

features were also observed, expanding the suitability of hyperspectral Raman imaging in

few-layer TMDs [204].

As one of the most informative tools for chemical imaging, IR has been widely adopted for

spatial optical properties of MoS2. Based on the advantageous performances of s-SNOM

in spatial resolution and high reliability, anisotropy of MoS2 on SiO2/Si substrates was

studied by determining the full dielectric tensor based on the real-space mapping [205].

The lateral homogeneity of optical constants of exfoliated MoS2 mono- and few-layer

flakes on sapphire has been analyzed using ECM and spectroscopic imaging ellipsometry

(SIE) [173]. A comparison of ECM and SIE images with an optical microscope image and

a monochromatic reflectivity map showed the excellent imaging performance and speed

of ECM and SIE. SIE was combined with Raman spectroscopy to visualize the flakes and

show the layer-sensitive energy difference. To further analyze the dielectric function of

in-plane and out-of-plane components, an anisotropic model was utilized for fitting the

ellipsometric spectra with critical points. This report provides a new idea of minimizing

the influence of backside reflection caused by thin transparent substrates by using a beam

cutter, expanding the universality of SIE to image 2D materials on different substrates.

2.3.4 Spectroscopic Imaging of Black Phosphorus

As a new member of 2D material family and potential candidate for broadband materials

especially in the range of mid-infrared, black phosphorus has been studied for optical and

optoelectronic devices such as photodetectors and on-chip spectrometers [206]. Currently,

its unique properties are studied in combination with theoretical analysis of electronic
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structures. Because of the strong in-plane anisotropy of 2D BP, the analysis of the

relation between its optical properties and surface anisotropy is a research hotspot, where

spectroscopic imaging techniques including angle resolved and polarized spectroscopy for

systematic study of area BP are emerging as strong methods. Besides, the degradation

of BP which hinders the implementation as optoelectronics has also drawn much research

attention.

Absorption-mode spectroscopic imaging in visible range was conducted by focusing polar-

ized white light on BP flakes on a quartz substrate for measurement, and the anisotropic

absorption features of BP of different thickness are obtained [207]. The anisotropic op-

tical absorption method adopted in this report can be a reliable and simple way for

the identification of BP crystalline orientation. Also, polarized reflectance-mode spectro-

scopic imaging was utilized for both on-substrate BP and suspended BP on 2.2 µm deep

trenches, illuminated by 532 and 633 nm lasers [208]. This report shows large potential of

polarized reflectance for current academic research and future various device applications.

The anisotropic excitons of monolayer black phosphorus have been also observed by

polarization-resolved photoluminescence spectral mapping, with a clear emitted light sig-

nature observed [209]. To show the exciton binding energy, photoluminescence excitonic

spectroscopic mapping was utilized to map the relation between excitation and emission

photon energies in combination with photoluminescence spectra and density functional

calculation. Researchers recently revealed the mid-infrared PL emission of thick-film BP

with a thickness of 46 nm, and the thickness-dependent PL emissions were also thoroughly

studied [210].

For infrared spectroscopic imaging, polarization-resolved infrared spectroscopic imaging

which combined a FTIR spectrometer and a microscope system was used for the investiga-

tion and analysis of anisotropic property of multi-layer BP [211]. The relative extinction

spectrum and angle-resolved DC conductance were compared, showing the matching crys-

talline orientation. This report demonstrated the advantages of BP like narrow bandgap

and excellent carrier mobility, and also highlighted the strong potential of BP in infrared

optoelectronics applications. The influence of passivation coatings on the degradation

of mechanically-exfoliated BP was investigated by s-SNOM, and the results showed con-

sistance with the geometric patterns obtained by model simulation. By spectroscopic

mapping, the degraded region and the change of area with time can be identified and

quantitatively analyzed [212]. To better understand the precise structure and oxidation

degrees of the formed phosphorus oxides, synchrotron infrared nanospectroscopy (SINS),

combined with the DFT modeling, was used to acquire the point spectra of the exposed

BP under different conditions [213].
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The optoelectronic property of BP was enhanced from infrared to terahertz wavelength.

Terahertz absorptance characteristic spectra and emerging peaks of monolayer BP-based

structure were obtained. By the combination of BP sheet with substrates and struc-

tural parameter changes, different coupling states of the system could be realized and

light-matter interaction could be improved, promoting the development of BP based op-

toelectronic devices in terahertz range [214, 215]. As the fabrication techniques develop,

the requirement of large-area spectroscopic imaging of BP will advance terahertz signal

detection and imaging.

For development of optoelectronic devices, the armchair and zigzag edges of black phos-

phorus flakes were characterized by Raman spectroscopic imaging and the Ag, B1g, B2g,

B3g symmetry modes were observed, indicating the presence of edge phonon modes in

BP [216]. The performances of edge phonons in black phosphorus were analyzed and

explained based on density functional theory, confirming the new mode arising in the

hyperspectral Raman imaging. Raman performances and electronic band structures of

BP have been reported for optoelectronic performance analysis [217]. Since the stability

of BP remains an issue before BP can be used for optoelectronic devices because of ox-

idation, confocal fast-scanning Raman imaging was performed to map the layered black

phosphorus during degradation. The effect of thickness owing to surface and edge degra-

dation of black phosphorus was involved in the Raman intensity modulation, indicating

the usefulness of PMMA passivation [218].

Due to the limit of environmentally sensitive monolayer BP and low photoluminescence

emission of multi-layer BP, organic molecules were chemically doped to enhance the pho-

toluminescence performance of multi-layer BP in the visible range at room temperature

[219]. Photoluminescence and Raman imaging were adopted for influence evaluation of

dopants, and the emergence of intense photoluminescence was compared with theoretical

calculations and explained from the perspective of gap states. The doping methodol-

ogy was a useful method to apply multi-layer BP for a broad range of optoelectronic

applications.

Most of the reported spectroscopic mapping of BP are commercial setups, only a few

comprise homebuilt setups. A possible reason lies in the fact that as a revisited 2D

material, in the early stage of new optical property investigation, the most concerning

thing is the reliability of experimental information. Commercial spectroscopic imaging

like IR imaging and micro-Raman systems can provide more standardized information.

However, with the optical and optoelectronic properties of BP being more reported and

generally recognized, especially with the requirement for real applications, microscale

spectroscopic mapping of BP working at different modes will be developed and paid more

attention.
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2.4 Discussion

The interaction of materials with electromagnetic waves is a critical factor. For exam-

ple, FTIR and THz spectroscopic mapping methods are adopted for imaging graphene

and black phosphorus, while spectral ellipsometry is optimized for visible-range imag-

ing of graphene and MoS2. Raman spectroscopic imaging is the most utilized technique

for optical property analysis of 2D materials and is also used as a reference technique

when testing other imaging techniques. Therefore, for optical and optoelectronic property

measurement and analysis of 2D materials, a combination of two or more spectroscopic

mapping techniques can be advantageous.

Technical challenges of microscale spectroscopic mapping techniques are higher spatial

and spectral resolution, higher mapping efficiency, and advanced image post-processing

algorithms. Compared to spectroscopy which focuses on one point of the sample, mi-

croscale spectroscopic mapping techniques could obtain the distribution of one area. This

technical challenge relates to the movement control of scanning probes and fast area scan-

ning, meeting the requirements of spatial resolution at the same time. Among different

scanning modes for microscale spectroscopic mapping, point-scan mode mainly adopted

in commercial systems and area scanning mode mainly adopted in in-house systems, are

both widely-utilized modes. Point-scan systems possess higher spatial resolution but post

image construction and processing are needed to obtain spectral map of the whole area.

Area-scan systems can realize higher efficiency but the resolution is limited because of

a relatively larger imaging area. Up-to-date reports show the trend of newly-designed

systems working in area-scan and single-shot modes [220, 221]. When point-scan mode

was proposed, the imaging points were not continuous in the plane. The spectral in-

formation, therefore, did not cover every point of the area. To meet such challenges,

both in-house and commercial systems use the point-scan mode with image combination

software to realize continuous imaging [222]. Both the precise control of moving stage

and image combination algorithms can help to solve this technical challenge. For high

spectral resolution, hyperspectral imaging can be realized to improve resolution to sev-

eral nanometer. Multispectral and hyperspectral mapping techniques might become the

development trend in materials and devices imaging in the micro scale [223]. The use

the abundant spectral information and maintain high efficiency at the same time is a key

challenge, which require advances in data and image processing.

For microscale spectroscopic mapping, at least three dimensional data including spatial

and spectral information will be acquired by the imaging setup at high efficiency. To

select and obtain the most useful information which is usually the characteristic spectral

information for each point, deep learning is showing large potential for classification and



30 CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART

feature data extraction. From remote sensing to medical microspectroscopy, researchers

are developing better algorithms to classify objects and biological materials.

2.5 Summary

Microscale spectroscopic mapping techniques have been intensively discussed to show

how the optical imaging setups could be utilized for studying the optical properties of 2D

materials, including intrinsic, doped and defect engineered graphene, MoS2, and BP of

different layer numbers. Key optical and optoelectronic properties involve layer number

confirmation, optical conductivity, optical transition, lateral homogeneity, macroscopic

defect density, contamination, photoluminescence, and edge phonon modes. These spec-

troscopic mapping techniques and studied optical and optoelectronic properties are also

suitable for investigation of other 2D materials. Technical challenges of the current spec-

troscopic imaging microscopy techniques are also discussed to meet the requirement of

speed and accuracy for 2D materials characterization. Multivariate analysis methods of

the multidimensional data acquired by the optical modalities are demanded to further ex-

tract the characteristic spectra of 2D materials categories for analysis and understanding.



Chapter 3

Hyperspectral System and Data

Analysis Methods

This chapter introduces the newly-developed methodology, line-scan hyperspectral reflec-

tion microscopy system for 2D materials atomic layer mapping. The introduction includes

hyperspectral imaging components, system calibration, data acquisition, and data pro-

cessing methods.

3.1 Hyperspectral System

3.1.1 Hyperspectral Data Acquisition Modes

There are four working modes including point-scan, line-scan, area-scan, and snapshot

to acquire the three-dimensional hyperspectral data set. Point-scan (also called “whiskb-

room”) mode captures the spectrum of one pixel from the sample, and the sample or

the imager moves pixel by pixel to collect the spectrum of all the pixels. Line-scan (also

called “pushbroom”) mode is an expansion of the point-scan mode. The spectrum of

many pixels along one line can be detected and recorded by one capture, and the sample

or the imager moves line by line to acquire the whole area spectrum. The point-scan and

line-scan modes are spatial scan methods, which means the whole spectral dimension of a

hyperspectral datacube can be obtained once, but the two spatial dimensions cannot be

obtained once. Area-scan mode is a spectral scan method, where the two spatial dimen-

sions of a hyperspectral datacube can be obtained once, but the whole spectral dimension

cannot be obtained once. Snapshot mode means the spectrum of each pixel within the

region can be captured at one time. Figure 3.1 shows the four working modes.
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Figure 3.1: Acquisition modes of hyperspectral 3D data sets.

Light dispersion components are the main components of a hyperspectral imaging setup.

Figures 3.2(a)-(b) illustrate the imaging spectrograph which disperses the light based on

reflection and transmission gratings. Figure 3.2(a) shows a Czerny-Turner spectrograph

and Figure 3.2(b) shows a prism-grating-prism spectrograph. These two designs are usu-

ally used for line scan mode by combining with an area charge-coupled device (CCD)

detector. An entrance slit is installed before the light goes into the imager, and the spec-

tral information along the slit direction can be captured once. The point scan mode is

usually realized by the combination with a spectrometer. Figure 3.2(c) shows a Fourier

transform imaging spectrometer (Michelson interferometer) which uses the interference

of two beams for spectral information acquisition. This design can be used for area scan

acquisition by moving the mirror. Figure 3.2(d) illustrates another area scan acquisi-

tion method using a filter wheel. A broadband beam from the object can be filtered by

the filter wheel with many narrowband filters, and the spectral information of the whole

area can be obtained. There are also other light dispersion devices such as acousto-optic

tunable filters and liquid crystal tunable filters for area scan data acquisition.

The advantage of the point-scan mode is the high spatial and spectral resolution but

this mode requires more time to scan the whole area. The speed of the line-scan mode

is higher than the point-scan mode, but the spatial resolution is lower than that of the

point-scan mode. The area-scan mode has a large field of view to cover more samples but
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Figure 3.2: Light dispersion of the hyperspectral imager.

the spectral resolution of area scan is lower than point scan and line scan modes which

use gratings for light dispersion. Snapshot requires no moving parts in the system and

captures a 3D hyperspectral datacube at one time, but the spatial and spectral resolution,

as well as the speed, are much lower than other modes.

3.1.2 Line-scan Hyperspectral Reflection Microscopy

Line-scan hyperspectral imagin microscopy realizes a satisfying trade-off between the mea-

surement speed and resolution, compared to its counterparts such as point-scan, area-scan,

and snapshot. Therefore, a line-scan hyperspectral imaging microscopy setup was built

for surface characterization and thickness mapping of 2D materials, with high spectral

resolution, high image acquisition speed, and relatively high spatial resolution. Figure

3.3 illustrates the diagram of the line-scan hyperspectral imaging microscopy system.

The system contained a hyperspectral imaging microscope, a stage control, and an im-

age processing unit. A broadband LED light source (MBB1L3, Thorlabs, Inc.) with a

collimating lens was used as the illumination source in the visible range of 470-850 nm.

A beam splitter (BS 016, 50:50 non-polarized cube, 400-700 nm, Thorlabs, Inc.) was

used to divide the light to a 60× magnification infinity corrected microscope objective
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Figure 3.3: The diagram of the line-scan hyperspectral imaging microscopy system. The
inset shows the illuminated area (in green) and the captured line-shape light by the camera
(in yellow).

(working distance 0.3 mm, numerical aperture 0.85, Newport Corporation). The light (in

green) from the light source was reflected (50%) by beam splitter 1 and projected onto

the microscope objective as illumination. The reflected light (in yellow) from the sample

went through the objective, beam splitter 1 and beam splitter 2, and was focused by the

cylindrical lens to the spectrometer; the reflected light by beam splitter 2 was used for

visual observation. When the area of interest was positioned, the second beam splitter

was excluded to enhance the light throughput to the following lens and spectrograph. A

cylindrical achromatic doublet (50 mm focal length) was used to focus the light in the di-

rection of the slit with minimal chromatic aberration. The incoming light passed through

a slit with 16 µm width, and was dispersed by gratings in the spectrograph (Headwall

Photonics, Inc., G4-330).

The hyperspectral imager includes a spectrograph (G4-330, Headwall Photonics, Inc.) us-

ing an aberration-corrected convex reflection grating which eliminates smile and keystone

aberrations, and a CCD camera (RA1000m/D, Adimec) which has 1004 × 1004 pixels
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Table 3.1: Components list of the hyperspectral imaging microscope system

Module Description Part number Distributor

Light source

Booadband mounted LED MBB1L3 Thorlabs

Collimation optics adapter COP1-A Thorlabs

SM1 to SM2 adapter SM1A2 Thorlabs

SM2 coupler SM2T2 Thorlabs

4-pin connector CON8ML-4 Thorlabs

Slip ring SM1RC Thorlabs

Power supply 325DLBN H.G.L.

