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Ursula Felderhoff-Müser3, Ana Alves-Pinto1, Renée Lampe1

1 Research Unit for Pediatric Neuroorthopedics and Cerebral Palsy of the Buhl-Strohmaier Foundation,

Orthopedic Department, Klinikum Rechts der Isar, Technical University of Munich, München, Germany,

2 Chair of Mathematical Modelling, Mathematical Faculty, Technical University of Munich, Garching bei

München, Germany, 3 Departments of Pediatrics and Neonatology, University Hospital Essen, University of

Duisburg-Essen, Essen, Germany, 4 Department of Pediatrics, Neonatology, Klinikum Rechts der Isar,

Technical University of Munich, München, Germany

* turova@ma.tum.de

Abstract

Intracerebral hemorrhage in preterm infants is a major cause of brain damage and cerebral

palsy. The pathogenesis of cerebral hemorrhage is multifactorial. Among the risk factors are

impaired cerebral autoregulation, infections, and coagulation disorders. Machine learning

methods allow the identification of combinations of clinical factors to best differentiate pre-

term infants with intra-cerebral bleeding and the development of models for patients at risk

of cerebral hemorrhage. In the current study, a Random Forest approach is applied to

develop such models for extremely and very preterm infants (23–30 weeks gestation)

based on data collected from a cohort of 229 individuals. The constructed models exhibit

good prediction accuracy and might be used in clinical practice to reduce the risk of cerebral

bleeding in prematurity.

Introduction

Intraventricular cerebral hemorrhage (IVH) is a frequent complication in preterm infants,

affecting the nervous system and leading to impairments of musculoskeletal and cognitive

functions, speech development and vision. In most cases, bleeding initiates in the so-called

germinal matrix (GM)—the brain area densely penetrated by blood vessels. The GM is respon-

sible for the formation of immature neuronal and glial cells and disappears by the 32nd week

of gestation (WG). Many factors influence the onset of cerebral hemorrhage [1]. According to

studies [2–4], the most important role is played by the deficient and immature cerebral autore-

gulation, leading to significant fluctuations in the cerebral blood flow (CBF), as a result of

which the fragile, muscle-lacking blood vessels of the GM are destroyed. But also various

inflammatory diseases that affect the deformability of red blood cells, as well as coagulation

disorders were found to be associated with the occurrence of IVH [5, 6].

Although in recent decades the survival rate of preterm infants has increased significantly,

the reported percentage of cerebral hemorrhage in neonates with gestational age of< 30
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weeks and birth weight < 1500 g remains between 22% and 25% [7]. A promising direction

towards preventing cerebral hemorrhage in newborns is the creation of machine learning

(ML) models that are able, with a certain degree of probability, to identify patients at risk of

developing a cerebral hemorrhage. By analyzing clinical records of important parameters in

preterm infants, it is possible to retrospectively develop such prognostic models by finding

the optimal combination of parameters that makes possible to separate preterm infants

with, from those without, bleeding. Preliminary work on the association of reduced or ele-

vated values of various clinical parameters, such as leukocyte (Leu) and thrombocyte (Thro)

counts, hematocrit (Ht), C-reactive protein (CRP), arterial oxygen partial pressure (pO2),

blood oxygen saturation (SaO2), arterial carbon dioxide partial pressure (pCO2), blood acid-

ity (pH), and mean arterial pressure (MAP), with the occurrence of cerebral hemorrhage, as

well as the presence of correlations between some of the parameters, was carried out by the

authors in [8, 9].

ML-methods have been successfully used for diagnosis and prognosis of various diseases,

including stroke (see, for example, [10]). The use of ML-methods in neonatology is scarce.

Few studies elaborating ML-tools for prediction of survival of preterm neonates are currently

available; see, for example, [11] describing ML-models for estimation of mortality risk of very

preterm neonates. Recent works [12] elaborated ML-models for more precise assessment of

gestational age and to improve identification of preterm neonates.

The present article addresses the development of ML-models to identify preterm infants at

risk for a cerebral hemorrhage. Clinical data of a cohort of 229 extremely (with 23–26 WG)

and very preterm infants (with 27–30 WG), collected retrospectively in two German clinics

were used to train and test the models. The collected data served as an input for Random For-

est method available in the R software package, to find good predictive features as well as the

optimal combination of features from analyzed data and to develop ML-models that are able

to predict cerebral hemorrhage in extremely and very preterm infants.

