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Abstract

Systems biology applies concepts from engineering in order to understand biological net-

works. If such an understanding was complete, biologists would be able to design ad hoc

biochemical components tailored for different purposes, which is the goal of synthetic biol-

ogy. Needless to say that we are far away from creating biological subsystems as intricate

and precise as those found in nature, but mathematical models and high throughput tech-

niques have brought us a long way in this direction. One of the difficulties that still needs to

be overcome is finding the right values for model parameters and dealing with uncertainty,

which is proving to be an extremely difficult task. In this work, we take advantage of ensem-

ble modeling techniques, where a large number of models with different parameter values

are formulated and then tested according to some performance criteria. By finding features

shared by successful models, the role of different components and the synergies between

them can be better understood. We will address some of the difficulties often faced by

ensemble modeling approaches, such as the need to sample a space whose size grows

exponentially with the number of parameters, and establishing useful selection criteria.

Some methods will be shown to reduce the predictions from many models into a set of

understandable “design principles” that can guide us to improve or manufacture a biochemi-

cal network. Our proposed framework formulates models within standard formalisms in

order to integrate information from different sources and minimize the dimension of the

parameter space. Additionally, the mathematical properties of the formalism enable a parti-

tion of the parameter space into independent subspaces. Each of these subspaces can be

paired with a set of criteria that depend exclusively on it, thus allowing a separate sampling/

screening in spaces of lower dimension. By applying tests in a strict order where computa-

tionally cheaper tests are applied first to each subspace and applying computationally

expensive tests to the remaining subset thereafter, the use of resources is optimized and a

larger number of models can be examined. This can be compared to a complex database

query where the order of the requests can make a huge difference in the processing time.

The method will be illustrated by analyzing a classical model of a metabolic pathway with

end-product inhibition. Even for such a simple model, the method provides novel insight.
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Introduction

Teleonomy is a concept coined by Norbert Wiener [1] and popularized by Jacques Monod [2]

that refers to the appearance of design in biological systems. The tinkering of natural selection

with biological systems on an evolutionary time-scale produces results that are very similar to

what an engineer would design starting from first principles [3]. Following this philosophy, we

can say that we will understand a biochemical network the day when we will be able to design

it from scratch or modify it to fit our needs. Achieving this level of understanding is the goal of

systems biology and being able to apply it is the long-term goal of synthetic biology.

In order to bridge the gap between description and understanding, mathematical modeling

can be extremely useful. When a model is available, expensive and time consuming experi-

ments can be replaced by simulations. An approach often used when modeling a biochemical

network is to formulate a system of differential equations based on the mass balance:

_xd ¼ NvðxdðtÞ; xiÞ ð1Þ

where N, the stoichiometric matrix, contains all the relevant information on the structure of

the fluxes within the network. Vector v is a set of complicated non-linear functions describing

growth rates, reaction kinetics, etc. The variables of this system collected in vector x are mostly

metabolites but can include any kind of physicochemical entities such as temperature or vol-

ume. The vector is normally partitioned into two components: the dependent variables, xd,

that will change according to the dynamics described by the equations, and the independent

variables, xi, that will remain constant or have dynamics determined externally as forcing func-

tions. In the context of this work, we will assume all independent variables are held constant.

Some of the parameters involved in Eq 1 are relatively easy to determine. Most coefficients

of the stoichiometric matrix, for instance, can be inferred from the genome of an organism.

Functional genomics enables the compilation of a list of the reactions taking place in the cell

and in this way establish most of the entries of the stoichiometric matrix. Stoichiometric

unknowns, such as the specificity of some reactions, can then be determined with uncompli-

cated experiments. Analytical methods based exclusively on the stoichiometric matrix—e.g.

Flux Balance Analysis (FBA)—are extremely popular in spite of their many limitations. One of

the reasons for this popularity is the very small amount of information needed to formulate

these models. This ability of obtaining informative results from limited information comes

from its use of optimality principles to define physiologically meaningful states. FBA explores

every possible flux distribution within a network and finds optimal states—e.g. maximum bio-

mass yield or maximum ATP production—these states are not only likely to be favored by evo-

lution, but they are also immediately informative for the field specialist. Even if an organism

does not fit into an optimal profile, it will very often reach a compromise between different

optimal states. The linearity of FBA models makes it easy not only to compute their solutions,

but also to combine them using superposition principles. Full dynamic models cannot benefit

from any of these assumptions, the search of optimal states almost invariably results in NP-

hard problems and the superposition principle does not apply. In spite of these difficulties,

there is a long tradition of using dynamic models to determine biologically reasonable archi-

tectures of biochemical networks. This can be achieved by using structured modeling formal-

isms that simplify the mathematical treatment. Pioneering works from the late sixties and early

seventies focused on discovering “design principles” [4] in biochemical pathways. A design

principle is simply a problem solving strategy that can be reused in different contexts. Design

principles lead to patterns that can be observed recurringly in nature, such as end-product

inhibition, which is found very often in biosynthetic pathways and will be the object of our

case study. Since these pioneering works relied on analytic methods, their application was
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limited to relatively simple models. These techniques were expanded in the early 2000’s to

include statistical analyses of ensembles of models [5] so they could tackle higher degrees of

complexity. Two decades later, a wide range of “design” principles have been discovered,

explaining why certain patterns or regulatory signals keep emerging in completely unrelated

networks [6] but the interpretation of complex models is still an unsolved challenge. The

advances in machine learning experienced during this time and the availability of easy to use

yet powerful tools to implement such methods opens up many new avenues to advance in this

direction.

The task of elucidating design principles from ensembles of models poses three main chal-

lenges: 1) Ensuring that the generated models achieve a good coverage of the parameter space,

2) identifying good performing models—in our case, good biochemical “designs”—and 3)

backtracking their good performance to a set of defining characteristics—e.g. parameter val-

ues. In this work, we will illustrate how the formulation of models adhering to a well defined

mathematical formalism can simplify these tasks.

Materials and methods

Ensemble modeling

Formulating a full dynamic model poses a formidable challenge due to the numerous parame-

ters involved in the rate laws − v(xd(t), xi) in Eq 1. These parameters cannot be measured

simultaneously by any high-throughput technique and their individual determination in vitro,

besides being extremely labor intensive, does not really inform about their in vivo values. Even

though there are examples of high-quality large-scale models [7], these models tend to be one

of many options that fit the available data equally well. In most cases, the data available about a

certain process is compatible with a wide variety of alternative models. Despite promising

developments that have been shown for small models [8], the uncertainty associated with the

parameter values of a dynamic model tends to remain high due to its high complexity and

identifiability problems. This challenge has inspired scientists to turn towards other

approaches. One such approach is ensemble modeling, which copes with uncertainty by gener-

ating and analyzing multiple models [9]. Initially used to explore the effect of different initial

conditions on the predictions of chaotic dynamical systems [10], the technique has generalized

to many different fields like machine learning [11], where special emphasis has been put on

how to combine the predictions of multiple models. By evaluating the performance of the dif-

ferent models under different criteria, a set of representative models can be selected.

The main difficulty faced by ensemble modeling is the high dimensionality of the parameter

space. The total number of models that can be formulated for a given problem is often much

larger than what can be realistically analyzed. For this reason, different acceleration strategies

have been proposed such as testing the models for stability before fully analyzing them [12] or

by replacing some parameters by otherwise accesible information. An example of the latter

approach is anchoring the models to a flux distribution at the steady state [13, 14], which can

be measured or calculated by means of FBA. By generating only models that admit that flux

distribution as a steady state, the dimensionality of the parameter space is reduced consider-

ably and the analysis focuses on more realistic models. In principle, the same could be done

with the steady state metabolite concentrations, but some practical difficulties often prevent it.