Linear stage

Motorized linear stage VT-80-DC PI miCos

Compact lab jack LJ750 Thorlabs

Manual positioning stage 350-541-30 Owis

Hyperspectral
microscope

Objective 100×/ 0.85 566073 Leica

Objective 60×/ 0.85 LI-60X Newport

Adapter SM1A12 Thorlabs

Beam splitter BS 016 Thorlabs

Cylindrical lens ACY254-050-A Thorlabs

Spectrograph G4-330 Headwall
Photonics

CCD camera RA1000m/D Adimec

NI camera link PCIe-1433 NI

with the pixel size of 7.4 µm. The corresponding wavelength distribution of the dispersed

light was recorded, with a frequency-spatial dispersion value of 0.74 nm/pixel. A high-

precision motorized positioning platform (PI miCos GmbH, VT-80, DC) with the 50 nm

resolution was controlled to move to the next step along the y direction by a MATLAB

algorithm. After the area of interest was scanned by the microscope line by line, the

spectra of every point within the area was captured and recorded for image processing.

The photograph, the simplified configuration, and the components list of the line-scan

hyperspectral imaging microscope are shown in Figure 3.4 and Table 3.1.
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Figure 3.4: Photograph of the line-scan hyperspectral imaging microscope configuration.

Figure 3.5: Photograph of the Leica optical microscope.
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3.1.3 System Calibration

The spatial resolution represents the resolving power of one imaging system to distinguish

minimum spatial differences. To test the resolving power of the line-scan hyperspectral

imaging microscope, the spatial calibration in both x (horizontal) and y (vertical) dimen-

sions was conducted using a negative NBS 1963A test target and a negative 1951 USAF

test target, separately (Figure 3.6). The spatial resolution of point-scan and area-scan

modes is generally the same in both dimensions when x- and y-directions of the camera

have the same binning; while the spatial resolution of the line-scan mode in both x- and

y-dimensions can be different.

For the line-scan mode, the horizontal resolution (along the slit direction, x) is determined

by a combination of the objective, lenses, and the imager, and the vertical resolution

(along the scanning direction, y) is determined by the line-shape field of view. The

spatial resolution in the y-direction is determined by the width of the line-shape field of

view of the system (equal to the step size). Spatial calibration is used to estimate the

spatial detection limit of the system. In the horizontal direction, the line pairs of 228

lp/mm (highest spatial frequency of the negative NBS 1963A test target) was captured

by one camera frame and could be clearly distinguished by the system (Figure 3.6(d)).

The horizontal resolution was higher than 228 lp/mm. Along the vertical direction, the

system scanned a line group of the negative 1951 USAF test target.

According to the reconstructed single-band image, the step size (5 µm) was consistent

with the width of the line-shape field of view of the line-scan hyperspectral imaging

microscope, without overlapping while scanning (Figure 3.6(e)). The vertical resolution

was 5 µm/pixel. In this thesis, the slit was fixed with a length of 12 mm and a width

of 16 µm. Therefore, the spatial resolution (both X and Y) and the spectral resolution

were constant for all the measurements. The single and averaged intensity distribution

of reflected light from the bare SiO2/Si substrate with the direction along the scanning

line at the wavelength of 543 nm indicated the inhomogeneous illumination, which was

eliminated by excluding the spectra of the substrate from the original 3D data set (Figures

3.7(a)-(b)). The pixel-wavelength response of the hyperspectral imager was calibrated

using a HeNe laser at 632.8 nm and a Hg lamp at 546.1 nm (Figure 3.7(c)). The spectral

resolution was 0.726 nm/pixel.

3.2 Hyperspectral Data Acquisition

In Figure 3.8, the spectral information of pixels in the imaged line-shape area could

be obtained by one capture of the hyperspectral imager. After a continuous scan, the
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spectra of each pixel within the sample area were obtained. To control the movement

of the stage along y-direction with the motorized line scan, two movement modes were

designed. “Move relative” meant that the stage moved step by step, and the sample was

scanned line by line. For every step, the reflected light from the sample was captured

by the camera and recorded. “Move absolute” meant that the stage moved to the set

position, and the camera captured no image, which was designed specifically to realize

fast movements of the stage in searching for the region of interest before starting the

line scan. When the region of interest was selected, the stage was controlled to scan and

record the spectral information of all pixels using the designed GUI (Figure 3.9). To

achieve high-speed scanning, the hyperspectral microscope was designed to work at the

line-scan mode, which meant the spectrum of all the pixels along the line-shaped area
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(5× 80 µm2) could be captured at one frame. The control software of the hyperspectral

system was based on MATLAB. In this chapter, the parameters were controlled as follows,

scanning speed as 100 µm/s, step size of 5 µm, the waiting time of 0.1 s for camera capture.

The scanning time for a region of 200 × 80 µm2 was 30 s. The acquired hyperspectral

data set covered a range of 325-1056 nm.

400 500 600 700 800

A

Wavelength (nm)
400 500 600 700 800

Moving direction

Reflection grating

Imaged line-shaped area

Pixelwise spectra of the imaged area

Pixel

Figure 3.8: The schematic of pixelwise spectra acquisition of the whole scanned area by
the line-scan hyperspectral imaging mciroscopy.

3.3 Hyperspectral Data Analysis

3.3.1 Conventional Analysis Methods

The hyperspectral data set is a three dimensional datacube which contains two spatial

dimensions and one spectral dimension. The spatial information provides the localization

and profiles of objects in the field of view, and the spectral information contains the

unique features for property studies and components identification.

For the line-scan mode, hyperspectral data sets can be built by combining the spectral

information line by line (Figure 3.10(a)-(b)). A hyperspectral data set contained spectral

information of all the pixels of the scanned region. The hyperspectral data set can be

described by:

pk = [xk, yk, Ik (λ1, λ2, . . . , λn)] (3.1)

When the hyperspectral data set is obtained, three functions can be realized by direct

operations of the data set. The first function is same as that of conventional RGB images
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(a) (b)

Figure 3.9: MATLAB user interface used for line-scan hyperspectral data acquisition.
The left figure is the stage and camera control user interface, and the right figure shows
the live spectral information of the scanned line.
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Figure 3.10: Multidimensional data set. (a) Image acquisition of the line-scan hyperspec-
tral imaging microscope. (b) Hyperspectral data set with a size of 60×1004×1004, which
means that the camera captures 60 frames in one measurement and each frame consists
of 1004 spectral channels and 1004 spatial pixels.
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Figure 3.11: Linear unmixing of the multidimensional data set acquired by hyperspectral
imaging microscopy. EM represents different end members.

to visualize the spatial distribution of all the objects (Figure 3.10(c)). The second function

is the characteristic spectra extraction of different components. The representative spectra

of A, B, and C objects can be extracted by averaging the lateral pixels (Figure 3.10(d)).

Based on the extracted representative spectra, one composition can be visualized at some

specific wavelengths to eliminate the influence from other compositions, which enables

a better understanding of the light-matter interaction (Figure 3.10(e)). This function is

called single-band analysis.

However, it is a normal case that the spectra of different compositions exist at the whole

spectral range and no specific wavelength can be selected to visualize one composition.

To further identify the components and visualize their distributions, multivariate anal-

ysis methods have been developed to deal with the spatially resolved spectroscopic in-

formation. Principal component analysis (PCA), vertex components analysis (VCA),

and independent component analysis (ICA) are strong tools to extract the pure spec-

tra (also called “end members”) of different components and widely used for spectral

unmixing of multidimensioanl data acquired by electron energy-loss spectroscopy and

scanning transmission electron microscopy [224–226]. Another versitile method, multi-

variate curve resolution-alternating least squares (MCR-ALS), was applied to FTIR and

Raman spectroscopic images to distinguish biological materials [227–229]. A hierarchical

multivariate curve resolution method was developed to image the trace compounds with
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Figure 3.12: MATLAB user interface for hyperspectral data set analysis including single-
band analysis, pixel-level spectral analysis, end member extraction, and abundance map
reconstruction by linear unmixing.

low SNR [230]. These multivariate analysis methods can also be employed to deal with

the spectral unmixing of hyperspectral microscopic images of 2D materials and 2D-based

structures.

In this work, linear unmixing, a sub-class of spectral unmixing methods, was employed to

calculate the abundance map (Ai) of different end members and estimate their contribu-

tions based on a linear relation between measured spectra and end members [231]. The

contributions from the known end members were estimated by the least-square approxi-

mation. A primal-dual interior-point optimization method was used for linear unmixing

calculation. The spectra of each pixel (Ik) could be considered a linear mixing of different

pure spectra (Ii) which were extracted from pixels with only one object, shown in the

Equation (3.2).

Ik (λ) =
n∑
i=0

Ai × Ii (λ) (3.2)

Here, Ii is called end member, and Ai, called abundance, is the contribution of the corre-
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sponding end members.

Figure 3.11 illustrates the principle of linear unmixing for estimating the abundance maps

of end members. With the acquired hyperspectral data set and the extracted end mem-

bers, the abundance map of these end members could be calculated and the distribution

could be visualized [232]. Based on the previsously developed linear unmixing method

[233], the algorithms were adapted in our case to process the hyperspectral data set ac-

quired by the measurement system. The algorithms worked in MATLAB environment,

and a GUI was developed to conduct single-band analysis, pixelwise spectra extraction,

and thickness distribution calculation using linear unmixing (Figure 3.12).

3.3.2 Machine Learning Methods

Artificial intelligence (AI), machine learning (ML), and deep learning (DL) are functioning

all over the places in human daily life and they are bringing great changes in technological

fields to automate the system for higher efficiency and better performances. Machine

learning is one way to realize artificial intelligence, while deep learning is a sub-field of

machine learning and it can provide great advantages in addressing traditional computer

vision challenges such as object detection, localization, segmentation. One important

factor to realize these tasks is to extract the unique features between different objects

and between the object and the background. Previously, the conventional hand-crafted

methods are largely dependent on the feature quality finished by the domain experts.

The advantage of machine learning is automated feature learning, which reduces human

participation in feature extraction.

Here, machine learning categories including supervised learning, unsupervised learning,

semi-supervised learning are introduced. These categories are different according to the

tasks, input data, and output data. Supervised learning uses labeled data as desired

network output. The parameters of the network are optimized during training process

to output results as much as similar to the labeled data. Unsupervised learning is used

to find the characteristics of unlabeled input data. Common methods of unsupervised

learning are principal component analysis and cluster analysis. Semi-supervised learning

is one category between supervised learning and unsupervised learning, with a limited

number of labeled data and a large amount of unlabeled data. These machine learning

methods are suitable for specific tasks according to the availability of labeled data.

Figure 3.13(a) shows a simple example of the neural network architecture, where the

neural network is constructed from three types of layers including an input layer, hidden

layers, and an output layer respectively. Figure 3.13(b) illustrates the mathematical

relation of inputs and outputs in one neuron of the network. The inputs (x1, x2) are
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Figure 3.13: Machine learning basics. (a) A fully connected neural network. (b) A
simplified neuron from the network. (c) Principle of convolution. (d) Principle of max
pooling.

multiplied by two weights (w1, w1), and the calculated value is added by the bias (b1) to get

z1. An activation function is employed get the output of the neuron (y1, y2). The outputs

of one neuron are used as the inputs of the following neurons until the final outputs of the

network. In this thesis, a convolutional neural network (CNN) is employed for image

processing of 2D materials, and therefore, the mathematical operations of the layers

of CNN network, convolution and max-pooling, are introduced in Figures 3.13(c)-(d).

The features of one image matrix can be extracted by convolution operation with filters

(kernels), which is usually followed by pooling operations. There are different pooling

operations such as average pooling which calculates the average value of each patch and

max-pooling which calculates the maximum value of each patch. The dimensions of the

data can be reduced by pooling operations to extract the average or largest values of small

clusters. In the network training process, backpropagation is used to calculate the local

gradient of the loss function, to minimize the loss, and to update the parameters of each

layer of the network (gradient descent). Backpropagation is widely used in supervised

learning.

Machine learning has been applied to four types of computer vision tasks including image

segmentation, classification and localization, semantic segmentation, and instance seg-

mentation, with the goals of tasks shown in Figure 3.14. For image classification, the
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Figure 3.14: Deep learning applications in computer vision tasks.

input of the neural network is a picture and the output is a single class label; while seg-

mentation is pixelwise classification, where each pixel is labeled as a single class and the

pixels with the same class are classified as one type. Localization is used to label the

position of each classified object.

CNN is usually used in image classification tasks such as dog and cat classification. Figure

3.15 demonstrates the basic structure of CNN. Through a series of convolutional layers,

pooling layers, and fully connected layers, different features are extracted from low to high

level by CNN. That means, every hidden layer increases the complexity of the learned

image features. The network outputs a vector to classify the input into one sub-class.

There is a specific type of convolutional neural network named fully convolutional net-

works (FCNs) for image segmentation tasks. Different from image classification tasks

conducted by CNN which outputs only one class, FCN outputs a picture with the same

size as the input picture, and each pixel of the input picture is labeled with a single

class. In another word, classification only needs to understand what is in the input, seg-

mentation needs to recover not only what is in the input, but also where these subjects

are. Developed from CNN, FCN uses the same convolution layers in the encoder stage,

but uses deconvolution layers in the decoder stage instead of fully connected layers in

CNN. Therefore, the semantic segmentation can be realized by classifying each pixel of
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the image into one-subclass. Figure 3.16 shows the architecture of U-Net, which is com-

posed of a contraction section (downsampling path) and a expansion section (upsampling

path). The contraction section includes convolution layers and max pooling. Through

the downsampling path, the context (the type of subjects) information can be extracted

and interpreted. The expansion section consistes of concatenation, convolution, and up-

sampling layers. Through the upsampling path, the precise localization information (the

position of subjects) can be acquired.

In machine learning tasks for image processing, there are also such cases where the same

sample needs to be measured by two or more modalities, because these modalities can

provide useful information from different perspectives and no one can replace another

function. Fusion networks have been applied to many applications such as remote sensing

(multispectral and hyperspectral imagery fusion), super-resolution, and medical imag-

ing. To better use the data from dual- and multi-modal modalities, a fusion network is

normally employed to combine the multi-modality information and output one combined

image which possesses the advantages of all the inputs. A deep fusion network for image

segmentation is conducted in Chapter 6, and the structure of image fusion is shown in

Figure 3.17. Convolution and pooling operations are conducted separately in two input

streams, and the extracted features from both encoders are fused, followed by one decoder

stream as the upsampling path. The network recovers better vision of both inputs.

Hyperspectral stream

Optical microscope stream

Encoder

Encoder

Decoder

Figure 3.17: Architectures of stream-fusion segmentation used in this work.

3.4 Summary

This chapter introduces the principles of hyperspectral imaging and the multidimensional

data set processing methods. For layer number identification of 2D materials, a line-scan
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hyperspectral imaging microscope system including a hyperspectral imaging microscope,

system control, data acquisition GUI, and the manual data processing GUI, was cus-

tom built and calibrated. The control and image acquisition of the system work in the

MATLAB environment. The microscale spatial resolution of the line-scan hyperspectral

imaging microscope (horizontal resolution better than 228 lp/mm and vertical resolution

of 5 µm/pixel) is sufficient for the characterization of distinct micron-sized 2D flake ar-

eas, considering that the sizes of few-layer and monolayer crystals are several to tens of

microns in the lateral dimension. The hyperspectral data set processing will be based on

the discussed spectral unmixing method and U-Net neural network in Chapters 4, 5, and

6.





