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Abstract: Lubricants have a large influence on gearbox power losses. Recent investigations at a
gear efficiency test rig have shown the high potential of water-containing gear fluids in drastically
reducing load-dependent gear losses and temperatures. In this study, the bearing power losses with
water-containing gear fluids were evaluated at a specific bearing power loss test rig explicitly and
compared with mineral and polyalphaolefine oils. For all investigated lubricants, a Stribeck curve
behavior of the load-dependent losses is observed. The water-containing gear fluids demonstrate
lower no-load bearing losses and higher load-dependent bearing losses at higher rotational speeds.
The comparison of measured bearing losses with typical calculation procedures showe partially large
differences. The results underline the importance of having detailed knowledge of bearing losses
when evaluating gear losses in gearboxes.
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1. Introduction

Bearings in gearboxes ensure guidance of shafts and bearing of axial and radial forces. Bearing
power losses can be divided into no-load and load-dependent losses. Hinterstoißer et al. [1,2] and
Jurkschat et al. [3] used a bearing power loss test rig to analyze the influence of operating conditions
on roller bearing losses under dip lubrication. Their results show a degressive increase of no-load
losses with increasing rotational speed. In case of load-dependent losses, a Stribeck curve behavior
of the measured load-dependent losses was observed with increasing rotational speed. Aul et al. [4]
investigated, based on a bearing power loss test rig and multibody simulations, the influence of
operating conditions and bearing size on the frictional behavior of roller bearings. Their findings show
increasing bearing losses with increasing load and bearing size. Talbot et al. [5] examined the power
losses of a planetary gear set with different needle bearings and found increasing losses with increasing
load and rotational speed. They also show the potential of double-row needle bearings in reducing the
measured power losses by up to 23% compared to single-row needle bearings.

Several authors investigated the influence of base oil and viscosity on bearing losses. Hinterstoißer
et al. [1,2] show that the measured load-dependent losses of a mineral, polyalphaolefine, and polyether
oil evaluated at the same operating viscosity are comparable. The reduction of the viscosity from
approximately 10 to 5 mm2/s resulted in a decrease of the measured total losses by up to 40% at high
rotational speeds. Balan et al. [6] and Koryciak [7] confirmed these results. Thereby, besides the
lower frictional losses, a lower viscosity also simplifies the motion of the rolling elements and the
displacement of the lubricant.

Hinterstoißer et al. [2] also investigated the influence of the immersion depth on bearing losses.
Their results show negligible influence on the measured load-dependent losses. However, the no-load
losses decreased, especially at a higher rotational speed, resulting in a decrease of no-load losses by up
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to 20%. Koryciak [7] confirmed these results and show decreasing bearing losses along with a reduction
of the immersion depth by up to 50%. Aul et al. [8] conducted experimental investigations under
minimum quantity lubrication and found decreased bearing losses of up to almost 40% compared to
dip lubrication.

Jurkschat et al. [9] and Koryciak [7] compared measured bearing losses with calculated ones
according to SKF [10] and show partially large deviations. According to Jurkschat et al. [9], the
calculation methods can be improved if the influence of the base oil, additives, and the heat balance
of the bearings is taken into account more precisely. Wang [11] developed a calculation model based
on local contact conditions in bearings. This calculation model was implemented in the program
LAGER2HP (Wang et al. [12]). Schleich [13] also developed a calculation model based on the load
distribution in bearings to calculate bearing power losses.

Recent investigations by the authors have shown that water-containing gear fluids can strongly
reduce friction in elastohydrodynamically lubricated (EHL) contacts. Experimental investigations
conducted by Yilmaz et al. [14] at a twin-disk test rig show measured coefficients of friction smaller
than 0.01 for a wide range of operating conditions. This is commonly referred to as superlubricity
(Hirano et al. [15]). In addition, the film thickness measured at an EHL tribometer in [14] demonstrated
a good lubricant film formation of water-containing gear fluids. A pressure–viscosity coefficient of
approximately 6 1/GPa was derived. In [16], the loss and thermal behavior of these water-containing
gear fluids was investigated at a gear efficiency test rig. Mean gear coefficients of friction smaller than
0.01 and considerably lower gear bulk and steady-state excess temperatures were found. The results
show a great potential of water-containing gear fluids to reduce friction and improve gearbox efficiency
compared to conventional gear oils. This is accompanied by good calorific properties. Challenges with
water-containing gear fluids are to avoid vaporization of water and incompatibilities with materials.

