
robotics

Article

Adjustable and Adaptive Control for an Unstable
Mobile Robot Using Imitation Learning with
Trajectory Optimization

Christian Dengler * and Boris Lohmann

Automatic Control, Technical University of Munich, 80333 Munich, Germany; lohmann@tum.de
* Correspondence: c.dengler@tum.de

Received: 21 February 2020; Accepted: 22 April 2020; Published: 25 April 2020
����������
�������

Abstract: In this contribution, we develop a feedback controller in the form of a parametric function
for a mobile inverted pendulum. The control both stabilizes the system and drives it to target positions
with target orientations. A design of the controller based only on a cost function is difficult for this
task, which is why we choose to train the controller using imitation learning on optimized trajectories.
In contrast to popular approaches like policy gradient methods, this approach allows us to shape the
behavior of the system by including equality constraints. When transferring the parametric controller
from simulation to the real mobile inverted pendulum, the control performance is degraded due to
the reality gap. A robust control design can reduce the degradation. However, for the framework of
imitation learning on optimized trajectories, methods that explicitly consider robustness do not yet exist
to the knowledge of the authors. We tackle this research gap by presenting a method to design a robust
controller in the form of a recurrent neural network, to improve the transferability of the trained controller
to the real system. As a last step, we make the behavior of the parametric controller adjustable to allow
for the fine tuning of the behavior of the real system. We design the controller for our system and show in
the application that the recurrent neural network has increased performance compared to a static neural
network without robustness considerations.

Keywords: imitation learning; adaptive control; machine learning; mobile robot

1. Introduction

The control of mobile and unstable systems is, in most cases, divided into a stabilizing and a
maneuvering part, e.g., [1]. This breakdown of the problem into two separate tasks makes analytic
control designs manageable, however, the final performance of the system will be limited compared to
holistic approaches. General holistic approaches are difficult to derive analytically for nonlinear systems.
Thus, methods based on optimization and learning come into play that train a control law in the form
of a parametric function based on a cost function. Most notably, methods emerged from the field of
reinforcement learning, e.g., policy gradient methods like PPO [2], are used, as well as methods from the
field of gradient-free optimization. For systems with relatively slow dynamics, nonlinear model predictive
control can be used [3], which is, however, not suited for fast systems due to the continuous online
optimization with non-deterministic computing time. In this work, we design a parametric controller for
the position and orientation control of a mobile inverted pendulum (MIP), without the need to compute
trajectories online.

Robotics 2020, 9, 29; doi:10.3390/robotics9020029 www.mdpi.com/journal/robotics

http://www.mdpi.com/journal/robotics
http://www.mdpi.com
https://orcid.org/0000-0002-1247-6343
https://orcid.org/0000-0002-7881-8385
http://dx.doi.org/10.3390/robotics9020029
http://www.mdpi.com/journal/robotics
https://www.mdpi.com/2218-6581/9/2/29?type=check_update&version=2

Robotics 2020, 9, 29 2 of 24

The control laws derived based on the aforementioned approaches are generally trained in a
simulation environment and often do not transfer well to the real system due to model inaccuracies,
also called the reality gap. In order to overcome this challenge, different approaches have been developed.
Some methods update or learn a highly precise model online, in order to reduce the reality gap [4,5]. Other
approaches use adversarial attacks during the training of the controller in order to enforce robustness [6,7].
Other works focused on training a controller that is trained on a multitude of varying model dynamics,
also called model ensembles [8–10]. The current research on overcoming the reality for this type of control
law is mostly focused on methods of the domain of reinforcement learning. In this work, we tackle the
reality gap problem for a less common class of design methods.

We use a method that is related to imitation learning [11] and has been referred to as a form of
explicit model predictive control [12]. The method was also mentioned in [13], where a more complex and
expensive optimization problem was then derived. In a second step, we extend the method to adapt online
to model uncertainties by using a dynamic control law in the form of a recurrent neural network and by
randomizing model parameters during training. Different from Peng et al. [9] who also use a dynamic
control law, our method is based on the imitation learning framework instead of reinforcement learning,
which allows us to shape the behavior of the system using equality constraints. With the objective of the
application on the real system, we also make the behavior of the final control law adjustable by an external
user via a trivial extension of the method.

2. Related Work

This section gives an overview of methods and research in two different areas related to our approach.
The first area deals with the learning of parametric controllers that have a similar control performance in
simulation and in the application on a real system. The second area is concerned with learning parametric
controllers, based on a combination of imitation learning and trajectory optimization.

2.1. Training Robust Parametric Controllers

Most parametric controllers are trained in simulation due to the high cost of real-world data. The gap
between the simulation model and reality can lead to poor performance or even failure of the controller
when applied to the real system. Many articles have been published that either tackle the problem of
reducing the reality gap or train a controller that can perform well despite the reality gap.

In order to improve the accuracy of the simulation model and as such reduce the reality gap,
data concerning interactions with the real system have to be considered. Abbeel et al. [14] use an iteratively
updated model to compute an improvement direction for the control parameters using a policy-gradient
method. The step-size of the update is, however, determined on the real system. This is beneficial,
as determining a good step size requires less interaction with the real system than estimating a gradient
direction. The model is retrained after each update of the control parameters with new data. In Deisenroth
and Rasmussen [4] a model in the form of a Gaussian Process is iteratively updated and a control
improvement is done offline after each update, using gradient descent on the accumulated costs.
In Golemo et al. [5], the model error is approximated using a recurrent neural network, trained on data
from the real system, and a controller is then derived in simulation using the policy-gradient algorithm
PPO [2].

Recently, more and more works focus on designing controllers that are robust with regards to model
errors, rather than further increase the model accuracy. The methods can be roughly classified in methods
that use a multitude of model parameters for training and methods that use a disturbing entity, called
the adversary. A set of different model parameters is used in Mordatch et al. [15] to compute robust
trajectories for a humanoid robot. As such, this work does not fall completely in the scope of robust

Robotics 2020, 9, 29 3 of 24

parametric control, but rather robust trajectory generation. A non-parametric controller was used to
deal with small system deviations online. Rajeswaran et al. [8] propose to train robust controllers using
randomizing model parameters and a policy-gradient algorithm, while using only a subset of the worst
trajectories to approximate the policy-gradient. This can be seen as a relaxation of a min-max formulation,
common in nonlinear robust control [16]. An adversarial approach is introduced in Pinto et al. [7] to
train a robust controller. Both the controller and the adversary are parametric functions that are trained
using a policy-gradient algorithm. The approach also approximates the min-max problem, with the
robust controller minimizing the total costs, and the adversary maximizing them again through bounded
adversary actions. A different approach is presented in Yu et al. [17]. Instead of approximating a min-max
solution, the parametric controller is trained with uncertain model parameters as additional inputs using
the policy-gradient algorithm TRPO [18]. As the parameters of the real system are unknown during
the application, an estimator/observer is trained in a second step, and the union of both estimator and
controller are able to adapt to the real dynamics by guessing the current system parameters during
application. Pattanaik et al. [6] fool the policy during training by perturbing the perceived state. In this
case, the perturbations, or adversary attacks, do not result from a second controller but are either sampled
randomly or computed based on the action-value function. Muratore et al. [10,19] use randomized model
parameters to estimate the simulation optimization bias and prevent the learned policy from overfitting to
the simulator. While the focus of Bousmalis et al. [20] lies on their vision component, the model parameters
of the simulated robot arm are also randomized in order to improve the robustness. Peng et al. [9] train a
recurrent neural network using reinforcement learning, while randomizing the model parameters. While
the recurrent neural network only sees the current states and needs to learn a hidden state representation,
the critic, i.e., the action value function, is omniscient in the sense that it has the model parameters as
additional input. Chebotar et al. [21] also randomize model parameters, but focus their contribution on
adapting the distribution of the model parameters iteratively by also including interactions of the real
system. The policy is again learned using the policy-gradient algorithm PPO [2].