Chapter 4

Pixelwise Hyperspectral Data

Interpretation and Classification

To process and interprete the hyperspectral data sets acquired by the system, a compara-

tive study was conducted to process the multidimensional data sets including abundance

mapping based on linear unmixing calculation, and peak intensity and peak position map-

ping based on differential reflectance spectra. Multi-layer MoS2 flakes fabricated on the

SiO2/Si substrate with 100 nm oxidation film was employed as demonstration. The per-

formances of both strategies to identify the flakes of different thicknesses and to extract

the spectral features were compared in detail, especially the accuracy after denoising,

smoothing, and extracting of pixel-level spectra. The main work of this chapter is to

develop an effective multivariate data analysis method with GUI.

4.1 Workflow of Spectral Unmixing and Peak Posi-

tion Mapping

Figure 4.1 illustrates the process of thickness mapping for 2D semiconducting flakes us-

ing hyperspectral imaging microscopy combined classification strategies including linear

unmixing and spectral peak mapping. The MoS2 flakes fabricated on a SiO2/Si substrate

with 100 nm thick SiO2 by mechanical exfoliation were measured to acquire the spectral

data set of the region of interest (Figure 4.1(a)) [234]. The preprocessed hyperspectral

data set was analyzed by two methods, linear unmixing (pure spectra extraction and abun-

dance estimation) (Figure 4.1(c)) and peak position mapping after peak position search

(Figure 4.1(d)) to obtain the thickness distribution of the sample (Figures 4.1(e)-(h)).
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Figure 4.1: The whole process of 2D semiconducting flakes thickness mapping using hy-
perspectral imaging microscopy and two different classification strategies. (a) Sample
fabrication and hyperspectral data set acquisition. (b) Hyperspectral single-band anal-
ysis. (c) Pure spectra extraction as end members. (d) Single-pixel spectra smoothing,
denoising, and peak searching. (e) The reconstructed maps of flakes with different thick-
nesses.
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Figure 4.2: The reconstructed images of the region of interest from the hyperspectral data
set at different wavelengths, with (a) the optical image as a reference.

4.2 Hyperspectral Reflection Measurements

The sample was fabricated by mechanical exfoliation with Scotch tape from bulk MoS2

(2D Semiconductors Inc.) on a single-polished SiO2/Si substrate with 100 nm thick SiO2

coating (Microchemicals GmbH). The prepared sample was observed using an optical mi-

croscope (Leica) to select the flakes with different thicknesses. Figure 4.2(a) illustrates

an optical microscope image of the sample with different thicknesses. The different thick-

nesses of MoS2 flakes in this area were distributed into four parts. This sample was moved

to the stage of custom-built hyperspectral imaging system for spectral scanning. A 3D

datacube containing the spectrum of every point within the area was built. To obtain

the correlation of spatial thickness distribution of the flakes with varying wavelengths,

single-band analysis of reflectance intensity was conducted. Gaussian smoothing was first

used to minimize the noise from the environment. Considering the reflection from the

SiO2/Si substrate, the intensity distribution of the reflected light from the bare substrate

was measured by averaging the spectra of five frames.
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The intensity distributions of single-band images can be calculated by:

Rintensity = R (i, j, λ)−R0 (i, j, λ) (4.1)

where Rintensity(i, j, λ) is the calculated intensity distribution of pixel (i, j) at wavelength

λ, R(i, j, λ) is the measured reflection spectra of every pixel, and R0(i, j, λ) is the averaged

spectra from the bare substrate.

After an elimination of the influence from the substrate, the intensity images of the area

over a wavelength range of 400-700 nm were obtained and the spatial intensity change in

a spectral view was analyzed. The spatial images at 506 nm, 543 nm, 579 nm, 616 nm,

652 nm, 689 nm, 725 nm, and 762 nm, are shown in Figures 4.2(b)-(i). These images were

reconstructed from the acquired hyperspectral data set by background subtraction (R-R0

calculation, R0 was the reflected light from the bare substrate, and R was the reflected

light from the flakes). The variables (x, y, I) of the 3D data set were 60 × 1004 × 1004,

which meant that the camera captured 60 frames in one measurement and each frame

consisted of 1004 spatial pixels and 1004 spectral channels. To eliminate the influence of

inhomogeneous illumination, the spectra of the substrate were excluded from the original

3D data set.

4.3 Feature Extraction and Pixelwise Classification

Two quantitative pixelwise classification strategies including linear unmixing and spectral

peak mapping were conducted to characterize the multi-layer semiconducting MoS2 flake

with nanoscale thickness variations. A competitive study was conducted to choose one

method with better pixelwise classification performances.

4.3.1 Thickness Mapping with Spectral Unmixing

Figure 4.3 illustrates the characteristic spectra (end members) of the regions with different

thicknesses The thickness distributions of the MoS2 flake on the SiO2/Si substrate could

be observed over the full wavelength range (400-700 nm) by the spatial variations of the

single-band images. Based on the observation of the spatial images, different regions

could be located. The represetative spectra (end members) of the regions (A1-A4) were

obtained by averaging the spectra of pixels in these regions, which was conducted in a

MATLAB graphical user interface (Figure 3.12).

After the end members were extracted, linear unmixing was used to estimate the con-

tributions (abundance) of different components (end members) based on the full-range
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Figure 4.3: The extracted end members of the four regions with different optical contrast.
Scale bar= 20 µm.

spectra of pixels. The reflected intensity was considered a combination of intensities from

different end members [235]. When the reflection intensity Ik (λ) and the end members

Ii (λ) were known, linear unmixing was employed to calculate the abundance of different

end members:

∂
∑

j {Ik (λj)−
∑

iAiIi (λj)}
2

∂Ai
= 0 (4.2)

To estimate the contributions from the known end members by least-square approxi-

mation, a primal-dual interior-point optimization method was used. In the process of

estimation, physical constraints including non-negativity (Ai ≥ 0, i=0, 1, 2,. . . , n), sum

less than one(
∑n

i=0Ai<1), and sum equal to one (
∑n

i=0Ai = 1) were required. In this

case, non-negativity and sum less than one were set as the constrains for linear least

squares in abundance calculations.

As compared with the optical image (Figure 4.4(a)) using a conventional microscope

(50× magnification), Figures 4.4(b)-(c) show the abundance maps of four end members

after linear unmixing, before and after applying spatial-spectral denoising [236]. Different

regions were illustrated in false colors, representing the contributions from different end

members. In Figure 4.4(c), it is depicted that denoising of the multidimensional data

sets reduced the influence of the substrate, realizing improved recognition of the flake
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areas from the SiO2/Si substrate. The contributions of different end members were not

affected before and after denoising. The percentage of different regions were calculated by

classifying labelled pixels (Figure 4.4(d)). Linear unmixing had the function of filtering,

where the pixels with different spectra from the extracted end members were classified

as background. Hence, the small flakes present in Figure 4.4(a) were not segmented in

Figures 4.4(b)-(c).
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Figure 4.4: The pixelwise classification results using linear unmixing. (a) The optical
microscope image of the region of interest. (b) The abundance map with end members
(Figure 4.3(a)) without denoising. (c) The abundance map with end members (Figure
4.3(a)) after denoising. (d) The statistical information of different thicknesses among the
whole sample area. Scale bar= 20 µm.

4.3.2 Thickness Mapping with Peak Positions

The second method, peak position mapping, was used to obtain the thickness distribution

of different flakes based on the exciton peak features. Optical feature extraction through

differential reflectance analysis is a widely used method which can realize precise determi-

nation of components. Former studies have revealed the A, B, and C type excitonic peaks

of differential reflectance spectra of semiconducting 2D materials in the visible range [237].

When the thickness increases from monolayer to few-layer, and to multi-layer, excitonic

peak positions shift based on the thickness variation. An automatic peak position search

for all single-pixel spectra in the spectral domain was conducted within the observed re-

gion of different layer numbers. The successfully found peak positions were mapped in

false colors. Figure 4.5 shows the mapping results based on the differential reflectance

analysis of multidimensional data sets. Both A and B excitonic features were used for

peak position mapping. The A and B excitonic peak intensity mapping are shown in
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Figure 4.5(a)-(b), respectively. The A and B excitonic peak position mapping are shown

in Figure 4.5(c)-(d), respectively, with Figure 4.5(e) as the reference. The correspond-

ing single spectra from different areas are shown in Figure 4.5(f). The spectra of one

pixel extracted from the c area in Figure 4.5(a) after Gaussian smoothing and denoising

are shown in Figure 4.5(g). The peak position and peak intensity of one spectra after

Gaussian smoothing and denoising had subtle changes. Spectral noises induced in the

measurement process can lead to random minor peaks of the spectra and peak position

shift of single-pixel level spectra. To lower such influence, all single-pixel spectra were

denoised by a spatial-spectral total variation minimization method. Furthermore, mea-

surement uncertainty in peak positioning cannot be totally averaged by the Gaussian

smoothing function due to the noise induced in the single-pixel spectra. To reduce the

uncertainty of peak positioning, a combination of peak positions and peak values was

used for the determination of areas with different thicknesses. The areas within the MoS2

flake can be distinguished according to the peak position features (Figure 4.5(c)-(d)).

The original influence induced in the measurement process can affect the imaging perfor-

mances such as the recognition of edges of the flake (Figure 4.5(a)-(b)). By comparing

the exciton peak positions with the previously-reported results [198, 238], the thicknesses

of the MoS2 flakes can be roughly estimated using the popular optical contrast method.

The B exciton peak position range from 616 nm to 624 nm, and the thickness of the

flakes should be larger than 10 layers and the flakes are identified as multi-layer. The

main goal of this work is to verify the capability of the hyperspectral data set analysis

methods. Validation for thickness determination using atomic force microscopy or Raman

spectroscopy are needed when studying monolayer, bilayer, and few-layer 2D materials.

In addition to differential reflectance spectra analysis, optical contrast analysis is also

widely employed to study the optical response properties of 2D TMDs. The multidimen-

sional data set was processed by optical contrast analysis. According to the spectra of

extracted characteristic pixels, the A and B excitonic peaks were not clearly shown as

compared to those of differential reflectance calculations (Figure 4.6(b)). Therefore, the

spatial mapping by optical contrast analysis is not shown here. Peak position mapping by

spectral features of differential reflectance spectra and optical contrast was theoretically

based on the correlation between thin-film thickness and the featured peak position. How-

ever, the induced noise can influence the automatic searching of meaningful peaks. The

utilization of smoothing and denoising methods which can eliminate the noise without

peak shifts can improve the accuracy and imaging performance.

Hyperspectral image classification strategies including linear unmixing and exciton peak

position mapping are used to reconstruct the thickness distribution of MoS2 flakes. For

linear unmixing, the least-squared calculation is based on the single-pixel spectra over the
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Figure 4.5: Analysis of the MoS2 flakes with different thicknesses by peak position map-
ping. (a) Peak intensity mapping of A excitonic peak after the spatial-spectral denoising
and Gaussian smoothing. (b) Peak intensity mapping of B excitonic peak after the spatial-
spectral denoising and Gaussian smoothing. (c) Peak position mapping of A excitonic
peak after the spatial-spectral denoising and Gaussian smoothing. (d) Peak position
mapping of B excitonic peak after the spatial-spectral denoising and Gaussian smooth-
ing. (e) The abundance map by linear unmixing as the reference (Figure 4.4(c)). (f) The
differential reflectance spectra of different areas of the flake. Scale bar= 20 µm.
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(a) (b)

Figure 4.6: Analysis of the MoS2 flakes with different thicknesses by peak position map-
ping. (a) The differential spectrums of one pixel in c area before and after spatial-spectral
denoising and Gaussian smoothing. (b) The extracted spectra from different areas by op-
tical contrast.

full wavelength range instead of the peak position or peak intensity. The influence of ran-

dom noises on the performance can be lower than that of differential reflectance analysis.

Therefore, the linear unmixing can provide the best image classification performance and

evaluate the influence from the lateral regions. The limitation of linear unmixing strategy

is that the end member selection can be largely determined by the researcher based on

the single-band analysis and principal component analysis. This limitation can be further

overcome by building a spectra library and using machine-learning-assisted determina-

tion. For exciton peak position mapping based on differential reflectance, the accuracy

of peak intensity mapping is less than that of peak position mapping. Peak position

mapping can provide spatial distribution of regions with different thicknesses, when the

influence of noises on peak position searching is well dealt with by smoothing or denoising.

Differential reflectance analysis based on exciton shifts can achieve quantitative thickness

mapping which cannot be realized by the current scanning microscopes.

4.4 Summary

To process and understand the multidimensional data sets of semiconducting MoS2 flakes

acquired by the custom-built hyperspectral imaging microscope, two classification strate-

gies including linear unmixing analysis, and differential reflectance and optical contrast

analysis, were used to determine the spatial distribution of different areas with varying

thicknesses. The comparative study proved the linear unmixing a promising tool for ac-

curate thickness mapping. Additionally, the line-scan hyperspectral imaging microscopy

with the linear unmixing possesses high speed for hyperspectral data set acquisition and
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high spectral resolution (0.726 nm/pixel) to distinguish subtle spectral differences. Fu-

ture studies focusing on the end member extraction of monolayer, bilayer, to few-layer

semiconducting 2D materials and the abundance estimation, and the evaluation of the

imaging performances, will be shown in Chapter 5.



Chapter 5

Hyperspectral-fingerprints-based

Atomic Layer Mapping

In chapter 4, linear unmixing was proven an effective method to reconstruct the layer

maps of 2D materials, to further investigate the suitability and robustness of the system,

a step-by-step analysis including single-band analysis, pixel-level spectral analysis, and

image reconstruction, was conducted onto 2D MoS2 and hBN crystals (mono- and few-

layer) prepared by micromechanical exfoliation. To further test the identification limit

of the method, the spectral fingerprints of all the flake categories (monolayer, bilayer,

trilayer, multi-layer, and bulk) of a reference MoS2 sample were extracted to form a

hyperspectral library. The library was implemented to quantitatively identify and map

the distribution of distinct flakes from a new MoS2 sample.

5.1 Layer Mapping of Mono- and Few-layer MoS2

5.1.1 Spectral Unmixing for Atomic Layer Mapping

The workflow of the automated identification of 2D flakes by hyperspectral imaging mi-

croscopy and linear unmixing is presented in Figure 5.1. Briefly, the region of interest

was scanned by the motorized stage while lines of spectra were recorded and assembled

in a three-dimensional data cube. For each pixel, which represents a certain spot on the

sample, the recorded spectrum was compared to a so-called end member spectrum. These

spectra were those of flakes of known thickness. The comparison was done numerically by

least-square approximation. Because the intensity and spectral contribution are recorded

and numerically processed at each spot on the sample, an unambiguous identification
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of layer thickness is possible, which is a distinct advantage compared to conventional

RGB-type optical analysis [239].

End members extractionHyperspectral data set“Haystack” of 2D flakes

(a) Region of interest selection (b) Single-band analysis (c) Pixel-level spectral analysis

(d) Image classification

C
h

an
n

el
s

Abundance maps calculated by linear unmixing

Monolayer

Few-layerBulk

Pixels

Figure 5.1: The principle, setup, and results of hyperspectral imaging microscopy with lin-
ear unmixing for automated 2D materials identification. The workflow of automated iden-
tification of monolayer and few-layer 2D flakes using hyperspectral imaging microscopy
combined with linear unmixing.

