BLENDING TASK AND MOTION

PLANNING USING LEARNING FROM
DEMONSTRATION AND
REINFORCEMENT LEARNING

handed in
MASTER’S THESIS

Bachelor of Science Dominik Urbaniak

born on the 20.10.1994
living in:
Marienburger Str. 22
85221 Dachau
Tel.: 01573-5220202

Human-centered Assistive Robotics
Technical University of Munich

Univ.-Prof. Dr.-Ing. Dongheui Lee

Supervisor: Dr. Alejandro Agostini
Start: 15.07.2020
Intermediate Report: 09.12.2020
Delivery: 02.02.2021

TECHNISCHE UNIVERSITAT MUNCHEN

m Human-centered Assistive Robotics
UNIV.-PROF. DR.-ING. DONGHEUI LEE

January 29, 2021

MASTER'S THESIS
for
Dominik Urbaniak
Student ID 3653363, Degree RCI

Blending Task and Motion Planning using Learning from Demonstration and
Reinforcement Learning

Problem description:

Task and motion planning (TAMP) architectures [1] combine the efficiency of symbolic planning
methods to quickly generate task plans [3] with motion planning mechanisms to ground symbolic
actions [4]. Most of the TAMP frameworks bring together these two planning paradigms through
geometric reasoning methods that search for suitable acting parameters to execute symbolic actions
[1, 2]. However, this strategy requires intensive computation and several calls to motion planning on
unfeasible actions to search for solutions in the large object configuration space. This work tackles these
limitations by associating to symbolic actions action policies that permit defining acting parameters
reactively for each particular object configuration, without the need of deliberation. These policies are
learned in a combined strategy that, on the one hand, generates a set of dynamic movement primitive
(DMP) parameters from demonstration of symbolic actions [4]. On the other hand, it generates an
action policy using a reinforcement learning (RL) approach based on policy improvement with path
integrals [5] to generalize these parameters for action execution in unforeseen situations.

Tasks:

e Literature overview on TAMP, learning from demonstration (LfD), and policy-based RL.

e Implement an RL approach for the execution of symbolic actions using LfD as guided exploration.
e Integrate the RL approach into a TAMP framework.

e Experimental evaluation of scalability and transferability of the TAMP framework using RL.

Bibliography:

[1] J. Bidot et al. Geometric backtracking for combined task and motion planning in robotic systems,
in Artificial Intelligence Journal 2017.

[2] N. Dantam et al. An incremental constraint-based framework for task and motion planning, in
The International Journal of Robotics Research. 2018.

[3] M. Ghallab et al. Automated Planning: theory and practice, Elsevier. 2004.

[4] A. ljspeert et al. Dynamical movement primitives: learning attractor models for motor behaviors,
in Neural computation. 2013.

[5] M. Deisenroth et al. A survey on policy search for robotics, in Found. and Trends in Rob.. 2013.

Supervisor: Dr. Alejandro Agostini
Start: 15.07.2020
Intermediate Report: 09.12.2020
Delivery: 02.02.2021

(D. Lee)
Univ.-Professor

Abstract

Task and motion planning deals with complex tasks that require the execution of
multiple actions in a chronological order and the ability to generalize to variable
object configurations. Symbolic planning efficiently generates task plans of multi-
ple symbolic actions. Grounding these symbolic actions such that feasible motion
is executed in varying scenarios presents a major challenge that this thesis focuses
on by developing a TAMP framework that grounds symbolic actions with efficient
and divers motion generation using learning from demonstration and reinforcement
learning. Linear motion is often not sufficient to approach a target object, since
collisions of the gripper with other objects or the target object might occur. Thus,
motion planners must be able to generate collision-free trajectories for every par-
ticular configuration of obstacles. Current approaches either use computationally
expensive search to find feasible motion or learn a set of motion parameters for par-
ticular object configurations with little generalization. Our approach combines the
benefit of learning from demonstration, to quickly generate an initial set of motion
parameters for each symbolic action, and policy improvement with path integrals,
to diversify this initial set of parameters to cope with different configuration of ob-
stacles. We show how the improved flexibility is achieved with a few minutes of
training and successfully solve tasks requiring different sequences of picking and
placing actions with variable configuration of obstacles.

CONTENTS

Contents

1 Introduction
1.1 Problem Statement
1.2 Related Work

2 Technical Approach
2.1 Task Planning
2.2 Motion Planning
2.2.1 Dynamic Movement Primitives (DMP)

2.2.2 Policy Improvement with Path Integrals (PI?)

2.2.3 Neural Network
2.3 Trajectory Generation for Obstacle Avoidance

2.3.1 Influence of the Optimization on the DMP Parameters

3 Evaluation

3.1 Obstacle Description
3.2 PI? Optimizations
3.3 Learning the Action Policy
3.4 Experimental Evaluation

3.4.1 Computation Times

3.4.2 Analysis of the Performed Actions . . .
3.5 Generalization Ability to Varying Object Sizes

4 Discussion

5 Conclusion

A Complete Execution of a Task Example
List of Figures

Bibliography

11
11
12
13
13
15

19
20
21
23
24
25
27
27

31

33

35

47

53

CONTENTS

Chapter 1

Introduction

Robots are often presented in fictive novels and movies as technologies that sur-
pass humans in their intelligence and motor skills. In reality, however, there are
mostly industrial robots that are restricted to "well-known and well-engineered
environments” [GNT04] or robotic vacuum cleaners that perform ”single simple
tasks” [GNTO04]. Despite the sixteen years that have passed since Ghallab et al.
published these statements, significantly more capable robots are not broadly avail-
able. In 2016, Stone et al. commented on this to be ”[d]|isappointingly slow
growth” [SBB*16]. One major challenge of performing multi-step tasks with vary-
ing object configurations is addressed in this work. To this end, an important role
plays the "reasoning side of acting”: planning [GNT04].

1.1 Problem Statement

Motion planning reasons about "detailed specifications” [KLP11] of the environ-
ment such as the geometry of objects. When a robot manipulates objects, high
precision is critical. A deviation of one centimeter may result in colliding with the
object instead of grasping it possibly resulting in irreversible consequences. Recent
advances in motion planning enable robots to reliably perform dexterous tasks un-
der variable situations [ABC*20, VSB*19]. Motion planners excel at performing
a single task, however, often in daily life, tasks consist of multiple steps which are
linked logically. For example, when pouring a drink into a glass, the bottle must be
grasped first. These logical requirements are difficult to implement into a motion
planner. On the other hand, task planners handle long sequences of actions effi-
ciently by defining high-level symbolic descriptions of the environment. Task and
motion planning (TAMP) combines both approaches to deal with dexterous and
multi-step tasks. However, the combination requires careful considerations about
the degree of task decomposition and the communication of geometric constraints
from symbolic to numerical description. Figure 1.1 illustrates the general problem
of Task and Motion planning. TAMP frameworks approach a solution in different
ways. Frameworks that rely on search methods to plan tasks and motions have

6 CHAPTER 1. INTRODUCTION

@olie Task Desc@

high level

Task Decomposition Geometric

\\ Reasoning

' Qotor Controlr>

low level

Figure 1.1: General approach to task and motion planning.

the limitation of requiring high computational effort each time before acting. This
makes a real-time capable robot harder to achieve. On the other hand, frameworks
that use learning-based motion planners generate motion without deliberation, shift-
ing the computational effort into the training. This reduces the computations at
execution time, however, requires high generalization qualities to adapt properly to
new objects and object configurations. This work focuses on improving the flex-
ibility of motions while maintaining a high level of precision and predictability.
Learning from demonstration (LfD) is utilized to efficiently encode motions from a
single demonstration into a set of dynamic movement primitive (DMP) parameters
[INH*13]. These DMP parameters are further refined using a reinforcement learn-
ing (RL) approach based on policy improvement with path integrals (PT?) [TBS10],
which permits shaping the trajectories for different configuration of obstacles. These
different configurations, and the corresponding set of DMP parameters, are used to
encode a policy into a neural network that permits a fast inference of the DMP pa-
rameters (shape of the trajectory) for a given initial and goal position of the robotic
hand and obstacles on the way.