Material and methods

Data were collected retrospectively from clinical records of 265 preterm infants who were

treated in two German Neonatology departments. Data were anonymized. The project and its

procedures were approved by the Ethics Committees in both clinics, the Ethics Committee of

the University Hospital ‘rechts der Isar’, Technical University of Munich (Ref. 364/15), and the

Ethics Committee of the Essen University Hospital, University Duisburg-Essen (Ref. 16–

7284-BO).

Patients were divided into two groups: with cerebral hemorrhage (affected group) and with-

out cerebral hemorrhage (control group). Deceased newborns without cerebral hemorrhage

were excluded from the control group, whilst those with hemorrhage were matched with neo-

nates of the affected group by age (gestation week) and weight. This criterion for matching was

chosen to make both control and affected groups comparable in terms of the physiological and

anatomical factors that critically determine cerebral blood flow. The latter is influenced by the

number and size of cerebral blood vessels [9], being dependent on brain weight, as estimated

from birth weight [13]. Furthermore, the size of the GM, as the origin of cerebral hemorrhages,

depends also on the gestational age and birth weight [14]. The GM reaches its maximum size

of 5% of total brain volume by the 22nd week of gestation and decreases steadily from the 23rd

week of gestation onwards, disappearing generally by the 34th week gestation. After all exclu-

sions and after matching, 118 patients with IVH (75 extremely preterm; 43 very preterm) and

111 controls (62 extremely preterm; 49 very preterm) remained in the analysis. Their obstetric

data are given in Table 1.
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Note that the control group is 6% smaller than the affected one because it was not possible

to find in the cohort a number of age- and weight-matched control infants equal to the affected

ones. As a consequence, some controls were matched with two affected neonates of the same

gestational age and weight. However, since there were generally more measurements for con-

trols than for affected neonates, we decided to include all affected infants in the study. An

exact matching between groups based on sex was also not possible because of the higher preva-

lence of IVH in males compared to females which could not be matched in the control group.

This difference in the relative number of males between groups was nevertheless not statisti-

cally significant.

There is prior evidence of a difference in the incidence of IVH between extremely and very

preterm infants: with 45% in extremely preterm infants [15] and 24% in very preterm infants

[16]. Furthermore, in our previous study [8], significant differences in some clinical parame-

ters were found between extremely and very preterm newborns. Therefore, in the current

study the group of extremely preterm infants was analyzed separately from the group of very

preterm infants.

IVH was diagnosed by cranial ultrasound examination. According to standard practice,

cranial ultrasound is performed routinely on the 1st, 3rd, 7th, and 14th days and sometimes

more frequently if there are clinical signs of, or if ultrasound examination indicates, pathology.

Data samples of neonates of the affected group used in the development of ML-model were

those collected before hemorrhage. Selection of data samples was done according to the proto-

col shown in Table 2 as follows: clinical measurements of infants for whom IVH was diagnosed

on the first day of life were not included in the analysis. In cases where IVH was diagnosed as

having occurred on the second day of life, the recordings made on the first day of life were

used. For infants for whom IVH was diagnosed on the 3rd day of life or afterwards, data sam-

ples were considered up to the day when the previous routine ultrasound examination took

place (e.g., only 1st day of life when IVH was diagnosed on the 3rd day, and first 3 days of life

when IVH was diagnosed on the 4th till the 7th day). For newborns of the control group, all

available data samples were included in the analysis.

It is worth mentioning that the number of measurement samples for controls is usually

higher than for affected infants. The difference comparing to the affected group is due to the

Table 1. Obstetric characteristics of the cohort.

Parameter No IVH

(n = 111)

With IVH

(n = 118)

p-valuea

Gestational age [weeks] 26.6±2.1 26.3±2.0 0.19

Birth weight [g] 853±249 881±298 0.58

Sex [%Male] 43.2 56.4 0.06

Multiple birth [%, e.g. twins and triplets] 36.9 38.9 0.79

Normal vaginal delivery [%] 6.3 9.3 0.46

Rupture of the amniotic sac [%] 31.5 22.9 0.18

ap-value based on the two-sided Wilcoxon rank-sum test for the null hypothesis that the group means for the two

groups are equal.

https://doi.org/10.1371/journal.pone.0227419.t001

Table 2. Procedure adopted to select data samples of affected neonates to be input into the model. The procedure

considers the day of occurrence of IVH.