5.1.2 Hyperspectral Measurement and Thickness Map Recon-

struction

The MoS2 sample with the SiO2/Si substrate with 70 nm thick SiO2 was observed using

a conventional microscope and a region with a monolayer MoS2 flake was chosen and

scanned by the custom-built hyperspectral imaging microscope. Figure 5.2(a) illustrates

the optical microscope images showing the distribution of all the flakes within a scanned

region (120 × 330 µm2). A-G were used to label different flakes including bulk, few-

layer, and monolayer MoS2. The monolayer flake (3 µm2) with bulk and few-layer flakes

around was found with the same objective with 100× magnification (the inset of Figure

5.2(a)). Figures 5.2(d)-(i) show the single-band images of the scanned region at specific

wavelengths of 510 nm, 528 nm, 557 nm, 572 nm, 587 nm, 608 nm, separately. The

intensities of flakes with different thicknesses varied with the changing wavelength, which

provided a way of classifying different flakes. By comparing the hyperspectral images

at different wavelengths, the flakes from multi-layer to bulk were roughly identified as

compared to the images acquired by the conventional microscope. The monolayer MoS2
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(flake G in Figure 5.2(a)) can be distinguished in Figures 5.2(g)-(i), even though the signal

detected by the camera was relatively lower than that of other flakes, due to the small

size of the monolayer MoS2.
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Figure 5.2: Optical images of the region of interest and single-band images reconstructed
from the hyperspectral data set of the MoS2 sample. (a) Optical microscope images of the
region of interest (120×330 µm2), and images with (b) 50× and (c) 100× magnifications.
The region shown in (b) is the region labeled by white dots in (a), and the region shown
in (c) is the region labeled by dots in (b). (d)-(i) The single-band images of the region
shown in (a). Scale bar= 50 µm.

To investigate the spectral features of these flakes, single-pixel spectral analysis was con-

ducted. Figures 5.3(a)-(b) show the corresponding spectra of the labeled pixels from

Figures 5.2(a). A-C and D-E illustrates MoS2 flakes with different thicknesses according

to the spectral curves, which is consistent with the spatial variation of the hyperspectral

single-band images (Figures 5.2(d)-(i)). The spectra of thin flakes labeled F and G were

extracted and the intensities were lower than those of other flakes due to the small sizes

(Figure 5.3(c)), where F flake (few-layer MoS2) and G flake (monolayer MoS2) showed

distinct A and B exciton peaks due to strong absorption [238]. The differential reflectance
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spectra of F flake (few-layer MoS2) and G flake (monolayer MoS2) showed distinct A and

B exciton peaks due to strong absorption (Figure 5.4).

(a) (b)

(c) (d)

Figure 5.3: The extracted characteristic spectra of MoS2 flakes with varying thicknesses.
(a)-(c) The spectra of the corresponding labeled regions in Figure 5.2(a). To reduce the
noise of the single-pixel spectra, the spectra in (a)-(c) are averaged from the lateral two
pixels. (d) Five selected end members averaged from the spectra of corresponding flakes
(A, D, E, F, and G in Figure 5.2).

To obtain the distribution of monolayer and few-layer flakes for stacking to form func-

tional heterostructures, thickness mapping by linear unmixing was conducted based on

the single-band analysis and pixel-level spectral analysis. The averaged spectra of these

pixels were considered as the end members (Figure 5.3(d)). Using linear unmixing, the

abundances of five end members were obtained and shown in Figure 5.5(b). Since the

reflectance from F and G were lower than those of other areas, the abundance of F (few-

layer) and G (monolayer) could not be easily distinguished in Figure 5.5(b). Another

linear unmixing calculation using only end members of F and G was conducted, and the

abundance map (Figure 5.5(c)) showed the distribution of F and G in false colors. Figure
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Figure 5.4: The differential reflectance spectra of monolayer and few-layer MoS2 flakes
calculated by (R-R0)/R. A and B excitonic peaks are labeled with circles.

5.5(d) illustrates the abundance map of automated search of monolayer and few-layer

MoS2 flakes using the averaged spectra from F and G areas as the end member. This pro-

cess is in practice very useful because both F and G flakes are interesting to researchers

for further research. The identification of monolayer and few-layer MoS2 flakes within

the region of interest (120 × 330 µm2) was realized using the hyperspectral imaging mi-

croscope system. Because the flakes F and G were small-sized (3 µm2), the noise was

induced to the extracted spectra, which leads to difficulty in directly distinguishing the

spectra difference from monolayer and few-layer MoS2 flakes. The spectra difference can

be further combined with peak shifts for distinguishing monolayer and few-layer flakes.

For 2D flakes for device applications, the size of monolayer and few-layer flakes should be

larger than those of F and G flakes used in this chapter. Hence, the characteristic spectra

of monolayer and few-layer MoS2 can be extracted with a higher signal-to-noise ratio for
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better classification performances.

A exciton

B exciton

Figure 5.5: The pixelwise classification results after linear unmixing. (a) The optical
image of the scanned region of interest with different flakes labeled A-G using the optical
microscope. (b)-(c) The reconstructed abundance maps of the five end members extracted
from different areas. (d) The abundance map of F and G areas as a whole. This image
is useful in practice for showing the distribution of both monolayer and few-layer MoS2

flakes. Scale bar= 50 µm.

5.2 Layer Mapping of Multi-layer hBN

5.2.1 Hyperspectral Measurement and Thickness Map Recon-

struction

The fabrication method used for acquiring layered hBN flakes was the same as that

for making MoS2 flakes. Similarly, one region of interest was selected after observing

the sample with a conventional microscope. Figure 5.6(a) shows the optical microscope

images of the hBN flakes distributed on the SiO2/Si substrate with 70 nm thick SiO2.

Different flakes including bulk and multi-layer hBN were labeled from A1 to F1. B1

and E1 flakes were multi-layer hBN with lower optical contrast. These flakes are, for

example, more interesting for encapsulation of active 2D materials and heterostructures

and potential devices. Single-band analysis of the hyperspectral data set can provide

an overview of the distribution of different flakes according to the spatial distribution

at changing wavelengths. Figures 5.6(b)-(f) show the background-subtracted images at

five selected wavelengths of 572 nm, 601 nm, 645 nm, 660 nm, and 674 nm, separately.

Different flakes show different intensities at specific wavelengths, which provides the local

distribution information of these flakes. The distribution of the flakes labeled in Figure

5.6(a) from A1 to F1 can also be distinguished in Figures 5.6(b)-(f).
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The pixel-level spectral analysis of hBN flakes was conducted based on the extracted

spectra of different flakes. Figures 5.6(g) shows the extracted spectra of the five flakes by

averaging the lateral two pixels to lower the noises, which the characteristic spectra from

the corresponding regions in Figure 5.6 (a). B1 and E1 flakes were multi-layers based on

the spectral features over the visible range. To show the extracted spectra and compare

them to the spectral feature of hBN in a former report [38], R0-R calculation was used

for spectral analysis, which doesn’t influence the abundance maps compared to those of

R-R0 calculation. To further analyze the spectra, the optical contrast by (R0-R)/(R0+R)

calculation of these flakes were calculated (Figures 5.6(h)) [237]. Consistent with the

former reports, there is a range of spectra lower than zero around 500 nm and the values

are positive after this wavelength range [240]. To obtain the distribution of bulk and

multi-layer hBN flakes based on the featured spectra, linear unmixing was employed to

calculate the abundance of A1-E1 flakes. According to the spectra from Figures 5.6(g),

A1, C1, and D1 possessed similar spectra and were classified as bulk hBN flakes based

on the spectral characteristics. Figures 5.6(j) shows the abundance map of flakes A1-E1

in a single calculation using the extracted five end members. Figures 5.6(k) illustrates

the abundance map of only E1 end member, indicating the distribution and position

of the multi-layer hBN flake. The distribution of multi-layer hBN flakes was found by

linear unmixing of the hyperspectral data set. The end members of A1, B1, and E1 are

shown in Figure 5.6(i). To measure monolayer hBN flakes, the optical contrast should

be maximized for the best imaging performance. It has been reported that the optical

contrast varies with the change of the thickness of SiO2 for graphene [241], MoS2 [242],

and hBN [243, 244]. Therefore, by building the relation between the optical contrast of

monolayer 2D materials and the oxidation thickness of the substrate, monolayer 2D flakes

can be distinguished in an optimized way, especially for hBN with low contrast, which

should be conducted in the following work.

5.2.2 Hyperspectral Characterization of An Unknown Region

To test the capability of the proposed line-scan hyperspectral imaging microscope with

the linear unmixing method, another hBN sample with 270×640 µm2 region was studied.

Because the horizontal size of the region of interest is larger than the length of the field of

view of the setup, this area was scanned three times by moving the sample in x-direction

manually after a single continuous scan. Three hyperspectral data sets were acquired and

combined by eliminating the overlapped regions. The background-subtracted hyperspec-

tral images were reconstructed at seven wavelengths (492 nm, 514 nm, 528 nm, 543 nm,

579 nm, 601 nm, and 630 nm, separately), shown in Figures 5.7(a)-(g). By comparing the

changes of spatial images, one flake (white circled area in Figure 5.7(c)) was selected due
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Figure 5.6: A step-by-step analysis including single-band analysis, pixel-level spectral
analysis, and image classification for the automated search of the multi-layer hBN flake.
(a) Optical microscope image of the region of interest. (b)-(f) Single-band images recon-
structed from the hyperspectral data set of the hBN flakes. (g) The pixel-level spectral
analysis of bulk and multi-layer hBN flakes. (h) The optical contrast of the multi-layer
hBN flakes labeled with B1 and E1. (i) End members of corresponding A1, B1, and E1
flakes. (j) Abundance map of all flakes in a single calculation. (k) Abundance map of the
end member E1. Scale bar= 50 µm.
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to its negative reflectance, which is similar to that of E1 flake in Figure 5.6(d). The E1

end member was used to calculate the abundance map of the newly-acquired hyperspec-

tral data set (Figure 5.7(h)). The abundance map (Figure 5.7(h)) and the microscope

image (Figure 5.7(i)) display high consistency with each other, demonstrating the ability

of this method for wafer-scale measurement.

The measured reflection spectra can be influenced by the NA of the microscope objective

lenses, such as the peak position and the spectra magnitude [242, 245]. Here, the hyper-

spectral data sets of MoS2 and hBN samples were measured using the same 60× mag-

nification objective lens (NA 0.85). However, when the objective lens with a higher NA

is used, the measured reflection spectra of the same region might differ from each other.

Hence, the end members (averaged spectra from the flake regions) used for abundance cal-

culation need to be consistent with the NA of objective lenses. If the previously-extracted

end members are used for linear unmixing to calculate the abundance maps of another

sample when the objective lens is changed, the abundance maps of different flakes can be

influenced. For the measurement of other 2D materials using different objective lenses,

optical modeling of the system such as NA correction by simulation and experimental

results is required [50, 246].

There are two possible improvements to this method to realize better performances.

Firstly, the single-band images extracted from the hyperspectral data sets are kind of

stretched in the vertical direction. One reason is the relatively low vertical resolution.

For the line-scan hyperspectral imaging microscope, the vertical resolution is less than

the horizontal resolution, which is caused by the nature of the line-scan working mode

and the way of light dispersion. Another explanation is the influence of the light out of

the confocal line including the fluorescence, the scattered spectrum, and the diffraction of

light originating from a convolution of the illumination spot with the slit aperture. In the

present work, the stretched shape in the vertical direction was eliminated when choos-

ing the representative spectra with higher criteria and the blurred areas were removed.

The reconstructed abundance images show higher performances than the single-band hy-

perspectral images. To increase the imaging performance of the line-scan system may

require to change the global illumination to line-shape illumination (laser illumination for

hyperspectral photoluminescence imaging) [247], add an adjustable slit before the colli-

mating lens to reduce the non-confocal-line light, and conduct the deconvolution of the

hyperspectral images in the spectral domain [248, 249].

The second improvement is that the intelligent end member extraction needs to be

achieved which can lower the errors of manual area selection for pure spectra acquisition.

The ability of this technique of distinguishing the differences even between monolayer and

bilayer flakes needs to be further tested. Figure 5.5(c) shows that monolayer and few-layer
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MoS2 flakes can be classified. Few-layer flakes (layer number less than 10) can in theory

be differentiated based on their spectral profiles and can be imaged with methods like

pixel-level denoising and machine learning. Based on the former research by spectroscopy

techniques, there is a relation between the exciton peaks of optical contrast and layer

number of flakes [250, 251], which can be employed as reference information for thickness

identification. Like the former reports using spectroscopy technique to build the relation

of peak shifts and layer thickness [252], hyperspectral imaging techniques can use this

knowledge and realize better mapping performances of thickness distribution. A library

of spectra ranging from monolayer to multi-layer flakes of different types of 2D materials

is necessary for future applications.
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Figure 5.7: The single-band images, abundance maps, and the microscope images of a
large unknown region of interest (270×640 µm2). (a)-(g) The reconstructed hyperspectral
images at different wavelengths. (h) The optical microscope image of an unknown region of
interest and the magnified image of the multi-layer flake. (i) The reconstructed abundance
map. Scale bar= 50 µm.
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5.3 Identification Accuracy Evaluation using CVD

MoS2

In this part, to further evaluate the identification accuracy using hyperspectral imag-

ing microscopy and spectral unmixing for rapid layer number mapping of 2D materials,

characteristic hyperspectral fingerprints of CVD-grown MoS2 flakes were extracted and

implemented for atomic layer number reconstruction. First, the broadband hyperspectral

fingerprints of mono- and bi-layer MoS2 flakes with high spectral similarity were extracted

for distribution map reconstruction using the constrained least-squares optimization, with

cross-validation applied to new regions. Second, the method was generalized by map-

ping the distribution of mono-, tri-, and few-layer MoS2 flakes. Third, to reduce the

computational consumption, influence of dimension reduction of hyperspectral data sets

on identification performances was investigated using mono- and bi-layer hyperspectral

fingerprints with high spectral similarity.Finally, a multiline laser was used as the illumi-

nation source to measure exfoliated WSe2 flakes which were not easily detected by the

broadband illumination due to their small sizes.

5.3.1 Hyperspectral Fingerprints and Map Reconstruction of

Mono- and Bi-layer Flakes

The characteristic spectra of CVD-grown MoS2 flakes are dependent on the atomic layer

number, oxidation thickness of the SiO2/Si substrate, illumination conditions, and the

numerical aperture of the microscope objective. MoS2 flakes were grown on the SiO2/Si

substrate with an oxidation layer thickness of 270 nm. The layer number of flakes were

manually identified based on the reflection optical contrast of 2D materials. The mi-

croscope objective and illumination conditions were kept unchanged during all measure-

ments. Therefore, the measured spectra of MoS2 flakes were directly dependent on the

layer numbers. Figure 5.8 illustrates the process for extracting hyperspectral fingerprints

and reconstructing distribution maps of the MoS2 sample. A region of interest containing

mono- and bi-layer MoS2 flakes identified manually by optical contrast was selected for

demonstration (Figure 5.8(a)). After a continuous scan by the hyperspectral microscope,

the images of the region of interest at different wavelengths could be reconstructed. Fig-

ure 5.8b illustrates nine images at the spectral range of 543-609 nm from a total of 1004

channels covering a wavelength range of 325-1056 nm, showing the spatial variations of

flake areas along with the wavelength change. The spectral range of 400-700 nm was used

for fingerprints extraction and calculation. In the hyperspectral data set of the measured

region of interest, each pixel had a specific spectra. Since the system captured the spec-

tral information of 1004 px at a single capture, slight noise became a large portion of the
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pixel-wise spectra. To avoid misclassification of pixels from lateral layer numbers, original

hyperspectral data sets were processed by background subtraction which eliminated the

influence of uneven illumination distribution, and hyperspectral denoising algorithms to

remove spatial and spectral noises using the total variation minimization (Figure 5.8(c)).