1.2. RELATED WORK 7

1.2 Related Work

One approach to solve TAMP problems couples the task and the motion planning
search [DKCK18, BKLS17]. Bidot et al. [BKLS17] propose to backtrack generated
plans on two levels. Action backtracking reconsiders what action to perform. Ge-
ometric backtracking reconsiders how the action is performed. Due to the large
space of possible geometric configurations their work focuses on strategies to guide
the search with heuristics and prune the search tree with constraints. Dantam et
al. [DKCKI18] propose to incrementally increase the plan length during search and
dynamically add and remove motion constraints. First, a constraint-solver provides
a task plan. Then, for each action, a motion planner searches for a feasible solution.
When the search fails for one action, new constraints are added and an alternate
task plan is created. When no alternate task plan is found, all motion constraints
are discarded and the plan length and time horizon for the motion planner are in-
creased. Both works allow to find solutions to complex TAMP problems, however,
also result in many unsuccessful calls to the motion planner, leading to computa-
tionally expensive operations that increase exponentially with the plan length. We
solve a TAMP problem performed in [DKCK18] with a planning time reduction of
more than one order of magnitude on average by training the motion planner for
a few minutes and disregarding probabilistic completeness. Wells et al. [WDSK19]
extend on [DKCKI18] by training a SVM offline to provide a set of motion constraints
through inference. This reduces the computation times significantly. However, the
generation of 10000 training samples take the authors ”about two days”. Our ap-
proach generates the same amount of training data in about ten minutes. In contrast
to [WDSK19], we use neural networks to represent the training data to improve pre-
cision. The learned policy is directly used in the TAMP problem and cannot be
refined to achieve probabilistic completeness.

Another approach learns the motion execution instead of searching for a solu-
tion [QWA15, ASLP20]. In [QWA15], a RL agent performs actions in the envi-
ronment and receives rewards by comparing the actual changes of predicates with
the expected ones given by the task plan. At the same time, reported errors can
improve the accuracy of preconditions defined for the task planner. However, their
work is evaluated in a low dimensional task only and requires large training efforts
to generate feasible motion from scratch. In our approach we apply policy-based RL
to generalize the motion given by one demonstration. This leads to a more efficient
learning process. Agostini et al. [ASLP20] utilize LfD to efficiently generate motion
in a high dimensional space. A deeper connection of task and motion planner is
established by Action Contexts (ACs) which represent three consecutive symbolic
actions. In their learning process, unknown ACs trigger a request for a demonstra-
tion to learn motion parameters associated to the new action contexts and store
them in a database. This enables learning a diverse task set. However, learning one
task robustly requires several demonstrations in varying situations. In contrast, we
rely on only one demonstration and use RL to successfully act in varying situations.

8 CHAPTER 1. INTRODUCTION

Toussaint [Toul5] proposes an optimization-based approach applying logic geometric
programming (LGP). It solves problems where the goal is represented by an objective
function instead of a symbolic description utilizing a model of the robot. Instead, our
approach is model-free which allows direct transfer of the results to other systems
but do not consider singular configurations. Based on the LGP framework, Driess
et al. [DHT20] train a neural network to generate feasible action sequences faster
at execution time compared to running a LGP tree search. Similarly, the policy-
based RL method in the proposed framework optimizes an objective function and
a neural network is trained offline to reduce computation times. The approaches
based on LGP require intensive computations to find optimal solutions. On the
contrary, our approach is able to generate plans with long action sequences at low
computational cost using off-the-shelf linear planners. It also permits generating
collision-free motions quickly for variable object configurations.

Chapter 2

Technical Approach

This chapter introduces the fundamental methods of our task and motion planning
framework that is illustrated in Fig. 2.1. The task planner decomposes a complex
task into symbolic actions that are transformed into parameters generated by the
action policy. The action policy is learned in an offline process. One action is
demonstrated and encoded into dynamic movement primitives (DMPs). The policy
improvement with path integrals (PI?) method iteratively adjusts the parameters
of the forcing term 6; of the DMPs according to a cost function that considers
obstacles between the initial position and the goal position of the robot hand. The
set of parameters generated by the PI? for different obstacle configurations are used
to encode a policy into a multilayer perceptron that permits inferring the specific
parameters for the forcing term according to a given configuration of obstacles.

2.1 Task Planning

Tasks are defined using the traditional planning domain definition [GNT04]. A do-
main file describes the relevant predicates, constants and actions of a task environ-
ment in a general way using variables (7obj). It is encoded in the Planning Domain
Definition Language (PDDL) [MGH"98] and presented in Tab. 2.1. Predicates de-
scribe the object relations and properties (e.g. on cell cube). A planning operator
describes how the task planner can change the environment. It is represented by
an action that must comply with specified preconditions and generates effects after
the execution. The problem definition describes a specific situation with an initial
and a goal configuration of objects using the predicates (Tab. 2.2). A linear planner
(e.g. fast-downward planner [Hel06]) then searches for a solution to reach the goal
configuration using the available actions. This decomposes a complex task into a
set of symbolic actions. In this work, we then map object identities to coordinates
that satisfy the numerical input requirements of the DMPs.

10 CHAPTER 2. TECHNICAL APPROACH

Figure 2.1: The architecture of the proposed TAMP framework. High level symbolic
actions are processed to robot controls that act physically on the environment (blue).
The effects are observed and contrasted with the expected outcome of the executed
action in the plan (cyan). This loop is executed online to solve a TAMP problem.

The shape of the trajectory is decided by a neural network that is trained offline
(red).

2.2. MOTION PLANNING 11

(define (domain <domain—name>)

(:requirements :strips :typing)

(:constants air <...>)

(:predicates (on ?obj2 ?o0bjl) (left ?obj2 ?o0bjl) <...>)
(:action pop

:parameters (?0bjl ?20obj2)

:precondition (on ?0obj2 ?2objl))

:effect (and (on ?0bj2 air) (not(on 20bj2 20bjl))))
(action <next-action>

<...>))

Table 2.1: Composition of a domain in PDDL.

(define (problem <problem—-name>)

(:domain <domain—-name>)

(:objects objectl object2 object3 <...>)

(:init (on objectl object3) (left objectl object2) <...>)
(:goal (and (left objectl object2) <...>)))

Table 2.2: Composition of a problem in PDDL.

2.2 Motion Planning

2.2.1 Dynamic Movement Primitives (DMP)

Dynamic movement primitives (DMPs) approximate a demonstration with a trajec-
tory that is generated by a spring-damper system [INH*13],

¥ =a(flg—y)—y)+ f(D), (2.1)

where y, v,y define the trajectory, 7 the duration of the trajectory and g the goal.
The system is critically damped with § = a/4 and f(t) represents the learnable
forcing term,

N

() = iz 206 (2.2)
Zi]\il ‘Ijz(t)

where U represents N basis functions with fixed centers and widths, scaled with

adjustable parameters 6;.

The demonstration D provides yp,yp,¥p. Solving (2.1) for f(¢) returns the ap-

proximation parameterized in the basis function weights ;. Defining any initial

position yg and goal position g, the DMP creates a new trajectory using the learned

forcing term to reproduce the demonstration in a new situation.

Roto-Dilatation Invariance When the difference in length and direction of y@
compared to Yo pgp becomes larger, the forcing term distorts the trajectory instead

12 CHAPTER 2. TECHNICAL APPROACH

of preserving the shape of the demonstration. Those distortions vary with the se-
lection of the spring-damper parameters «, 5. Ginesi et al. [GSF19] address this
problem by transforming the forcing term parameters 6; p of a DMP the same way
gﬂ] is transformed from ZJO,TQZS using normalization and a rotation matrix to achieve
roto-dilatation invariance. We apply the rotation invariance in the two dimensional
XY plane and dilatation invariance to the three dimensions XY 7.

2.2.2 Policy Improvement with Path Integrals (PI?)

Policy improvement with path integrals (PI?) is a model-free, policy-based RL algo-
rithm that is derived from stochastic optimal control (SOC) [TBS10]. It is applied to
parameterized policies and performs numerically robust in high dimensional prob-
lems. A DMP provides the initial policy, e.g. the learned parameters ¢; p. The
exploration variance ¢? is the only tuning parameter. The exploration noise €;; is
sampled at each time step from a Gaussian distribution A/(0, 0?) and is added to 6;.
Stulp et al. [SS12] simplified this approach by sampling ¢; only once at the first time
step and updating the policy only once after the last time step with the aggregated
costs. Those two modifications improve the performance, reduce the convergence
time and ”do not violate any of the assumptions required for the derivation of PI?
from SOC” [SS12]. Each iteration creates K random samples,

AR 23)

where k= 1,..., K and j = 1,..., J with J the maximum number of iterations. Fach
policy is evaluated with a cost function S (Hf)

T-1
S(8],) = by + Z @ 1 (2.4)
t=1

where (bjf i 1s the terminal cost of a sample k at an iteration j and qf i 1S the immediate

cost at each time step t. Each trajectory sample 9,{ ;. 1s then weighted according to
its performance compared to the other K — 1 samples in one iteration:

S(ka) — min S(Oz))

(2.5)

Wy(0!,) = - ' :
o Z,k) eXp(7maXS(eg)_mins(eg)

where v = 10 is a constant. Finally, the parameters of the new policy #/T! are

calculated as X S
gitl _ Zk:l WG(eg,k‘)ezj‘,k.