Day of IVH diagnosis 1 2–3 4–7 8–14 15–21

Number of days of infant’s life since birth for which data samples were included in

the analysis

0 1 3 7 14

https://doi.org/10.1371/journal.pone.0227419.t002
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fact that only records taken before hemorrhage are used in the analysis of affected neonates.

This difference is reflected in Table 3. As discussed later, our machine learning pipeline

accounted for this imbalance by oversampling the affected group.

Clinical parameters were obtained from arterial and capillary blood samples and included

pH, pCO2, pO2, Leu, Ht, Thro, CRP, as well as measurements of MAP, SaO2, and Apgar-Score

values at 1, 5 and 10 minutes after birth (A1, A5, A10). To have complete records at a given

time point, rarer measurements of Leu, Ht, Thro, and CRP were time-matched (within one

day) with the more frequent records of blood gas values (pH, pO2, pCO2) and of MAP and

SaO2.

In addition to the clinical parameters mentioned, the values taken from clinical records, we

included also cerebral blood flow (CBF) as an additional parameter to train and validate the

model. CBF values used here correspond to simulated values, derived using a mathematical

model developed by the authors in a previous study [9]. Briefly, this model describes mathe-

matically the dependence of CBF on different anatomical and physiological variables, and was

adapted from a pre-existing model for the adult brain [17] to the brain of preterm infants. As

in [17], the cerebrovascular system is represented in the model in the form of 19 consecutively

connected compartments: 9 arterial, 1 capillary, and 9 venous. Each compartment has its own

number of vessels and blood vessel characteristics (length, diameter, pCO2-reactivity). At the

capillary level, the presence of the GM with its characteristic features (higher vascular density,

increased diameter and decreased length of vessels compared to other brain regions, and

reduced vascular response to pCO2 fluctuations) and the number of vessels according to the

child’s age is accounted for by the parallel connection of its circulatory system with the rest of

the brain capillaries. The resistance of this cerebral network is computed as the sum of resis-

tances of 19 compartments and the total CBF is calculated according to Kirchhoff’s law. Ves-

sels’ reactivity (the ability to constrict or dilate depending on the pCO2 content in blood) is

modeled by making the diameter of the vessels to depend on the deviation of the pCO2 level

from some nominal value. The myogenic autoregulation mechanism (the change in the diame-

ter of vessels with blood pressure fluctuations) is taken into account by adjusting the model in

accordance with published CBF measurements in preterm infants (see [9] for details). Despite

the complexity of the model, the mathematical simulation of CBF has been also implemented

in a user-friendly software interface not requiring deep mathematical knowledge.

Clinical datasets of affected and control infants used to build and evaluate ML-models were

input without distinguishing between individual persons. Only the presence/absence of IVH

and the membership to the group of extremely or very preterm neonates was taken into

account. The age at which clinical records were done was not considered in the model.

ML-models were developed using the R software package [18, 19]. The Random Forest

(RF) method was applied. RF is considered particularly well suited when a large number of fea-

tures is considered [20] (13 in our case). In addition, RF has the advantage of computing the

importance of each feature in the classification process.

Data were randomly divided into a training set (90%) and an unseen validation set (10%).

Table 3. Number of observation days and measurement samples per infant for the control and affected groups.

No IVH With IVH

Max observation days 13 14

Mean number of days±SD 9.8±0.8 2.7±2.8

Max measurements per day 8 9.2

Mean number of measurements per day±SD 2.4±1.4 2.4±1.5

Total number of measurements 2373 801

https://doi.org/10.1371/journal.pone.0227419.t003
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The accuracy of the model in the training stage was estimated using repeated 10-fold cross

validation with three repeats. This procedure involves randomly dividing the set of observa-

tions into 10 groups, or folds, of approximately equal size. Then the ML-model is trained on 9

folds and is tested on the last fold, such that each fold becomes test set once. The procedure is

repeated three times and the results are averaged. The folds are selected randomly in each of

the three repeats. To handle the above mentioned data imbalance, the option “SMOTE” (Syn-

thetic Minority Oversampling Technique) [21] was adopted, that allows changing the fre-

quency of different classes of the training data. Specifically, the function call

‘train(hemorr~., data = dataset, method = "rf", metric = "Accuracy", trControl = control)’

with the parameter ‘control’ being the output of the call

‘trainControl(method = "repeatedcv",number = 10,repeats = 3,sampling = "smote")’ was

used.