When looking at existing literature in this field, it is noticeable that the parametric controllers are
solely trained using policy-gradient algorithms. In the present time, the most widely used methods to train
a parametric controller stem from the field of reinforcement learning. However, alternatives exist and every
method has its own strengths and weaknesses. Some methods from the field of gradient-free optimization,
most notably evolution strategies, have proven to be competitive or even superior in certain cases [22,23].
Reinforcement learning algorithms learn by exploring in action-space and by increasing the probability
of better than average actions, while evolution strategies explore in parameter space and increase the
probability of better than average parameters [24]. Yet another class of algorithms to learn parametric
controllers, which is in the focus of our contribution, is a combination of trajectory optimization and
supervised learning. This can be seen as a special case of imitation learning. This last class of algorithms
proved to be the best suited for the task at hand for reasons mentioned later, but methods focusing on
robustness and transferability have to date not been investigated upon to the best of our knowledge.

2.2. Imitation Learning with Trajectory Optimization

As the name imitation learning suggests, the field is concerned with learning a parametric control law
that imitates the behavior of a teacher, based on demonstrations on how to solve the task. In most of the
current literature concerned with imitation learning, the expert is considered to be a human. A survey
on applied methods with a human expert can be found in [11]. Since we will not have a human expert,
we only consider, with a few exceptions, related works where the teacher is not a human but an optimizer.
The approach of training a controller by combining trajectory optimization with supervised learning is
far from new, yet no umbrella name for these methods has been established in literature. In this paper,

Robotics 2020, 9, 29 4 of 24

we refer to these methods as imitation learning with trajectory optimization. The following literature
contains works from both the control and machine learning communities.

An early application of this method is found in [25], where a neural network is trained as a controller
for a wheeled robot. The task is to follow a desired path while avoiding obstacles with results also shown
in the real application. An implementation with results in simulation for a chemical process can be found
in Åkesson et al. [26]. An application for the control of a semi-active suspension system of the same
method is shown in [12] where the authors report improved control performance with regards to their
previous analytic control design.

Ross et al. [27] tackle a fundamental problem of imitation learning: the states visited by the expert
during the demonstration and later used for supervised learning and the states that the controller will
visit during execution are not distributed equally. Therefore, they propose an iterative approach where the
controller samples states during execution and the expert provides actions for those states, rather than
showing his own solution to the task. The training data obtained in this way is aggregated in a growing
data-set. The method, called DAGGER for data-set aggregation, was proposed for use with human experts.
He et al. [28] use DAGGER with an artificial expert. In each iteration their expert generates actions that are
suboptimal, yet close to the current controller, with the intention of creating actions that can be learned
faster than the optimal action. They show small improvements with regards to an expert that always
generates optimal actions. Laskey et al. [29] propose adding noise to an artificial expert’s demonstrations
with the aim of learning a policy that is able to recover from errors. The power of the noise is optimized
such that the distribution of expert trajectories approaches the distribution of trajectories produced by
the parametric controller in the loop. The approach is called DART for “disturbances for augmenting
robot trajectories”.

Mordatch and Todorov [13] combine the trajectory optimization step with the supervised learning
step by combining their objectives into a single optimization problem: minimizing costs of states and
actions (trajectory optimization) and learning a parametric controller that can reproduce similar actions
(supervised learning step). They then solve the optimization problem by iterating between regularized
trajectory optimization and supervised learning. On simulation tasks, they show a decrease in the expected
costs for their method, compared to a separation of trajectory optimization and supervised learning. In a
later work [30], Mordatch et al. show the performance for more complex simulations and add a small
number of recurrent states as well as sampled noise to their optimization setting.

Levine and Koltun [31,32] formulate a similar idea as a stochastic optimization problem by minimizing
the Kullback-Leibler divergence between the distribution of actions produced by the controller and the
actions of a distribution with high probability of low costs. They name their approach guided policy search.
Guided policy search is also used by Zhang et al. [33] for the obstacle avoidance of a simulated quadrotor.
However, they use a simulation of a model predictive controller (MPC) instead of optimizing the trajectory
as a whole, and the supervised learning step uses only a subset of the states that the MPC was allowed
to use. They extend their algorithm for the simulated quadrotor problem in Kahn et al. [34] to use an
adaptive MPC during data generation and call their approach PLATO. As such, the final controller works
on states that are available during real flights instead of the augmented state representation available
to the MPC. Guided policy search also allows Levine et al. [35] to learn a convolutional neural network
controller for a physical robot arm, using only pixel data as control inputs.

We refrain from using the previously mentioned methods, coupling supervised learning and trajectory
optimization into a single objective, due to the increase in computation time and complexity and our focus
on transferability to the physical system.

Robotics 2020, 9, 29 5 of 24

3. Design of an Adaptive and Adjustable Controller Using Imitation Learning

In this section, we present a new approach for training a parametric controller offline that is robust to
model uncertainties by adapting to the system’s behavior during execution. The approach uses randomized
dynamics and a controller with internal states, e.g., a recurrent neural network. The idea has similarities
to [9], however, we use imitation learning with trajectory optimization instead of reinforcement learning.
Different from [9], the approach that is introduced in this section can use time-dependent cost functions
and equality constraints to define the behavior of the system. The inclusion of equality constraints is
essential for the control design of our system, as is explained later in Section 5.1. While the final controller
has recurrent states to account for model uncertainties similar to [9], the training method and therefore
the admissible problem setting differ fundamentally. Moreover, the presented approach consists of a
sequence of well established and understood sub-problems, whereas the success of reinforcement learning
algorithms depends on hyper-parameters that can be difficult to tune [36].

Training a controller using supervised learning on optimized trajectories does not work for controllers
with recurrent states. We leverage the problem by using ideas similar to DAGGER [27] and DART [29].
The approach uses an intermediate policy with model parameters as input, similar to the universal policy
in [17], which is necessary to reduce computation time to an acceptable level. The intermediate policy
is called the oracle network and acts as a teacher for the final recurrent controller. The oracle network
itself can only be used in simulation, whereas the recurrent controller is suitable for both simulation
and application.

The approach is divided into three consecutive optimizations and does not require the real system in
the loop. The three main parts are

1. Trajectory optimization with randomized model parameters.
2. Training an intermediate oracle network.
3. Training of a controller with internal states.

We also show a trivial extension of the approach, in order to make the final controller adjustable
by the operator. In the case of, e.g., a neural network controller, the parameters of the controller are not
interpretable as is the case, e.g., for PID controllers. By making the controller adjustable, we do not have to
repeat the whole optimization if only a small change in the behavior is required.

In the following we assume a dynamics model that is discretized in time and continuous in the state
and action space. We denote the system state at time t by xt ∈ Rn and the control signal, or action ut ∈ Rm.
We also assume for simplicity that the dynamics model is deterministic, as is most often the case for models
that are derived from laws of physics. The dynamics also depend on constant but possibly uncertain
parameters p, e.g., friction coefficients, moments of inertia. The nonlinear state space model is of the form

xt+1 = f(xt, ut; p). (1)

3.1. Trajectory Optimization

The first part of our method consists of creating and storing optimal trajectories starting from relevant
initial states. We also limit ourselves to trajectories over a fixed time horizon T. A distribution Dx0(x)

over relevant starting states x0 is defined by the control engineer. If a policy is directly derived using
supervised learning on the trajectories, it is necessary to include starting states in Dx0(x) with velocities
that are diverging from the desired state or trajectory. Otherwise, the learned policy will not be able to
recover once diverging, e.g., because of a perturbation or simply because of modeling errors. In order to
have a robust policy at the end, we also want to define a distribution over uncertain model parameters
Dp(p). Moreover, the control engineer has to define the time horizon T over which the trajectories are

Robotics 2020, 9, 29 6 of 24

optimized and provide a cost function c(xt, ut) and end costs cT(xT) defining the behavior and goal of
the control.