First, there are no established methods that predict a single set of metabolite concentrations

from a theoretical perspective. Second, even when such concentrations are measured, the

backwards calculation from concentrations to parameters is not always straightforward due to

the non-linear nature of the rate functions. In the following sections, we will show the advan-

tages granted by formulating the model using a specific (power-law) formalism: First, the
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steady state distribution of fluxes and metabolites can be set a priori [15]. Second, the parame-

ter space can be partitioned into sub-spaces that can be tested independently. Third and final,

the parameters of the power-law formalism are more directly related to systemic responses

than traditional parameters such as saturation constants. This simplifies the stages of model

selection and interpretation.

The power-law formalism

The use of simplified rate laws can minimize the number of parameters of the system and pro-

vide structural regularity. Using these rate laws around a reference state results in good

approximations for more complex expressions, such as traditional Michaelis-Menten kinetics

(see [4] and supplementary information S1). A classic example of such expressions is the

power-law:

vðxðtÞÞ ¼ Γ xF ð2Þ

In this notation, vi ¼ gi � x
fi;1
1 . . . x fi;n

n . . . x fi;nþm
nþm , where n is the number of dependent and m

that of independent variables. Γ is a diagonal matrix containing the positive constants γi that

are called rate constants in analogy to the very similar Mass Action (MA) rate law. Also in

analogy to MA, the parameters fi,j are called kinetic orders but unlike the case of MA kinetics,

the kinetic orders of a power-law are real numbers. For a more detailed discussion of this nota-

tion, see [16]. Systems described by a combination of Eqs 1 and 2 are called Generalized Mass

Action systems (GMA) [4, 17]. Rate constants can be set according to the formula

gi ¼
jvij0
Q

jx
fi;j
j

�
�
�

�
�
�
0

ð3Þ

where the notation |�|0 represents a magnitude at a reference steady state. The importance of

this definition is that the full dynamic behavior of the system around a certain steady state is

fully specified by three sets of parameters: The flux distribution at the steady state, the corre-

sponding vector of concentration profiles, and a set of kinetic orders F. A great advantage of

this approach is that measuring flux distributions and metabolite concentrations in vivo is

much easier than measuring kinetic parameters, so the above-mentioned strategy of “anchor-

ing” models to a certain flux distribution and a certain profile of metabolite concentrations

[18] happens naturally in this formalism. Using easy to measure values to reduce the

dimensionality of the parameter space has proven to be a very effective strategy for ensemble

modeling [19] that works particularly well with the power-law formalism [20]. Using models

based on the power-law formalism or similar approaches such as Metabolic Control Analysis

(MCA) offers a series of advantages [21] and does not result in a loss of generality. Once a set

of the above-mentioned parameters is obtained, it can always be translated to more traditional

biochemical parameters such as Michaelis constants or Hill coefficients [22, 23].

Design space and criterion space

Introducing two concepts from optimization theory: the design space and criterion space will

help to address the three challenges mentioned in the previous section, namely the formula-

tion, selection, and interpretation of mathematical models.

The design space in an optimization problem is spanned by the variables that can be con-

trolled and describes all feasible forms in which the model can be implemented. In our case,

the parameters of a biological model reflect two important biological entities. On the one

hand, parameters such as kinetic constants follow from protein sequences, cell architecture,
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etc. so they can be considered a proxy for the genotype. On the other hand, the rest of the

parameters reflect constraints on the system, such as availability of a nutrient, equilibrium con-

stants, etc. These parameters reflect the environment or more generally the ecological niche of

the system. Together, the design space of the model defines all possible genetic variations of

the system under a variety of environments [24, 25]. The idea of a design space follows natu-

rally from the engineering analogy that motivates systems biology and played an important

role in some of its foundational works [26]. In fact, this idea has established itself to the point

of permeating into popular culture as can be seen in the following excerpt from a science fic-

tion novel: “Similar pressures yielded similar solutions, just the way flight had evolved five dif-

ferent times on Earth. Good moves in design space” [27].

Just as the design space contains the relevant information about how a system is built out of

its components, a counterpart is needed to describe the system as a whole and its interactions

with the environment. This is done in engineering and optimization problems by quantifying

its performance according to certain criteria. The set of scores for each case is then a point in

the criterion space. In our case, the criteria will be evolutionary relevant goals such as the cost

of maintaining a flux or the responsiveness of a pathway. In the simplest case, only one crite-

rion is used and all systems can be ordered from best to worst performance. For more than

one criterion, as is usually the case [28], there is a correspondence between each point of the

design space and a point in the criterion space that describes its performance. Going back to

the biological case, this correspondence reflects how each genotype in a certain environment

(design space) produces a different phenotype (criterion space) [24].

Thus, the three tasks enumerated at the begining of this section can be reformulated as:

sampling points in design space, selecting their images from criterion space, and find rules to

trace these optimal phenotypes back to design space. Each of these three tasks will be explained

in detail in the three subsequent sections.

Sampling the design space

The number of samples needed to cover an n-dimensional parameter space with a certain den-

sity, d, grows exponentially with the number of parameters. The selection step that follows the

sampling normally requires all parameter values simultaneously, thus leading to a bottleneck

where a computationally expensive operation—e.g. numeric integration—is applied to a large

number of parameter vectors. Sequential filtering of samples can simplify this task. For

instance, a pre-selection of models with stable steady states before performing numerical inte-

gration can reduce the amount of operations significantly [12, 29]. This strategy can be taken

one step further by dividing the design space into subspaces and sampling them indepen-

dently. A system with two subsets of parameters of dimensions p and q will no longer require

dp+q samples to be covered, but rather dp + dq. This reduces the number of necessary tests by

several orders of magnitude and each individual test will be faster since it uses a restricted set

of parameters. By formulating the model using the power-law formalism, models can be tested

for a number of criteria using only a subset of the parameters of the system, thus enabling such

a partition of the design space. The transition times of the metabolites, for instance, only

depend on the flux distributions and the metabolite concentrations. The thermodynamic effi-

ciency of an enzyme only depends on its proximity to equilibrium, which in turn is a function

of the concentrations of its metabolites. Sensitivities, on the other hand, depend exclusively on

kinetic orders and these are independent of the fluxes and metabolite concentrations as long

as the reactions are far from equilibrium.

So, instead of generating a single ensemble of models where each instance has one dimen-

sion per parameter, three independent ensembles can be created. These ensembles, which we
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will call v-, x- and k-ensembles will contain flux distributions, metabolite concentrations, and

kinetic orders, respectively. This partition of the design space allows a much denser sampling

of each of the subspaces, from which models will be selected according to specific criteria for

each ensemble. Only after filtering by these simple criteria, the selected samples from each sub-

space can then be combined to provide a much reduced set of full systems that can be subject

to more computationally expensive tests. This process is akin to a complex database search

composed of several criteria. If the most restrictive criterion is applied first, searches for all

subsequent criteria will have to deal with fewer records and the whole process will be signifi-

cantly faster. By analogy, this method achieves computational efficiency by formulating the

final ensemble of models as the cartesian product of three sub-sets (v-, x- and k-ensembles)

and filtering each subset separately.