The mean gear coefficients of friction identified by the authors in [16] were derived with the
load-dependent bearing losses presented in this study. Therefore, the aim of this study is to provide
a detailed insight into these results obtained from a specific bearing power loss test rig and into
the evaluation of the loss behavior of roller bearings with water-containing gear fluids. Some of
the findings of this study were presented during a technical session at the 60th German Tribology
Conference held in Göttingen, Germany, in 2019 (Yilmaz et al. [17]).

2. Experimental Setups

This section describes the experimental setup of the bearing power loss test rig considered in the
study as well as the operating conditions and lubricants.

2.1. Bearing Power Loss Test Rig

Experiments at an FZG bearing power loss test rig were conducted to investigate the loss behavior
of roller bearings with water-containing gear fluids. Figure 1a shows the mechanical layout of the test
rig, consisting of a speed-controlled electric engine, a loss torque meter, a radial and axial load unit,
and a test housing. Figure 1b shows the assembly of the test bearings onto the shaft in the test housing.

The following description of the bearing power loss test rig is mainly based on the work and
formulations of Jurkschat et al. [3,9]. The two outer roller bearings are supported in the housing and
the two inner bearings are mounted in a yoke, which can be loaded by the radial load unit. The axial
and radial force are applied by screw jacks. The bearings are loaded equally due to the symmetrical
assembly of the roller bearings on the shafts. In order to realize an automatic force application and
ensure accurate settings, the spindle is driven by a spur-geared motor. A spring assembly allows a
wide range of forces without replacing the test rig components. The force is controlled by coupling
the spindle drive with the load cell. The total loss torque of the four roller bearings is measured by a
loss torque meter shaft. Contactless gap seals with negligible losses are used. Due to the symmetrical
structure of the construction, the measured losses are approximately equal for all bearings and can
be quartered.
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utilized in Yilmaz et al. [16]. 
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bearings in the test housing (b) according to Jurkschat et al. [3,9]. 

  
Figure 2. Type NU406 and NJ406 test bearings with common front view (a) and top view (b). 

2.2. Operating Conditions and Lubricants 

Table 1 shows the considered operating conditions. The experimental procedure included a 
running-in for t = 30 min at a radial force of Fr = 4.5 kN (Hertzian pressure of pH = 1564 N/mm2) and a 
rotational speed of n = 87 min−1. Corresponding Hertzian pressures between the inner race and the 
roller were calculated by the bearing producer. Following the running-in, the rotational speed n was 
increased from 87 to 5218 min−1 for no-load and radial loads Fr of 1.4, 2.7, and 4.5 kN. Each rotational 
speed n was held for t = 5 min in order to allow quasi-stationary conditions. Lubrication regimes from 
boundary to mixed and fluid film lubrication were covered. The oil sump in the test housing was 
cooled and heated to control the oil sump temperature of ϑOil = 75 °C. All experiments were conducted 
with an oil filling level 30 mm below the shaft axes. 
  

Figure 1. Mechanical layout of the FZG bearing power loss test rig (a) and assembly of the test bearings
in the test housing (b) according to Jurkschat et al. [3,9].