The intensity normalization reduced the inhomogeneous illumination by subtracting the

signal from the substrates at each spectral channel. The denoising algorithm adapted

from stimulated Raman spectroscopic images analysis provided representative spectra

with high SNR. The optical image (Figure 5.8(a)) as a reference showed the position

of each type of flakes, where the characteristic spectra were extracted by averaging the

spectra of pixels (50-100 px) from the same flake in the hyperspectral data set. Figure

5.8(d) shows the characteristic spectra of mono- and bi-layer flakes used as the hyperspec-

tral fingerprints. The extracted hyperspectral fingerprints were combined with spectral

unmixing analysis to reconstruct the spatial distributions of monolayer (1L) and bilayer

(2L) flakes (Figure 5.8(e)). The isolated monolayer MoS2 island (bottom flake) and the

monolayer MoS2 flake surrounding bilayer flakes (top and middle flakes) were identified

and mapped. The hyperspectral fingerprints of mono- and bi-layer flakes have high simi-

larity to each other. Such hyperspectral similarity was a challenge for the algorithms to

classify pixels with similar spectra. Monolayer and bilayer pixels with similar spectra were

successfully classified with single-layer accuracy of the hyperspectral microscopy system

for 2D materials identification (Figure 5.8(d)).

To analyze classification performances of pixels with various spectra using the fingerprints

and spectral unmixing method, five pixels predicted as mono- and bi-layers (A-B as

monolayer, C-E as bilayer) were selected (Figure 5.9(a)) and their averaged spectra and

standard deviation from the denoised hyperspectral data set (Figure 5.8(c)) were shown

in Figure 5.9(b). The spectra of A-B pixels with peak intensity around 0.3 have smaller

differences with the monolayer fingerprint, while the spectra of C-E pixels with peak

intensity around 0.4 are classified as bilayer. Figure 5.9(c) illustrates a single-channel

image at 543 nm from the hyperspectral data set. The mean value and standard deviation

of the reflection intensity distribution along the L2 direction (Figure 5.9(c)) was shown

in Figure 5.9(d) based on the data at wavelengths of 543 nm, 558 nm, 572 nm, 587 nm,

and 601 nm for demonstration. The grey curve in Figure 5.9(d) shows the predicted layer

number distribution along the L1 direction in Figure 5.9(a) for comparison. According

to the averaged spectra of mono- and bi-layer (Figure 5.9(b)), pixels in Figure 5.9(d)

with intensity values smaller than 0.3 can be classified as monolayer, while pixels with

intensity values between 0.3 and 0.4 can be classified as bilayer, which is consistent with

the spectra features and the classification results.
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Figure 5.8: Process of hyperspectral fingerprints extraction and distribution maps recon-
struction of CVD-grown MoS2. (a) The optical microscopy image of the reference region
with the distribution of mono- and bi-layer MoS2 flakes. Single-channel images from the
acquired hyperspectral data set at the spectral range of 543-609 nm (b) after the back-
ground subtraction and (c) denoising for demonstration. (d) The extracted hyperspectral
fingerprints of mono- and bi-layer categories by averaging the spectra of neighboring pix-
els within the same category region. (e) The reconstructed abundance map of MoS2 flakes
after spectral unmixing. Scale bars = 20 µm.
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Figure 5.9: Pixel-wise spectral analysis using the denoised hyperspectral data sets. (a)
Selected pixels from mono- and bi-layer regions in the reconstructed distribution map. (b)
Averaged spectra with standard deviation of selected mono- and bi-layer pixels from the
denoised hyperspectral data set. (c) Single-channel image from the denoised hyperspectral
data set at the wavelength of 543 nm. (d) The spatial distribution of averaged reflection
intensity and standard deviation along the L2 direction in (c). The averaged value and
standard deviation were calculated based on the data at five representative wavelengths
of 543 nm, 558 nm, 572 nm, 587 nm, and 601 nm. The grey curve shows the predicted
layer number distribution along the L1 direction in (a). Scale bars = 20 µm.
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5.3.2 Cross-validation and Generalizability Analysis

To validate the practicality of the previously extracted hyperspectral fingerprints in newly-

measured samples, cross-validation was conducted using new MoS2 samples where mono-

and bi-layer flake categories existed. This study investigated if one pixel with monolayer

thickness could be incorrectly classified into the bilayer subclass due to high spectral sim-

ilarity. No further data processing was conducted on the new hyperspectral data set after

background subtraction and denoising. Figure 5.10 illustrates the cross-validation results

when applying previously extracted hyperspectral fingerprints to the data set of MoS2

flakes in a new region. According to the optical microscope image and labels identified

by optical contrast in Figure 5.10(a), mono- and bi-layer flakes appeared in this region.

After the background subtraction and denoising of the hyperspectral data set, the calcu-

lated abundance map showed that, pixels of this region could be correctly classified as

mono- and bi-layer categories, despite of the high similarity between the hyperspectral fin-

gerprints (Figure 5.10(b)-(d)). This cross-validation using the hyperspectral fingerprints

extracted from a reference region demonstrated the versatility of hyperspectral features

after a one-time effort.

λ
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λ

543nm

609nm

0

1

2L

1L

Hyperspectral

fingerprints

(a) (b) (c) (d)

1L 2L
substrate

Figure 5.10: Cross-validation using the previously extracted hyperspectral fingerprints for
layer number maps reconstruction of a new region. (a) The optical microscopy image of
the new region with the distribution of mono- and bi-layer MoS2 flakes. Single-channel
images from the acquired hyperspectral data set at the spectral range of 543-609 nm after
the background subtraction (b) and denoising (c) for demonstration. (d) The abundance
map of MoS2 flakes after spectral unmixing. Scale bars = 20 µm.

Further, generalizability of hyperspectral fingerprints and spectral unmixing method for

layer number identification was analyzed using a second region with more flake categories

(mono-, tri-, and few-layer). The whole process for the generalizability analysis included

the selection of the region of interest, hyperspectral data set acquisition, and abundance

map reconstruction of all the compositions using the extracted hyperspectral fingerprints

(Figure 5.11(a)-(d)). The distribution maps of each composition were also obtained (Fig-

ure 5.11(e)-(g)), showing that pixels of this region could be correctly classified as mono-,
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Figure 5.11: Generalizability analysis of hyperspectral fingerprints and the spectral un-
mixing method using a region with three MoS2 flake categories. (a) The optical micro-
scope image of the new region with the distribution of mono-, tri-, and few-layer MoS2

flakes. (b) Single-channel images at the wavelengths of 572 nm, 594 nm, 616 nm. (b)
Pixel-wise classification of mono-, tri-, and few-layer flake categories by one spectral un-
mixing calculation. (d) Extracted hyperspectral fingerprints of mono-, tri-, and few-layer
flake categories. (e-g) Abundance maps of mono-, tri-, and few-layer flake categories,
respectively. Scale bars = 20 µm.
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tri-, and few-layer categories. The profile outputs were not as accurate as those from the

microscopic image due to the spatial resolution loss of the hyperspectral microscope. How-

ever, most of the pixels from each category were correctly classified, which was sufficient

to enable the search and localization of flakes with specific layer numbers.

5.3.3 Analysis of Hyperspectral Dimension Reduction

Although hyperspectral data sets provide abundant information for accurate pixel-wise

classification in the scanned region, the high dimensional data set can be computationally

expensive. To enable the application of the developed method, layer mapping perfor-

mances were studied with the dimension reduction of the hyperspectral data set. Figure

5.12(a) illustrates the process of channel selection and dimension reduction of the original

hyperspectral data set. First, the hyperspectral data set was extracted at the visible

range of 400-700 nm from the original hyperspectral data set of 325-1056 nm. The ex-

tracted hyperspectral data had 400 channels. Second, the dimension of the 400-channel

hyperspectral data set was downsampled to a 200-channel hyperspectral data set. The

same process was repeated to obtain hyperspectral data sets with lower dimensions. The

same hyperspectral data set used for cross-validation of hyperspectral fingerprints (Figure

5.10), was utilized. To quantify the distinction between two hyperspectral fingerprints,

spectral similarity index (SI) was defined as

SI(%) =

√√√√∑{
i1(λ)−i0(λ)

i0(λ)
× 100

}2

N
(5.1)

where i1 and i0 are the normalized intensity at different spectral channels, and N (1, 2,. . . ,

λ) is the number of the spectral channels. SI is used to quantify the spectral differences

between two distinct spectra. The more similar two spectra are, the smaller value the

calculated SI is. The SI value of zero means the two spectra are the same ones.

Figure 5.12(b)-(m) shows the hyperspectral fingerprints and reconstructed abundance

maps of mono- and bi-layer MoS2 flakes at different dimensions (400, 200, 100, 50, 10,

and 5 channels). The spectral similarity index of the hyperspectral fingerprints was cal-

culated. Due to the denoising of the hyperspectral data sets, the extracted hyperspectral

fingerprints had distinct features compared to the spectral noises. In the dimension re-

duction from 400 to 5 channels, the pixels were correctly classified into mono- and bi-layer

categories. The spectral similarity index of the hyperspectral fingerprints maintained at a

stable value, which provided distinct feature information and enabled the classification of

pixels with different spectral information to the correct categories. The above results can
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Figure 5.12: Process of building a hyperspectra library. (a) The optical microscope image
of the region of interest with distribution of MoS2 flakes from monolayer to bulk. (b)-(d)
Single-channel images from the acquired hyperspectral data set. (e) The abundance map
of MoS2 flakes from monolayer, bilayer, trilayer, multi-layer, and bulk after the pixelwise
classification. (f) The extracted characteristic spectra representing different flakes as part
of the spectra library. Scale bar= 20 µm.
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be resulted by two factors. The first one is the maintained values of spectral similarity

index. The second factor is the number of categories. In this work, two categories were

chosen for demonstration. When more categories were selected for identification, more

channels need to be kept to ensure the correct estimated abundance maps.

5.4 Dual-illumination Hyperspectral Microscopy and

Performance Evaluation

Figure 5.13 illustrates the schematic and photograph of the dual-illumination hyperspec-

tral microscopy system, working at the epi-illumination mode. The dual-illumination

includes a broadband LED (yellow beam path) and a multiline laser (blue beam path),

working for specific cases of 2D materials measurements. Both illumination modes shared

the same light path after the microscope objective (Leica, NA 0.85, N plan, EPI). The

switch of the illumination modes was achieved by using a rotatable beam splitter (BS1)

for precise rotation angle control. Broadband light (470-850 nm) from the LED was

propagated to illuminate 2D samples on SiO2/Si substrates through the objective. The

reflected light from the sample was collected by the objective, split for observation (BS2),

and focused by a cylindrical lens (L) onto the slit of a hyperspectral imager. The hy-

perspectral imager, which consisted of a Czerny-Turner spectrograph (the combination of

M3, M4, M5, and RG) and a CCD camera, dispersed the incident light and recorded the

pixel-wise spectra of the line-shaped area. The illumination mode using a multiline laser

(peak wavelengths at 457.9 nm, 476 nm, 488 nm, 496.5 nm, and 514 nm) was implemented

to measure small flakes (size dimension of 1-3 µm) fabricated by mechanical exfoliation

(blue light path in Figure 5.13(a)). Due to the enhanced focusing property of a laser

light source, sharper spatial profiles of samples can be acquired. The light emitted from

the laser was reflected (M1/2), expanded (BE), and collimated (CL2). An adjustable slit

(AS) functioned as an aperture to obtain a line-shaped beam by spatial filtering. The

laser beam was directed to illuminate the sample by rotating the beam splitter (BS1) to

a previously calibrated angle, and the reflected light from the sample propagated along

the same light path as the broadband illumination. The slit of the hyperspectral imager

was fixed with a width of 16 µm for both illumination modes.

Mechanically exfoliated WSe2 flakes on a SiO2/Si substrate with an oxidation thickness of

70 nm were used for demonstration. Figure 5.14(a) illustrates a sample-free capture of the

camera with one spatial and one spectral coordinates. Figure 5.14(b) shows the spectra

of the multiline laser extracted along the A-direction in Figure 5.14(a). Figure 5.14(c)

shows the spatial distribution of the multiline laser extracted along the B-direction in

Figure 5.14(a). A region of interest with WSe2 flakes of bilayer (2L) and few-layer (3-5L)
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Figure 5.13: Schematic and photograph of the dual-illumination hyperspectral imaging
microscope. (a) Schematic of the hyperspectral imaging microscope system. CL1-2,
collimating lens; BS1-2, beam splitter; MO, microscope objective; AS, adjustable slit;
M1-5, mirrors; BE, beam expander; L, cylindrical lens; RG, reflection grating; and S,
stage. (b) Photograph of the dual-illumination hyperspectral imaging microscope.

was selected (Figure 5.14(d)) and scanned by the hyperspectral microscope (hyperspec-

tral data set in Figure 5.14(e)). According to previous reports, the spectral difference

of flakes with varying layer numbers can be observed in the whole visible range. The

intensity variation at the multiline laser peaks were caused by the absorption of flakes at

specific wavelengths. This could be considered as hyperspectral channel reduction (from

supercontinuum illumination to multiline illumination). Therefore, the spectra change of

the multiline laser source could be used for distinguishing flakes with varying layer num-

bers (Figure 5.14(f)). The distribution of two compositions (bilayer and few-layer flakes)

was reconstructed using the same hyperspectral denoising and spectral unmixing method

(Figure 5.14(g)). The spatial resolution using the multiline laser illumination mode is

higher than that of broadband illumination mode, and the 2D flakes with sizes of a few

microns can be detected.

The cross-validation and generalizability analysis of the hyperspectral fingerprints using

the reference sample and the newly-measured samples showed that, the subtle spectra

differences between different layer categories could be identified, and each type of flake

could be searched and localized after spectral unmixing. Additionally, due to the spectral

imaging nature (lower spatial resolution compared to that of RGB microscopes), the flake

shapes in the reconstructed images were not as accurate as those in bright-field microscope

images. The reconstructed layer maps based on the wideband illumination mode are more

suitable for initial screening where accurate deformation information cannot be provided
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Figure 5.14: Data acquisition and pixel-wise layer map reconstruction using the multiline
laser illumination. (a) Single sample-free capture of the camera during measurement
showing the spectral distribution along the imaged line area. (b) The multiline laser
spectrum with peak wavelengths at 457.9 nm, 476 nm, 488 nm, 496.5 nm, and 514 nm,
respectively. (c) The spatial distribution of the laser illumination along the imaged line
direction. The filtered curve shows the Gaussian distribution of the illumination beam.
(d) The microscopic image of WSe2 flakes on the SiO2/Si substrate. (e) The hyperspectral
data set of the same region is shown in (d). (f) The extracted hyperspectral fingerprints
of bi- and few-layer flakes. (g) The reconstructed distribution map of two types of flakes.
Scale bars= 20 µm.
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(horizontal resolution is diffraction limited while the vertical scanning step size is 5 µm).