There are many algorithms available to sample fluxes, concentrations and kinetic parame-

ters in general. Although any of them are, in principle, compatible with the method presented

here, some guidelines should be followed in order to guarantee ensembles that are consistent

and separable. Flux distributions for the v-ensemble should not be drawn from purely stoi-

chiometric approaches, since that may lead to thermodynamic inconsistencies. There are

methods to obtain thermodynamically sound flux distributions [30] that have the advantage of

also providing the necessary thermodynamic information to evaluate the x-ensemble or gener-

ate the ensemble itself [29]. Excessive proximity to equilibrium by any reaction would affect

the kinetic orders and prevent an independent sampling of the k-ensemble. Fortunately, deal-

ing with these cases is straightforward and can be done automatically by thermodynamic

shortening [31]. Taking this into account, every kinetic parameter can be sampled easily from

a uniform distribution with clearly defined limits. For instance, substrates and products usu-

ally have kinetic orders in the ranges (0,1) and (-1,0) respectively. Allosteric effectors can be as

high in magnitude as their respective Hill coefficients.

Model selection in criterion space

Selection criteria. There is a wide agreement among the systems biology community that

some criteria have to be fulfilled by biological systems to be viable [5, 32, 33]. Many of these

criteria can be computed using only one or two of the three ensembles discussed above, thus

enabling a search for fit systems confined to a sub-space of both the design and criterion

spaces.

• Goals depending on the v-ensemble

Given a stoichiometric matrix, there is a variety of methods that calculate optimal flux distri-

bution with respect to rates and yields. An example of such techniques is FBA, which has

often been used to find optimum growth rates or biomass yields. Due to the enormous suc-

cess of these techniques, constraint-based models can be considered a field in itself and a

wide range of tools are available. Exploration of the v-ensemble, be it through optimization

or sampling, has been thoroughly covered elsewhere [32], and it is normally done prior to

further analysis. We will therefore focus on the other two ensembles and assume that a start-

ing flux distribution or a discrete number of them have already been selected.

• Goals depending on the x-ensemble

• Total concentration of metabolites. The total concentration of solutes in the cytoplasm is

limited by their solubility limit as well as their toxicity. This places a hard upper limit on

the possible values that each of the individual concentrations can reach [34]. Since overall

solute concentration is a limited resource, the sum of all metabolites of an efficient path-

way would be expected to be a goal for minimization and thus as low as possible.
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• Thermodynamic efficiency of the enzymes. Practically all enzyme rates can be factored

[23, 33] as a constant term multiplied by a series of factors in the form:

v ¼ kþcat ET Z
regðxÞ ZsatðxÞ . . . ð1 � yÞ ð4Þ

The maximum reaction rate of the reaction is the product of the catalytic constant kcat
times the amount of enzyme ET. All the other factors are bound between 0 and 1. Each of

the η�(x) functions accounts for a different effect of the metabolites on the reaction rate—

e.g. allosteric inhibition, saturation, etc.—and depends also on a series of parameters like

Hill coefficients, saturation constants, etc. Finally, θ is the distance to equilibrium and will

be bound between 0 and 1 for a reaction progressing left to right. That means that the ther-

modynamic term in the parenthesis determines the percentage of enzyme that will actually

contribute to the net reaction, so it is often used as an orientative indication of the overall

thermodynamic cost [33]. We will aggregate these terms in the criterion:

Thermodynamic cost ¼
Pr

i¼1

1

1 � yi
ð5Þ

where r is the number of reactions to classify models according to thermodynamics. This

criterion can be easily adapted to include information about catalytic efficiency for differ-

ent steps in the pathway. See [31] for a discussion on how to use this type of kinetics

together with power-laws.

• Ratio of final products to intermediates (draft) Many intermediary metabolites are just

necessary chemical steps to reach a product. Given the above-mentioned upper bound to

the total content of the cell, a high concentration of any intermediate will lower the maxi-

mum tolerable concentration of the end product. Even though it is difficult to determine

which metabolites are “useful” for the cell, some rules of thumb can easily be found. For

every unbranched sequence of reactions in a metabolic pathway, only the final product

may provide an advantage by having a high concentration, be it due to mass action or by

providing exergonism for subsequent branches. The cell has much to gain from keeping

the concentrations of all the “internal” metabolites as low as possible, since even a potential

role in a regulatory interaction out of the branch can be performed at low concentrations.

Thus, the ratio of internal intermediates to final product will be a measure of how much of

the solubility limit of the cell is occupied by non-critical compounds. In order to assign a

name to this criterion, we will use a nautical metaphor. The draft of a ship defines the

depth reached by the fraction of its hull that is under water, so we will define

draft ¼
Pn� 1

i¼1
xi

xn
ð6Þ

as the ratio of metabolites “submerged” inside a linear sequence of reactions to its final

product. Draft minimization is therefore a worthy goal to be pursued in the design of a

pathway. A straightforward generalization for more complex models would be to assign a

draft to each linear segment. These segments can be identified from the stoichiometric

matrix by calculating the metabolite adjacency matrix and removing all metabolites with

connectivity greater than two. This will leave linear segments as connected components of

the corresponding graph.

In addition to these, an additional goal can be defined that depends on the combination of

v and x-ensembles.

• Goals depending on the x- and v-ensemble
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• Transition time. The ratio of accumulated mass to throughput is often called transition

time and it provides a reference for the time scale of the pathway [35].

ti ¼

Pn
i¼1
jxij0
jvj0

ð7Þ

• Goals depending on the k-ensemble

The sensitivities of the system depend almost exclusively on the kinetic orders—see Supple-

mentary Information–, and as long as the reactions are far away from equilibrium, kinetic

orders can be considered to be independent from the other parameters. These assumptions

are not restrictive since it has been already shown that reactions close to equilibrium can be

automatically eliminated from the sensitivity analysis through thermodynamic shortening of

the pathway [31]. There is a long standing framework for sensitivity analysis of power-law

systems, that is summarized in the supplementary information, based on the definitions of

sensitivities (S) and log-gains L.

Sðxi; gjÞ ¼
@xi
@gj

gj

xi

�
�
�
�
�

�
�
�
�
�
0

ð8Þ

Sðvi; gjÞ ¼
@vi
@gj

gj

vi

�
�
�
�
�

�
�
�
�
�
0

ð9Þ

Lðxi; xjÞ ¼
@xi
@xj

xj
xi

�
�
�
�
�

�
�
�
�
�
0

ð10Þ

Lðvi; xjÞ ¼
@vi
@xj

xj
vi

�
�
�
�
�

�
�
�
�
�
0

ð11Þ

Sensitivities, S(xi, γj) and S(vi, γj) are the responses of the steady state of the system (depen-

dent variables or fluxes) to perturbations on its parameters while logarithmic gains, L(xi, xj)
and L(vi, xj), define the corresponding responses to changes in the independent variables. It

is normally the case that a system has to be robust against changes in the parameters and

therefore have low sensitivity, while it may be desirable that the system has a strong response

to certain stimuli, so in many cases high gains are desired. The sensitivities and logarithmic

gains of a system are determined by the kinetic orders and are, in general, independent of

metabolite concentrations [4, 17], which enables separate sampling of the k-ensemble and

selection based on sensitivities. The sole exception to this rule is the presence of moiety con-

servations. Metabolites involved in a moiety cannot change independently and the fraction

of the moiety that is contained in each of its components—e.g
jATPj

jATPjþjADPjþjAMPj—has an effect

on the sensitivity matrices. Dealing with conserved moieties does not pose an obstacle for

the method since the number of metabolites involved in such moieties is a very small frac-

tion of the total, specially for large networks. The matter can be dealt with by adding one

degree of freedom to the k-ensemble in the form of a dummy variable for each such metabo-

lite—e.g. ATP, ADP,. . .—these dummy variables will take values between 0 and 1 to repre-

sent the fraction of the moiety in that particular form. The dummy variables enable the

calculation of the full sensitivity set for the system and establish a common key between the
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k- and the x- ensembles while allowing the separate sampling of both. A detailed account of

sensitivity analysis is included in the supplementary information for the convenience of the

reader.