Let X = [x0, x1, . . . , xT] and U = [u0, u1, . . . , uT−1] be the states and control inputs of a trajectory.
An optimal trajectory for a given starting state x0 ∼ Dx0(x) and parameter set p ∼ Dp(p) is calculated
by solving:

(X∗, U∗) = arg min
X,U

T−1

∑
t=0

c(xt, ut) + cT(xT) (2a)

s.t. xt+1 = f(xt, ut; p) (2b)

xt=0 = x0 (2c)

eq(X, U) = 0 (2d)

ieq(X, U) ≤ 0. (2e)

Equations (2d) and (2e) represent equality and inequality constraints, which can be used to consider
e.g., bounded control inputs or to enforce convergence to a specific terminal state xT,ref. If the control
signals are not smooth, the inequalities can also be used to enforce smooth signals. This is advised as the
control will be approximated by a smooth function approximator later.

The problem in Equation (2a) can be solved by either indirect or direct methods [37]. We choose a
direct method called multiple shooting [38], as the method works naturally with discretized dynamics and
direct methods are known to converge better than indirect methods for initializations that are far from
the optimal solution. On the other hand, direct methods are known to produce less accurate solutions.
For direct multiple shooting, all equality constraints, i.e., Equations (2b) and (2d) are handled using
Lagrange multipliers. Either sequential quadratic programming or interior point methods, also called
barrier methods, can be used to solve the problem including inequality constraints [39]. We use an
open-source solver IPOPT [40], which implements an interior point solver.

It is important to note that the optimal action u∗ for a state x can be ambiguous due to the finite
optimization horizon T, as well as the constraints (2d)–(2e). The finite horizon and the optimization
constraints can cause the optimal u∗ to not only depend on a state x but also on the time t, i.e., whether the
state x was visited early or late in the trajectory. As an example, consider the problem

(X∗, U∗) = arg min
X,U

3

∑
t=0

x2 (3a)

s.t. xt+1 = xt + ut (3b)

x0 = 1; x3 = 1 (3c)

where the constraint x3 = 1 forces the trajectory to return to a region of high costs. The solution to the
problem is X∗ = [1, 0, 0, 1] and U∗ = [−1, 0, 1]. In this artificial example, the state x = 0 is visited at t ∈ 1, 2,
and the optimal actions are u1 = 0, u2 = 1.

Thus, in order to provide unambiguous training targets, only the first optimal state-action pair (x∗0 , u∗0)
would have to be used. That would however be computationally very expensive, which is why we will
use all state-action pairs (X∗, U∗) during training. We believe that for any problems with non-neglectable
optimization time, the trade-of of introducing ambiguous state-action targets by using all state-action pairs
of the trajectories can be justified by the reduction in computation time.

Robotics 2020, 9, 29 7 of 24

The optimization in Equation (2) is performed multiple times for different x0 ∼ Dx0(x), p ∼ Dp(p)

until a sufficient coverage of the distributions is achieved. The N optimal trajectories, together with the
corresponding model parameters p are stored for later use as tuples (X∗k , U∗k , pk); k ∈ {1, . . . , N}.

3.2. Oracle Training

After a multitude of optimal trajectories has been obtained, we train a controller that uses both the
state xt and model parameters p as inputs, similar to Yu et al. [17]. This controller can only be used in
simulation when the model parameters are known. However, it would be problematic to guess good
parameters when applying the control to the real system. Therefore, this controller is only an intermediate
result and will be used as a teacher for the recurrent controller.

The control law is represented by a parametric function ut = g(xt, p; Θ). Our intermediate controller
is learned using supervised learning on state-action pairs of the optimal trajectories. This is a simple
regression problem and optimal parameters can be found by solving a regression problem:

Θ∗ = arg min
Θ

κ
N

∑
k=1

T−1

∑
t=0

∥∥ut,k − g(xt,k, pk; Θ)
∥∥2 (4)

with κ = 1
N·(T−1) .

In order to avoid overfitting onto the data, it is generally advised to use cross-validation, i.e., to split
the data into a dataset for training and a dataset to test the model performance.

The best way to solve (4) depends on the parametrization of g(. . .). We use fully connected neural
networks in this paper and solve Equation (4) using stochastic gradient descent with the optimizer
Adam [41]. We call this intermediate parametric controller the oracle, as it is provided with the full model
information to generate its output.

3.3. Training a Robust Recurrent Network

As previously mentioned, the control law obtained in Section 3.2 is not suited for use on a physical
system, as it requires knowledge of the underlying parameters, which we assume uncertain. We circumvent
this problem by learning a control law that adapts to the dynamics of the system. As in Peng et al. [9],
the new control law will use the history of past states and actions to generate the new control signal:

ut = g(xt, ut−1, xt−1, . . . , u0, x0; Θ). (5)

as the state transitions and thus the history (xt, ut−1, xt−1, . . . , u0, x0) are different for each parameter set
p, a control law in the form of (5) can produce different control outputs for different p.

The parametrization of a function in the form of (5) would be inefficient, therefore a common
approach is to learn a representation of the past history as an internal state ht, also called hidden state.
A recurrent neural network is an example for such a representation. The general structure of recurrent
neural networks is:

ht = r1(xt, ht−1; Θ1) (6a)

ut = r2(ht; Θ2). (6b)

Robotics 2020, 9, 29 8 of 24

We mostly use a shorter notation with Θ = [ΘT
1 , ΘT

2]
T , combining (6a) and (6b) into a single function.

The shorter notation for a recurrent network is then

[uT
t , hT

t]
T = r(xt, ht−1; Θ). (7)

Unlike the system state xt, the learned hidden state is generally not interpretable as a physical quantity.
The training of the parameters Θ for recurrent neural networks using supervised learning is usually

done using backpropagation through time. A loss between training inputs and training outputs is defined
and a gradient is computed over a sequence of data. For regression problems, the mean squared error
is used.

[Θ∗1 , Θ∗2] = arg min
Θ1,Θ2

κ
N

∑
k=1

T−1

∑
t=0

∥∥ut,k − r2(ht,k; Θ2)
∥∥2 (8a)

s.t. ht,k = r1(xt,k, ht−1,k; Θ1) (8b)

h(−1),k = 0. (8c)

Training recurrent neural networks is computationally more expensive, as the gradient is computed
by backpropagating through a sequence, which is similar to backpropagating through a deep neural
network with the depth growing according to the sequence length. For long sequences, it is common to
accept a bias in the gradient direction by truncating long sequences into smaller chunks [42]. Computing
the loss gradient over truncated sequences is called truncated backpropagation through time (TBPTT).

A naive training of a recurrent neural network on sequences generated during the trajectory
optimization will not lead to a good control law in the closed loop. This is due to the fact that sequences in
the training data and the sequences seen during execution of the controller stem from different distributions.
All training sequences are sequences included in optimal trajectories. Once the controller deviates from
those trajectories, no training data is available. To leverage the problem, we use a mixture of ideas from
DAGGER [27] and DART [29] together with our artificial expert trained according to Section 3.2. We train
our recurrent neural network on sequences seen during execution of the recurrent neural network, but with
actions recommended by the oracle network. Our small changes to DAGGER are the fact that we do
not accumulate datasets, but learn for a limited number of iterations on the last data-set only. This is
motivated by the fact that data generation using our artificial expert is cheap and early trajectories will not
be relevant for the sequences that the final controller will produce. Early trajectories can thus be discarded
for reasons of efficiency. Similar to DART we also add a small noise to the data gathering to have more
variance in the sequences, especially close to convergence. However, we add our noise to the learning
controller instead of to the expert. That way the distribution of sampled trajectories is always close to
trajectories of the learning controller and we do not have to minimize the Kullback-Leibler divergence
between two distributions, as is done in DART. Pseudo-code for generating training data for the recurrent
neural network is give in Algorithm 1. Pseudo-code of our DAGGER and DART combination, which we
abbreviate in the following as disturbed oracle imitation (DOI), is shown in Algorithm 2.

A visual comparison of the three algorithms DAGGER, DART and DOI is given in Figure 1. DAGGER
generates training data on the trajectory created by the controller in the loop and accumulates all data.
DART generates data for a distribution of trajectories generated by an expert, with the distribution variance
adapted to the trajectories of the controller. DOI generates data on trajectories close to trajectories of the
controller in the loop, but does not accumulate past data.