Figure 2 illustrates the considered test bearings. To avoid incompatibilities with the investigated
water-containing lubricants, type NU406 and NJ406 cylindrical roller bearings (CEROBEAR GmbH,
Herzogenrath, Germany) (d = 30 mm, D = 90 mm, B = 23 mm) made of Si3N4 ceramic cylindrical
rollers, cronidur© races, and a polyether ether ketone (PEEK) cage were investigated. Two type NJ406
test bearings were mounted as outer bearings, and two type NU406 test bearings were mounted as
inner bearings, as shown in Figure 1b. The test bearings were the same as those used in the test gearbox
utilized in Yilmaz et al. [16].
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2.2. Operating Conditions and Lubricants

Table 1 shows the considered operating conditions. The experimental procedure included a
running-in for t = 30 min at a radial force of Fr = 4.5 kN (Hertzian pressure of pH = 1564 N/mm2) and a
rotational speed of n = 87 min−1. Corresponding Hertzian pressures between the inner race and the
roller were calculated by the bearing producer. Following the running-in, the rotational speed n was
increased from 87 to 5218 min−1 for no-load and radial loads Fr of 1.4, 2.7, and 4.5 kN. Each rotational
speed n was held for t = 5 min in order to allow quasi-stationary conditions. Lubrication regimes from
boundary to mixed and fluid film lubrication were covered. The oil sump in the test housing was
cooled and heated to control the oil sump temperature of ϑOil = 75 ◦C. All experiments were conducted
with an oil filling level 30 mm below the shaft axes.
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Table 1. Considered operating conditions at the FZG bearing power loss test rig.

Radial Force
Fr in kN

Hertzian Pressure
pH in N/mm2

Rotational Speed
n in min−1

Time
t in min

Oil Temperature
ϑOil in ◦C

no-load no-load 87, 131,
348, 522,

1444, 2166,
3479, 5218

5 (for each
rotational speed) 751.4 1078

2.7 1320

4.5 1564

The considered lubricants were the same as those used in the studies [14,16] of the authors.
Therefore, the following description is mainly based on these studies. Three water-containing gear
fluids were compared with conventional gear oils. Table 2 shows the corresponding kinematic
viscosities and densities. The mineral oil MIN-10 was specified by Laukotka [18] and used as a link to
the results of Hinterstoißer [1,2]. The polyalphaolefine oils PAO-09 and PAO-05 have the same base
oil type with typical gear oil additives incorporated. Their kinematic viscosity levels are specified at
100 ◦C and differ strongly. The water-containing fluids PAGW-09, PAGW-05A, and PAGW-05B were
based on water-soluble polyalkylenglycols with water concentrations up to 70%. Note that the given
kinematic viscosities at 100 ◦C were approximated. PAGW-09 and PAGW-05A have the same additives
incorporated but different kinematic viscosities, similar to PAO-09 and PAO-05. PAGW-05B has the
same kinematic viscosity as PAGW-05A but has different additives incorporated. The densities of the
water-containing gear fluids were approximately 30% higher than those of conventional gear oils.

Table 2. Properties of the investigated lubricants.