• Goals that depend on all ensembles

Stability of the steady state is a key necessity of any biochemical system and is often used as

main criterion for the selection of biologically feasible models ([12]). Other criteria can be

determined from numeric simulations of the system. Determining dynamic behavior of a

system or the stability of its steady state requires the use of all parameters simultaneously

and computationally expensive operations, so it is highly recommended to use other criteria

to filter a large amount of models before evaluating this set.

Selection strategies. Performance indicators such as those defined above, can be used to

discover “good” biochemical designs. As long as the criterion space has a dimension higher

than one, a multiplicity of selection strategies can be followed.

1. Behavioral classes

Alves et al. have proposed to categorize pathways according to their structure and behavior

[5]. Establishing a cutoff value for a certain goal, a class can be defined by all the systems

that perform above this value. This type of filtering can be applied to more than one crite-

rion at a time, so optimal models can be defined as the behavioral class that performs above

certain thresholds for a set of relevant criteria.

2. Pareto front

Alternatively, the concept of Pareto optimality can be used for selection. A solution is effi-

cient or Pareto optimal if there is no other solution that performs better for all criteria. The

set of all efficient solutions, or Pareto front, collects all possible tradeoffs between different

criteria. We will sometimes approximate the Pareto front by choosing all the efficient solu-

tions in our sample by direct comparison. Occasionally, we will introduce a tolerance � in

such comparison, admitting solutions that are close enough to the Pareto front. The set of

solutions so obtained will be named �-Pareto front. In order to better characterize the

Pareto front, we will sometimes resample by calculating convex combinations of efficient

solutions. Such solutions will often be at or very close to the Pareto front, thus enriching

our sample. The combination of epsilon selection and enrichment enables to obtain a virtu-

ally unlimited number of points on or very close to the Pareto front.

These two approaches can be used together. In this work, we will start most model selec-

tions by filtering out the least robust 50% element of every set, since robustness is a well-

known requisite for the operation of biological systems [36, 37]. The remaining solutions will

then be tested for Pareto optimality. The use of Pareto fronts to analyze biological performance

has been very successful in the past [38], especially in cases where there is a monotonic rela-

tionship between genetic traits and their respective phenotypes [39].

Tracking optimal phenotypes back to design space

Once a set of good designs has been identified, their optimality has to be explained in terms of

their composition. In other words, their location in criterion space has to be traced back to

some pattern in design space. Many machine learning techniques can be used for this purpose,

here we will combine two of the simplest and best known tools for classification and

dimensionality reduction.

Logistic regression. For each defined behavioral class, a logistic classifier was trained to

identify its members by their position in design space. For each criterion, the algorithm—and
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similar ones such as Support Vector Machines—defines a hyperplane in design space separat-

ing it in two halves, one containing a majority of members of the class and one containing a

majority of non-members. Although this separation is far from perfect, the vector normal to

the hyperplane provides an optimal direction in the design space to separate alternative

designs according to their parameter values. The normalized vector for a given criterion

assigns a coefficient to each parameter. Parameters that tend to be high for class members will

be assigned a positive coefficient and those that tend to be low, a negative one. The magnitude

of such coefficient is also important with influential parameters (for better or for worse) hav-

ing coefficients that are high in absolute value. Parameters that have a negligible influence on

performance, however, will have coefficients with magnitudes well below the average. The

python machine learning toolbox scikit-learn was used as described in the supplementary

information. The reader is referred to [40, 41] for more information on scikit-learn and its

implementation.

Principal component analysis. PCA is a very common technique for dimensionality

reduction and has become a standard method in the fields of bioinformatics and biosystems

engineering [42]. When the Pareto front is viewed in the design space, it is difficult to deduce a

pattern or correlation. Thus, PCA is performed on the Pareto-efficient datasets using the

above-mentioned sklearn toolkit. PCA provides a new set of coordinates in the design space

that partition the variance in uncorrelated principal components (PCs), each with a weight

associated to it. The contributions of the different parameters to each PC can be interpreted

like those in logistic regression with parameters contributing to the high variance PCs being

involved in differences between members of the Pareto front and parameters contributing

mostly to low variant PCs being relatively constant. There are two main benefits in this proce-

dure: Interactions between parameters and their respective weight become apparent and, if

applicable, the dimensionality of the problem at hand can be reduced by rejecting insignificant

principal components.

The overall procedure introduced is summarized in Fig 1. The benefits of partitioning the

parameter space become clear. The overall workflow is non-linear and can be adapted or

reconfigured. Random resampling or generation of new datasets on the basis of PCA or con-

vex combinations is possible along every step of the procedure.

Fig 1. Summary of the workflow. A schematic view of the various steps towards a large-scale pathway analysis with

the proposed ensemble modeling approach. The individual ensembles (Boxes with x-, k-, v-ensemble) are generated

(- -) and tested(—) separately. A reduced set of its members is then selected for further analysis. Mixed ensembles

(Boxes with x/k-, v/x-ensemble) are obtained by generating all possible combinations (� � � �) of the selected members of

the former ensemble partitions. At the end of the process, the amount of models actually processed is the cartesian

product of the small subsets of selected models in each ensemble. This subset is but a small fraction of all the possible

combinations that have thus been proven inadequate at an early stage without the need for extensive testing or

excessive computationally expensive operations.

https://doi.org/10.1371/journal.pone.0230599.g001
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Case study

The concepts introduced in this work will be illustrated with a well-studied example, an

unbranched pathway with end product inhibition [5, 31, 43, 44]. This type of pathway, shown

in Fig 2, is ubiquitous in biochemical systems and the reasons for its prevalence have been

studied for more than forty years. After in-depth analyses using analytical methods [4, 26, 45–

47], the unbranched pathway became a standard benchmark, and has since been used to exem-

plify a series of ensemble modeling approaches [22, 43, 48]. Simulations were done with path-

ways of different lengths but the results were extremely similar, so the method will be shown

with a three-metabolite pathway for the sake of clarity. Thus, dependent variables x1 and x2

will be intermediates, the final product will be x3. The model has two independent variables:

the concentration of precursor x0 and a dummy variable x4 introduced to reflect changes in

cellular demand for product (f4,4 = 1).

Design space. The design space for this system has 12 dimensions and it can be parti-

tioned into a one-dimensional v-ensemble—all reaction rates must be equal to the flux through

the pathway —, three-dimensional x-ensemble: x1, x2 and x3, and an eight-dimensional k-

ensemble: f1,1, f1,3, f1,0, f2,1, f2,2, f3,2, f2,3 and f4,3.