Z > Wa(6],)
The PI? optimization-loop is illustrated in Fig. 2.2 (adapted from [STS12]). Hence,

given a parameterized trajectory, PI? has the ability improve it step-by-step towards
a certain goal that is described by the cost function S.

(2.6)

2.3. TRAJECTORY GENERATION FOR OBSTACLE AVOIDANCE 13

DMP Sampled Trajectories Costs Updated
Parameters Parameters Parameters

eD 0 + €L S enew

Sy Cane

Figure 2.2: Optimization loop of PI? [STS12].

2.2.3 Neural Network

PI? provides a large amount of varying and precise trajectories represented by the
forcing term parameters ;. A neural network is trained on the data via super-
vised learning to enable the decision making using the Levenberg-Marquardt algo-
rithm [Mor78]. The generated data is not independent. Within one optimization,
each iteration j depends on all previous iterations 1, ..., j — 1. Hence, the neural net-
work is overfitted to the training data and is not expected to generalize to unseen
inputs. However, it serves as a compact representation of the data and precisely
reproduces the training data. The input data is collected from the PI? cost function
and the outputs are the forcing term parameters 6;.

2.3 Trajectory Generation for Obstacle Avoidance

Tasks that involve multiple objects demand flexible motion. In the trivial case, the
target object can be approached by linear motion. In non-trivial cases however,
the goal position is located on the other side of the object or other objects must
be avoided. Here, the objects might have different sizes or are placed in different
configurations. Hence, dependent on the situation, a specific shape of the trajectory
is suitable. We apply PI? on a trivial demonstration to generate curved variations
that are suitable for divers object sizes and configurations.

To this end, we propose a cost definition for PI? that tunes the forcing term of
the DMPs to create these curved variations that allow the robot to avoid obstacles
of variable size. One cost term decreases continuously while the other cost terms
constrain the decrease to ensure that the result of each iteration comply with the
defined requirements of a TAMP problem w.r.t. to the scope of the work space and
the goal precision.

The continuous term of the cost function is a terminal cost and depends on the
trajectory height H,

H = min(z,), (2.7)

14 CHAPTER 2. TECHNICAL APPROACH

which is defined by a vector of weighted heights z, for observation points p along
the linear trajectory. At the observation points (e.g. boundaries of an obstacle) the
heights of the trajectory h, are measured,

2z = —=. (2.8)

The weights W, normalize the heights and allow the generation of trajectories with
varying heights at the observation points, when e.g. an obstacle has different local
maxima or when there are several obstacles of different heights. The choice of the
observation points p depends on the relative position of obstacles between 1y, and g.
Each observation point can be interpreted as a thin wall that the trajectory learns
to avoid. The second cost term features an immediate cost represented by a hinge

loss function,
T

Sscope = Z max((), m + Yo — yt)» (29)
t=1
which counts the time steps ¢ where the trajectory exceeds the border with a margin
m. This term depends on the task environment and summing variations of this term
allows to contain the trajectories within a specific scope. The third term of the cost
function is an terminal cost and ensures the goal precision of the trajectory,

Sprec =119 = Yenall, (2.10)

which increases when the actual end of the trajectory y.,q deviates from the expected
goal g of the DMP. The total cost S is the weighted sum,

S=-H+ C1- Sprec +co- Sscopeu (211)

where ¢; = 10, ¢; = 1 are chosen to regulate the influence of the corresponding terms.
The height H adds negative cost, as larger heights are desired. The optimization
converges towards H = oo, hence, a maximum height must be set to terminate the
optimization process.
During the optimization process, the distance between 1y and g is constant and
taken from the demonstration: Ip = ||gp — yo.p||. However, DMPs permit setting
the initial position gy, and the goal g arbitrarily. The dilatation invariance then
preserves the shape of the demonstration. Hence, we define a dilatation-invariant
length-to-height ratio r. representing the degree of curvature,

re = E, (2.12)

Ip

which is constant for a specific set of DMP parameters 6;.
Figure 2.3(a) illustrates an example of this process for two points pl, p2 with equal
weights W, = [1,1]. Every one hundred iterations the current policy is plotted,
starting from the linear trajectory (black). The dashed line marks the current rJ.

2.3. TRAJECTORY GENERATION FOR OBSTACLE AVOIDANCE 15

Figure 2.3(b) shows the evolution of the cost function. It decreases steadily, however
has small peaks that illustrate that not every iteration j has lower cost than the
previous iteration 7 — 1. The cost for the goal precision Spec is constantly smaller
than 0.02 indicating that the goal precision of each generated trajectory is smaller
than 0.02/c¢; = 0.002m. The optimization reaches the termination condition r} = 1
at iteration J = 889. Here, the trajectory heights at the observation points are
hpy > lp and hpy > Ip by definition. This means that the robot hand can avoid
an obstacle of height H = 0.15m when ||yo — g|| = 0.15m. When ||y — g|| = 0.2m
the same parameters reach the height of H = 0.2m. To avoid the obstacle with less
effort, the parameters from previous iterations, e.g. 7 = 700, are more suitable. Each
iteration j generates DMP parameters that avoid a virtual object most efficiently
compared to any other iteration up to the defined maximum ratio r;. However, the
relative length L where the trajectory maintains the height H is constant during
one optimization. To allow more variations, we combine ten pairs of pl and p2
in the experiment (see Sec. 3) creating trajectories that vary in steepness. When
a point pl is placed close to o the trajectory must quickly increase to reach H,
when pl is placed in the center between 1y, and g the trajectory does not require
that steep ascend. In the example (Fig. 2.3(a)), the points pl, p2 represent a length
L = |pl—p2| and allow avoiding an obstacle of L=1L requiring a moderate steepness
of the trajectory slope.

Also complex shapes can be created reliably. Figure 2.4 illustrates an example where
we reshape a linear trajectory in 3D with observation points pz = [0.03,0.06, 0.12]
that measure the height in Z direction with corresponding weights W,,, = [—0.5,1, —0.3].
Additionally, at points py = [0.04,0.13] the height in Y direction is optimized with
weights W,,, = [1, 1]. Ten consecutive runs achieve the termination condition 7} = 1
after J € {9900, 16900} iterations. The optimization is stable but requires more
iterations and time compared to simpler shapes. A more detailed assessment of the
computation effort for simple shapes is given in Section 3.2. Generally, it can be
observed that the complexity of the trajectory shape depends mainly on the number
of observation points and the required steepness.

2.3.1 Influence of the Optimization on the DMP Parameters

Each iteration j = 1,..., J represents the forcing term parameters 6’{ of the DMPs
that generate the trajectory. In this 2D optimization, the DMPs in X and Z direc-
tion are tuned. Figure 2.5 illustrates the corresponding parameters for the demon-
stration D, at 7 = 500 and at r. = 1. We can observe a clear correlation between the
trajectory height and the magnitude of the activations. A trajectory with a stronger
curvature shows a steep ascend in the beginning, the first half of the parameters of
6389 in Z reflects this slope by larger values, representing higher forces in positive
Z direction. Also the parameters in X direction show an increase in magnitude.
This is explained by the constant duration 7. The trajectory with higher curvature
requires higher velocities to arrive at the same goal g after the same amount of time.

16 CHAPTER 2. TECHNICAL APPROACH

RO R . e~ 889 ..
'9 _______ T e — N\ — — — — - (é
T 0.75 1L e N\ --H700 %
= A T e — N\ — - B
05 T S\ P =
= - L — T TN — — =N\ - S
~ WY\ 300 °
2025 s —— N\ £
+—
= - Y100 B
T 0 - 48 .
= 0 pl p2 0.15
Length of the trajectory {p (m)
(a)
0 P M
r T,
s H T
DL e e SR,
B —Cg scope B “M”/Wﬂvju%

0 100 200 300 400 500 600 700 800 900
Number of iterations j

(b)

Figure 2.3: Evolution of the trajectory (a) and the cost (b) during one PI? opti-
mization.

ply |

P2y |

0.110.34 0.64 1 r. plz P27 p3z

Figure 2.4: PI? optimizations for a complex trajectory. At each plotted iteration,
the heights increase and keep similar proportions as specified by the weights Wy

and W.

2.3. TRAJECTORY GENERATION FOR OBSTACLE AVOIDANCE 17

Despite the visible correspondence, the evolution provides no indication for a trivial
solution such as, for example, multiplying all parameters with some scaling factor.

Parameters 6; p Parameters 6% Parameters 688
) A (]

S N

Activations in Z Activations in X
o~

1 4 7 10 1 4 7 10 1 4 7 10
Radial basis function i

Figure 2.5: Evolution of the DMP parameters with PI?.