The importance of features for each of the two groups was estimated using a standard R-

function “varImp”. The standard Recursive Feature Elimination (RFE) method provided by

the caret R package was used to select the number of features.

Two main metrics, the mean accuracy and the characteristic Cohen’s kappa (see Table 4),

were used to characterize the quality of the model. In the validation stage, the model perfor-

mance was estimated on unseen data by calculating the following metrics (Table 4): 1) the

observed accuracy, 2) the no-information rate (a classifier that attributes a sample to a class

with the probability equal to the class percentage in the data), 3) the sensitivity (the percentage

correctly classified neonates with hemorrhage), and 4) the specificity (the percentage of cor-

rectly classified neonates without hemorrhage).

Categorical characteristics (such as sex, multiple birth, normal vaginal delivery, and rupture

of amniotic sac) were compared by their relative values in % along with p-value calculated by

Fisher’s exact test. For continuous variables (such as gestational age, birth weight, and clinical

measurements) mean values were compared using the two-sided Wilcoxon’s rank-sum test. A

p-value < 0.05 was considered as statistically significant.

Results

Table 5 lists the variables used for the construction of ML- models, their mean values (±stan-

dard deviation) computed over all available records for each group, and p-values for the null

hypothesis that the means for the control and affected groups are equal.

Table 4. Variables and metrics used in evaluation of model performance.

Metrics/Variable Definition

n Total number of data sets

c1true Number of data sets for infants with IVH

c2true Number of data sets for infants without IVH

c1method Number of data sets classified by the ML-method as of infants with IVH

c2method Number of data sets classified by the ML-method as of infants without IVH

n1 c1true × c1method/n

n2 c2true × c2method/n

Expected accuracy (EA) (n1 + n2)/n

Observed accuracy (OA) Number of correctly identified data sets/n

Cohen’s kappa (OA-EA)/(1-EA)

Mean accuracy Mean value of OA

n1true Number of correctly identified data sets for infants with IVH

n2true Number of correctly identified data sets for infants without IVH

Sensitivity n1true/c1true

Specificity n2true/c2true

https://doi.org/10.1371/journal.pone.0227419.t004
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The optimal number of features established for extremely preterm infants is 5 (Fig 1). For

very preterm infants, although 9 attributes provided highest accuracy, 5 attributes yielded

practically the same result (Fig 2).

The importance of variables for the group of extremely and very preterm infants is plotted

in Figs 3 and 4, respectively. To build ML-models, three top variables (Thro, pH, and Leu for

extremely preterm and Thro, Ht, and Leu for very preterm infants) were supplemented by two

variables chosen by enumerating all possible variants of the remaining 10 variables. Addition-

ally, for each group, combinations of variables that were effective in the other group were also

tested. Variables that were correlated were considered redundant and only one of them was

used for each model. For extremely preterm infants, a correlation was established (the absolute

value of correlation coefficient >0.5) between pCO2 and CBF, MAP and CBF, A1 and A5, A1

and A10, A5 and A10. For very preterm infants, in addition to these correlations, also correla-

tions between Leu and CRP, CBF and CRP, pH and pCO2 were found.

Table 6 (extremely preterm infants) and Table 7 (very preterm infants) display the best

results obtained. The first column in each table shows the variables used for the construction

of the ML-model. The second column shows the mean accuracy of the obtained model and the

third column Cohen’s kappa. The fourth column gives the accuracy of the model on unseen

data; 95% confidence interval (CI) and the accuracy rate that can be achieved without a model

are shown in the fifth and sixth columns, respectively. The seventh column shows a p-value

indicating the probability of observing the same or better classification accuracy for the classi-

fier with no information rate; the sensitivity and the specificity of the model are given in the

eighth and ninth columns, respectively.

According to Table 6, for the group of extremely preterm infants, the most efficient sets of

model variables included Thro, pH, Leu, Ht, A10, A5, A1, CRP, pO2, CBF, and SaO2.

For very preterm infants, the most effective predictors were Thro, Ht, Leu, pH, A1, A5,

pCO2, CBF, and SaO2.

Table 5. Comparison of variable means for the control and affected groups. For the affected group only records taken before hemorrhage were considered for the

model.