Robotics 2020, 9, 29 9 of 24

Algorithm 1 Generating training data for the recurrent neural network
Inputs: g, Dx0, Dp0, ε

x0 ∼ Dx0(x), p ∼ Dp0(p), h(−1) = 0
for t = 0 to T do

ût = g(xt, p) . Evaluate oracle
ut, ht = r(xt, ht−1; Θ) . Evaluate controller
xt+1 = f(xt, ut; p) +N (0, ε2I) . Disturbed dynamics

end for
return X = [x0, . . . , xt−1], Û = [û0, . . . , ût−1]

Algorithm 2 Disturbed Oracle Imitation (DOI)
for epoch = 1 to Nepoch do
D ← ∅
for traj = 1 to Ntraj do

sample sequence Xtraj, Ûtraj
D ← D ∪

(
Xtraj, Ûtraj

)
end for
for gd = 1 to Ngd do

Update Θ using TBPTT.
end for

end for

Figure 1. Visual comparison of DAGGER, DART and DOI. x0 inidicates the intial state and xr a reference
state with low costs. The black line indicates a trajectory sampled using the parametric controller in the
loop. Blue arrows indicate the training data created for each approach, possibly generated for a distribution
of trajectories, indicated by a blurred area.

At this point, the reason for the oracle network has to be clarified, since it is a reasonable assumption
that one could just solve the optimization problem in Equation (2) to generate the training targets ût

for each xt in Algorithm 1. The reason is again the computational burden, as only the first action of the
optimized trajectory would be used. Solving this many trajectory optimizations would only be feasible for
small problems. Also, problems occur when a state is visited by the recurrent controller in early iterations
where the trajectory optimization is unfeasible due to constraints. By creating the intermediate network,
all T − 1 actions in the optimized trajectories can be used.

Robotics 2020, 9, 29 10 of 24

For the problem in this paper presented in Section 4, the trajectory optimization is the most expensive
part and T = 500. A direct use of the optimizer to create training targets ût had to be interrupted due to
the extremely slow progress.

3.4. Adding Adjustable Behavior

The training of parametric controllers can require a lot of computation time. If the controller does
not perform in the desired manner on the real system, the lengthy procedure needs to be repeated and
time is lost. By a trivial extension of the presented method, we show how we can make the behavior of
the controller adjustable. In the case of simple controllers, e.g., PID controllers, it is common practice to
tune the final behavior in the closed loop with the real system [43]. For parametric controllers, however,
simply tuning the parameters is not appropriate, as the influence of the change cannot be predicted and
the number of parameters is usually high.

The behavior of the controller in our approach is defined by the cost function in Equation (2a). In a
similar fashion as we design a controller to work on multiple models, we can design a controller to work
on multiple cost functions.

In an initial step, the cost function is augmented to depend on an additional parameter λ in a bounded
range, e.g., λ ∈ [−1, 1]. The influence of the parameter can be, e.g., to shift between penalizing large control
signals and penalizing the state costs. The optimal trajectories are then initialized with random initial
states and model parameters as well as a cost function parameter sampled from a uniform distribution
covering the range. This can also be interpreted as augmenting the state xt with an additional state λ,
with dynamics λt+1 = λ.

The oracle network gλ(xt, p, λ; Θ) is then trained using supervised learning on the optimal trajectories.
The recurrent controller has the state x and λ as inputs:

[uT
t , hT

t]
T = rλ(xt, λ, ht−1; Θ). (9)

The parameter λ is constant during execution and set by the control engineer. It can be used to adjust
the behavior without training a new controller.

4. Task and Model Description

In this section, the mobile inverted pendulum is shortly presented and the control task is clarified.
The mathematical model that is used to create the controller is also provided.

4.1. System and Task

The mobile inverted pendulum (MIP) is an unstable system with a non-holonomic contraint, described
by a nonlinear model. A schematic and a picture of the hardware are shown in Figure 2. The wheels
are accelerated by two DC motors. The sensors include a gyroscope, an accelerometer and encoders
attached to the motors. The actuation signal for the motors and the sensor signals are handled by a
microcontroller, which also communicates with a Raspberry Pi. The Raspberry Pi is used to evaluate the
control law, as memory and computing power of the microcontroller are insufficient for the evaluation of
our neural network.

Robotics 2020, 9, 29 11 of 24

(a) Schematic view of the MIP (b) The real MIP
Figure 2. The mobile inverted pendulum (MIP).

Because of the challenging system properties of the MIP, it has been extensively studied in the control
community. Control laws for the mobile inverted pendulum are often designed around a linearized model
and the system is only operated within small tilt angles and target positions in close proximity of the MIP.
Controllers based on linearized models can be found, e.g., in [44,45]. An example of a control design based
on a nonlinear model is given in Ha et al. [46], however results are only given in simulation.

The task considered in this work is to design a controller for the MIP allowing it to autonomously
drive to a desired position, not necessarily in close proximity, and take a desired orientation. The controller
furthermore has to stabilize the tilt angle while driving and it has to be computationally cheap enough to
be evaluated in real time (δt = 0.01 s) on the Raspberry Pi.

Let x and y be the position coordinates in an inertial coordinate system I and γ the yaw angle of the
MIP. While we want to drive to any position xr, yr and orientation γr in the inertial coordinate system
later, it is sufficient to learn a controller that can drive to a single point and orientation e.g., [xr, yr, γr] = 0.
A coordinate transform in Equation (10) allows us to place any reference point different from 0 in the
inertial coordinate system I into the origin of a second coordinate system B, and we can then use xB, yB
and γB for control.

[δx, δy]T = [x− xr, y− yr]
T (10a)[

xB
yB

]
=

[
cos(γr) sin(γr)

− sin(γr) cos(γr)

] [
δx
δy

]
(10b)

γB = γ− γr. (10c)

4.2. Mathematical Model

The mathematical model of the MIP consists of the body dynamics and the electric drive model.
We adopt the model presented in Pathak et al. [47] for our rigid body dynamics. The model has seven
states: x = [x, y, γ, α, α̇, v, γ̇]T . The state variables consist of the position in the inertial coordinates x, y,
the yaw angle γ and its time derivative γ̇, the tilt angle α with time derivative α̇ and the forward velocity
v. The equations of the body dynamics model are derived in [47] are repeated in the Appendix A.

The electric drive model consists of a standard model for DC motors found, e.g., in [48], with parameters
determined through identification using measurement data. We neglect the current dynamics in our motor
model, as they are much faster than the rest of the system’s dynamics. We also add a heuristic friction
model with four parameters cfric,1-4. We combine the motor torque constant k2 with the resistance, to reduce

Robotics 2020, 9, 29 12 of 24

the number of parameters to identify, since we are only interested in the input-output relationship and not
real physical values. Our friction and drive model are given in Equation (11).

τfric = cfric,1 · tanh(cfric,2 ·ω) · e−cfric,3·ω2
+ cfric,4 ·ω (11a)

τ = k2 · (u− k1 ·ω)− τfric (11b)

The identified and measured parameters for drive, friction and body dynamics are given in Table 1.
The parameters cz, Iyy and cfric,1 are assumed uncertain for the control design and are depicted as a range,
since they are hard to determine with high precision and the model dynamics are sensitive to changes in
their value.

Table 1. Model parameters of the mobile inverted pendulum.