18

CHAPTER 2. TECHNICAL APPROACH

19

Chapter 3

Evaluation

To assess the validity of our approach with respect to the state of the art, we use
the same benchmark scenario as in [DKCK18], where colored cubes are placed in
a grid configuration where the cells have a distance of vy = 0.1m in X direction
and vy = 0.15m in Y direction. The task consists of picking and placing cubes
in an ordered manner until the goal configuration is reached (see Fig.3.1). This
task requires reaching the locations for grasping and placing with high precision.
All initial and goal positions lie on the same XY plane. Collisions are avoided by
moving in positive Z direction. As in [DKCK18], we use a simulated environment
for the experiments, implemented using the physically realistic simulator V-REP
[RSF13]. Figure 3.1 shows an image of the simulation during a placing operation
of cube4 avoiding cube6 and cube8. The task planning domain is defined using the
predicate on ?cell ?cube. The notation on ?cell air is used to indicate that a cell
is unoccupied. A symbolic action is defined as pickplace ?from ?to ?cube, where
7from and 7to are grounded with the initial and target cells, respectively. Table 3.1
shows an example planning operator in the PDDL.

Several trajectories with different shapes must be generated for sorting out the cubes
without collisions in a variable set of situations. We let the system learn an action
policy using PI? that is able to shape the trajectory for every particular configuration
of cubes and action, using the approach described in Sec. 2.3. To learn the action

(:action pickplace

:parameters (?from ?to ?cube)

:precondition (and (on ?to air)

(on ?from ?cube))

:effect (and (on ?from air) (on ?to ?2cube)
(not (on ?to air)) (not (on ?from ?2cube))))

Table 3.1: The pick-and-place task is decomposed into sequences of this pickplace
action.

20 CHAPTER 3. EVALUATION

policy, the following steps are applied in an offline training process after the action
demonstration (in red in Fig. 2.1):

e Identify observation points.

e Define cost function.

e Generate DMPs for different obstacles.
e Learn action policy (neural network).

Afterwards, the learned action policy is evaluated and compared to [DKCK18].

5]

3 9
X
(a) Simulation of a place operation (b) Observation of the cube poses
in MATLAB

Figure 3.1: Simulation of the symbolic action pickplace cell7 cell6 cube4.

3.1 Obstacle Description

To allow a representation of various situations where different lengths L at height
H are required we choose to discretize the area between the initial position gy, and
the goal g with B = 20 borders to create distinctive areas that detect obstacles
(illustrated in Fig. 3.2). Each border b = 1, ..., B can be chosen as observation point
p. The observation width ws = hewe + 0.03m is chosen empirically and can be
adjusted to represent the combined width of the grasped object and the gripper.
When the vertices of an object intersect with an area A1, the borders at each
side are activated. This is sufficient, since we are interested in the extreme points of
convex objects. The activated border that is closest to yg or g is selected as the first
observation point p1. The other point p2 is set symmetrically such that L is centered
between 1y and g. Similar to the trajectory height H, we must define a dilatation
invariant description of L, which is constant for specific DMP parameters 6;. Since

3.2. PI*> OPTIMIZATIONS 21

the boundaries are defined relative to the distance ||y — g||, they are dilatation
invariant. Hence, we define L as a tuple of two borders, e.g. L = (8,13). Figure 3.3
shows an example how the same object parameters require different trajectory shapes
(and therefore different 7, and L representing different DMP parameters 6;) when
the distance between yq and ¢ differs.

Yo pleZ g
IIIIIIIIWIIIIIIII

O 0

e

1
L

1 8 13 20

b

Figure 3.2: Discretized observable area for describing an obstacle. In this example
L = (8,13). A trajectory that avoids this obstacle is generated with a minimum
height H between pl and p2.

3.2 PI? Optimizations

The optimization process is applied to each of the ny = 10 symmetric combinations
of L. To this end, we derive pl and p2 for each of the n; optimizations, where

_lp-L(1)

Pl="p1 (3:1)

and similarly, p2 is derived with [3(2). We constrain the generated trajectories for
all optimizations to be contained along the X axis within a margin m = 0.01m from
yo.p and gp respectively,

T
Sscope = - Z min(O, m —+ Yx:— yO,X)
t=1
! (3.2)
— Z min(0, m + gx — yx.t)-
t=1

Due to the stochastic property of the PI? optimization, we evaluate its numerical
robustness running the optimization np = 10 times resulting in np X n; optimiza-
tions. Figure 3.4 illustrates the resulting computation times and number of iteration
J until the termination condition 7} = 1 is reached. Both metrics evolve nearly pro-
portional. Trajectories with steep slopes, e.g. L= (1,20), take more computational

22 CHAPTER 3. EVALUATION

Z (m)

r. = 0.5 1 \
\ :hclearance
A
, X
2

i H—>
" T TR T 3

hcube

L=(8,13)

(a) Placing when gy and g are further away from the obstacle

Z (m)

A

re=1 \ A

v hclearance

hcube
2 v >
Yo 'UJM{JMMLLM)M'Q X (m)
L = (4,16)

(b) Placing when yo and g are close to the obstacle

Figure 3.3: The length L and height H ~of the obstacle are constant. The required
trajectory shape, represented by r. and L varies depending on the distance ||yo — g]|-

3.3. LEARNING THE ACTION POLICY 23

effort to reach the same height. The deviation of the effort is also larger for more
complex slopes. All 100 optimizations achieve r} within one minute verifying the
expected stability of the PI? method.

50 N

i or | 2400 _

2 O & o, 1 2000 .2

+ » N :X , g

5 30+ s e g O 1600 =

LR B 8] S

E o . o B 8 & 7 S 11200 &

S | 7

S oor o 1800 ~
10

(0.12) (714) (5,16 (?;,lfé) (1,20)

Trajectory steepness L

Figure 3.4: Ten PI? optimizations are performed for each trajectory steepness L. For
each optimization the final computation time (blue) and the number of iterations
(red) are plotted. All optimizations reach the termination condition r} within one
minute, validating the expected numerical robustness of P12

3.3 Learning the Action Policy

In this section we define the input parameters for training a neural network that
provides the action policy for the motion planner. The height-to-length ratio r.
(2.12) and the steepness L serve as an input for the neural network to retrieve the
forcing term parameters #; as output which are expected to generate the desired
trajectory. The variable r represents the tuples of L as one value,

re = (|L(2) = L(1)| + 1)/B, (3.3)

resulting in r;, = 0.1,0.2,...,1 for our discrete selection. To keep a near identical
distribution of the training data, we sample uniformly the same amount of samples
from each optimization. The number of samples is determined by the optimization
with the minimum number of iterations J. To evaluate the performance, we train
np networks on the combined data sets with 50 hidden neurons for 40 epochs and
evaluate the goal precision d,,

S rec
dg =7 ’ (34)
Ip
where Sp,.. is defined in (2.10) and the deviations in height dp,
H
dg =1, — — (3.5)

Ip’

24 CHAPTER 3. EVALUATION

where H is defined in (2.7). To this end, Fig. 3.5 presents for each 71, np x 50
uniformly distributed ratios 7. in the range [0, 1]. The goal locations deviate only
positively with a mean of 0.27% and a maximum of 1.6%, hence, no collisions of the
gripper with the surface occur here. The mean height deviation is 0.47% with the
maximum at 6.8% and the minimum at —3.4%. The largest deviations appear at
the extreme points of the range at either r.o, .50 and are highlighted in the figure
for the two most prominent examples.

(%) Goal precision relative to p

0.1} : :
T EEREEE § _

tesddadsg g

(% Hight deviations relatlve to Ip

6l T NG
- N + N + n i

* ¥ + i

U RN B S
e s e it

olF * 4 F F 0+ 4 L
A

(0.12) (7,14) (5,16) (3.18) (1.20)
Trajectory steepness L

ANAONR AR RN RAN AT RN RN NRANAS

Figure 3.5: Height deviations dy and goal precision d, of 5000 reproduced trajecto-
ries using neural networks, illustrating the two most significant outliers.

3.4 Experimental Evaluation

We perform 20 consecutive runs with randomly initialized goal cells and cube po-
sitions. Each pickplace action consists of one pick and one place operation where
the DMP parameters are retrieved from the neural network. The pick operation
must always avoid a cube at yo and g. Hence, the steepest trajectory shape r;, =1

3.4. EXPERIMENTAL EVALUATION 25

(L = (1,20)) is selected. The place operation distinguishes if and where an obstacle
is located and therefore, selects varying ;. The ratio r. varies in both operations
and depends on whether and where an obstacle must be avoided. Figure 3.6 illus-
trates the range of different trajectory shapes that the action policy can select. A
clearance height is added on top to cope with uncertainties. The width of the goal
cells w, monitors the precision. When a vertex of a cube exceeds the area that wy,
spans, the symbolic action is reported as a failure. Table 3.2 shows the parameters
of the experiment. All 159 pickplace actions are successfully executed with the first
attempt.