The second mode of multiline laser illumination provides more accurate deformation in-

formation of CVD fabricated 2D materials. The horizontal resolution is diffraction limited

while the vertical scanning step size is 1 µm. Further, this pixel-wise classification method

was based on the intensity distribution of the whole spectra range; and therefore, slight

intensity change might misclassify pixels to a wrong sub-class. Therefore, it is important

to keep a fixed illumination condition by controlling an accurate stage position because

slight stage position change can lead to variations of spectral intensity. Secondly, large

flakes should be chosen for hyperspectral fingerprints extraction because this may render

the spectra more representative. Thirdly, machine learning techniques such as generative

adversarial network provides a way to compensate for the spectral variations of slight

changes of illumination conditions and realize autofocusing of hyperspectral microscopy

images. The spectral range of 400-700 nm was used for fingerprints extraction and cal-

culation in this work. It is also possible to choose another spectral range where there is

stronger absorption of 2D materials and the accuracy may be improved.

The hyperspectral-fingerprints-based mapping method can be utilized for studying het-

erogeneous properties of 2D materials. Theoretically, when the properties of 2D materials

and their heterostructures correspond to their spectral behaviors, the heterogeneous vari-

ations in the spatial domain can be resolved using hyperspectral fingerprint extraction

and distribution map reconstruction. For example, in the strain engineering of 2D mate-

rials, the strain-tuned heterogeneous optical properties of 2D materials can be spatially

determined. Spectral fingerprints extraction and specific component mapping can also

be utilized in Raman and photoluminescence spectroscopy for measurement and property

investigation of 2D materials.

5.5 Summary

Line-scan hyperspectral imaging microscopy with linear unmixing was developed to char-

acterize MoS2, hBN, and WSe2 samples fabricated by both the mechanical exfoliation and

CVD methods by processing the multidimensional data sets. Pixelwise spectral analysis

was used to extract the pure spectra of the monolayer and few-layer flakes. These pure

spectra were employed as end members to reconstruct abundance maps which showed the

distribution and accurate positions of different flakes. Furthermore, to test the identifica-

tion accuracy of the system, a practical method achieved single-atomic-layer accuracy for

layer number mapping of CVD-grown MoS2 flakes, followed by cross-validation and gener-

alizability analysis using new samples. The multiline laser illumination was implemented

to enable the detection of small-scale flakes, realizing successful identification of mechani-
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cally exfoliated WSe2 flakes following the hyperspectral data set processing method. The

investigation of hyperspectral dimension reduction and the abundance map reconstruc-

tion showed that when the spectral similarity index was maintained, the reduction of

hyperspectral dimension did not significantly influence the identification performances.





Chapter 6

Deep-learning-enabled Images

Fusion for Atomic Layer Mapping

In the developed manual interpretation method, the hyperspectral resolution and mi-

croscale spatial resolution have promoted an accurate layer number identification and

flake position, which meets the requirement of researchers to search and locate the 2D

flakes with specific layer numbers. However, in practice, the spatial resolution of hy-

perspectral imaging microscopy is lower than that of conventional optical microscopy,

thus resulting in less accurate profile outputs. To this end, the fusion of both RGB

images which provides accurate profile information, and hyperspectral images that pro-

vide abundant spectral information for layer number identification was conducted. In

this Chapter, a dual-stream U-Net neural network is proposed to fuse RGB images (high

spatial resolution) and hyperspectral images (high spectral resolution) for identification

and segmentation of atomic layer flakes with monolayer, bilayer, trilayer, and multilayer

thickness grown by CVD.

6.1 Principle of the Deep Fusion Method

A machine-learning-based image fusion technique, which integrates the complementary

information from different optical modalities and generates a single prediction [253, 254],

has been proposed for various applications such as remote sensing and medical imaging

[255–258]. Figure 6.1 illustrates the process of atomic layer mapping of 2D flakes using

the dual-stream deep fusion method. In the sample fabrication process, the MoS2 flakes

were fabricated on 270 nm SiO2/Si substrate by CVD, with the flakes of varying atomic

thickness distributed over the substrate. A commercial Leica microscope (20× objective)

and the line-scan hyperspectral imaging system (100× Leica objective) were used to ac-
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quire the RGB and hyperspectral images. The measurement parameters were controlled

as follows, scanning speed as 100 µm/s, step size of 5 µm, the waiting time of 0.1 s for

camera capture. The scanning time for a region of 200 × 80 µm2 was 30 seconds, with

a high spectral resolution of 0.728 nm/px. To reduce the dimensions of the data set

and extract the important spectral information, 251 channels (507-689 nm) were selected

from the original 1004 channels (325-1056 nm). The dimension reduction of the original

hyperspectral data set required fewer computation resources. Considering that the char-

acteristic spectra of MoS2 flakes were dependent on the atomic layer number, oxidation

thickness of the SiO2/Si substrate, illumination conditions, and the numerical aperture

of microscope objectives, the microscope objective and the illumination conditions were

kept unchanged during the measurement.
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Figure 6.1: The work flow from 2D materials fabrication, RGB and hyperspectral data
acquisition using optical microscopy and line-scan hyperspectral microscopy, deep fusion
neural network processing, and the prediction of layer number maps.

Before the acquired data were fed into the deep fusion network, data pre-processing (data

smoothing, background subtraction, and channel selection) was conducted to the hyper-

spectral data set to lower the noise, correct the inhomogeneity of the illumination, and

extract the useful information from the redundant hyperspectral raw data. To trans-

forming the RGB images (3 channels) and the hyperspectral images (251 channels after

dimension reduction) into one coordinate system, the dual-modality data of the same re-

gion were co-registered using a feature-based method in the MATLAB environment. Due

to different camera sources, the two types of images had different scales and coordinates.

Data normalization was used to change the different scales of data sets into the same
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value range, without distorting variations in this value range. Data augmentation was

adopted to recreate the new data based on the original data set and enlarge the training

data.

The registered RGB images with high spatial resolution and hyperspectral images with

high spectral resolution were paired and employed as two inputs of the deep fusion neu-

ral network. The single-stream U-Net (the “U”-shape architecture) was first designed for

medical image segmentation with a small number of training sets [259]. In this work, both

hyperspectral images and RGB images were employed as network inputs, and therefore,

a dual-stream U-Net was modified from the single-stream U-Net to extract high-spatial-

resolution information from RGB images and high-spectral-resolution information from

hyperspectral images, separately. In the training process, the labeled masks (target out-

puts) which contained the correct layer maps were fed jointly with the RGB images and

hyperspectral images of 8 regions which contained more than 40 flakes with varying layer

numbers into the network. After data augmentation, the training data sets included

48 image pairs, each pair containing 3-channel RGB images and 251-channel hyperspec-

tral images. The network parameters were optimized by the iterative gradient descent

to minimize the differences between the true outputs and the expected outputs. In the

testing process, 5 new pairs of co-registered hyperspectral data sets and RGB images

of 5 regions containing more than 20 MoS2 flakes were put into the network, and the

network estimated atomic layer maps. Through this deep fusion network, every pixel of

the imaged area was classified into a sub-class (monolayer, bilayer, trilayer, multi-layer,

or background/substrate), and thus the pixel-level image fusion was achieved. For com-

parison, a single-stream U-Net architecture was built, trained, and tested using only the

RGB images from the paired data for layer number mapping. The performances of the

deep fusion neural network and the single U-Net were compared.

6.2 Data Pre-processing and Post-processing

6.2.1 Registration of RGB and Hyperspectral Images

Feature-based algorithms were used for dual-modality image registration based on the

correspondence between image features such as points, lines, and contours. Due to the

high spatial resolution of the optical microscope, the RGB image was referred to as

the fixed image (reference image) while the hyperspectral image was referred to as the

moving image. The geometric transformation was applied to moving images so that the

hyperspectral image could be aligned with the reference. The whole image registration

could be divided into three steps. First, corresponding points between moving and fixed

images were selected. Second, the transformation relation according to the corresponding
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points was determined. Third, the geometrical transformation was applied to the moving

image. By Image Processing Toolbox from MATLAB, the corresponding points between

two images could be selected through the “Control Point Selection Tool”.

Figure 6.2 shows the interface of the “Control Point Selection Tool”. The left side is

the hyperspectral image and the right side is the optical RGB image. The geometric

transformation was defined by a rule where the point with Cartesian coordinates (x, y)

was mapped to another point with Cartesian coordinates (u, v). The affine transformation

was used and the equation can be described as:

[u v] = [x y 1]T (6.1)

T was a 3-by-3 transformation matrix, where all six elements of the first and second

columns could be different. The third column was [0, 0, 1]. The transformation matrix T

could be determined through the corresponding points.
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Figure 6.2: GUI for images registration in the MATLAB environment.

6.2.2 Data Normalization

There were two input variables including RGB images and hyperspectral images acquired

from different optical modalities. The value of 8-bit RGB images ranged [0, 255], while

the intensity of hyperspectral data ranged [0, 20]. To fuse the features from both inputs

and balance the attributions from both small and large values, min-max normalization
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was introduced to rescale the range of RGB and hyperspectral images to [0, 1]. By this

data normalization, the training speed of the network could be improved and the contrast

of the images could be enhanced. Min-max normalization was employed to rescale the

range of RGB and hyperspectral images to [0, 1], and the equation is described as below.

X =
xi − xmin
xmax − xmin

(6.2)

where xmax and xmin are the maximum and minimum values of the matrix.

6.2.3 Data Labeling

The training of the network required not only the registered data pairs, but also the

target data (manual annotations). The parameters of the network would be optimized to

predict outputs that were as much as similar to the labeled target data. The data labeling

was conducted manually in the MATLAB environment. Figure 6.3 shows the GUI for

data labeling, where four sub-classes (monolayer, bilayer, trilayer, and multi-layer) were

set and the corresponding regions in the optical images were circled with different colors.

After the flakes were labeled, the regions without labeling were set as the fifth sub-class

of background. The pixels of the regions were labeled with different values. For example,

the background pixels were labeled with value zero, the monolayer pixels were labeled

with value one, the bilayer pixels are labeled with value two, and so forth. Figure 6.4

illustrates optical RGB images and the pixel values after labeling. After this process, the

labeled data had different pixel values as a classification to sub-classes. In the training

process of the network, one-hot images for each sub-class were required. Therefore, the

labeled data with different pixel values should be converted to one-hot images, where

only 0 and 1 could be used to label pixel values. Pixel value 0 means the pixels were

not classified as this sub-class while pixel value 1 meant the pixels were classified as this

sub-class (Figure 6.5). Five one-hot images corresponding to the five sub-classes were

obtained after the conversion. The one-hot images would be used as annotated data for

training the network.

Due to the pre-processing operations onto the hyperspectral data and RGB data, the

dimension changes of the raw data to the data pairs suitable for network training was

summarized (Figure 6.6). The acquired hyperspectral data set contained 1004 spectral

channels and the dimension was reduced to 251 channels after the redundant channels were

removed. The hyperspectral data set and the corresponding RGB images captured from

the same region were registered with 254 channels. The annotated one-hot images were

used as masks. The hyperspectral data set, RGB images, and the masks were combined

as one pair for network training.
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Figure 6.3: Graphic user interface (GUI) for images labeling.
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Figure 6.4: Labeled data and pixels with different values showing different layer numbers.
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Figure 6.5: Labeled data and the converted one-hot images of different layer numbers.
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Figure 6.6: Data dimension changes from raw data to paired data for training.
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6.2.4 Data Augmentation

Basic operations of data augmentation include flip, rotation, scale, crop, translation,

and brightness changes of the original data sets. At the beginning of the training, the

augmented data were considered as different and unique images. Data augmentation

strategy was used to improve the robustness of the network and prevent over-fitting during

the training process. The whole sample sets involved 8 pairs of registered hyperspectral

and optical images acquired from 13 different regions containing more than 40 MoS2 flakes

with varying layer numbers. After data augmentation, the total number of registered pairs

for training was 48, containing more than 240 flakes with different layer numbers. The

same data augmentation operations were conducted on the hyperspectral data set, RGB

images, and the masks of the same data pair (Figure 6.7).

rotation

flipbrightness

recolor

Figure 6.7: Data augmentation operations.

6.2.5 Data Post-processing

False predictions contained noisy points, which could influence the network performances

such as dice score, Hausdorff distance, and confusion matrix. To eliminate the noise

points, post-processing was carried out for improving the overall performance of the net-

work. Connected Component Analysis (CCA), which is usually used in computer vision

to detect and count the number of connected regions, was employed to eliminate the noise

points of prediction results. First, eight-neighbor representation (all eight pixels around

one pixel is considered connected components) was used to detect the connected pix-
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els. Second, a threshold for the minimum size of a blob was set. If a connected blob was

smaller than the threshold, this blob was defined as noise points and would be eliminated.

6.3 Network Architecture, Training, and Testing

6.3.1 Network Architecture

The deep fusion network was based on the FCN which extracted the hierarchical image

features of data sets and achieved pixelwise semantic segmentation. Figure 6.8 illustrates

the structure of the deep fusion network, which consisted of 6 different blocks, namely

“conv3d” block, “maxpooling3d” block, “up-sampling2d” block, “conv2d” block, “max-

pooling2d” block, and “features fusion” block. The network included a contraction part

(left) and an expansion part (right). The contraction part had a two-stream structure

where RGB images (2D) and hyperspectral images (3D) were fed jointly into the network.

As the dimensions of network inputs were different, 2D convolutions and 3D convolutions

were operated separately in the two network streams. In 2D convolutions, convolutional

filters (3× 3) moved in both directions (x, y) to calculate low dimensional features from

the image data, with a 2D matrix as output, while in 3D convolutions, 3D filters (3×3×1)

were applied to the data set and the filter moved in all direction (x, y, z) to calculate

the low-level feature representations, with a 3D cube as the output. Both the 2D and

3D convolution block performed the downsampling operation and extracted 2D and 3D

feature maps from RGB and hyperspectral images, separately.

96x96x3 RGB

96x96x251x1 HSI

96x96x251x32 48x48x125x64 24x24x62x128

96x96x32 48x48x64 24x24x128
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Features
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Figure 6.8: Deep fusion neural network architecture.

The 2D and 3D features were combined through the feature fusion, which integrated the

hyperspectral information from 3D data set into the spatial information from 2D images
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Figure 6.9: Fusion blocks (a) Three main parts including dimension reduction of 3D
features, channel excitation (SE block) and features concatenation. (b) Structure of the
SE block of weighing the feature map channels based on their importance.

in an optimal fusion strategy. At the same time, the 2D spatial information from hyper-

spectral images was also extracted through this process. The expansion section remained

the same structure as the original S-U-Net. The D-U-Net output a 2D predicted image,

of which the number of channels corresponded to the number of segmented classes (sub-

strate, monolayer, bilayer, trilayer, and multi-layer). The convolution layers (contraction

part) were repeated, with a ReLu activation function and a max-pooling for each layer.

Due to dimension differences between 3D and 2D features, features fusion block was

employed to combine them optimally. The core of the features fusion block was to reduce

the dimension of 3D features into 2D. The dimensions of 3D and 2D features could be

expressed as H×W×D×C and H×W×C, where H×W represented the feature dimensions

of height and width, D represented the depth of 3D feature, and C represented the feature

channel. To transform the dimension of 3D features into 2D, channel C of 3D features

was compressed into 1 using the (1 × 1 × 1) 3D convolution. The dimension of channel-

compressed 3D features was further processed through squeeze and (3×3) 2D convolution

operations to become H×W × C, which is consistent with 2D feature (Figure 6.9(a)).

To optimize the effect of fused features, squeeze-and-excitation (SE) block was applied

before concatenation. By automatic learning, the block could acquire the importance of

each feature channel, enhance the useful features, and supress the less important ones

(Figure 6.9(b)). Global average pooling layer was used as squeeze operation. Features
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were compressed along the spatial dimension into 1×1×C. That means, each 2D feature

channel was turned into a real number, which to some extent had a global receptive field.