Conventional Gear Oils Water-Containing Gear Fluids

MIN-10 PAO-09 PAO-05 PAGW-09 PAGW-05A PAGW-05B

ν (40 ◦C) in mm2/s 94.1 50.2 20.4 45.7 23.6 22.9

ν (60 ◦C) in mm2/s 38.4 25.7 12.3 24.7 13.6 12.9

ν (100 ◦C) in mm2/s 10.6 9.0 5.0 9.2 5.3 4.8

Viscosity index VI 95 165 185 189 167 135

ρ (15 ◦C) in kg/m3 884.5 850.0 840.0 1115.0 1109.0 1097.0

2.3. Load-Dependent Bearing Losses for Derivation of Mean Gear Coefficients of Friction

In Yilmaz et al.’s study [16], the loss and thermal behavior of water-containing gear fluids were
investigated at the FZG gear efficiency test rig for pitch line velocities vt of 0.5 to 20.0 m/s, Hertzian
pressures at the pitch point pC from 962 to 1723 N/mm2, and oil sump temperatures ϑOil from 40
to 90 ◦C. The mean gear coefficients of friction were derived for an oil temperature of ϑOil = 60 ◦C
based on the measured load-dependent bearing losses presented in this study. Based on [16], Figure 3
exemplarily shows the measured no-load losses TL0, load-dependent bearing losses TLBP, and the
derived load-dependent gear losses TLGP for pC = 1343 N/mm2 and ϑOil = 60 ◦C over the pitch line
velocity vt for the conventional gear oils and water-containing gear fluids. Note that the load-dependent
bearing losses TLBP comply with the results in Section 3.1. Whereas the load-dependent gear losses
TLGP make up the majority of the total losses for the conventional gear oils PAO-09 and PAO-05, TLGP
is drastically smaller for the water-containing gear fluids PAGW-09, PAGW-05A, and PAGW-05B. On
the other hand, the no-load losses TL0 of the water-containing gear fluids are slightly higher compared
to the conventional gear oils. The load-dependent bearing losses TLBP of the water-containing gear
fluids also show higher values compared to the conventional gear oils. These losses were the basis for
deriving the load-dependent gear losses TLGP and the mean coefficients of friction and are the focus of
the present study.
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Figure 3. Total losses, no-load losses, load-dependent bearing losses, and load-dependent gear losses
for pC = 1343 N/mm2 and ϑOil = 60 ◦C over the pitch line velocity vt based on [16].

Radial forces, rotational speeds, and test times in Section 2.2 were derived from the operating
conditions of the gear efficiency tests in [16]. The radial forces in Table 1 were calculated with a
RIKOR [19] model of the test gearbox, considering shaft, bearing, and gear stiffness. In order to achieve
an oil supply and heat balance of the test bearings mounted at the FZG gear efficiency and bearing
power loss test rig that are as comparable as possible, the oil filling level and oil temperature at the
bearing power loss test rig were adjusted. Based on the set oil filling level of 30 mm below the shaft
axes, half of the bottom cylindrical roller immerges into the oil sump. According to Hinterstoißer [2],
this oil filling level approximates the dynamic oil filling level of the bearings during the experiments at
the FZG gear efficiency test rig. The oil temperature of ϑOil = 75 ◦C results according to Schleich [13] in
an averaged measured bearing bulk temperature of ϑM = 60 ◦C at the bearing power loss test rig. This
bearing bulk temperature was measured at the FZG gear efficiency test rig for an adjusted oil sump
temperature of ϑOil = 60 ◦C.

3. Results and Discussion

In this section, measured loss torques are presented, discussed, and compared with calculated
loss torques. Note that the presented losses consist of the sum of the losses of four bearings. The
same bearings were used for each considered lubricant, and all experiments were repeated once. The
average values of the two test runs are shown. Error bars in bar charts indicate the result of test runs
one and two.

3.1. Bearing Loss Torques

For all lubricants investigated, Figure 4 shows the measured no-load losses TLB0 and total losses
TLB for radial forces of Fr = {1.4, 2.7, 4.5} kN as well as the derived load-dependent losses TLBP for
radial forces of Fr = {2.7, 4.5} kN over the rotational speed.

3.1.1. No-load Losses TLB0

The no-load loss curves (Figure 4a) show an increasing trend for all lubricants, mainly due to
increasing drag and churning losses in the dip-lubricated roller bearings. The no-load losses are
strongly influenced by the kinematic viscosity and density of the lubricants.

In case of the conventional gear oils MIN-10, PAO-09, and PAO-05, the results are in accordance
with the kinematic viscosities shown in Table 2. MIN-10 results in higher no-load losses than
PAO-09, which has higher no-load losses than PAO-05. Regarding the water-containing gear fluids
PAGW-09, PAGW-05A, and PAGW-05B, higher no-load losses are measured with PAGW-09 compared
to PAGW-05A and PAGW-05B, which show almost the same no-load losses due to similar viscosity.
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Figure 4. Measured no-load losses (a) and total losses for radial forces of Fr = {1.4, 2.7, 4.5} kN (b–d)
as well as derived load-dependent losses for Fr = {2.7, 4.5} kN (e,f) over the rotational speed for all
investigated lubricants (ϑOil = 75 ◦C).