Range of the selectable trajectory shapes
(8,13)

(9,12) (7,14)

Figure 3.6: Depicted are the trajectory shapes for the ten combinations of L. For
each L, 50 uniformly distributed . in the range [0, 1] are plotted.

3.4.1 Computation Times

Figure 3.7 provides the computation times per plan length for the task and the
motion planner. The motion planning time is composed of the time for computing
the output from the neural network and the trajectories that are derived per time
step by the dynamics of each DMP. Compared to the Iteratively Deepened Task and
Motion Planning (IDTMP) from Dantam et al. [DKCK18], our approach requires
single calls to the task planner as well as to the motion planner and therefore, the
computational effort is reduced significantly. Our framework performs one search for
task planning at the beginning of each run. The computation times increase linearly
with the plan length not surpassing 0.01s. Due to the continuous oscillations between

26 CHAPTER 3. EVALUATION

DMP parameters

Number of time steps T 200
Duration (s) T 15
Number of basis functions N 10
Damping coefficient o 10
Length of the demonstration (m) Ip 0.15
PI? parameters

Exploration noise € 0.04
Number of samples K 10
Experiment parameters (m)

Width of the goal cell Wy 0.05
Cube dimensions Reube 0.04
Width of the observed area (Fig. 3.2) wa Reube + 0.03
Grasping height herasp 0.02
Clearance helght hclearance 10% - ||y0 - g”

Table 3.2: Parameters for the pick-and-place task.

calls to the task and to the motion planner, the task planning time of the IDTMP
increases exponentially. At a plan length of four symbolic actions it takes 0.01s,
for ten symbolic actions 10s. Regarding motion planning, times of our approach
increase linearly at a lower rate and is an order of magnitude faster at a plan length
of five symbolic actions. In contrast to IDTMP, our approach requires to train the
motion planner once. The computation times for generating the demonstration,
generating the trajectory samples and training the neural network accumulate to
nine minutes on average (Tab. 3.3), performed on a Intel i7-4790 CPU @ 3.60GH z,
16GB RAM.

x1073
]

(@)
2
=

0 000
a®

O 00 O

o O

N}
o

<
b
(o]

Task Planning Time (s)
o

Motion Planning Time (s)
)
w

t
o

5 6 7 8 9 10 78 9 10
Plan Length Plan Length

Figure 3.7: Computation times of the task planner and the motion planner for 20
random runs.

3.5. GENERALIZATION ABILITY TO VARYING OBJECT SIZES 27

Training times (s)

Generating the demonstration 0.02
PI? optimizations of ten trajectory shapes 241
Training of the neural network 279
Total training time 520

Table 3.3: Training times for the pick-and-place task.

3.4.2 Analysis of the Performed Actions

In the experiment, the obstacle height H is constant and hence, not many trajectory
variations are expected. However, considering the height relative to the trajectory
length [p creates more divers situations. Figure 3.8 shows all pick-and-place op-
erations during the 159 pickplace actions. There are 25 different combinations of
inputs for the neural network (r.,r;). The performed trajectories can be assigned
to three different scenarios: placing with or without obstacles and picking. When
placing a cube without an obstacle the steepness of a trajectory does not matter
and a random value for r;, is chosen. The grid is relatively large compared to the
cube size which explains the large number of place operations that do not require
obstacle avoidance. Also noticeable is the small range of r. € [0.1,0.3]. The clear-
ance height marks the lower bound. The upper bound is significantly smaller than
the maximum learned 7} = 1.

3.5 (Generalization Ability to Varying Object Sizes

Performing the task with the same cubes requires only five different place operation
with obstacles. In an additional step, we evaluate the same action policy on the
pick-and-place task randomly varying the obstacle length L and the obstacle height
H (same for all cubes) and inducing random noise e, to the locations of the cells
(each individually). Table 3.4 shows the range of H, L that are arbitrarily chosen
and e,, which depends on L to avoid overlapping. We perform the same 20 tasks
initializing the block size L x L x H and the cell positions at the beginning of each
task. Again, all 159 performed actions are successful at the first attempt. Figure 3.9
shows the analysis of the performed actions. This time, the action policy selects 76
distinct trajectory shapes. Especially the required place operations with obstacles
are significantly more divers with 48 distinct trajectories compared to the analysis
with equally sized cubes and constant cell positions throughout the 20 runs. The
maximum 7. is also significantly closer to the learned . There are seven more
place operations without obstacles than in the previous analysis indicating that
the varying size or cell position creates enough space to pass the object instead
of having to avoid it. The pick operations are similar to the previous analysis,
since the grasp height is the same. However, due to the random cell places, the
distance between two cells varies and thus, also the trajectory shape. The blue

28 CHAPTER 3. EVALUATION

| Placing without obstacles: 90 times |

| Placing with obstacles: 69 times |

| Picking with obstacles: 159 times |

119 31 271324 12322 27 18],
4
7
08 || ! |
3 8
9 |10
- 0.6 16 %
” 10
73 A4 U 1
< y 9 s 11 18
g . : . .
g 02| 10 10
& 7

0.1 012 0.14 0.16 0.18 0.2 0.22 0.24 026 0.28 0.3

Length-to-height ratio 7.

Figure 3.8: The analysis of the performed pick-and-place operations shows a point
for each trajectory shape that is generated in the experiment. There are 159 place
operations and 159 pick operations. In total, there are 25 distinct input combina-
tions 7., rp representing 25 different trajectory shapes. At each combination the
frequency of the appearance is placed on top of the point.

3.5. GENERALIZATION ABILITY TO VARYING OBJECT SIZES 29

Variation range of the parameters

Obstacle height H (m) [0.8,2.8] - hcube
Obstacle length L (m) [0.6,1.2] - hcupe
Cell position noise e, +(vx /2 — L —0.001)

Table 3.4: Range of variations to the object parameters.

asterisks mark the performed operations of one run that features ten distinct place
operations and seven distinct pick operations. The randomly initialized dimensions
of the blocks are L = 0.95 - heubes H=256- heube, the positions of the cells deviate
by up to e, = 0.011. Screenshots of this task from the simulation in V-REP and the
corresponding MATLARB figures are presented in Appendix A.

Placing without obstacles: 97 times

| Placing with obstacles: 62 times |

| Picking with obstacles: 159 times |

1 ~ * K K . * K . ¥ * —

0.8 || . |
< .
2 061 . . . i
S * . . .
204 . S . . ,
O
a . e e e e e e ex e e
g 021 . L \ i
5 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Length-to-height ratio .

Figure 3.9: The same tasks are performed with varying object sizes and positions.
Again, a point in the figure represents one trajectory shape that is generated in the
experiment. This time, there are 76 distinct input combinations r., r; representing
76 different trajectory shapes. The blue asterisks mark the operations that are
performed in one task that is illustrated in Appendix A.

30

CHAPTER 3. EVALUATION

31

Chapter 4

Discussion

Comparison to IDTMP The proposed TAMP framework solves the evaluation
task more efficiently than the compared IDTMP approach by Dantam et al. [DKCK18|.
Especially for increasing plan lengths the computation times for the combined plan-
ning decreases by orders of magnitudes due to the IDTMP’s exponentially growing
task planning times. Hence, our approach is suitable for TAMP problems with large
plan lengths. This efficiency comes at a cost of limited connectivity of the task
planner and the motion planner. Problems, where the motion execution of the first
subtask depends on another subtask, e.g. placing two objects on the same area with
limited space. Those constraints must be handled by the task planner providing the
appropriate goal position already at the beginning. The proposed approach is then
able to select a trajectory shape that avoids collisions.

Limitation of a Constant Gripper Orientation In the experiment the orien-
tation of the gripper is constant, consistently opening and closing in Y direction.
This constrains the configuration of the cubes to positions that keep certain space
to the next cube along the Y axis. Introducing a second grasping pose rotated by 90
degree improves the flexibility and can be solved by introducing another predicate
into the task planner (e.g. left cubel cube2) or by observing the direct surround-
ings of each cube (similar to the observation of obstacles between y, and g) and
reacting with initializing the DMPs with one of the two orientations.