Variable Extremely preterm (23–26 WG), n = 137 Very preterm (27–30 WG), n = 92

Control

(n = 62)

Affected

(n = 75)

p-valuea Control

(n = 49)

Affected

(n = 43)

p-valuea

A1 5.57±1.93 5.45±1.69 0.057 6.41±2.04 5.85±2.03 <0.001

A5 6.94±1.60 7.05±1.52 0.059 7.86±1.13 7.30±1.24 <0.001

A10 7.98±1.31 7.92±0.91 <0.001 8.54±0.57 8.00±0.71 <0.001

Ht [L/L] 0.442±0.078 0.422±0.078 <0.001 0.467±0.080 0.458±0.088 0.495

Thro [109/L] 198.48±80.48 180.28±75.00 0.002 206.21±90.9 165.82±78.4 <0.001

Leu [109/L] 20.27±17.62 11.28±8.43 <0.001 9.12±5.58 10.84±9.41 0.128

CRP [mg/dL] 0.448±0.506 0.825±0.942 <0.001 0.646±0.828 1.55±3.705 0.007

pH 7.28±0.07 7.25±0.09 <0.001 7.32±0.06 7.27±0.09 <0.001

pO2 [mmHg] 43.07±12.52 47.73±14.39 <0.001 42.16±9.37 42.26±10.5 0.722

SaO2 [%] 91.56±4.39 90.27±4.33 <0.001 94.23±5.76 89.87±6.74 <0.001

pCO2 [mmHg] 47.65±9.49 48.40±11.18 0.389 44.09±7.61 48.65±9.05 <0.001

MAP [mmHg] 36.80±8.96 30.50±8.15 <0.001 40.45±8.58 37.16±7.58 <0.001

CBF

[ml/min/100g]

10.94±5.43 8.89±4.79 <0.001 15.45±5.33 17.95±7.57 <0.001

ap-value for the null hypothesis that the group means for the control and affected groups are equal.

https://doi.org/10.1371/journal.pone.0227419.t005
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In both groups, prediction was most accurate for the sets of variables including Thro, Ht,

Leu, pH, and one of the Apgar scores (A1 for extremely preterm and A5 for very preterm

infants).

Discussion

The occurrence of cerebral hemorrhage in preterm infants can cause lifelong disability. Its pre-

vention is therefore an important aim.

Fig 1. Optimal number of features in RF-models for extremely preterm infants with 23 to 26 WG.

https://doi.org/10.1371/journal.pone.0227419.g001

Fig 2. Optimal number of features in RF-models for very preterm infants with 27 to 30 WG.

https://doi.org/10.1371/journal.pone.0227419.g002
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ML-models constitute a promising tool in this endeavor through the identification of

premature infants at risk for developing cerebral bleeding. The results on model performance

presented above indicate that a good predictive ability can be achieved with different combina-

tions of clinical parameters. The variables, Thro, Leu, Ht, pH, CBF, SaO2, A1, and A5 are com-

mon to the most effective sets of model variables, both for extremely as well as very preterm

groups.

The association between these variables and the development of IVH in preterm neonates

has been reported in several previous studies [22–31]. Occurrence of IVH is strongly

Fig 3. Variable importance plot for extremely preterm infants with 23 to 26 WG.

https://doi.org/10.1371/journal.pone.0227419.g003

Fig 4. Variable importance plot for very preterm infants with 27 to 30 WG.

https://doi.org/10.1371/journal.pone.0227419.g004
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associated with thrombocytopenia (lower number of thrombocytes in blood) [22], and, in very

low birth weight infants, with an increase in leukocyte count [23]. Moreover, leukocyte count

and CPR were found to be associated with histological chorioamnionitis [24], which in turn

has also been identified as a risk factor of IVH [25]. Low initial Ht-levels in preterm infants

with< 28 WG were shown to be associated with occurrence of IVH [26], with initial values of

Ht< 45% having been associated with a 2-fold increase in cerebral hemorrhage probability in

extremely low birth weight neonates [27]. According to [28], decreased values of pH together

with hypercapnia (pCO2 > 45 mmHg) can also increase the risk of occurrence of IVH, and

fluctuations of CBF can increase the risk of cerebral hemorrhage [29]. Although there is no

direct evidence for an association between oxygen saturation and IVH, the reduced supply of

oxygen may lead to an elevation of CBF in an attempt to maintain the levels of SaO2. Apgar

scores are used as indicators of adverse outcome, including severe IVH [30, 31].