To reduce parameters and computational complexity, the feature channel was reduced

from C to C/r, where r denoted the reduction ratio. After ReLu activation layer and

fully connected layer, the feature channel could be ascended to C again. Sigmoid layer

was used for the excitation operation.The weight could be generated for each feature

channel through parameter w, which was learned to described the correlation between

feature channels. Through sigmoid, the normalized weights between 0 and 1 could be

obtained. Finally, through a scale operation, the normalized weights could be weighted

to the features of each channel.

Loss functions were used to determine the error between the output of the network and

the given target value. In deep learning, there are different types of loss functions for

selection according to neural networks tasks. Cross-entropy as one of the most common

loss functions in classification models, and mean squared error (MSE) is usually used as

loss function for regression tasks. In our image segmentation task, dice loss was employed

as the loss function to measure the overlap of two images. Compared to cross-entropy,

dice loss performed better in class unbalanced situations where background occupied much

more pixels than flake areas.

In data label process of data pre-processing, the segmentation labels were converted into

one-hot label to obtain the binary target masks. Since the number of mask channels

corresponded the number of prediction classes, dice loss could be calculated for each

class. In this case, predicted probabilistic maps and manual annotation target masks had

5 channels and each channel represented a prediction class. Therefore, dice loss could be

calculated class by class. Assume ytrue was the manual annotation target mask, while

ypred was the predicted probabilistic maps. Then dice loss function could be expressed by

the following equation:

DiceLoss = 1−
2
∑

pixels |ytrue ◦ ypred|+ s∑
pixels (|ytrue|+ |ypred|) + s

(6.3)

where ◦ represents the entrywise product of two matrices. The s term is set to 1 in order

to avoid the division by 0. For example, without s term, if both ytrue and ypred are zero,

the fraction part will be invalid.

6.3.2 Batch Normalization

In the data pre-processing, RGB and hyperspectral inputs with different range scales

were normalized to share the same value scale. Normalization could be conducted in the
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hidden layers of the network because the values changed with convolution and pooling

operations. In this deep fusion network, the batch normalization was added behind the

convolution operation to speed up training and improve the performance of the neural

network. The whole batch normalization operation could be divided into 4 steps. Assume

that the input of a batch in a layer of the neural network was X = [x1, x2, . . . , xn], where

xi represented one sample and n was batch size. First, the mean value of the elements in

mini-batch can be found by:

µB =
1

n

∑n

i=1
xi (6.4)

Next, the variance of mini-batch was calculated as:

σ2
B =

1

n

∑n

i=1
(xi − µB)2 (6.5)

Each element could be normalized as:

x′i =
xi − µB√
σ2
B + ε

(6.6)

where ε was added in the denominator for numerical stability and was an arbitrarily small

constant.

Finally, the data was re-scaled and shifted to recover the original distribution. The

transformation step of batch normalization follows as:

yi = γi · x′i + βi (6.7)

where γ and β are two trainable parameters to each layer, so the normalized output x′i is

multiplied by a standard deviation (γ) and added by a mean (β) .

6.3.3 Training and Testing

After the augmentation, RGB images with different orientation, 8 pairs (96 × 96 × 251

hyperspectral images and 96×96×3 RGB images for each pair) were used for training the

neural network (training set) and 5 pairs with the same dimensions were used for testing

and evaluating the performance of the network (testing set). Each pair covered a sample

region (50 × 50 µm2 to 80 × 80 µm2) which contained at least two types of MoS2 flakes.

The framework for training stages of both models are shown in Figure 6.10. The models
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were trained in the environment based on i9 9900K CPU, 64GB RAM, Nvidia RTX2080

Super (8GB), CUDA 10.2+cudnn 7.6. The training optimizer was “Adam”, the learning

rate was set 2e−4 , and the batch size was set as 1, with 250 epochs.

Figure 6.11 shows the learning curves of both neural networks. The x-axis represents the

number of epochs for training and the y-axis represented the dice loss during the training

process. Both the training and validation loss continued to decrease with the training

epochs and both of them tended to convergence in the end. The training and validation

loss decreased fast in the first 20 epochs. Specifically, it can be observed that there was a

little gap between the train and validation loss learning curves and this gap was referred

to as the generalization gap (Figure 6.11(b)). This plot shows the good fit learning curves

which means the models were well trained during the process.

RGB image Labeled data (manual annotation)Hyperspectral images

Normalized 
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RGB image Labeled data (manual annotation)

Feature fusion
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Figure 6.10: The framework of training stages of D-U-Net and S-U-Net models.

6.4 Prediction Performances and Quantitative Eval-

uation

6.4.1 Prediction Results

To evaluate the prediction performance of the D-U-Net, 5 new pairs of hyperspectral and

RGB images captured at 5 regions containing more than 20 MoS2 flakes were used for

demonstration. The prediction results of S-U-Net which was trained and tested using only
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Figure 6.11: Learning curves of (a) S-U-Net and (b) D-U-Net.

RGB images are shown for comparison. The test was designed as a cross test using regions

containing MoS2 flakes with different layer number combinations. Each test pair contains

at least three from the five sub-classes (background, monolayer, bilayer, trilayer, and

multi-layer). Figure 6.12 shows the optical images of five test regions with the sub-classes

of each flake as a reference. (a)-(e) are the optical image of these regions, respectively.

Figures 6.12-6.16 illustrate the segmentation results of the test data using D-U-Net and

S-U-Net, where the labeled manual annotations, the D-U-Net prediction results, and the

S-U-Net prediction results for each sub-class are shown together.

1L

2L 3L

1L

≥4L

≥4L

2L 1L

1L

2L

2L

1L

3L

(a) (b) (c) (d) (e)

Figure 6.12: The optical images of five test samples. (a)-(e) are the optical image of these
regions, respectively. Scale bar= 20 µm.

In Figure 6.13, the test sample contains monolayer and bilayer flakes. The background

and monolayer regions were correctly identified by both D-U-Net and S-U-Net, and the

profiles of different flakes are consistent with those of the reference. However, the bilayer

region which can be distinguished by the D-U-Net was misidentified as trilayer by the

S-U-Net. S-U-Net is kind of confusing to classify bilayer and trilayer pixels.

In Figure 6.14, the test sample contains monolayer, trilayer, and multi-layer regions. The

background and the monolayer flakes can be correctly identified by both D-U-Net and S-
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Figure 6.13: Prediction results of the distribution maps of substrate, monolayer, bilayer,
trilayer, and multi-layer flakes by the deep fusion network and the single-stream U-Net
(Figure 6.12 (a)).

U-Net. The different performance is that trilayer and multi-layer flakes can be successfully

identified by the D-U-Net, while S-U-Net takes trilayer and multi-layer as one sub-class.

S-U-Net is also confusing about the features of trilayer and multi-layer pixels.

In Figure 6.15, the test sample contains monolayer, bilayer, and multi-layer regions. The

background and the monolayer flakes can be correctly identified by both D-U-Net and S-U-

Net. D-U-Net can output correct layer number identification and accurate flake profiles of

bilayer and multi-layer regions. S-U-Net misclassifies the bilayer and multi-layer pixels as

trilayer sub-classes, and some multi-layer pixels are misclassified as the bilayer sub-class.

S-U-Net is confusing about the bilayer, trilayer, and multi-layer features.

In Figure 6.16, the test sample contains monolayer and bilayer regions. Both D-U-Net

and S-U-Net networks can identify background and monolayer regions with high predic-

tion accuracy. For bilayer region identification, D-U-Net and S-U-Net can identify and

predict the bilayer pixels. The difference lies in the profile output accuracy, which will be

quantitatively analyzed in the following section. Compared to Figure 6.13, the S-U-Net

shows randomness to correctly identify bilayer regions, which is unreliable for application.

In Figure 6.17, the test sample contains monolayer, bilayer, and trilayer regions, and looks

more complicated than the former four samples. Both D-U-Net and S-U-Net networks

can identify background and monolayer regions with high prediction accuracy. D-U-Net

can output correct layer number identification and accurate flake profiles of bilayer and
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Figure 6.14: Prediction results of the distribution maps of substrate, monolayer, bilayer,
trilayer, and multi-layer flakes by the deep fusion network and the single-stream U-Net
(Figure 6.12 (b)).
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Figure 6.15: Prediction results of the distribution maps of substrate, monolayer, bilayer,
trilayer, and multi-layer flakes by the deep fusion network and the single-stream U-Net
(Figure 6.12 (c))
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Figure 6.16: Prediction results of the distribution maps of substrate, monolayer, bilayer,
trilayer, and multi-layer flakes by the deep fusion network and the single-stream U-Net
(Figure 6.12 (d)).
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Figure 6.17: Prediction results of the distribution maps of substrate, monolayer, bilayer,
trilayer, and multi-layer flakes by the deep fusion network and the single-stream U-Net
(Figure 6.12 (e)).
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trilayer regions, while S-U-Net misclassifies bilayer pixels to the trilayer sub-class and

the trilayer pixels to the bilayer sub-class. According to the direct observation of the

network prediction performances, it can be concluded that, both D-U-Net and S-U-Net

can identify background and monolayer regions with high accuracy. D-U-Net achieves

better prediction success rate when identifying bilayer, trilayer, and multi-layer regions

while S-U-Net is confusing about bilayer, trilayer, and multi-layer sub-classes.

6.4.2 Quantitative Evaluation

To quantitatively analyze the prediction performances of both networks, dice similarity

coefficient (DSC), Hausdorff distance (95th percentile), and confusion matric were em-

ployed to evaluate the layer number identification and flake region segmentation results.

First, DSC was calculated to assess the overlapping accuracy of network predictions. The

DSC could be defined as two times the correct prediction, divided by the sum of the areas

of manual annotations and prediction results using the following equation.

DSC =
2 (G ∩ P )

|G|+ |P |
(6.8)

Where G is the labeled pixel set of each sub-class (manual annotations), and P is the

predicted pixel set of each sub-class (prediction). The closer is the score to 1, the better

the performance of successful prediction (Figure 6.18(a)). Figure 6.18(b) shows the cal-

culated DSC values of D-U-Net and S-U-Net. Both models had a high DSC value (above

90%) in the segmentation of background and monolayer sub-classes. However, S-U-Net

achieved 21.8%, 20.1%, and 3.3% in segmentation of bilayer, trilayer, multi-layer sub-

classes, separately. The predicted distribution maps of each sub-classes (bilayer, trilayer,

and multi-layer) had a very limited overlapping region with the labeled annotation, which

was mainly due to the similar color contrast among these layers. D-U-Net achieved 77.5%,

70.3%, and 91.9% accuracy when classifying pixels into the correct sub-classes. With the

introduction of hyperspectral images that provided abundant spectral information, D-U-

Net could better distinguish different layers, and the RGB images ensured the accurate

localization of each sub-class. The mean DSC values of D-U-Net and S-U-Net were 88.3%

and 60.5%, separately, which meant that the overall performance was improved by 28%

by imagery fusion.

Second, Hausdorff distance was calculated to assess the localization accuracy of the net-

work prediction. Hausdorff distance is defined by the following equation, which calculates

the longest distance between one point of a set to all the points of the other set.
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Figure 6.18: Evaluation of the dice similarity coefficient. (a) Diagram. (b) The calculated
values of S-U-Net and D-U-Net models.

H (G,P ) = max
{
sup
x∈G

inf
y∈P

d (x, y) , sup
y∈P

inf
x∈G

d (x, y)
}

(6.9)

where G is the manual annotation set, and P is the prediction set, while x and y are the

points from both sets, respectively.

In practice, to eliminate the influence from random noise points, 95th percentile Haus-

dorff distance (HD95) was employed instead of the maximum (100th percentile). As the

HD95 represented the absolute distance between two point sets, the large value meant the

predicted flake area was far from the labeled area. Figure 6.19(a) shows the diagram of

Hausdorff distance calculation and Figure 6.19(b) illustrates the calculated values of both

models. For S-U-Net, the values of background and monolayer classes were not large,

which meant a good prediction compared with the target data. However, the distances

for bilayer, trilayer, and multi-layer predictions had large values of 32.411 px, 58.776 px,

and 14.488 px, separately. For D-U-Net, the distance values for background, monolayer,

bilayer, and multi-layer sub-classes were 4.353 px, 2.051 px, 2.562 px, and 1.751 px, sep-

arately. Only the trilayer sub-class had a large value of 40.708 px, which was mainly due

to one wrongly predicted area in Figure 6.14.

Third, to understand how the pixels of one sub-class were misclassified to another sub-

class, the confusion matrix of both models were calculated to visualize the performance of

classification. Each row of the matrix represented the instances in a predicted class, while

each column represented the instances in an actual class. Different from the dice score, the

confusion matrix made it easy to see if the system was confusing of two or more classes.

Since both models performed well in background and monolayer segmentation, we mainly
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Figure 6.19: Evaluation of the Hausdorff distance. (a) The diagram of Hausdorff distance.
(b) Evaluation results of Hausdorff distance (95th percentile).

focused on bilayer, trilayer, and multi-layer sub-classes. From the confusion matrix of S-

U-Net (Figure 6.20(a)), only 20% bilayer pixels were classified correctly, and 69% bilayer

pixels were misclassified as trilayer. 43% trilayer pixels were misclassified as bilayer sub-

class. 80% multi-layer pixels were classified as trilayer sub-class incorrectly. From the

confusion matrix of D-U-Net (Figure 6.20(b)), the misclassified pixels only accounted for

a small proportion (around 5%), except one case that around 20% bilayer pixels were

misclassified as the monolayer sub-class. The S-U-Net model was confusing with bilayer,

trilayer, and multi-layer sub-classes while D-U-Net was more intelligent with these sub-

classes. The confusion matrix of S-U-Net was compared with the previous reports (the

confusion matric of D-U-Net was not compared because no reports have been published so

far). In a recent report where flakes with 2-6 layers as one sub-class, the VGG16 network

could reach 99% and 74% accuracy in segmenting background and monolayer sub-classes,

and 61% in segmenting the few-layer (2-6 layers) sub-class [61]. In our case, if 2-6 layers

were combined as one sub-class, a higher accuracy could be reached (90%).

The deep fusion neural network with RGB microscope images and hyperspectral micro-

scope images as two inputs could distinguish and segment MoS2 flakes with monolayer to

multi-layer thickness with high accuracy, which cannot be achieved by the single-input

network using only RGB microscope images. The deep fusion neural network possessed

both advantages of two inputs with high spatial and spectral resolution. Although the

single U-Net neural network which used only RGB images acquired by optical microscopes

had bad performances for bilayer, trilayer, and multi-layer identification, this model could

be useful for some specific circumstances. For example, this network can be used for a
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Figure 6.20: Confusion matrix of S-U-Net (a) and D-U-Net (b) for segmenting monolayer,
bilayer, trilayer, multi-layer, and background sub-classes.

rough classification of flakes with three categories including monolayer, few-layer (2-10

layers), and bulk flakes. The acquisition of training data sets, network training and

testing, real working speed, can be advantageous than the deep fusion neural network

which demands more work. For circumstances where accurate atomic layer numbers of

flakes are desired, deep fusion neural network shows much better performances than sin-

gle U-Net architecture, and thus is more practical for real applications. MoS2 flakes on

270 nm SiO2/Si substrates are used for proof-of-concept demonstration. The deep fusion

network can also be further implemented to other 2D materials with different oxidation

thickness of SiO2/Si substrates, which requires measurements of more samples for net-

work training. The current work can be further adapted by research groups for their

own specific applications. This dual-stream U-Net network can also be used to a hybrid

microscope with two cameras which can obtain the high-spatial-resolution color images

and high-spectral-resolution hyperspectral images at the same time.