Complexity of Generated Trajectory Shape and Adaption to Dynamic
Changes We apply the optimization with PI? to smoothly reshape the trajectory
towards an engineered goal. The more complex and precise a desired trajectory
shape defined, the more effort must be placed in creating the reward functions for
the optimization. Balancing the costs becomes harder. The min(z,) ensures that
each value is regarded in the optimization process. Otherwise, when —oo marks the
minimum cost, the value that achieve the highest rate of decrease is favored by the
algorithm. For future work, another way of increasing the complexity of the shape
could be achieved by coupling DMPs during the execution adding several different

32 CHAPTER 4. DISCUSSION

primitive shapes from our approach. Additionally, this has potential to improve the
ability to adapt to dynamic changes. The DMPs used in this work do not use the
proposed canonical system [INH'13] that allows coupling of DMPs. Therefore, our
trajectories keep approaching the goal pose without reacting to any dynamic inputs
from the environment. The safety of humans can be guaranteed by sensors that
stop the robot when a collision occurs, however, for human-robot collaborations,
dynamic motion adaption is important to permit practicability.

Supervised Learning on Dependent Data The proposed approach learns the
decision making in a supervised way on the data that is continuously generated
during the PI? optimization. Each optimization loop builds upon the previous
result (Fig. 2.2). During the training of the neural network, there is no independent
data for a validation or test set that creates the generalization ability, hence, the
neural network overfits to the training data. Each of the ten optimizations for L
are independent. The trained network shows no exploration ability and also no
useful interpolation results for r;, € [0.1,1]. Interpolation regarding the ratio r. is
possible. A data set of independent data can be generated by taking only a few
samples per optimization run. However, instead of generating a data set of 1000
samples within one minute, 1000 independent data samples may take about eight
hours. For future work, it might be interesting to evaluate the performance when
trained on independent data. Certainly, interpolation between several continuous
variables could enable the action policy to generalize to more divers scenarios.

33

Chapter 5

Conclusion

The proposed TAMP framework with a motion planner based on the combination
of LfD and RL reduces the computation times during an experiment by more than
one order of magnitude compared to a search-based framework [DKCK18] after nine
minutes of training. This makes the proposed approach also suitable for task plans
with more than ten actions. Our approach is able to select a trajectory shape that
avoids collisions for a variable set of configuration of obstacles. In tasks with vary-
ing object sizes that require similar trajectory shapes, our approach is particularly
convenient due to its efficient trajectory generation with PI?. In future work, we
aim at improving the integration of different optimizations to also allow meaningful
interpolations between different trajectory shapes. Furthermore, the coupling abil-
ity of DMPs [INH"13] might have the potential to combine our generated shapes
to more complex trajectories and additionally enhance the adaption to a dynamic
environment.

Task and motion planning will attempt problems that humans face every day. From
creating shopping lists based on meals that one would like to prepare in the next
week to carefully breaking eggs to scramble them in a pan. The variation of tasks
that humans perform routinely is vast and challenging to implement the required
functionality into a machine. However, considering all the tasks that humans must
do rather than want to do, there is enormous potential to improve human life with
technology that is capable of planning.

34

CHAPTER 5. CONCLUSION

35

Appendix A

Complete Execution of a Task
Example

36 APPENDIX A. COMPLETE EXECUTION OF A TASK EXAMPLE

.,/ Generated Trajectory it NN Input Task Plan
|Determinetrajectory height: r,=026 ‘ |‘F1= pickplace celll celld cube3

[#2: pickplace celi2 celll cubes

| Determine trajectory steepness: r =1 ‘

[#3: pickplace cell4 cellz cubel

[#4: pickplace cell cell4 cubes

NN Output [#5: pickplace cells cells cupes

|#s: pickplace cell7 cell5 cube7

[#7: pickplace celll ce117 cubes

[#e: pickplace cells celll cubes

Activations

2 |#9: pickplace cell3 cell8 cube2

|#10: pickplace cell9 cell3 cube3 ‘
0 2 4 6 8 10 i
0 Pick
a Starting the Task...
urrent Configuration

Trajectory Precision

|Gaal deviation: d_ =0.92%

- -

| Height deviation: d, =-7.39%

,,|Generated Trajectory o et NN Input Task Plan
|Determinetrajectory height: r,=0.38 ‘ |‘F1= pickplace celll cell9 cube3

[#2: pickplace celi2 celll cubes

| Determine trajectory steepness: r =0.2 ‘

[#3: pickplace cell4 cellz cubel

[#4: pickplace cell celld cubes

NN Output |#5: pickplace cell5 cell6 cube5

|#s: pickplace cell7 cell5 cube7

‘ |#7: pickplace celll cell7 cube8
£= |*a: pickplace cell8 celll cubed
grz |#9: pickplace cell3 cell8 cube2

|#10: pickplace cell9 cell3 cube3 ‘
0 2 4 6 8 10 c
0 Pick
a Starting the Task...
urrent Configuration

Activations

Trajectory Precision

|Goal deviation: d_ =0.03%

Height deviation: ~ d, =0%

37

0z

0z

ajectory height
Obstacle height

Generated Trajectory

NN Input

Task Plan

Generated Trajectory

Activations

Activations

| Determine trajectory height:

r =018 ‘
.

| Determine trajectory steepness: r,

i ‘

Trajectory Precision

|Gaal deviation: d 0.01%‘

|Heigm deviation: d,, =0.03% ‘

NN Output

3
0
2
4

0 2 4 6 8 10

”\.x

4
2
0
2

o 2 4 3 s 10

|*Ql:’~
[#2:
[#3:
[#4:
[#5:
[#s:

pickplace celll cube8

pickplace cell4 cell2 cubel

pickplace cell6 celld cubeé

pickplace cell5 cellé cube5

pickplace cell7 cell5 cube?

[#7: pickplace celll cell7 cubes

[#e:
[#e:

pickplace cell8 celll cubed

pickplace cell3 cell8 cube2

|#10: pickplace cell9 cell3 cube3 |

Pick
|Task step #1 was successful, starting next action... |
Current Configuration

Activations

Trajectory Precision

|Goal deviation: d_ =0.03% ‘

|Heightdeviation: d,, = 0.19%

=

’—‘qm‘m heght NN Input Task Plan
Obstacle height
| Determine trajectory height: r,=01 ‘ |‘Q1 : pickplace celll cell9 cube3 ‘
—— [#2: pickplace cell2 celll cubes |
| Determine trajectory steepness: r =0.8 ‘ | - ‘
3: pickplace cell4 cell2 cubel
[#4: pickplace cell§ celld cubes |
NN Output [#5: pickplace cell5 cell6 cubes |
|#s: pickplace cell7 cell5 cube? ‘
3
[#7: pickplace celll cell7 cubes |
go |0fB: pickplace cell8 celll cubed ‘
3
52 |#9: pickplace cell3 cell8 cube2 ‘
il |#10: pickplace cell9 cell3 cube3 |
0 2 4 6 8 10

Pick

|Task step #1 was successful, starting next action... |
current (.omlguratlon

%
2]

L
[

38 APPENDIX A. COMPLETE EXECUTION OF A TASK EXAMPLE

Generated Trajectory e e NN Input Task Plan

02

cell9 cube3

ickplace cell

| Determine trajectory height: = 0.29 ‘

pickplace cell2 celll cube8

| Determine trajectory steepness: r =1 ‘

[#3: pickplace celi4 cellz cubel

[#4: pickplace cel1 cell4 cubes

NN Output

[#5: pickplace cell5 cellé cubes

|#s: pickplace cell7 cell5 cube7

[#7: pickplace celll ce117 cubes

[#8: pickplace cells celll cubes

Activations

2 |#9: pickplace cell3 cell8 cube2

|#10: pickplace cell9 cell3 cube3 ‘

Activations

0 2 4 6 8 10

0,5

I

Trajectory Precision

|Gaal deviation: d_ =0.04%

0.31% ‘ EI I;l

| Height deviation:
,,|Generated Trajectory o et NN Input Tﬂék PFan
| Determine trajectory height: r,=0.1 ‘ |‘I1 B i «

s celiz.

| Determine trajectory steepness: r =0.6 ‘

[#3: pickplace celi4 cellz cubel

[#4: pickplace cell cell4 cubes

NN Output [#5: pickplace cells cells cupes

|#s: pickplace cell7 cell5 cube7

[#7: pickplace celll ce117 cubes

|*a: pickplace cell8 celll cubed

: pickplace cell3 cell8 cube2

Activations

3
3=
©

|#10: pickplace cell9 cell3 cube3 ‘

0 2 a 6 8 10 P
o,

L

Activations

Trajectory Precision

|Goal deviation: d_ =0.03%

|Heigm deviation: d,,=0.19% ‘

39

0z

0z

ajectory height
Obstacie height

Generated Trajectory

NN Input

Generated Trajectory

—Trajectory height
Obstacie height

Activations

Activations

| Determine trajectory height: L= 0.21 ‘

| Determine trajectory steepness: rn= 1 ‘

NN Output

3
0
2
4

0 2 4 6 8 10

“w.x

4
2
0
2

o 2 4 3 s 10

bz

Trajectory Precision

|Gaa| deviation: d 0.01%‘

|Height deviation: d, = 0.42% ‘

NN Input

Activations

Activations

| Determine trajectory height: r.= 0.45 ‘

|Determinetrajectorysteepness: r =02 ‘

NN Output

3
0
2
4

0 2 4 6 8 10

“w.x

4
2
0
2

o 2 4 3 s 10

Trajectory Precision

|Goal deviation: d_=0.04% ‘

|Height deviation: d,, = 0.49% ‘

Task Plan

[#4:

pickplace cell6 celld cubeé

[#5:
[#s:

pickplace cell5 cell6 cube5

pickplace cell7 cell5 cube?