Variable Value Unit Description

Mb 1.76 kg Mass of the body
Mw 0.147 kg Mass of a wheel
R 0.07 m Radius of the wheels
cz 0.07± 20% m Height of the center of mass above wheel axis
b 0.09925 m Half length between wheels
Ixx 0.0191 kg m2 Moment of inertia, x-axis
Iyy 0.0158± 20% kg m2 Moment of inertia, y-axis
Izz 0.0048 kg m2 Moment of inertia, z-axis
Iwa 3.6 · 10−4 kg m2 Moment of inertia. Wheel, y-axis
Iwd 1.45 · 10−3 kg m2 Moment of inertia. Wheel, z-axis
k1 0.018 V s Motor constant
k2 0.61 N m A−1 Motor constant
cfric,1 0.24± 20% N m−1 Friction model constant
cfric,2 2.0 / Friction model constant
cfric,3 0.4 / Friction model constant
cfric,4 8 · 10−4 N s m−1 Friction model constant

5. Application and Results

In this section, we first provide the settings and details of the approach presented in Section 3 for
our application on the MIP. Then, a short analysis of training properties and results on the robustness are
given both in simulation and on the real system. Our final recurrent controller of the form in Equation (9)
is compared with different static controllers and the oracle controllers in terms of different robustness
metrics. The oracle controllers are given only as a reference in the simulation results as a baseline for the
performance of the recurrent controllers, however, as mentioned earlier, the oracle controllers cannot be
used in the real application.

5.1. Control Design Details

The first part of our approach consists of the trajectory optimization. We optimize N = 10,000
trajectories for each controller. We show, however, that the task can be solved using less trajectories.
The large number of trajectories reduces the influence of random sampling for our results. We sample
three data sets. The first data-set, which is used to train a reference controller, has varying initial states
with constant model parameters and a constant cost function. The second data-set has varying initial states
and model parameters, with a constant cost function. The third data-set includes varying initial states,
model parameters and the cost function parameter.

Robotics 2020, 9, 29 13 of 24

The initial states are sampled from uniform distributions. All entries of the initial state vector x are
perturbed, which is important to include starting states of a falling MIP and thus to receive trajectories of
the MIP recovering from falling. The initial positions are sampled in a radius of 1.1 m around the origin
of the inertial coordinate system. The maximum range we consider for the control later is 1m; all target
points outside of this range are projected back onto the radius.

The optimization horizon is 501 steps from t = 0 to t = T = 500, with a discrete step size of
δt = 0.01 s. Each trajectory is thus 5s long. For the first two data-sets, we minimize the accumulated costs
in Equation (12) with the cost functions specified in Equation (13).

(X∗, U∗) = arg min
X,U

T−1

∑
t=0

c(xt, ut)

= arg min
X,U

T−1

∑
t=0

cx(xt) + cu(ut)

(12)

cx(xt) =x2
t + y2

t + 0.5 · (1− cos(γt)) + α2
t

+ 2
(

αt · α̇t + 0.05 · α̇t + 0.1 · v2
t + 0.1 · γ̇2

t

)
(13a)

cu(ut) =u2
1,t + u2

2,t (13b)

Our cost function penalizes states that are far from the origin with the term x2
t + y2

t as well as high
motor voltages using cu(ut). We also penalize large angular velocities α̇t and γ̇t and the driving velocity
vt. The cross term αt · α̇t penalizes a falling motion, but rewards rising motions. The constant coefficients
weight the importance of the different control goals against each other and were hand tuned by trial and
error to produce a subjectively appealing behavior of the MIP.

For the described task, however, we were unable to design a cost function describing the desired
behavior on its own, which is why we had to add end constraints. The end constraints force our trajectories
to end in the origin xT = 0 at step T = 500. Moreover, adding end constraints increased the convergence
speed of the optimization in our case.

The necessity of including end constraints for this problem is in fact the main reason we chose
the approach of imitation learning with trajectory optimization learning over reinforcement learning
approaches. Equality constraints are not possible with reinforcement learning approaches, which are based
on probabilistic reasoning. Recent progress in that area has been made to include inequality constraints
only [49]. For our problem, the equality and inequality constraints, previously Equations (2d) and (2e),
are summarized in Equation (14).

[xT , yT , 1− cos(γT), αT , α̇T , vT , γ̇T , u1,T−1, u1,T−1] = 0T (14a)

− 1 ≤ u1,t ≤ 1 (14b)

− 1 ≤ u2,t ≤ 1 (14c)

− 0.002 ≤ u1,t−1 − 2 · u1,t + u1,t+1 ≤ 0.002 (14d)

− 0.002 ≤ u2,t−1 − 2 · u2,t + u2,t+1 ≤ 0.002 (14e)

As was mentioned earlier, we use equality constraints in Equation (14a) to force convergence of
the trajectories to the desired state in finite time. The inequalities (14b) and (14c) are required since the
maximum voltage that can be provided to the motors is restricted. The inequalities (14d) and (14e) are
used to prohibit non-continuous control signals that would lead to larger training errors during the

Robotics 2020, 9, 29 14 of 24

approximation with a smooth function approximator. The constraints restrict the second derivative of the
control signals, expressed as a finite difference scheme.

After two data-sets of 10,000 trajectories are created, two controllers are trained on this data using
supervised learning. The first controller g(x) is trained on the dataset with constant model parameters
and only takes the state as input. The second controller is our oracle controller g(x, p) and is trained on
the dataset with randomized model parameters as explained in Section 3.2. We use fully connected neural
networks with two hidden layers of 128 neurons each. The hidden layers include tanh nonlinearities and a
linear output layer. We use a random portion of 80% of the data as our training-set and the remaining
data as our test set. We train the neural networks using a GPU over 10,000 epochs. We did not observe
overfitting on the data during supervised learning, even when training on as few as 20 trajectories.

The recurrent neural network r(x, h) uses three hidden layers: a recurrent tanh layer with 32 neurons,
a static tanh layer with 64 neurons and a static tanh layer with 32 neurons. The output layer is again
linear. For the data generation in Algorithm 1, we again use the trajectory length T = 500 and add a noise
with standard deviation ε = 0.001. We chose the amplitude of the noise in simulation by aiming for a
disturbance that leads to trajectories that are subjectively not too far from the undisturbed case, yet the
amplitude should not be so small that the noise is not visible. During each epoch, Ntraj = 500 trajectories
are sampled according to Algorithm 1. The training of the recurrent neural network was performed on
truncated sequences of 50 time steps, and we performed Ngd = 50 parameter updates per epoch using
Adam [41]. We ran Algorithm 2 for Nepoch = 500 epochs.

In order to adjust the behavior on the real system later, we use our third data-set to train a second
recurrent controller with an additional input rλ(x, λ, h), as presented in Section 3.4. For this controller,
the optimal trajectories are generated using a modified cost function with the adjusting parameter
λ ∈ [−1, 1]:

cx(xt, λ) =10λ
(

x2
t + y2

t + 0.5 · (1− cos(γt)) + α2
t

)
+ 2 · 10−λ(αt · α̇t + 0.05 · α̇t

+ 0.1 · v2
t + 0.1 · γ̇2

t).

(15)

This cost function is equal to (13) for λ = 0. For λ ∈]0, 1], the velocities are penalized less and the
position error is stronger penalized, which leads to faster transition behavior. For λ ∈ [−1, 0[, velocities
are penalized stronger, leading to a slower transition behavior.

5.2. Results in Simulation

For the following analyses and comparisons, we create a new test-set by optimizing 2000 trajectories
that were not included in any training data previously. This set of trajectories contains initial states around
1 m of the origin and random model parameters sampled from the same distribution Dp(p) as for the
supervised training.

To assess the robustness of a controller, we evaluate two metrics. The first metric is the mean of the
accumulated costs over the initial states and model parameters in the test-set

JE,c = E[
T

∑
t=0

c(xt, ut)|x0 ∼ Dx0(x), p ∼ Dp(p)]. (16)

The cost function c(xt, ut) is the same that was used for the trajectory optimization. A lower value for
JE,c means that the controller is closer to the optimal trajectories.

Robotics 2020, 9, 29 15 of 24

The second metric is the highest accumulated costs subtracted from the optimal accumulated costs
with initial states and model parameters from the test-set.

Jmax,c = max

(
T

∑
t=0

c(xt, ut)−
T

∑
t=0

c(x∗t , u∗t)

)
(17)

The metric Jmax,c is used to compare the worst case performance of the controllers. Again, smaller
values are better.