All no-load loss curves show a decrease in the slope between 1444 and 2166 min−1. For rotational
speeds of n ≤ 1444 . . . 2166 min−1, higher no-load losses are measured with water-containing gear
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fluids compared to the polyalphaolefine oils with the same kinematic viscosity. This is attributed to
the approximately 30% higher density of water-containing gear fluids, resulting in higher dynamic
viscosities. For rotational speeds of n > 1444 . . . 2166 min−1, lower no-load losses are observed with the
water-containing gear fluids, as the curvature of their no-load loss curves between 1444 and 2166 min−1

is more pronounced. This may be related to a lower sliding friction of these lubricants, resulting in
lower acceleration forces on the rolling elements entering the load area (Hinterstoißer [2]). Furthermore,
the higher density of the water-containing gear fluids may result in a greater displacement of oil from
the bearing due to higher centrifugal forces.

3.1.2. Total Losses TLB

The total loss curves (Figure 4b–d) for radial forces of Fr = {1.4, 2.7, 4.5} kN consist of no-load
and load-dependent losses. The measured total losses increase with increasing radial force for all
investigated lubricants.

In case of the conventional gear oils MIN-10, PAO-09, and PAO-05, higher total losses are measured
for MIN-10 compared to PAO-09, which shows higher total losses than PAO-05. Note that, for very
low rotational speeds of n ≤ 131 min−1, the relations change to the highest total losses for PAO-05 and
the lowest for MIN-10. This becomes more pronounced with increasing radial force.

In case of the water-containing gear fluids PAGW-09, PAGW-05A, and PAGW-05B, higher total
losses are measured with PAGW-09 compared to PAGW-05A and PAGW-05B, which show almost the
same total losses. In comparison with the polyalphaolefine oils with the same kinematic viscosity, the
water-containing gear fluids result in lower total losses for very low rotational speeds of n ≤ 131 min−1

and higher total losses for higher rotational speeds.

3.1.3. Load-Dependent Losses TLBP

The load-dependent loss curves (Figure 4e,f) represent the subtraction between the measured
total losses TLB and the measured no-load losses TLB0. For all investigated lubricants, a Stribeck curve
behavior of the load-dependent loss curves can be observed. They decrease between 87 ≤ n ≤ 348
1/min and then increase for n > 348 min−1.

Regarding the conventional gear oils MIN-10, PAO-09, and PAO-05, the load-dependent loss
curves are in good agreement with their viscosities shown in Table 2. For very low rotational speeds of
n ≤ 131 min−1, the highest load-dependent losses are derived for PAO-05, followed by PAO-09 and
MIN-10. For rotational speeds of n > 131 min−1, the opposite is observed. These findings can be traced
back to solid and fluid friction portions and to the increase of fluid friction with increasing viscosity.
The results correlate well with the results of Hinterstoißer [2].

For all water-containing gear fluids PAGW-09, PAGW-05A, and PAGW-05B, similar load-dependent
losses are measured for very low rotational speeds. For rotational speeds of n ≥ 348 min−1, the highest
load-dependent losses are measured with PAGW-09. The load-dependent losses of the lower viscos
PAGW-05A and PAGW-05B are smaller and very similar. In comparison with the polyalphaolefine oils
with the same kinematic viscosity, the load-dependent losses are smaller at very low rotational speeds
and clearly higher for higher rotational speeds.

Figures 5 and 6 show the no-load losses TLB0 and the load-dependent losses TLBP in bar charts in
order to provide a more complete overview of the influence of operating conditions and lubricants.

Figure 5 shows the measured no-load and derived load-dependent losses for rotational speeds
n = {87, 2166, 5218} min−1 at Fr = 4.5 kN and ϑOil = 75 ◦C. It shows that for conventional gear oils,
the load-dependent losses are dominant for very low rotational speeds and the no-load losses are
dominant for higher rotational speeds. In contrast, the no-load losses of water-containing gear fluids
are lower for higher rotational speeds, whereas their load-dependent losses are lower at very low
rotational speeds and higher at higher rotational speeds.