Criterion space. The system will be evaluated using the criteria described above. For the

case of thermodynamic efficiency, equilibrium constants of all reactions will be assumed to be

1. In the case of sensitivity analysis, seven criteria were selected.

Three criteria reflect the robustness of the pathway: Aggregate Parameter Sensitivity (APS),

Intermediates Sensitivity to Demand (ISD) and Intermediates Sensitivity to Supply (ISS).

Fig 2. The model pathway. A three-step unbranched pathway with negative feedback loop is chosen as the model pathway of this case study. The selected

pathway, with the initial precursor concentration x0 and the final product concentration x3, is reversible at every intermediary step. The dependent variable

concentrations of the metabolites are named x1 to x3 and an additional variable x4 has been added to reflect variations in product demand.

https://doi.org/10.1371/journal.pone.0230599.g002
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1. APS. An overall measure of the robustness of the system.

X2

i¼1

X3

j¼1

jSðxi; gj; Þj

APS reflects the accumulation or depletion of the intermediates, x1 and x2, in response to

fluctuations in enzyme activity.

2. ISD. The effect that a change in demand will have on the concentrations of intermediates.

X2

i¼1

Lðxi; x4Þ

3. ISS. The effect that a change in supply (concentration of precursor x0) will have on the con-

centrations of intermediates.

X2

i¼1

Lðxi; x0Þ

The four remaining criteria reflect the responsiveness of the pathway. Of these, two criteria

characterize the pathway response to an increase in supply: Flux Supply Gain (FSG) and

Product Supply Gain (PSG) with their counterparts reflecting the response to an increase in

demand: Flux Demand Gain (FDG) and Product Demand Gain (PDG).

4. PDG. The impact that a change in product demand will have on its concentration.

Lðx3; x4Þ

5. FDG. The flux response to an increase in demand.

Lðv4; x4Þ

6. PSG. The increase in final product following an increase in precursor concentration:

Lðx3; x0Þ

7. FSG. The flux response to an increase in precursor concentration.

Lðv4; x0Þ

Results

The workflow was applied to the unbranched pathway model using an arbitrary value of 31.5

mM/min for all the fluxes in steady state. For the model pathway under investigation, a reason-

able flux through a biosynthetic pathway of a growing bacteria with a duplication time of td =

20min was chosen. By estimating a reasonable flux, it is ensured that one stays within realistic

bounds regarding the presented example. Further details regarding cellular composition and

amino acid abundance are provided in the supplementary information [49].
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The values for steady state metabolite concentrations were uniformly sampled in the inter-

val 0.1μM − 10mM, which is a realistic cytosol concentration range. The values of the kinetic

orders were uniformly sampled in the intervals [-1,0] for the backwards reaction (f1,1, f2,2, f3,3)

and [0, 1] for the forward reactions (f1,4, f2,1, f3,2, f4,3). Kinetic values between [-1,1] were cho-

sen to represent a very basic enzymatic reaction; one without allosteric effects or multiple

active sites. The kinetic order of the feedback strength f1,3 was sampled in the interval [-7,0].

Even though it is unrealistic to expect in vivo values below -2, large values for this kinetic order

generate analogous results to simulating a longer pathway with realistic coefficients. For the

sake of simplicity, this interval will be used instead of presenting the results of simulating path-

ways of different length, which yielded equivalent results. The demand factor f4,5 was fixed at

1, since it is part of a linear term. Unless otherwise specified, the equilibrium constants of the

first three reactions will be considered to be one.

Peculiarities of the x-ensemble

Unlike other parameters, the metabolite concentrations are subject to a priori thermodynamic

constraints. For the pathway to be able to carry a flux, the ratios of products to substrates for

all reactions have to be greater than the equilibrium constants. This results in the x-ensemble

and the criteria based on it being biased even before a selection by performance is made. Fig 3

shows the distributions of metabolite concentrations for the case study after filtering by feasi-

bility for three different thermodynamic backgrounds. As can be seen, the distribution of feasi-

ble concentrations at the steady state can change dramatically depending on the specific

thermodynamics of the pathway. This is of critical importance, since many modeling studies

do not take thermodynamics into account prior to parametrizing their models.

Model selection in criterion space. In any multi-criteria optimization problem, the dif-

ferent criteria or goals will be conflicting at some point, but such conflicts can have different

intensities or manifest themselves at different stages. While some goals are aligned to a high

extent, others are clearly incompatible. Fig 4, for instance, shows a sample of pathway designs

represented as projections in two-dimensional criterion spaces. The criteria on the left panel

ISD vs. FDG show a clear tradeoff where increasing the pathway response to demand involves

a proportional increase of the sensitivity of intermediates. The right panel, however, shows

that the two robustness criteria APS and ISS can both be brought almost to their optimal

points simultaneously with some solutions being extremely close to the utopian point, where

all goals achieve their absolute maximum.

Moreover, optimization criteria like the ones considered so far can be grouped to define

biologically relevant phenotypes. Grouping criteria into behavioral classes that reflect their

Fig 3. Thermodynamic feasibility analysis of the x-ensemble. The distributions of metabolite concentrations generated using a uniform distribution (◾) and the

subset filtered by thermodynamic feasibility for different values of the second equilibrium constant: K2 = 1000 (◾), K2 = 1 (◾), K2 = 0.05 (◾). All other equilibrium

constants are fixed at 1.

https://doi.org/10.1371/journal.pone.0230599.g003

PLOS ONE Understanding biochemical design principles with ensembles of canonical non-linear models

PLOS ONE | https://doi.org/10.1371/journal.pone.0230599 April 30, 2020 13 / 27

https://doi.org/10.1371/journal.pone.0230599.g003
https://doi.org/10.1371/journal.pone.0230599


compliance with such evolutionary requirements is very helpful to understand the design prin-

ciples involved. Unbranched pathways, such as our case study, often belong to one of two clas-

ses: demand-driven or supply-driven. Pathways producing building blocks such as amino

acids are driven by demand, since their metabolic role is to supply as much product as required

by cell growth. Overflow metabolism, on the other hand, works as an escape valve for materials

that cannot be processed at a certain moment and are therefore required to respond to an

excess of precursor. They are therefore supply-driven. Robustness, however, is a requirement

for both types of pathway.

Profiles of metabolite concentrations. Analysis of the x-ensemble is relatively straight-

forward in this case due to the simple topology of the pathway. Since the definitions of equilib-

rium constants are hyperplanes in logarithmic coordinates, the conditions for thermodynamic

feasibility define a simplex in design space, a tetrahedron in our case study. Some of the criteria

defined above can be ignored for this simple example because they align so well that optimiz-

ing one automatically optimizes the others. This is the case for transition time, which is directly

proportional to the total concentration of metabolites. Fig 5 (upper left) shows a criterion

space with two conflicting objectives: minimizing total metabolite concentration and the draft

of the pathway. They can be simultaneously achieved by minimizing the concentrations of the

first two metabolites of the pathway. However, the final product leads to a tradeoff between the

two goals, so a Pareto front of optimal solutions arises where x1 and x2 are minimal for each

possible concentration of x3. In this particular case, the location of the Pareto front in design

space can even be calculated analytically (it is displayed as a red line in the upper right panel of

the figure) so no further analysis is required. A further step can be taken by adding another

objective, the thermodynamic cost, and defining a Pareto front for all three goals. A two-

Fig 4. Examples of projections of the criterion space. Each model of the ensemble is represented by a point. The Pareto fronts are calculated for selected goal

combinations. Depending on the number of selected goals, 2-dimensional or multi-dimensional Pareto frontiers can be calculated. The datasets are then grouped

into the non-efficient datasets (�) and the Pareto-efficient datasets (�). The utopian point is shown by a red star (�). At the utopian point, both goals reach their

optimization goal.