In order to also quantify the violation of the end constraint, we define the cost function

cT(x) = x2 + y2 + (1− cos(φ))2 + α2 + α̇2 + v2 + φ̇2. (18)

The cost function cT(x) is only evaluated using the final state at t = T. We use cT(x) for two metrics
that quantify the mean and highest cT(x) of all simulations with the respective controllers.

JE,cT = E[cT(xT)|x0 ∼ Dx0(x), p ∼ Dp(p)] (19a)

Jmax,cT = max cT(xT). (19b)

As a first analysis, the influence of the number of trajectories and the number of training epochs on
the performance on the oracle network is analyzed. Figure 3 shows the expected value of accumulated
costs JE,c of oracle controllers, trained by supervised learning on a different number of trajectories N
for different numbers of epochs Ngd. For a small number of trajectories N, the best control performance
is reached after a few epochs of supervised learning and the performance starts degrading with more
training. Thus, a decrease in the error during supervised learning does not necessarily lead to an increase
in the closed-loop performance. Including more trajectories leads to an increased performance in the
closed loop. Including more than 5000 trajectories, however, did not lead to a noticeable increase in the
closed loop performance for our case. The only case that produced a controller unable to stabilize the
system was with as low as 20 trajectories.

0 2500 5000 7500 10000
102.25

102.50

102.75

103.00

103.25

Ngd

E
[∑

c]

20
100

1000
5000
10000

Figure 3. Mean accumulated costs of oracle controllers g(x, p) trained on different numbers of trajectories
over Nepoch epochs. The number of trajectories used during training is given in the line label.

We use the oracle controller that uses all 10000 trajectories to train our recurrent controller r(x, h)
using DOI. The mean simulation costs of the recurrent controller is depicted in Figure 4, computed every
5 training episodes. The costs are decreasing exponentially with the number of training episodes in our
case.

Robotics 2020, 9, 29 16 of 24

0 100 200 300 400 500
180

200

220

240

260

Nepoch

E
[∑

c]

Figure 4. Mean accumulated costs of the recurrent controller r(x, h) trained using DOI over the number of
epochs Nepoch.

For each type of controller, i.e., static, oracle, recurrent and adaptive recurrent controllers, we extract
the controllers with the best average closed loop performance that we obtained in the training on
10,000 trajectories for the following comparison. We evaluate the metrics in Equations (16)–(19b) on
the test-set of 2000 initial states and model parameters. The values for each controller are shown in Table 2.
The oracle network slightly outperforms the simple controller without parameter information in terms of
mean costs and maximum above optimal costs. The recurrent controller performs better even than the
oracle network in terms of both mean costs and maximal above optimal costs. For the mean accumulated
costs this is unexpected, as the recurrent controller did not have a direct access to the cost function during
its training. For the maximum above optimal accumulated costs, we believe that the recurrent layer is able
to average out poor actions in individual states by acting on the past history instead of only acting on the
current state. The adjustable controllers do not perform as well as the non-adjustable controllers in terms
of mean costs for the case λ = 0. Also, for the adjustable case the recurrent controller outperforms the
static controller with regards to Jmax,c.

Table 2. Mean and maximal accumulated costs for different controllers in simulation. Controllers with gray
font can not be used in practice and are only given as a reference.

g(x) g(x, p) r(x, h) gλ(x, 0, p) rλ(x, 0, h) opt.

JE,c 181.47 178.33 176.58 185.81 185.75 155.163
Jmax,c 712.03 520.95 121.38 494.27 182.67 0
JE,cT 0.133 0.102 0.090 0.070 0.051 0
Jmax,cT 1.10 2.13 1.34 1.092 0.524 0

5.3. Control Performance in the Application

The controllers, trained in simulation, are transferred unchanged to the real system. To evaluate the
control performance, we record measurements of each controller for a test trajectory and evaluate the
costs in Equation (13). Our test trajectory is 220 s long and contains 10 random target locations. Every
10 s, the target location changes from the origin to one of the target locations and then back to the origin
after another 10 s. The accumulated costs over our test trajectory, i.e., ∑t cx(xt) and ∑t cu(ut), for different
controllers are given in Table 3 with lower values indicating a better control performance. The recurrent
controllers r(x, h) and rλ(x, 0, h), trained on various model dynamics, achieve a better performance than
the static controller with accumulated costs reduced by 20% and 22.7%. The controller rλ(x, 0.3, h) is also
represented in the table, and performs slightly worse than rλ(x, 0, h). This is expected as the cost functions
(13a) that is used for the evaluation of the values in Table 3 is different from the costs in Equation (15) for
λ 6= 0.

Robotics 2020, 9, 29 17 of 24

Measurement data for the test trajectory for the static controller g(x), the recurrent controller
r(x, h) and the adjusted controller rλ(x, 0.3, h) are shown in Figures 5–7, respectively. In the application,
the approaching of the target position is slower than in simulation due to oscillations in the tilt angle
at low velocities. The remaining position error is most pronounced for the static controller in Figure 5,
e.g., when approaching the new target position after 30 s. The position error is visibly reduced using a
recurrent controller r(x, h) as can be seen comparing Figure 6 with Figure 5. The performance increase
is also reflected in a reduced value for ∑t cx in Table 3. However, even after 10 s the target location is
not reliably reached for the static and the recurrent controller, as the controllers try to reduce the angular
velocity of the tilt angle rather than drive towards the target position. We therefore use the adjustable
controller rλ(x, λ, h) and increase the adjusting parameter λ to give more weight to the position and less
weight to velocities. As can be seen in Table 3, this leads to an increase in the accumulated costs compared
to the controller r(x, h) according to the cost function in Equation (13), caused by higher velocities and
control signals. However, the behavior is subjectively better due to faster and more accurate approaching
of the target location as is seen in Figure 7. Increasing λ also increases the speed of convergence and
accuracy of the yaw angle, as can be seen by comparing Figure 7 with Figures 5 and 6 respectively.

Table 3. Accumulated costs for different controllers on a test trajectory in the real application .

g(x) r(x, h) rλ(x, 0, h) rλ(x, 0.3, h)

∑ cx 5221.86 3957.26 4062.04 4131.76
∑ cu 1674.85 1566.88 1265.35 1431.55

∑ c 6896.71 5524.14 5327.39 5563.31

0 50 100 150 200

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

D
is

ta
nc

e
in

m

x
y

0 50 100 150 200

−2

−1

0

1

2

3

t

γ
in

ra
d

γ

Figure 5. Measurement data for an application of a static neural network controller g(x). Units are in
meters for the position coordinates x and y (top plot) and radian for γ (bottom plot).

Robotics 2020, 9, 29 18 of 24

0 50 100 150 200

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75
D

is
ta

nc
e

in
m

x
y

0 50 100 150 200

−2

−1

0

1

2

3

t

γ
in

ra
d

γ

Figure 6. Measurement data for an application of a recurrent neural network controller r(x, h). Units are in
meters for the position coordinates x and y (top plot) and radian for γ (bottom plot).

0 50 100 150 200

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

D
is

ta
nc

e
in

m

x
y

0 50 100 150 200
−3

−2

−1
0
1

2

3

t

γ
in

ra
d

γ

Figure 7. Measurement data for an application of an adjustable recurrent neural network controller
rλ(x, λ, h) with λ = 0.3. Units are in meters for the position coordinates x and y (top plot) and radian for γ

(bottom plot).

Robotics 2020, 9, 29 19 of 24

For a qualitative impression of the control performance of the final controller rλ(x, λ, h) with λ = 0.3,
a sequence of images of the MIP during the test trajectory is shown in Figure 8 for the real application
and in Figure 9 for the same controller in the simulation. For the real application, a visualisation of
the recorded measurement data is provided for each timestep as well, with the target position depicted
as a static green MIP. The time delay between each image is 0.25 s. Comparing both, we see that the
dynamic manoeuvre is performed almost identically with the largest differences close to the position of
rest. For a further qualitative impression, a video of the MIP using the adjustable controller is accessible at
https://youtu.be/MwVZgRJSnXg.