6.4.3 Model Generalizability Analysis

To evaluate the predictive performance of D-U-Net to generalize to illumination and

contrast variation, which is essential for practical applications, we perform leave-one-

sample-out for cross validation. Specifically, we used the sample IDs to split the data

set into training, validation and test sets. There were 13 different samples available. In

each split, we used data from 10 samples for training, 2 samples for validation and the

data from the remaining sample for testing. This procedure was repeated until all of

the samples were used as testing. We did leave-one-sample-out in two scenarios: a) 20%

hyperspectral illumination variation, constant RGB illumination; b) 20% hyperspectral
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illumination, and 10% contrast variation in RGB images.

For comparison, only the five regions which were previously employed as testing pairs

(Figure 6.12) are shown in Figure 6.21. The image segmentation results of monolayer

were mostly consistent with the manual annotations, while mistaken predictions hap-

pened for bi-, tri-, and multi-layer in both leave-one-sample-out predictions. For exam-

ple, the bilayer region (green) in Figure 6.21(a) was mis-identified as trilayer in the first

leave-one-sample-out operation (20% hyperspectral illumination variation, constant RGB

illumination), and was correctly identified in the second leave-one-sample-out operation

(20% hyperspectral illumination variation, 10% RGB contrast variation).

The shown five images were chosen as comparison and could not represent all the other

samples. Therefore, the statistical results based on all the samples are illustrated in Figure

6.22. In the constant RGB illumination case, the median DSC was 98.1% (substrate),

93.7% (monolayer), 81.7% (bilayer), 79.6% (trilayer), and 92.6% (multi-layer) (Figure

6.22(a)), showing the predictive stability compared to the previous values (blue in Fig.

6.18(b)). At the same time, in the 10% RGB contrast variation case, the DSC values for

substrate (98.1%) and monolayer (93.9%) were close to those of the constant illumination

case, and a decrease in bilayer (69.7%), trilayer(64.5%), and multi-layer (89.4%) occurred

(Figure 6.22(a)). HD95 (blue in Figure 6.19(b)) was more stable in the leave-one-sample-

out evaluation, while contrast variation (10%) increased the deviation when classifying

bilayer pixels (Figure 6.22(b)).

The confusion matrices of both leave-one-sample-out calculations were acquired using

the median values. The predictions of the constant illumination case (Figure 6.23(a))

was highly consistent with the previous results (Figure 6.20(b)), while for 10% contrast

variation case, the uncertainty increased when identifying bilayer and trilayer (Figure

6.23(b)), indicating the bilayer and trilayer was the most confusing sub-classes. Through

this analysis, cross-validation showed that D-U-Net had a stable statistical performance;

a constant illumination condition when capturing RGB microscope images was important

to ensure a higher rate of accurate identification, especially for bilayer and trilayer flakes.

6.5 Summary

A dual-stream U-Net neural network was proposed to fuse RGB images (high spatial reso-

lution) and hyperspectral images (high spectral resolution) for identification and segmen-

tation of atomic layer flakes with monolayer, bilayer, trilayer, and multi-layer thickness

grown by the CVD method. The deep fusion network could be trained using a small num-

ber of samples, reaching high accuracy (>80%) and one-layer precision for atomic layer

identification. A quantitative comparison showed advantageous performances of the deep
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fusion network over the single-stream U-Net which used only RGB microscope images.

This AI-supported technique with high speed, high spatial resolution, and high accuracy

has the potential to replace repeated manual work of 2D materials characterization.



Chapter 7

Conclusion and Outlook

7.1 Conclusion

In this thesis, a line-scan hyperspectral imaging microscope system including a line-scan

hyperspectral imaging microscope, system control, data acquisition graphic user interface,

and data processing algorithms, was custom built for 2D layer number identification. The

control and image acquisition of the system worked in the MATLAB environment. The

microscale spatial resolution of the line-scan hyperspectral imaging microscope (horizontal

resolution better than 228 lp/mm and vertical resolution of 5 µm/pixel) was sufficient for

the characterization of distinct micron-sized 2D flake areas, considering that the sizes of

few-layer and monolayer crystals are several to tens of microns in the lateral dimension

[260]. The line-scan hyperspectral imaging microscopy is advantageous for rapid 2D

materials measurements.

To process and understand the multidimensional data sets of semiconducting MoS2 flakes

acquired by the custom-built hyperspectral imaging microscope, image processing al-

gorithms for reconstructing the layer maps were developed from manual interpretation

(MATLAB environment) to machine-learning-based methods (Python environment).

To develop the manual interpretation method, two classification strategies including linear

unmixing analysis and differential reflectance analysis, were used to determine the spatial

distribution of different areas with varying thicknesses. The comparative study proved

the linear unmixing an effective tool for accurate thickness mapping. Line-scan hyper-

spectral imaging microscopy with linear unmixing was employed to characterize MoS2 and

hBN flakes fabricated by the mechanical exfoliation by processing the multidimensional

data sets. Pixel-level spectral analysis was used to extract the pure spectra of the mono-

layer and few-layer flakes. These pure spectra were employed as end members to conduct
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the linear unmixing of the hyperspectral data sets. The reconstructed abundance maps

showed the distribution and accurate positions of different flakes, realizing automated

search and identification within a large area in several minutes. To test the identification

limit of the proposed spectral unmixing method, a practical hyperspectral-library-assisted

method was further investigated for rapid layer number mapping of CVD-grown MoS2

samples, reaching the one-atomic-layer resolution. The hand-crafted library, which used

extracted characteristic spectra of different flakes as components, was utilized to quanti-

tatively identify and map the distribution of distinct flakes from a newly-measured sample

with unknown thickness distribution. This method has applications in 2D materials in-

vestigations using this pixelwise-classification-based mapping method.

To further develop an intelligent system for fully automated large-area layer number

mapping of 2D materials, a dual-stream U-Net neural network was proposed to fuse RGB

images (high spatial resolution) and hyperspectral images (high spectral resolution) for

identification and segmentation of atomic layer MoS2 flakes with monolayer, bilayer, tri-

layer, and multi-layer thickness grown by the CVD method. The deep fusion network was

trained using a small number of samples, reaching high accuracy (>80%) and one-layer

precision for atomic layer identification. A quantitative comparison showed advantageous

performances of the deep fusion network over the single-stream U-Net which used only

RGB microscope images. This AI-supported technique with high speed, high spatial

resolution, and high accuracy has the potential to replace repeated manual work of 2D

materials characterization.

A summary of the time consumption using the hyperspectral imaging microscopy to re-

construct the layer number maps of different flakes was discussed. For a region of 200×80

µm2, the measurement and data acquisition required 30 seconds, the data pre-processing

including background subtraction and denoising required 3 mins, and the spectral un-

mixing and spatial distribution reconstruction of each type of flake took 2-3 mins, given

that the library has been already built in advance. The time for building such a library

was obviously longer since the operator also needed time to search for different types of

flakes using an optical microscope and the test of such a library also required time. For

the deep-learning-based method, the network took several seconds to predict the layer

distribution after being well trained and was suitable for real-time measurement and data

processing.

7.2 Outlook

The improvement of the current system includes a higher resolution, higher speed, better

robustness, and wider applications. The spectral resolution of the line-scan hyperspectral
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system allows for one-layer identification of 2D materials. The spatial resolution for

imaging exfoliation 2D flakes (3-5 microns) is not enough to output accurate profiles,

which has been resolved by fusing the hyperspectral data sets and the RGB images.

The method to improve the spatial resolution is one of the possible ways, where the

system can also be designed as a point-scan mode. Then, the main focus is to overcome

the time-consuming drawback of the point-scan mode. Usually, when one performance

of the system is improved, another performance will be lowered. The improvement of

spatial resolution by using point-scan mode brings lower scanning speed. The trade-

off depends on the application circumstances. The current system could be designed

as Raman hyperspectral microscopy and hyperspectral photoluminescence microscopy as

the point-scan mode [261, 262]. The idea of characteristic spectra extraction and specific

component mapping can work as well, and fusion is not necessary if the resolution of the

hyperspectral images is improved.

The current system can be further developed based on the deep fusion network. The

hyperspectral data sets and RGB images are acquired from different modalities. It takes

time in the dual-modality data acquisition step, although the network can predict layer

maps in a few seconds after being well trained. Therefore, dual modalities can be combined

as a hybrid system. A camera can be implemented at the position of observation, where

the hyperspectral imager records the hyperspectral data set and the camera captures the

RGB images. In this case, the deep fusion neural network works as well, and the time for

data acquisition can be reduced.

Another aspect is to improve the robustness of the neural network. The performances of

the network are based on the hyperspectral imaging system developed in our lab. If the

network is employed to a point-scan hyperspectral imaging system, its parameters need

to be re-trained with the new data acquired by the new system. As our hyperspectral

imaging microscopy system was built as a demo, the robustness of the neural network can

be further investigated when other similar systems are available. The speed can also be

improved when the neural network can be well trained using fewer samples. To develop

our system in this way, a self-learning network will be investigated.

Not limited to layer number mapping of 2D materials, the hyperspectral imaging method

can be utilized for studying heterogeneous properties of 2D materials. Theoretically, when

the properties of 2D materials and their heterostructures correspond to their spectral be-

haviors, the heterogeneous variations in the spatial domain can be resolved and performed

using this method which mainly includes featured spectra extraction and abundance map

calculation. For example, in the strain engineering of 2D materials, the strain-tuned

heterogeneous optical properties of 2D materials can be spatially determined [263, 264].





Appendix A

A.1 List of Symbols

The symbols listed below are applied throughout the entire thesis. The locally used

symbols are explained and defined in respective content where they first appear.

Ai,j Values of the abundance map matrix

Bi,j Values of the abundance map matrix

b1 Bias of one neuron of the network

DSC Dice similarity coefficient

EMi End members

G Labelled pixel set by manual annotation

Ii Pure spectra of flakes

Ik Reflection intensity of each pixel

P Predicted pixel set

Pi,j Measured spectra of the hyperspectral data set

p A hyperspectral data set

Rintensity(i, j, λ) Calculated intensity distribution of point (i, j) at wavelength λ

R(i, j, λ) Measured reflection spectra of pixel (i, j)

R0(i, j, λ) Averaged spectra from the bare substrate

T 3-by-3 transformation matrix

[u v] Cartesian coordinates

(w1, w2) Neuron weights of the network

X Normalized matrix

xi Value of the matrix

x′i Normalized value of the matrix

(x1, x2) Neuron inputs of the network

[x y] Cartesian coordinates

xmax Maximum value of the normalized matrix
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xmin Minium value of the normalized matrix

(y1, y2) Neuron outputs of the network

ypred Predicted pixel set

ytrue Labelled pixel set

z1 Value before activation function of the neuron

λ Wavelength

µB Mean value

σ2
B Varience

ε2B An arbitrarily small constant

γ Standard deviation (trainable parameters of network layers)

β Mean value (trainable parameters of network layers)



A.2 List of Abbreviations

1L monolayer

2D two-dimensional

2L bilayer

3L trilayer

AFM atomic force microscopy

AI artificial intelligence

BP black phosphorus

BS beam splitter

BTF Bragg tunable filter

CCD charge-coupled device

CMOS complementary metal oxide semiconductor

CNN convolutional neural network

CVD chemical vapor deposition

CW continuous-wave

DFG difference frequency generator

DFIR discrete frequency infrared

DL deep learning

DSC dice similarity coefficient

D-U-Net dual-stream U-Net network

ECM ellipsometric contrast micrography

FCN fully convolutional network

FETs field-effect transistors

FTCs flexible transparent conductors

FTIR Fourier-transform infrared spectroscopy

GUI graphical user interface
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hBN hexagonal boron nitride

ICA independent component analysis

IR infrared

LEDs light-emitting diodes

LSPR localized surface plasmon resonance

MCR-ALS multivariate curve resolution-alternating least squares

ML machine learning

MoS2 molybdenum disulphide

MSE mean squared error

OAP off-axis parabolic

OR optical rectification

PCA principal component analysis

PL photoluminescence

PTIR photothermal-induced resonance

QCL quantum cascade laser

RM reference mirror

SEM scanning electron microscopy

SERS surface enhanced Raman spectroscopy

SIE spectroscopic imaging ellipsometry

SINS synchrotron infrared nanospectroscopy

SNR signal-to-noise ratio

SWNTs single-walled carbon nanotubes

s-SNOM scattering-type scanning nearfield optical microscopy

S-U-Net single-stream U-Net network

TEM transmission electron microscopy

TERS tip-enhanced Raman spectroscopy

THz terahertz
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THz-TDS terahertz time-domain spectroscopy

TMDs transition metal dichalcogenides

tBLG twisted bilayer graphene

VCA vertex components analysis

VNIR visible and the near-infrared

XRD x-ray diffraction
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[222] Anton Hasenkampf, Niels Kröger, Arthur Schönhals, Wolfgang Petrich, and An-

nemarie Pucci. Surface-enhanced mid-infrared spectroscopy using a quantum cas-

cade laser. Optics Express, 23(5):5670–5680, 2015.

[223] Artem Yakovliev, Roman Ziniuk, Junle Qu, and Tymish Y Ohulchanskyy. Hy-

perspectral imaging of rare-earth doped nanoparticles emitting in near-and short-

wave infrared regions. In Tenth International Conference on Information Optics

and Photonics, volume 10964, page 109646J. International Society for Optics and

Photonics, 2018.

[224] Nicolas Dobigeon and Nathalie Brun. Spectral mixture analysis of EELS spectrum-

images. Ultramicroscopy, 120:25–34, 2012.

[225] Pavel Potapov and Axel Lubk. Optimal principal component analysis of STEM

XEDS spectrum images. Advanced Structural and Chemical Imaging, 5(1):4, 2019.
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(MCR). Solving the mixture analysis problem. Analytical Methods, 6(14):4964–

4976, 2014.

[230] Clemence Fauteux-Lefebvre, Francis Lavoie, and Ryan Gosselin. A hierarchical

multivariate curve resolution methodology to identify and map compounds in spec-

tral images. Analytical Chemistry, 90(21):13118–13125, 2018.

[231] Yuval Garini, Ian T Young, and George McNamara. Spectral imaging: principles

and applications. Cytometry Part A: The Journal of the International Society for

Analytical Cytology, 69(8):735–747, 2006.

[232] Xiaoli Li, Ruiqing Zhou, Yifei Xu, Xuan Wei, and Yong He. Spectral unmix-

ing combined with Raman imaging, a preferable analytic technique for molecule

visualization. Applied Spectroscopy Reviews, 52(5):417–438, 2017.

[233] Emilie Chouzenoux, Maxime Legendre, Säıd Moussaoui, and Jérôme Idier. Fast
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[14] Shengjia Wang, Jie Dong, Franziska Pöller, Xingchen Dong, Min Lu, Laura M Bil-

geri, Martin Jakobi, Félix Salazar-Bloise, and Alexander W Koch. Dual-directional

shearography based on a modified common-path configuration using spatial phase

shift. Applied Optics, 58(3):593–603, 2019.

[15] Jie Dong, Shengjia Wang, Min Lu, Martin Jakobi, Zhanwei Liu, Xingchen Dong,
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