https://doi.org/10.1371/journal.pone.0230599.g004
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dimensional projection of this Pareto front is shown in the lower left panel of Fig 5. The loca-

tion of this more complete Pareto front in design space is shown in the last panel of the figure

and provides a very reduced subset of possible concentration profiles that can be used to build

models of our unbranched pathway. In the example shown in the figure, 10,000 concentration

profiles where analyzed to obtain a subset of just 140 efficient solutions. Since the operations

required for the analysis are extremely simple, an extremely high number of samples can be

Fig 5. X-ensemble in criterion and design space. The upper left figure shows ensembles in the criterion space with a Pareto front for simultaneous minimization

of total metabolite concentration and draft. The upper right panel shows the same data in the design space (unfeasible cases not shown). The lower left panel shows

a projection of a different two-dimensional criterion space of draft vs. thermodynamic cost. In this case, the Pareto optimal solutions were calcuated using all three

criteria simultaneously. On the lower right panel, only the Pareto optimal solutions are shown in design space. In all design space plots, the feasible area is marked

as a tetrahedron and the vertex drawn in red corresponds to the x-total vs. draft Pareto front. Datapoints are colored depending on whether they correspond to

thermodynamically unfeasible (�), feasible (�) or the Pareto-optimal ensembles (�).

https://doi.org/10.1371/journal.pone.0230599.g005
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pre-processed like this before progressing to more demanding tests such as stability analysis.

Once a subset of the x-ensemble has been selected, more realistic models can be obtained by

formulating all possible combinations of Pareto optimal metabolite concentrations with

equally filtered sets of kinetic orders.

Robust pathways. Once a subset of metabolic concentrations has been selected, kinetic

orders can be used to calculate other relevant criteria. Let’s define a robust pathway as the

behavioral class that performs above average, hence within the top 50% of the ensemble, for all

three robustness criteria: APS, ISS, and ISD. A comparison of the performance of such path-

ways regarding the other criteria (i.e. the response to supply on the left panel and to demand

on the right) is shown in Fig 6. In regard to supply-driven designs, the robust pathways dem-

onstrate a lower responsiveness, especially concerning the flux. On the demand side, however,

there is no conflict regarding robustness. All robust pathways, marked as red points in the fig-

ure, have as good a performance as the non-robust cases. Robust pathways have the potential

to provide high increases in flux upon demand coupled with low decreases in final product

concentration. These results suggest, that there is an inherent conflict between pathway supply

orientation and simultaneous robustness.

Demand-driven pathways. Since there is no conflict between response to demand and

the robust behavioral class, a composite class was defined comprising the above average per-

formers for all three robustness criteria plus the two demand responses (flux and product).

The tradeoff between product and flux response, as depicted in Fig 7A, shows that the

Pareto front cannot be taken directly as a measure of demand performance. As can be seen in

the rightmost edge of the front, marked in red on the figure, negligible gains in flux demand

gain are associated with dramatic losses in product demand gain. In this case, the theoretical

concept of Pareto optimality is not practical and an alternative must be found. Both criteria

were thus combined into a criterion represented in panel B. The new criterion—demand per-

formance—is a linear combination of both original criteria with attributed weights that set the

axis of this criterion orthogonal to a fitted line of the Pareto front.

Within the behavioral class, there is still a tradeoff between the performance of the pathway

in terms of demand response and its robustness regarding concentration of intermediates. The

Fig 6. Criterion space projections of supply-driven and demand-driven models. Projections of different models in 2D criterion space related to response to

supply (left) and to demand (right). The bulk of models are marked in blue (�), and those models in the intersection of the upper 50% for all three robustness

criteria—APS, ISS, and ISD—are superimposed in red (�).

https://doi.org/10.1371/journal.pone.0230599.g006
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corresponding Pareto efficient solutions are marked in red on the third and final panel of Fig

7C and a reconstruction of the Pareto front through convex combinations of nearest neighbors

is depicted in yellow.

Supply-driven pathways. As was shown, defining the robust pathways as a class, robust-

ness and supply response cannot be achieved simultaneously. Testing each robustness criteria

separately shows that the source of this conflict is actually the Intermediates Sensitivity to Sup-

ply (ISS). For this reason, the behavioral class defined to analyze supply response includes the

above average performers for the two non-conflicting robustness criteria: APS and ISD as well

as the two criteria related to supply response. Regarding ISS, instead of filtering out all below

average performers, which would also eliminate supply responsive designs, only extreme cases

(worst 3%) were removed. Further analysis of this class will clearly show the reasons for this

conflict.

As shown in Fig 8, product supply gains can reach very high values in the generated models,

especially when the corresponding flux gain is low. Flux supply gain, however, is always below

one and any increase in it involves a steep drop in the maximum achievable product gain. The

number of samples with high flux supply gains is very low and as the flux supply increases, the

range of possible values for the product gain narrows down considerably. This suggests that a

delicate balance is needed to increase both flux and product concentration simultaneously.

Given that the product gain is actually always positive, and product gains around unity are

compatible with any flux gain, maximizing the flux gain is the safest choice to obtain a

demand-driven pathway.

Tracking optimal phenotypes back to the design space

Since the initial sampling of kinetic orders was uniform, deviation in their distribution, when

considering members of a single class only, provides some insight into how individual parame-

ters influence the behaviour of the system [50]. To further address the question of how to build

a robust, yet responsive pathway, we need a method to assess the relative importance of each

parameter’s contribution and shed light into potential interactions. Fig 9 is a very compact dis-

play of information relating parameters to their influence on the performance for each crite-

rion. The figure is built by training a logistic regression classifier that attempts to identify

which models belong to the class of the top 50% performers for each criterion individually. Fig

9 shows the vectors defining the separating hyperplane for each criterion. Parameters and

Fig 7. Analysis of demand-driven pathway designs. A: Flux vs. product concentration response to an increase in demand. B: Definition of a new criterion,

demand performance, that ensures a balanced response both in flux and in product concentration. C: Pareto front for the tradeoff between demand performance

and sensitivity. In all cases, the bulk of the models is represented by blue points (�), Pareto efficient solutions in red (�), and a Pareto front enriched by convex

combinations is shown in yellow (�).

https://doi.org/10.1371/journal.pone.0230599.g007
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criteria are ordered in the cladogram according to the similarity of their coefficient profiles.

Parameters (criteria) clustered together show similar influences (or responses).

In accordance with what is known about unbranched pathways, kinetic orders of the back-

wards reactions f2,2 and f3,3 are generally of little importance, as is reflected by the smaller mag-

nitude of their coefficients in the table. An exception to this rule is the kinetic order of the first

reaction for its product, f1,1. Its coefficients are larger in magnitude reflecting this parameter to

be important while the negative signs for all three sensitivity criteria show how an irreversible

first step (lower sensitivity to its own product) results in more robust designs. Large kinetic

orders for the forward reactions f2,1 and f3,2 tend to improve all goals and are often significant.