Figure 8. Image sequence showing a manoeuvre of the real MIP using the recurrent control structure
rλ(x, λ, h) with λ = 0.3. The top image shows the real system and attached below is a visualization of the
measurement data (gray MIP), also showing the target position as a green MIP.

https://youtu.be/MwVZgRJSnXg

Robotics 2020, 9, 29 20 of 24

Figure 9. Image sequence showing a manoeuvre of the MIP in simulation using the recurrent control
structure rλ(x, λ, h) with λ = 0.3. The target position is shown as a green MIP.

5.4. Outlook of Application Specific Variations

Our controller was trained to drive the MIP towards static target positions and orientations.
By continuously shifting the target position, a trajectory or a moving target can be followed by this
type of controller as well. An application suited for this type of controller is, e.g., driving after a person
based on an on-board camera. However, the MIP will be driving slightly behind the target position in
the case of a moving target, as it was trained to reach targets with zero velocity. This effect can be seen in
the video at https://youtu.be/MwVZgRJSnXg. If a more precise trajectory tracking is required, one has
to include training data of trajectories that were optimized to follow non stationary targets. Other tasks,
e.g., ascending slopes or avoiding collisions, also require the addition of optimized trajectories specific for
that task.

6. Conclusions

We developed a parametric feedback controller for the mobile inverted pendulum using imitation
learning with optimized trajectories. The controller is able to stabilize the system and drive to target
positions within a certain radius without the need to compute trajectories online. The optimal trajectories
used in the training were generated using varying model parameters in simulation and the controller
used a recurrent structure in order to adapt its behavior to the real system. In order to train a recurrent
controller using imitation learning, it is necessary to have training targets on state sequences generated by
the recurrent controller itself. We therefore trained an intermediate oracle controller with full information

https://youtu.be/MwVZgRJSnXg

Robotics 2020, 9, 29 21 of 24

of the model parameters that acts as a teacher to the recurrent controller. We show an improvement of the
robustness of the controller both in simulation and in the real application by comparing it to a controller
without the recurrent structure. Finally, an additional input allows us to easily adjust the behavior of the
recurrent controller in the application.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, investigation,
data curation, writing—original draft preparation, visualization: C.D.; resources, writing—review and editing,
supervision, project administration, funding acquisition: B.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partially funded by the German Research Foundation DFG, SFB768.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DAGGER Dataset aggregation
DART Disturbances for augmenting robot trajectories
DOI Disturbed oracle imitation
MIP Mobile inverted pendulum
MPC Model Predictive Control
TBPTT Truncated backpropagation through time

Appendix A. Rigid Body Dynamics Model

The rigid body dynamics model of a MIP that is derived in Pathak et al. [47] is repeated in the
following. The input is a vector of torques applied to the right and left wheels τ = [τr, τl]. The model
parameters with description are depicted in Table 1. The state space model is

ẋ = cos(α) · v (A1a)

ẏ = sin(α) · v (A1b)

γ̇ = γ̇ (A1c)

α̇ = α̇ (A1d)

α̈ = f5(x) + g5(x)(τr + τl) (A1e)

v̇ = f6(x) + g6(x)(τr + τl) (A1f)

γ̈ = f7(x) + g7(x)(τr − τl) (A1g)

with the abbreviations

D(α) =M2
b cos2(α)czR2 +

(
(−M2

b − 2Mw Mb)c2
z − 2Iyy Mw − IyyMb

)
R2

− 2Mbc2
z Iwa − 2Iyy Iwa (A2a)

G(α) =(−Mbc2
z + Izz − Ixx)R2 cos2(α) + (Mbc2

z + Ixx + 2Iwd + 2b2Mw)R2 + 2b2 Iwa (A2b)

K(α) =MbR2cz sin(α)
(
−4Iyy − 3Mbc2

z + Ixx − Izz

)
+ MbR2cz sin(3α)

(
Ixx − Izz + Mbc2

z

)
(A2c)

H =

(
1
2

MbR2 + MwR2 + Iwa

)
(Izz − Ixx)−Mbc2

z(MwR2 + Iwa) (A2d)

Robotics 2020, 9, 29 22 of 24

f5(x) =
sin(2α)γ̇2H −Mbczg sin(α)

(
MbR2 + 2(Iwa + MwR2)

)
D(α)

+
M2

bc2
z R2 sin(2α)α̇2

2D(α)
(A3a)

f6(x) =K(α)γ̇2 +
M2

bc2
z R2g sin(2α)− 2 sin(α)α̇2MbR2cz

(
Iyy + Mbc2

z
)

2D(α)
(A3b)

f7(x) =
−R2γ̇

G(α)

(
sin(2α)α̇(Ixx − Izz + Mbc2

z) + sin(α)Mbczv
)

(A3c)

g5(x) =
MbR2 + 2MwR2 + 2Iwa + Mb cos(α)czR

D(α)
(A4a)

g6(x) =−
R
(

Mb cos(α)czR + Iyy + Mbc2
z
)

D(α)
(A4b)

g7(x) =
Rb

G(α)
. (A4c)

References

1. Yang, C.; Li, Z.; Li, J. Trajectory planning and optimized adaptive control for a class of wheeled inverted
pendulum vehicle models. IEEE Trans. Cybern. 2012, 43, 24–36. [CrossRef] [PubMed]

2. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv
2017, arXiv:1707.06347.

3. Faulwasser, T.; Weber, T.; Zometa, P.; Findeisen, R. Implementation of nonlinear model predictive path-following
control for an industrial robot. IEEE Trans. Control Syst. Technol. 2016, 25, 1505–1511. [CrossRef]

4. Deisenroth, M.; Rasmussen, C.E. PILCO: A model-based and data-efficient approach to policy search.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA,
28 June–2 July 2011; pp. 465–472.

5. Golemo, F.; Taiga, A.A.; Courville, A.; Oudeyer, P.Y. Sim-to-Real Transfer with Neural-Augmented Robot
Simulation. In Proceedings of the Conference on Robot Learning, Zurich, Switzerland, 29–31 October 2018;
pp. 817–828.

6. Pattanaik, A.; Tang, Z.; Liu, S.; Bommannan, G.; Chowdhary, G. Robust deep reinforcement learning with
adversarial attacks. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems, Stockholm, Sweden, 10–15 July 2018; pp. 2040–2042.

7. Pinto, L.; Davidson, J.; Sukthankar, R.; Gupta, A. Robust adversarial reinforcement learning. arXiv 2017,
arXiv:1703.02702.

8. Rajeswaran, A.; Ghotra, S.; Ravindran, B.; Levine, S. Epopt: Learning robust neural network policies using model
ensembles. arXiv 2016, arXiv:1610.01283.

9. Peng, X.B.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Sim-to-real transfer of robotic control with dynamics
randomization. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, Australia, 21–25 May 2018; pp. 1–8.

10. Muratore, F.; Treede, F.; Gienger, M.; Peters, J. Domain randomization for simulation-based policy optimization
with transferability assessment. In Proceedings of the Conference on Robot Learning, Zurich, Switzerland,
29–31 October 2018; pp. 700–713.

11. Hussein, A.; Gaber, M.M.; Elyan, E.; Jayne, C. Imitation learning: A survey of learning methods. ACM Comput.
Surv. (CSUR) 2017, 50, 21. [CrossRef]

http://dx.doi.org/10.1109/TSMCB.2012.2198813
http://www.ncbi.nlm.nih.gov/pubmed/22695357
http://dx.doi.org/10.1109/TCST.2016.2601624
http://dx.doi.org/10.1145/3054912

Robotics 2020, 9, 29 23 of 24

12. Dessort, R.; Chucholowski, C. Explicit model predictive control of semi-active suspension systems using
Artificial Neural Networks (ANN). In 8th International Munich Chassis Symposium 2017; Pfeffer, P.E., Ed.; Springer
Fachmedien Wiesbaden: Wiesbaden, Germany, 2017; pp. 207–228.

13. Mordatch, I.; Todorov, E. Combining the benefits of function approximation and trajectory optimization.
Robot. Sci. Syst. 2014, 4, 5–32.