Machine learning methods were here used to determine the combinations of clinical vari-

ables that can most effectively identify infants at risk for cerebral bleeding. For extremely pre-

term infants, almost all of the most effective combinations of variables considered here

included Thro, pH, and Leu. The other two variables were combinations of Ht, A1, A5, CBF,

CRP, SaO2, and pO2. For very preterm neonates, the variables Thro, Ht, and Leu were always

present in the most effective combinations, being supplemented by two variables from the fol-

lowing list: pH, A1, A5, CBF, SaO2, and pCO2. The absence of CRP in this list compared to

that for extremely preterms can be explained by the correlation between CRP and Leu

observed, such that one of the variables is redundant for the identification process in this pop-

ulation. This difference in the predictive role of CRP between extremely and very preterm neo-

nates may reflect the reported influence of gestational age on CRP-levels during the first few

weeks after birth [32].

It is also worth to mention that the variable pO2 is present in the sets of model variables for

extremely preterm but not for very preterm infants. This feature can be used to distinguish

controls from affected extremely preterm infants (see Table 6). Fig 5 illustrates the difference

in probability distribution of pO2-records between the control and affected groups for

extremely (left panel) and very preterm (right panel) infants. The clearly different distributions

of pO2 between control and affected extremely preterms, with a higher average pO2 value for

the latter group (see Table 5), may reflect the recommended management of extremely pre-

term neonates, which targets towards high (91–95%) arterial oxygen saturation values [33, 34].

Whilst this is aimed to reduce mortality, the rate of occurrence of other complications has

Table 6. Performance results for extremely preterm newborns.

Model variables Mean accuracy Mean kappa Accuracy of prediction 95% CI No information rate p-value Sensitivity Specificity

Thro, pH, Leu,

Ht, A10

0.877 0.735 0.89 (0.795, 0.952) 0.644 <0.001 0.923 0.872

Thro, pH, Leu,

Ht, A5

0.910 0.807 0.918 (0.83, 0.969) 0.644 <0.001 0.923 0.915

Thro, pH, Leu,

Ht, A1

0.913 0.812 0.959 (0.885, 0.991) 0.644 <0.001 0.923 0.979

Thro, pH, Leu,

Ht, CRP

0.893 0.743 0.918 (0.804, 0.977) 0.714 <0.001 0.929 0.914

Thro, pH, Leu,

pO2, CRP

0.861 0.664 0.918 (0.804, 0.977) 0.714 0.005 1.0 0.886

Thro, Ht, Leu, CBF, A1 0.879 0.747 0.872 (0.743,

0.952)

0.617 <0.001 0.889 0.862

Thro, Ht, Leu,

A1, SaO2

0.889 0.756 0.883 (0.774,

0.952)

0.667 <0.001 0.9 0.875

https://doi.org/10.1371/journal.pone.0227419.t006
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been observed not to change with the arterial oxygen saturation values. By contrast, very pre-

term infants with 27 to 30 WG are better distinguished by pCO2 than extremely preterm

infants, as indicated by the presence of pCO2 in the sets of variables for this age group

(Table 7). Fig 6 shows the difference in probability distribution of pCO2-records between the

control and affected group for extremely (left panel) and very preterm (right panel) infants.

This change in the set of parameters that allow a better separation between control and affected

groups may reflect differences in development, for example of the lung function, between

extremely and very preterm neonates. Although short, this period of time that separates

extremely and very preterm infants might be sufficient to provide the very preterms a more

developed condition relative to the extremely preterms, such that they do not need the same

O2 ventilation support. However, relative to controls of the same age group, infants in the

affected very preterm group may still have a less effective breathing function, that reflects in

differences in the levels of CO2 in the blood relative to controls. Further clinical work and fur-

ther development of the machine-learning models are however needed to be able to clarify the

differences found.

The machine-learning models here presented were built upon laboratory variables that,

apart from CBF, are currently collected during routine clinical monitoring. For example, varia-

tions in blood pressure may lead to hypoperfusion and hyperperfusion of the brain and may

require pharmacological treatment. In case of hypoperfusion cardiovascular therapy with vol-

ume loading and pharmacological therapy are often recommended. And whilst changes in spe-

cific parameters require specific treatments, there are however no definitive or strict

recommendations. By considering several clinical factors, instead of analyzing effects of indi-

vidual or of a small group of parameters, the machine-learning models presented account for

Table 7. Performance results for very preterm newborns.