Finally, the conflict between intermediate sensitivity and supply response can also be clearly

seen in the figure. The profiles for APS and ISD are very similar to one another and to those

for both supply gains—PSG and FSG—but that of ISS is clearly different, being more similar

to those for demand gains—PDG and FDG. It is therefore intuitive that ISS will be better

aligned with demand-oriented goals and lead to conflicts with supply-oriented goals. More-

over, the profile for ISS is dominated by three parameters: f3,2, f1,0 and f1,3. The first parameter,

f3,2, has positive coefficients for every goal, so it unlikely to be the cause of any conflict. A

completely different situation can be appreciated regarding the the saturation of the first reac-

tion f1,0 by the precursor, which is also the dominant parameter for the supply gains PSG and

FSG, albeit with coefficients of opposite signs. Finally, the strength of the feedback loop f1,3 has

high magnitude coefficients for almost all criteria and opposing signs for different goals. A

divide would be expected here with strong feedback loops (more negative values) being a char-

acteristic of pathways robust to supply with better demand gains, PDG and FDG, while weaker

feedback loops (values closer to zero) would be characteristic of pathways robust to changes in

demand and more responsive to supply. This is already a clear indicator that end-product inhi-

bition is rather a design principle for demand-driven pathways. Supply-driven pathways must

rely on different mechanisms. The saturation of the final step, also called elasticity of demand,

does not play a major role for any of the robustness measures, but it is important for tradeoffs

between the flux responses to supply and demand.

Fig 8. Analysis of supply-driven pathway designs. A: Flux vs. product concentration response of the pathway to an increase in supply. B: Pareto front for the

tradeoff between supply performance and sensitivity. In all cases, the bulk of the models is represented by blue points (�), Pareto efficient solutions in red (�), and a

Pareto front enriched by convex combinations is shown in yellow (�).

https://doi.org/10.1371/journal.pone.0230599.g008
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The approaches presented so far help identify the key parameters and relate their values to

the performance on different criteria but identifying a design goes beyond that. Given a region

on the criteria space, one should be able to identify a region in design space able to meet those

specifications. This area can be directly expressed as one or more constraints on the original

parameters, but a more compact description can be achieved by defining a new set of

Fig 9. Parameter values of the logistic regression model. The influence of each-value (model parameter) on the respective goal and kinetic order is shown.

Coefficients for logistic regressions to classify the the top 50th percentile for each analyzed goal: Intermediate sensitivity to supply (ISS), intermediate sensitivity to

demand (ISD), aggregate parameter sensitivity (APS), product supply gain (PSG), flux supply gain (FSG), product demand gain (PDG) and flux demand gain

(FDG).

https://doi.org/10.1371/journal.pone.0230599.g009
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coordinates based on Principal Component Analysis (PCA) of the models in the selected

region. PCA provides a transformation that groups together those variables that are linearly

correlated in the selected dataset and orders them according to variance. The groups of param-

eters that vary the most in the selected set will be grouped in the first few Principal Compo-

nents (PCs) while those that remain approximately constant will be grouped in the last few.

Finally, the new variables will be orthogonal to one another making them specially suited for

independent sampling.

As an example, we will use PCA to try and map the Pareto front in Fig 7 to a region in the

design space. First, PCA is applied to the enriched Pareto front. The new coordinates will still

span the full design space but will be centered at the mean of the parameter values that can be

found in the Pareto front and grouped by correlation. Now the Pareto front is divided in two

approximately convex sets (the two roughly linear segments in Fig 10) and regression is used

to find correlations between the PCs within those sets. The first segment shows strong correla-

tion between the PC1 and PC2 while the second shows a strong dependence between PC1,PC4

and PC7. Thus, a parametric equation can be generated to approximate the first segment by

varying PC1 as a free parameter and adjusting PC2 accordingly. The same can be done for the

second segment with two parametric equations, one for PC4 and PC7. Fig 10 shows such

segments.

Fig 10. Datasets synthesized by PCs. Left: The synthesized data are shown in the criterion space. The location of designs generated by direct sampling in PCA

coordinates (�) is compared with non-efficient datasets (�). The synthetic data were generated as two independent segments. In both cases, the first principal

component was varied as a free parameter, while a minimal set of other PCs were varying according to how they correlated in the corresponding segment of the

Pareto front. For the first segment (horizontal trend), PC2 that was varied linearly to the function PC2 = −0.70PC1 − 0.83, while all other PCs were kept constant.

For the second segment, two PCs other than PC1 (PC4 and PC7) had to be varied according to the following fucntions: PC4 = 0.95PC1 − 2.07 and PC7 = −0.54PC1

+ 1.18. Thus, the segments were obtained through the variation of only two and three PCs respectively. Right: The right panel shows the relevant principal

components as bar plots of the coefficients with which each kinetic order contributes to the corresponding PC. The dashed red lines show the average value of all

the coefficients in absolute value. Thus, the relevant kinetic orders for each PC are identified as those with coefficients exceeding the dashed lines, such as f2,2 in

PC2.

https://doi.org/10.1371/journal.pone.0230599.g010
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Stability analysis and dynamic simulations

Once the x- and the k-ensemble have been screened separately using computationally less

intensive tests, all combinations between both ensembles can be generated to test for stability.

In this case, a selection of 140 cases from the x-ensemble was combined with 1,060 cases

selected from the k-ensemble as demand-driven pathways and 20,360 selected as supply-

driven pathways. The two complete ensembles contained 148,400 models of demand-driven

pathways and 2,850,400 supply-driven. The fraction of unstable models was well below 1% in

all cases, its number increasing with pathway length and feedback intensity as has been

described elsewhere [4]. Moreover, saturation of reactions by their products (kinetic orders

close to zero) also seems to contribute to instability (data not shown). Once the unstable cases

have been discarded, a full set of models is available that has already been classified for a series

of phenotypic traits and can further be analyzed through other means. Since the topic of stabil-

ity analysis of ensembles of models has already received some attention and any of the known

approaches can be easily integrated in our pipeline, we will refer the reader to the available lit-

erature on the topic [12, 51]. It is worth noting, however, that generalizing the methods out-

lined above to recognize features linked to stability in the joint v-x-k-ensemble would be

straightforward.

Numerical integration for some models selected from different regions of the criterion

space shows the type of behavior anticipated by selection of the k-ensembles. Models 1, 2 and

3 in Fig 11 have increasingly better responses to an increase in demand, but they also have an

increasing tendency to accumulate intermediates. Model 4 performs poorly for all criteria,

since it has been taken from a region far away from the Pareto front.

Discussion

Formulating and understanding dynamic models is an important prerequisite for systems and

synthetic biology. The current trend of integrating information from many different sources

to obtain such models has led to important advances [15] but the challenge of working under

high uncertainty remains.

We have shown that much is to be gained by replacing the traditional kinetic parameters

such as saturation constants and Vmax by a standardized set based on easier to measure magni-

tudes (steady state fluxes and concentrations) and phenomenological kinetic coefficients

(kinetic orders a.k.a. elasticities). This choice of parameters enables a seamless integration of

kinetic analysis with flux balancing and thermodynamics but it also has the additional advan-

tage of providing a better set of defining features to apply pattern searching algorithms. This is

so because the global response of a system is a more direct function of the kinetic order than of

each individual kinetic parameters. But the greatest benefit that results from this parameter

choice is, by far, the possibility of screening phenotypes using only a subset of the full parame-

ter space. Partitioning the design space in several ensembles has an opposite effect to the com-

binatorial explosion that is often called the curse of dimensionality, not countering it

completely but at least mitigating it. Finally, this choice of parameters does not result in any

loss of generality since a model thus defined can always be translated to more traditional

kinetics.