14. Abbeel, P.; Quigley, M.; Ng, A.Y. Using inaccurate models in reinforcement learning. In Proceedings of the 23rd
International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 1–8.

15. Mordatch, I.; Lowrey, K.; Todorov, E. Ensemble-CIO: Full-body dynamic motion planning that transfers to
physical humanoids. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5307–5314.

16. Liu, C.; Li, H.; Gao, J.; Xu, D. Robust self-triggered min–max model predictive control for discrete-time nonlinear
systems. Automatica 2018, 89, 333–339. [CrossRef]

17. Yu, W.; Liu, C.K.; Turk, G. Preparing for the Unknown: Learning a Universal Policy with Online System
Identification. arXiv 2017, arXiv:1702.02453,

18. Schulman, J.; Levine, S.; Moritz, P.; Jordan, M.I.; Abbeel, P. Trust Region Policy Optimization. arXiv 2015,
arXiv:1502.05477,

19. Muratore, F.; Gienger, M.; Peters, J. Assessing Transferability from Simulation to Reality for Reinforcement
Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2019. [CrossRef]

20. Bousmalis, K.; Irpan, A.; Wohlhart, P.; Bai, Y.; Kelcey, M.; Kalakrishnan, M.; Downs, L.; Ibarz, J.; Pastor, P.;
Konolige, K.; et al. Using simulation and domain adaptation to improve efficiency of deep robotic grasping.
In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–25 May 2018; pp. 4243–4250.

21. Chebotar, Y.; Handa, A.; Makoviychuk, V.; Macklin, M.; Issac, J.; Ratliff, N.; Fox, D. Closing the sim-to-real
loop: Adapting simulation randomization with real world experience. In Proceedings of the 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8973–8979.

22. Salimans, T.; Ho, J.; Chen, X.; Sutskever, I. Evolution strategies as a scalable alternative to reinforcement learning.
arXiv 2017, arXiv:1703.03864.

23. Chrabaszcz, P.; Loshchilov, I.; Hutter, F. Back to Basics: Benchmarking Canonical Evolution Strategies for Playing
Atari. arXiv 2018, arXiv:1802.08842

24. Rückstieß, T.; Sehnke, F.; Schaul, T.; Wierstra, D.; Sun, Y.; Schmidhuber, J. Exploring parameter space in
reinforcement learning. Paladyn 2010, 1, 14–24. [CrossRef]

25. Ortega, J.G.; Camacho, E. Mobile robot navigation in a partially structured static environment, using neural
predictive control. Control Eng. Pract. 1996, 4, 1669–1679. [CrossRef]

26. Åkesson, B.M.; Toivonen, H.T.; Waller, J.B.; Nyström, R.H. Neural network approximation of a nonlinear model
predictive controller applied to a pH neutralization process. Comput. Chem. Eng. 2005, 29, 323–335. [CrossRef]

27. Ross, S.; Gordon, G.; Bagnell, D. A reduction of imitation learning and structured prediction to no-regret online
learning. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 627–635.

28. He, H.; Eisner, J.; Daume, H. Imitation learning by coaching. In Advances in Neural Information Processing Systems;
Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 3149–3157.

29. Laskey, M.; Lee, J.; Fox, R.; Dragan, A.; Goldberg, K. Dart: Noise injection for robust imitation learning. arXiv
2017, arXiv:1703.09327.

30. Mordatch, I.; Lowrey, K.; Andrew, G.; Popovic, Z.; Todorov, E.V. Interactive control of diverse complex characters
with neural networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook,
NY, USA, 2015; pp. 3132–3140.

31. Levine, S.; Koltun, V. Guided policy search. In Proceedings of the 30th International Conference on Machine
Learning (ICML-13), Atlanta, GA, USA, 16–21 June 2013; pp. 1–9.

32. Levine, S.; Koltun, V. Learning complex neural network policies with trajectory optimization. In Proceedings of
the International Conference on Machine Learning, Bejing, China, 22–24 June 2014; pp. 829–837.

http://dx.doi.org/10.1016/j.automatica.2017.12.034
http://dx.doi.org/10.1109/TPAMI.2019.2952353
http://dx.doi.org/10.2478/s13230-010-0002-4
http://dx.doi.org/10.1016/S0967-0661(96)00184-0
http://dx.doi.org/10.1016/j.compchemeng.2004.09.023

Robotics 2020, 9, 29 24 of 24

33. Zhang, T.; Kahn, G.; Levine, S.; Abbeel, P. Learning deep control policies for autonomous aerial vehicles with
mpc-guided policy search. In Proceedings of the 2016 IEEE international conference on robotics and automation
(ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 528–535.

34. Kahn, G.; Zhang, T.; Levine, S.; Abbeel, P. PLATO: Policy Learning using Adaptive Trajectory Optimization.
In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017.

35. Levine, S.; Finn, C.; Darrell, T.; Abbeel, P. End-to-end training of deep visuomotor policies. J. Mach. Learn. Res.
2016, 17, 1334–1373.

36. Paul, S.; Kurin, V.; Whiteson, S. Fast Efficient Hyperparameter Tuning for Policy Gradient Methods. In Advances
in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 4618–4628.

37. Von Stryk, O.; Bulirsch, R. Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 1992,
37, 357–373. [CrossRef]

38. Bock, H.G.; Plitt, K.J. A multiple shooting algorithm for direct solution of optimal control problems. IFAC Proc.
Vol. 1984, 17, 1603–1608. [CrossRef]

39. Biegler, L.T. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes; SIAM:
Philadelphia, PA, USA, 2010; Volume 10.

40. Wächter, A. An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process
Engineering. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2002.

41. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980,
42. Tallec, C.; Ollivier, Y. Unbiasing Truncated Backpropagation Through Time. arXiv 2017, arXiv:1705.08209.
43. Ang, K.H.; Chong, G.; Li, Y. PID control system analysis, design, and technology. IEEE Trans. Control Syst.

Technol. 2005, 13, 559–576.
44. Muralidharan, V.; Mahindrakar, A.D. Position Stabilization and Waypoint Tracking Control of Mobile Inverted

Pendulum Robot. IEEE Trans. Control Syst. Technol. 2014, 22, 2360–2367. [CrossRef]
45. Dini, N.; Majd, V.J. Model predictive control of a wheeled inverted pendulum robot. In Proceedings of the

2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, 7–9 October 2015;
pp. 152–157. [CrossRef]

46. Ha, J.; Lee, J. Position control of mobile two wheeled inverted pendulum robot by sliding mode control.
In Proceedings of the 2012 12th International Conference on Control, Automation and Systems, JeJu Island,
Korea, 17–21 October 2012; pp. 715–719.

47. Pathak, K.; Franch, J.; Agrawal, S.K. Velocity and position control of a wheeled inverted pendulum by partial
feedback linearization. IEEE Trans. Robot. 2005, 21, 505–513. [CrossRef]

48. Kara, T.; Eker, I. Nonlinear modeling and identification of a DC motor for bidirectional operation with real time
experiments. Energy Convers. Manag. 2004, 45, 1087–1106. [CrossRef]

49. Achiam, J.; Held, D.; Tamar, A.; Abbeel, P. Constrained Policy Optimization. In Proceedings of the 34th
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF02071065
http://dx.doi.org/10.1016/S1474-6670(17)61205-9
http://dx.doi.org/10.1109/TCST.2014.2300171
http://dx.doi.org/10.1109/ICRoM.2015.7367776
http://dx.doi.org/10.1109/TRO.2004.840905
http://dx.doi.org/10.1016/j.enconman.2003.08.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Training Robust Parametric Controllers
	Imitation Learning with Trajectory Optimization

	Design of an Adaptive and Adjustable Controller Using Imitation Learning
	Trajectory Optimization
	Oracle Training
	Training a Robust Recurrent Network
	Adding Adjustable Behavior

	Task and Model Description
	System and Task
	Mathematical Model

	Application and Results
	Control Design Details
	Results in Simulation
	Control Performance in the Application
	Outlook of Application Specific Variations

	Conclusions
	Rigid Body Dynamics Model
	References