Model variables Mean accuracy Mean kappa Accuracy of prediction 95% CI No information rate p-value Sensitivity Specificity

Thro, Ht, Leu,

pH, A5

0.898 0.76 0.972 (0.855, 0.999) 0.694 3e-05 1.0 0.96

Thro, Ht, Leu,

pH, A1

0.9 0.77 0.944 (0.813,

0.993)

0.694 0.0003 1.0 0.92

Thro, Ht, Leu, pCO2, A5 0.879 0.72 0.889 (0.739, 0.969) 0.694 0.006 0.818 0.92

Thro, Ht, Leu, pCO2, A1 0.892 0.752 0.944 (0.813, 0.993) 0.694 0.0003 1.0 0.92

Thro, Ht, Leu, CBF, A1 0.891 0.765 0.909 (0.708, 0.989) 0.636 0.004 0.875 0.929

Thro, Ht, Leu,

A1, SaO2

0.864 0.676 0.931 (0.772,

0.992)

0.69 0.002 0.889 0.95

https://doi.org/10.1371/journal.pone.0227419.t007

Fig 5. Probability density functions for pO2-records of affected (pink curves) and control (blue curves) patients. Left panel: Extremely preterm infants.

Right panel: Very preterm infants.

https://doi.org/10.1371/journal.pone.0227419.g005
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the possibility of brain bleeding involving the combination of several factors. Detecting such

multidimensional higher-risk conditions is not straightforward for a person in a clinical set-

ting, but may be facilitated by model-supported computations.

In addition to the above, by helping to identify preterms at risk of brain bleeding, the

machine-learning models presented may promote a close monitoring of these preterms earlier

than currently is the case and this way allow for an earlier intervention and control of the

development of clinical parameters, ultrasound of brain and of noticeable neurological

problems.

The fact that several models with a good predictive ability were obtained both for extremely

and very preterm infants makes it possible to use those models for which the greatest amount

of necessary data is available when assessing the risk of cerebral hemorrhage in an individual

neonate. In addition, conclusions about the individual risk of hemorrhage can be made based

on testing results for several models, focusing on the worst case.

In addition to the laboratory variables the ML-models presented were based also on infor-

mation about the CBF, for different combinations of MAP and pCO2 values. These are also

important to evaluate the risk of brain bleeding. CBF values cannot however be obtained

experimentally (with standard clinical measures) but need to be calculated via modelling [9].

Let us mention some limitations of the presented research. 1) Since data wr collected retro-

spectively, patients had a different number of measurements. 2) The control and affected

groups were not completely matched by sex but this factor was not included in the models.

The objective difficulty of matching by sex lies in the fact that male preterm neonates have a

higher risk of IVH compared to female preterm neonates [35, 36]. 3) Although only measure-

ments up to the day when the previous planned ultrasound examination took place were input

into the model (Table 2), some measurements may have been included that in reality were

made already after the bleeding. This is because the exact time of bleeding could not be exactly

determined. For example, IVH could happen on the first day of life just after the first ultra-

sound examination, but be diagnosed on the second or third day of life. Nevertheless, all the

measurements made on the first day were included. However, we expect the number of such

“after-bleeding” measurements is small in comparison with the number of “before-bleeding”

measurements and not to significantly influence the results obtained. 4) The data were col-

lected retrospectively over a ten year period (2006–2016) during which changes in the manage-

ment of preterm infants could have occurred.

Though the RF-models employed showed good performance, in future work we will plan to

test other machine learning algorithms (e.g. kNN, SVM, and CART), considering additional

features. The developed models are planned to be tested against new data. To this end, addi-

tional data will need to be collected and input into the models. Additional clinical records will

Fig 6. Probability density functions for pCO2-records of affected (pink curves) and control (blue curves) patients. Left panel: Extremely preterm

infants. Right panel: Very preterm infants.

https://doi.org/10.1371/journal.pone.0227419.g006
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enable the further development of ML-models for the different ages for which the measure-

ments were obtained, which will contribute to improve the predictive power of the models.

We expect the models to be developed may help neonatologists in the future to timely identify

infants at risk of cerebral hemorrhage and in this way reduce the rate of its occurrence and of

consequent impairments.
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