Pareto optimality provides insight on how biological systems can find tradeoffs between

conflicting goals. This approach has been extremely successful in cases where the mapping

between design and criterion space fulfills certain conditions. In many cases, the performance

of a certain phenotype for each criterion is a monotonic function of its distance to the best per-

former for such goal [38, 39, 52]. In such cases, the image of the Pareto front in design space is

a convex combination of a handful of specialized phenotypes or archetypes. Each archetype is
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Fig 11. Dynamic simulation of perturbed pathway designs. Models of demand-driven pathways are chosen and

visualized in the criterion space with the respective Pareto front of ISD vs. demand performance. Simulations are

performed using the normalized system with a reference state, setting/fixating the initial steady state concentration at 1.

After one second, the demand factor x4 is increased by 100%. Three (1-3) designs are chosen from distinct regions along

the Pareto front and one (4) was selected from a region away from the front. The dynamic response of the different

models is visualized in for the sum of the intermediate concentrations x1 + x2 (middle panel) and for the product

concentration x3 (bottom panel).

https://doi.org/10.1371/journal.pone.0230599.g011
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the best performer for a given criterion considered alone. For the general case of biochemical

networks, the mapping between design and criterion space is not normally monotonic. In fact,

it is is not even continuous, thus hampering a direct reconstruction of the Pareto front in the

design space. The methods presented here intend to be one more step towards an understand-

ing of biochemical networks on the basis of biological first principles.

Although our emphasis is on finding general design principles, this method can be pre-

pended to any modeling pipeline as a way to accelerate parameter estimation by filtering our

bad models and integrating qualitative biochemical knowledge into the modeling process. In

fact, the method presented here can be considered the natural continuation of the ensemble

modeling approaches developed by Liao’s group [13, 14] by way of incorporating the attention

to thermodynamics and the use of power-law kinetics exemplified by Hatzimanikatis’ lab [15,

21, 29]. What this method adds is the possibility of partitioning the design space into subspaces

that can be sampled and tested independently. This possibility expands the applicability of

ensemble approaches to much larger metabolic networks. In this respect, we are proposing a

complementary approach to that of Design Space Analysis put forward by Savageau and

coworkers [24, 25]. This latter approach achieves a much deeper knowledge of the system

without the need for sampling by dividing the design space into qualitatively similar subspaces.

Since the number of possible subspaces grows exponentially with the size of the network, the

possibility of developing hybrid approaches that combine the scalability of our method and the

detailed results of DSA is one worth looking into.

The particular example chosen to test the method is by necessity very simple, yet all its

properties derive from extremely non-linear interactions. Nevertheless, the analysis shown

here performs extremely well using only linear methods (classifiers based on hyperplane sepa-

ration and PCA) and it deserves further comment. We have intentionally applied the simplest

possible tools from machine learning to ensure a robust identification of the most important

trends in a manner that can be understood in biological terms. To apply this method with

emphasis on prediction rather than on description, more sophisticated methods can be used.

A simple logarithmic transformation of the parameters and the incorporation of interaction

terms with regularization results in a much more accurate classification of classes at the

expense of more complex relationships between the parameters. Exploring this tradeoff is defi-

nitely a worthwhile task ahead of us.

Finally, stability becomes a much more relevant issue when ensemble approaches are

applied to larger models. In this case, the fraction of the design space that leads to stable sys-

tems is normally smaller and identifying stable regions becomes a priority. The process of

selection based on partial ensembles—v,x and k—can alter the fraction of stable systems once

all the ensembles are recombined to the final v-x-k-ensemble of models that can be tested for

stability. If the resulting ensemble has a higher fraction of stable states than a randomly gener-

ated one, not much remains to be done except further filtering using the methods already dis-

cussed and those previously available [12, 51]. In case the pre-selection decreases the fraction

of stable models, further trade-offs can be found and the goals conflicting with the stability of

the system can be detected. The partitioning of parameters into subspaces can also pinpoint

the causes of instability. For instance, saturation of certain enzymes has been identified as rele-

vant for stability in this and other studies [22, 51], but separating the effect of saturation and

other destabilizing interactions between kinetic parameters and concentration profiles can be

extremely difficult in ensembles based on traditional kinetic parameters such as saturation

constants. The partitioning proposed here reflects saturation exclusively as a property of the k-

ensemble. Since the Jacobian of the system is defined by the kinetic orders and the turnover

numbers, it is extremely easy to establish whether unstable systems correlate with saturated

enzymes—kinetic orders close to zero—or they are rather linked to the timescales of the
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system represented by the turnover numbers [53]. So, even though stability analysis can only

be performed on the full ensemble, the previous analysis of its component subspaces can pro-

vide a great deal of insight.

Conclusion

The concept of design principle has been part of the biological lexicon [45] as long as its

counterpart, design pattern, has been in architecture, [54] and much longer than in software

engineering [55]. The concept has, however, not been as influential in biochemistry as it has

been in the above mentioned disciplines. This can in part be explained by the initial reluc-

tance of the biological community to accept quantitative methods. After all, it took almost

thirty years for Systems Biology to become part of the mainstream [56]. But as Systems and

Synthetic Biology mature, it would be expected that design philosophies involving design

principles / patterns will emerge. Following in the footsteps of other disciplines, we could

expect design principles to be catalogued in a similarly structured manner—see [54, 55]—

with each principle being presented with a clear name, a description of the problem it solves,

details of how to implement it, and the tradeoffs that it causes as well as possible drawbacks

to be considered. Moreover, design principles are meant to be used together, complement-

ing one another. In architecture, for instance, patterns have a hierarchical structure that

goes from organization at a high level, such as distribution of towns in a region, all the way

down to organization of a house in patterns like sleeping to the east or windows that open

wide.

In the case of biochemical networks, a good amount of design principles have already

been catalogued [45, 57, 58] so we can expect a higher degree of formalization and structure

in the future. In our case study, we can see how known patterns naturally emerge together

and shape unbranched pathways. A supply- or demand-driven pathway can satisfy different

metabolic needs. We have shown how end-product inhibition can help implement a

demand-driven pathway, but hamper the design in the supply-driven case. A detailed imple-

mentation of the unbranched pathway with end-product inhibition can involve a propor-

tional feedback acting on an irreversible first step that is far from equilibrium to guarantee

the efficiency of the feedback [44], but also one that is saturated by its product so that the cor-

responding kinetic order is close to zero [43]. The pathway benefits from all other steps hav-

ing non-zero kinetic orders for both their substrates and their products, which can be

achieved by a design principle that is well known by biochemists and could be named S near

Km [59]. Regarding tradeoffs and drawbacks, increasing the intensity of the feedback

improves the performance of the pathway at the cost of reducing its stability margin and this

gets worse as the length of the pathway increases [43, 45]. The pathway can be kept within the

stability margin by the application of two further design principles: kinetic shortening [45]

and thermodynamic shortening [31]. Regular formalisms combined with ensemble model-

ling can take advantage of the recent developments in machine learning, thus helping to find

more design principles as well as to understand how they come together in complex bio-

chemical networks. For instance, all the design principles mentioned above have been identi-

fied, one at a time, during the last few decades. The analysis of this simple pathway, using the

method proposed here, not only shows all these principles emerging together from the analy-

sis Fig 9, but also shows clearly how they are linked to demand driven pathways and would

never work properly to obtain a supply driven system Fig 6. This hierarchical grouping of

known design principles and their subordination to a demand driven role has not, to our

knowledge, been observed before.
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