[#7: pickplace celll cell? cubes
[#e:

[#e:

pickplace cell8 celll cubed

pickplace cell3 cell8 cube2

|0f10: pickplace cell9 cell3 cube3 |

Task step #3 was successful, starting next action
urren onfiguration

Task Plan

[#4:

pickplace cell6 celld cubeé

|t5: pickplace cell5 cell6 cube5

[#s:

pickplace cell7 cell5 cube?

[#7:
|apa:
[#e:

pickplace celll cell7 cube8

pickplace cell8 celll cubed

pickplace cell3 cell8 cube2

|0f10: pickplace cell9 cell3 cube3 |

Task step #3 was successful, starting next actiol
urren onfiguration

40

APPENDIX A. COMPLETE EXECUTION OF A TASK EXAMPLE

02

0.1

02

0.1

Trajectory height

Generated Trajectory Oatace height

NN Input

Generated Trajectory

| Determine trajectory height: = 0.23 ‘

| Determine trajectory steepness: 1 ‘

Task Plan

Trajectory Precision

|Goal deviation: d_ =0.02%

|Height deviation: d,,=0.43% ‘

NN Output |#5: pickplace cell5 cell6 cube5 ‘
|#s: pickplace cell7 cell5 cube7 ‘
2
[#7: pickplace celll ce117 cubes |
£= [#e: pickplace cells ce1ll cubes |
5
g2 |#9: pickplace cell3 cell8 cube2 ‘
ik |0F10: pickplace cell9 cell3 cube3 ‘
0 2 4 6 8 10
U\X
4 Task step #4 was successful, starting next a
urren onfiguration
22
5
s
5o
2
2
o 2 4 3 s 0
U\Z
B
5
Trajectory Precision
|Gaal deviation: d_ =0.02%
|Height deviation: 0.31% ‘ EI D
l—‘f — Trajectory heght NN Input Task Plan
Obstacle height
| Determine trajectory height: = 0.1 ‘
| Determine trajectory steepness: r =0.1 ‘
NN Output |#5: pickplace cell5 cell6 cube5 ‘
|#s: pickplace cell7 cell5 cube7 ‘
2
[#7: pickplace celll ce117 cubes |
£= |#a: pickplace cell8 celll cubed ‘
3
52 |#9: pickplace cell3 cell8 cube2 ‘
g |0F10: pickplace cell9 cell3 cube3 ‘
0 2 4 6 8 10
U\X
4 Task step #4 was successful, starting next action
urren onfiguration
22
5
s
Sol M- e
2
-2
o 2 4 3 s 0

41

Generated Trajectory

0z

ajectory height
Obstacie height

NN Input

Generated Trajectory

0z

01

—Trajectory height
Obstacie height

Activations

Activations

| Determine trajectory height: L.

=0.16 ‘

| Determine trajectory steepness:

=1‘

NN Output

Trajectory Precision

|Gaa| deviation: d 0.01%‘

|Height deviation: d,, = 0.04% ‘

NN Input

Activations

Activations

| Determine trajectory height: r

=01 ‘

| Determine trajectory steepness:

=05 ‘

NN Output

Trajectory Precision

|Goal deviation: d_=0.04% ‘

|Height deviation: d,, =-0.24% ‘

Task Plan

|#s: pickplace cell7 cell5 cube?

[#7: pickplace celll cell7 cubes

[#8: pickplace cells celll cubed

[#9: pickplace cell3 cells cube2

|0f10: pickplace cell9 cell3 cube3 |

Task step #5 was successful, starting next action
urren onfiguration

Task Plan

|#s: pickplace cell7 cell5 cube?

[#7: pickplace celll cell7 cubes

|#a: pickplace cell8 celll cubed

[#9: pickplace cell3 cells cube2

|0f10: pickplace cell9 cell3 cube3 |

Task step #5 was successful, starting next actiol
urren onfiguration

42 APPENDIX A. COMPLETE EXECUTION OF A TASK EXAMPLE

,,/Generated Trajectory it NN Input Task Plan
| Determine trajectory height: = 0.21 ‘

0.1

| Determine trajectory steepness: r =1 ‘

NN Output
2
|#7. pickplace celll cell7 cube8 ‘
£= |#a: pickplace cell8 celll cubed ‘
.
§,z |#9: pickplace cell3 cell8 cube2 ‘
ik |0F10: pickplace cell9 cell3 cube3 ‘
0 2 4 6 8 10

4 Task step #6 was successful, starting next action...
urrent Configuration
’ E
7

0 2 4 6 8 10
o,

Activations

iz

Trajectory Precision

|Gaal deviation: d =0.01%

|Height deviation: d, =0.32% ‘

i NN Input Task Plan
,,|Generated Trajectory b P
| Determine trajectory height: = 0.59 ‘

| Determine trajectory steepness: r =0.3 ‘

NN Output
2
|#7: pickplace celll cell7 cube8 ‘
£= |#a: pickplace cell8 celll cubed ‘
.
52 |#9: pickplace cell3 cell8 cube2 ‘
g |0F10: pickplace cell9 cell3 cube3 ‘
0 2 4 6 8 10
U\X
s
o2
2
g
5o
g
2
o 2 B o s 10

0,5

Trajectory Precision

Goal devi 0%

|Heightdevia{ion: d, =-031% ‘

43

,.|Generated Trajectory s] NN Input
| Determine trajectory height: L= 0.22 ‘

01

| Determine trajectory steepness:

Trajectory Precision

|Goa| deviation: d =0.01% ‘

|Height deviation: d, = 0.47% ‘

NN Output
3
2o
5
g2
<
»
0 2 4 6 8 10
”4)(
4
g2
£
§
8o
g
-2
o 2 4 6 8 10

. NN Input
..|Generated Trajectory T P
| Determine trajectory height: L= 0.52 ‘
_____ ” g N
01 | Determine trajectory steepness: r =0.4 ‘
R : NN Output
2
20
5
g
g2
<
<
0 2 4 6 8 10
”4,)(
4
g2
5
g
8o
2
2
o 2 4 6 8 10

Trajectory Precision

|Goa| deviation: d_=0.01% ‘

9
|Heigh(deviation: d =-1.2% ‘

Task Plan

[#8: pickplace cells celll cubes |

[#9: pickplace cell3 cells cube? |

|ﬂ10: pickplace cell9 cell3 cube3 |

Task Plan

[#8: pickplace cells celll cubes |

|ﬂ9: pickplace cell3 cell8 cube2 ‘

44 APPENDIX A. COMPLETE EXECUTION OF A TASK EXAMPLE

Generated Trajectory ey it NN Input Task Plan
| Determine trajectory height: L= 0.17 ‘

0.2

| Determine trajectory steepness: r =1 ‘

NN Output

&
2
13
3
g
g
:

Activations

|ﬂ10: pickplace cell9 cell3 cube3 '

8,

4 Task step #8 was successful, starting next action...

Activations
°

Trajectory Precision

| Goal deviation: d_ =0.01%

| Height deviation: ~ d,, =0.13%

oo

Generated Trajectory e acor) el NN Input Task Plan
| Determine trajectory height: L= 0.55 ‘

0.2

| Determine trajectory steepness: r =0.4 ‘

NN Output

&
i
»
3
g
g
;

Activations

#10: pickplace cell9 cell3 cube3 '

o,

4 Task step #8 was successful, starting next actior

A

8

Activations

Trajectory Precision

| Goal deviation: d_ = 0.03%

| Height deviation: d,, =-1.04%

45

,.|Generated Trajectory s] NN Input
| Determine trajectory height: L= 0.24 ‘

01

| Determine trajectory steepness:

Trajectory Precision

|Goa| deviation: = 0.02% ‘

|Height deviation: d, = 0.35% ‘

NN Output
3
2o
5
g2
<
»
0 2 4 6 8 10
”4)(
4
g2
£
§
8o
g
-2
o 2 4 6 8 10

. NN Input
..|Generated Trajectory T P
| Determine trajectory height: L= 0.62 ‘
Lo ™™o ____ - -
G 7 | Determine trajectory steepness: r =0.4 ‘
R ; NN Output
2
20
)
g
g2
<
<
0 2 4 6 8 10
”4,)(
4
g2
5
g
8o
2
2
o 2 4 6 8 10

Trajectory Precision

|Goa| deviation: d_ =0.08% ‘

|Heigh(deviation: d =0.42% ‘

Task Plan

=
Pt
1
L]
2
=
L]
2
2
Q
o
8
i
o
©
8
2
o
%)
2
g
@

Task step #9 was successful, starting next act

1
T

Task Plan

cube3

Task step #9 was successful, starting next actiol

=
P
o
o
E-
5
o
B
»
o
o
8
=
©
&
~
w

E 7

46

APPENDIX A. COMPLETE EXECUTION OF A TASK EXAMPLE

LIST OF FIGURES

47

List of Figures

1.1

2.1
2.2
2.3

24
2.5

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8
3.9

General approach to task and motion planning.