Figure 6 shows the measured no-load and derived load-dependent losses for radial forces of Fr =

{1.4, 2.7, 4.5} kN at n = 2166 min−1 and ϑOil = 75 ◦C. For the considered rotational speed of n = 2166
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min−1, the no-load losses are dominant. For all lubricants, the load-dependent losses increase with
increasing radial force. The load-dependent losses of water-containing gear fluids are higher compared
to polyalphaolefine oils with the same kinematic viscosity.
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Figure 5. Influence of rotational speed n = {87, 2166, 5218} min−1 on the measured no-load and derived
load-dependent losses at Fr = 4.5 kN and ϑOil = 75 ◦C for all investigated lubricants.
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Figure 6. Influence of radial force Fr = {1.4, 2.7, 4.5} kN on the measured no-load and derived
load-dependent losses at n = 2166 min−1 and ϑOil = 75 ◦C for all investigated lubricants.

3.2. Comparison between Measured and Calculated Bearing Loss Torques

Figure 7 compares the measured bearing losses for Fr = 4.5 kN, n = {87, 131, 348, 522, 1444,
2166, 3479, 5218} min−1 and ϑOil = 75 ◦C with calculated bearing losses for the conventional gear oils
(Figure 7a) and water-containing gear fluids (Figure 7b). The calculations are based on BEARINX [20]
and SKF 2004 [10]. The calculations show a tendency towards higher bearing losses with SKF 2004 and
lower bearing losses with BEARINX compared to measurements. The bearing losses calculated with
SKF 2004 are closer to the measured bearing losses.
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= 75 ◦C and n = {87, 131, 348, 522, 1444, 2166, 3479, 5218} min−1 for conventional gear oils (a) and
water-containing gear fluids (b).

3.3. Derivation of Mean Gear Coefficients of Friction

In Yilmaz et al.’s study [16], the mean gear coefficients of friction were derived based on the
measured load-dependent bearing losses TLBP shown in Sections 2.2 and 2.3. To underline the
importance of having detailed knowledge of load-dependent bearing losses TLBP when evaluating
load-dependent gear losses TLGP, Figure 8 shows a comparison of derived mean gear coefficients of
friction µmz based on measured and calculated load-dependent bearing losses TLBP. The evaluation
refers to pitch line velocities of vt = {0.5, 2.0, 8.3, 20} m/s, a Hertzian pressure at the pitch point of
pC = 1723 N/mm2, and an oil sump temperature of ϑOil = 60 ◦C [16]. For the conventional gear oils
(Figure 8a), the results show a good correlation of µmz if the load-dependent bearing losses TLBP are
calculated according to BEARINX [20]. The usage of SKF 2004 [10] underestimates µmz. In case of
water-containing gear fluids (Figure 8b), the differences are partially larger compared to conventional
gear oils with both calculation procedures.Lubricants 2019, 7, x 10 of 12 
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Figure 8. Comparison of derived mean gear coefficients µmz with measured and calculated
load-dependent bearing losses TLBP at pC = 1723 N/mm2, ϑOil = 60 ◦C and vt = {0.5, 2.0, 8.3, 20}
m/s for conventional gear oils (a) and water-containing gear fluids (b).
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4. Conclusion

In this study, the loss behavior of roller bearings with water-containing gear fluids was investigated
and compared with conventional gear oils. For water-containing gear fluids, lower no-load losses
and higher load-dependent losses were observed at higher rotational speeds. For all investigated
lubricants, a Stribeck curve behavior of the load-dependent losses was determined. The comparison
of the measured bearing losses with typical calculation procedures showed comparatively large
differences. The comparison of derived mean gear coefficients of friction based on measured and
calculated load-dependent bearing losses underline the importance of having detailed knowledge of
bearing losses in order to derive mean gear coefficients of friction precisely.
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Nomenclature

B Bearing width mm
d Bearing inner diameter mm
D Bearing outer diameter mm
Fr Radial force kN
n Rotational speed min−1

pC Hertzian pressure at the pitch point N/mm2

pH Hertzian pressure N/mm2

t Time s
T Torque Nm
vt Pitch line velocity m/s
Greek symbols
ϑM Bulk temperature ◦C
ϑoil Oil temperature ◦C
ν Oil kinematic viscosity mm2/s
µmz Mean gear coefficient of friction -
ρ Oil density kg/m3

Indices
0 No-load
B Bearing
G Gear
L Loss
P Load-dependent
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