Proposed TAMP framwork.
Optimization loop of PI? [STS12].
Evolution of the trajectory (a) and the cost (b) during one PI* opti-

mization.o
PI? optimizations for a complex trajectory.
Evolution of the DMP parameters with PI2.

Simulation of a symbolic action.
Discretized observable area for describing an obstacle.
Required trajectory curvature in the evaluation task.
Analysis of computation time and iterations for PI? optimizations. . .
Analysis of the precision of the reproduced trajectories using neural

networks. L
The range of selectable trajectory shapes in the experiment.
Computation times of the task planner and the motion planner for

20 random TUunS. L. L
Analysis of the performed pick-and-place operations.
Analysis of the performed pick-and-place operations with varying ob-

ject sizes and locations. L

48

LIST OF FIGURES

LIST OF FIGURES

Symbols

s Symbolic state

a Symbolic action

7 Time constant encoding the duration of the demonstrated trajectory
y,¥,¥y Positions, velocities and accelerations representing the trajectory
a, f Constants of a spring-damper system

Yo Initial position of the DMPs

g Goal position of the DMPs

1 =1,..., N Number of basis functions for the DMPs

U Basis function

f Forcing term of a DMP

6 Forcing term parameter

D Demonstration

[Length of the trajectory (distance between 1y, and g)

0% Exploration variance of PI?

e Exploration noise of PI?

k =1,..., K Number of explored samples within one PI? iteration

j =1,...,J Number of iterations within one PI? optimization

S Cost term of PI?

¢ Terminal cost of PI?

g Immediate cost of PI?

50 LIST OF FIGURES

t=1,...,T Time steps of a trajectory

m Margin of Sgcope

Wy Weights of the K samples depending on S

p Observation point along the linear demonstration (X coordinate)

h, Trajectory coordinate in Y or Z direction at p

W, Weight that regulates hy; relative to another A,

2, Normalized h, by W,

H Height of the trajectory

H Height of the obstacle

vx, vy Distance of the grid cells in X and Y direction

b=1,...,B Number of borders that define the obstacle location

L Length of the trajectory at height H indicating the trajectory steepness
L Length of the obstacle

L Dilatation invariant L represented as a tuple of observation points (pl, p2)
A Area that is observed for obstacles

w4 Width of the observable area A

r. Degree of curvature (dilatation invariant description of H)

r;, Trajectory steepness (dilatation invariant description of L as scalar)
n; Number of distinct ry,

np Number of distinct PI? optimizations

d, Goal deviation relative to Ip

dy Height deviation relative to (p

e, Maximum noise applied to the cell positions

LIST OF FIGURES

51

Acronyms

TAMP Task and Motion Planning

LfD Learning from Demonstration

RL Reinforcement Learning

DMP Dynamic Movement Primitive

PI? Policy Improvement with Path Integrals

PDDL Planning Domain Definition Language

52

LIST OF FIGURES

BIBLIOGRAPHY 53

Bibliography

[ABC*20]

[ASLP20]

[BKLS17]

[DHT20]

[DKCK18]

[GNT04]

[GSF19]

[Hel06]

[INH*+13]

OpenAl: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal
Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias
Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics Research, 39(1):3—
20, 2020.

Alejandro Agostini, Matteo Saveriano, Dongheui Lee, and Justus Piater.
Manipulation planning using object-centered predicates and hierarchical
decomposition of contextual actions. IFEE Robotics and Automation
Letters, 5(4):5629-5636, 2020.

Julien Bidot, Lars Karlsson, Fabien Lagriffoul, and Alessandro Saf-
fiotti. Geometric backtracking for combined task and motion planning
in robotic systems. Artificial Intelligence, 247:229-265, 2017.

Danny Driess, Jung-Su Ha, and Marc Toussaint. Deep visual reasoning:
Learning to predict action sequences for task and motion planning from
an initial scene image. arXwv preprint arXiv:2006.05398, 2020.

Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Ly-
dia E Kavraki. An incremental constraint-based framework for task

and motion planning. The International Journal of Robotics Research,
37(10):1134-1151, 2018.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:
theory and practice. Elsevier, 2004.

Michele Ginesi, Nicola Sansonetto, and Paolo Fiorini. Dmp++: Over-
coming some drawbacks of dynamic movement primitives. arXiv preprint
arXiv:1908.10608, 2019.

Malte Helmert. The fast downward planning system. Journal of Artifi-
cial Intelligence Research, 26:191-246, 2006.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and
Stefan Schaal. Dynamical movement primitives: learning attractor mod-
els for motor behaviors. Neural computation, 25(2):328-373, 2013.

o4

BIBLIOGRAPHY

[KLP11]

[MGH*98]

[Mor78]

[QWA15]

[RSF13]

[SBB*16]

SS12]

[STS12]

[TBS10]

[Toulb]

[VSB+19]

Leslie Pack Kaelbling and Tomaés Lozano-Pérez. Hierarchical task and
motion planning in the now. In 2011 IEEE International Conference on
Robotics and Automation, pages 1470-1477. IEEE, 2011.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ash-
win Ram, Manuela Veloso, Daniel Weld, and David Wilkins. Pddl-the
planning domain definition language, 1998.

Jorge J Moré. The levenberg-marquardt algorithm: implementation and
theory. In Numerical analysis, pages 105-116. Springer, 1978.

Benjamin Quack, Florentin Worgotter, and Alejandro Agostini. Simulta-
neously learning at different levels of abstraction. In 2015 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages
4600-4607. IEEE, 2015.

Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A versatile and
scalable robot simulation framework. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1321-1326. IEEE,
2013.

Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Et-
zioni, Greg Hager, Julia Hirschberg, Shivaram Kalyanakrishnan, Ece
Kamar, Sarit Kraus, Kevin Leyton-Brown, David Parkes, William Press,
Annalee Saxenian, Julie Shah, Milind Tambe, and Astro Teller. Artifi-
cial intelligence and life in 2030, 2016.

Freek Stulp and Olivier Sigaud. Policy improvement methods: Between
black-box optimization and episodic reinforcement learning. 2012.

Freek Stulp, Evangelos A Theodorou, and Stefan Schaal. Reinforcement
learning with sequences of motion primitives for robust manipulation.
IEEE Transactions on robotics, 28(6):1360-1370, 2012.

Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. Learning pol-
icy improvements with path integrals. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, pages
828-835, 2010.

Marc Toussaint. Logic-geometric programming: An optimization-based
approach to combined task and motion planning. In International Joint
Conference on Artificial Intelligence, pages 1930-1936, 2015.

Mel Vecerik, Oleg Sushkov, David Barker, Thomas Rothorl, Todd Hes-
ter, and Jon Scholz. A practical approach to insertion with variable
socket position using deep reinforcement learning. In 2019 International

BIBLIOGRAPHY 55

Conference on Robotics and Automation (ICRA), pages 754-760. IEEE,
2019.

[WDSK19] Andrew M Wells, Neil T Dantam, Anshumali Shrivastava, and Lydia E
Kavraki. Learning feasibility for task and motion planning in tabletop
environments. [EEE robotics and automation letters, 4(2):1255-1262,

2019.

26

BIBLIOGRAPHY

LICENSE 57

License

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this license, visit http://creativecommons.org or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

	Introduction
	Problem Statement
	Related Work

	Technical Approach
	Task Planning
	Motion Planning
	Dynamic Movement Primitives (DMP)
	Policy Improvement with Path Integrals (PI2)
	Neural Network

	Trajectory Generation for Obstacle Avoidance
	Influence of the Optimization on the DMP Parameters

	Evaluation
	Obstacle Description
	PI2 Optimizations
	Learning the Action Policy
	Experimental Evaluation
	Computation Times
	Analysis of the Performed Actions

	Generalization Ability to Varying Object Sizes

	Discussion
	Conclusion
	Complete Execution of a Task Example
	List of Figures
	Bibliography

