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Abstract: Wind has a significant influence on the operational flight safety. To quantify the influence of
the wind characteristics, a wind series generator is required in simulations. This paper presents a method
to model the stochastic wind based on operational flight data using the Karhunen–Loève expansion.
The proposed wind model allows us to generate new realizations of wind series, which follow the original
statistical characteristics. To improve the accuracy of this wind model, a vine copula is used in this paper
to capture the high dimensional dependence among the random variables in the expansions. Besides,
the proposed stochastic model based on the Karhunen–Loève expansion is compared with the well-known
von Karman turbulence model based on the spectral representation in this paper. Modeling results of
turbulence data validate that the Karhunen–Loève expansion and the spectral representation coincide
in the stationary process. Furthermore, construction results of the non-stationary wind process from
operational flights show that the generated wind series have a good match in the statistical characteristics
with the raw data. The proposed stochastic wind model allows us to integrate the new wind series into
the Monte Carlo Simulation for quantitative assessments.

Keywords: wind model; operational flight data; stochastic process; Karhunen–Loève Expansion; vine
copula; spectral representation

1. Introduction

To improve the operational flight safety, an Acceptable Level of Safety Performance (ALoSP) [1]
is defined to identify the safety level for airlines or airports. Wind has a significant influence on
operational flight safety and should be considered in the quantitative assessments of the operational
flight safety level. Mathematical wind models such as ’1-cosine’ discrete wind gust model, low-level
wind shear model, von Karman turbulence model, and Dryden turbulence model, are commonly used
for flight simulation and flight control design [2–4]. European Aviation Safety Agency (EASA) also
illustrated the models of mean wind, turbulence, and wind shear for airworthiness assessment [5].
However, the general wind models cannot represent the local statistical characteristics of the wind.
Therefore, they are not suitable to quantify the operational risk for a specific airline or airport.
Instead, wind estimated from operational flight data in the onboard Quick Access Recorder (QAR) [6,7],
as a sufficient wind database, allows us to analyze the specific statistical characteristics of the real
wind conditions.

A model-based predictive analysis framework to quantify the incident probability for a specific
airline has been developed by the Institute of Flight System Dynamics [8,9]. Wind speed, as one of
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the contributing factors to the incident, can be taken into account in this approach. The quantitative
assessment of the incident probability is obtained via propagating the uncertainty of the contributing
factors through the incident model. During the uncertainty propagation, each contributing factor
remains constant in one evaluation of the incident model. As shown in the runway overrun case
in the paper [8], the wind speed is constant in the incident model. However, the constant wind
assumption is not suitable for all incidents, as the variation of wind speed and direction affects the
flight performance and handling quality significantly. Therefore, wind series should be considered in
the incident model. Although the traditional wind shear or turbulence model can be used in Monte
Carlo simulation, they can not represent the statistical characteristics of the specific operational flight
data. Thus, the objective of this paper is to build a stochastic wind model in order to generate new
wind series, which follow the statistical characteristics of the real wind data and can be used in the
incident model simulation.

Wind series can be assumed as a stochastic process. Conventional turbulence wind is modeled as a
stationary stochastic process using the spectral representation (SR) methods [10]. However, such approaches
can not deal with the non-stationary wind series. To obtain the realistic quantitative statement of the
operational flight risk, a high fidelity model to describe the wind series is required. Markov processes
are highly useful models for stochastic processes, but the process has to satisfy the Markov property [11].
Without any assumption about the process, a Karhunen–Loève (KL) expansion method is proposed in
[12,13] to construct the observed non-stationary random phenomena, such as seismic ground motion and
wave field. This method is also called functional principal component analysis [14], which are widely used
in sensitivity analysis domain to identify the key parameters and also has a good performance in dimension
reduction. In addition, some researchers show that the SR method and the KL expansion method coincide
for the weakly stationary process [15,16]. In this paper, we apply the KL expansion method to model the
encountered wind series during the operational flights. The coefficients in KL expansion are assumed to be
independent in many applications [14]. However, it is not always true, especially if the stochastic process is
not Gaussian process [12]. The pair dependence between every two coefficients in KL is considered in [13].
To better describe the statistical characteristics of the KL coefficients, a vine copula technique [17] is used to
capture the high dimensional dependence among those coefficients instead of the pair dependence. With the
integration of a vine copula into KL expansion, the better representation of KL coefficients would improve
the accuracy of the constructed stochastic wind model. To compare with the conventional turbulence model
used in aviation, the similarity and difference between the KL and the SR method for turbulence modeling
are also discussed in this paper.

The paper starts with an explanation about the basic concepts of the KL expansion method and
vine copula, followed by a comparison of SR and KL in terms of equations in Section 2. In Section 3,
the modeling results of turbulence data and real headwind series data are presented and discussed.
Besides, the modeling of extracted wind shear ramps is also implemented. Section 4 contains
conclusions and possible improvements of the proposed wind construction model.

2. Modeling of Stochastic Process

Two main construction methods of the stochastic process are discussed in this section: KL expansion
and SR methods. The KL expansion method is introduced to model the finite stochastic process. Then,
a vine copula is brought in to construct the high dimensional dependence of the random variables in the
KL expansion. The strategy that the vine copula describes the high dimensional dependence is explained
using a three-dimensional case. Besides, we present the SR method for the stationary process, which is
subsequently compared with the KL expansion.

2.1. Karhunen–LoèVe Expansion

Let X(t) be a stochastic process at a given time interval t ∈ [0, T]. The autocorrelation and
autocovariance functions are usually used to describe the random process. They are calculated as follows:
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R(t1, t2) = E[X(t1)X(t2)],

Cov(t1, t2) = E[(X(t1)− µ1)(X(t2)− µ2)] = R(t1, t2)− µ1µ2,
(1)

where t1, t2 ∈ T. E is the expectation operator, and µi is the mean of the process X(t) at given time ti.
For a zero-mean stochastic process, the autocorrelation and autocovariance are equivalent. As an
arbitrary process can be transformed to a zero-mean process by subtracting its mean, without loss of
generality, we can assume that X(t) is a zero-mean process. Then, X(t) can be reconstructed using the
KL expansions [18]:

X(t) =
∞

∑
k=1

√
λkξkφk(t), (2)

where the λk and the corresponding functions φk(t) are the solutions of the integral equation:∫
D

R(t, s)φ(s)ds = λφ(s), t, s ∈ D = [0, T]. (3)

The corresponding random coefficients ξk, k = {1, 2, ...} are computed using

ξk =
1√
λk

∫
D

X(t)φk(t)dt. (4)

By Mercer’s theorem [18], the R(t, s) can be expressed in terms of its eigenvalues and eigenvectors
via eigendecomposition as follows:

R(t, s) =
∞

∑
k=1

λkφk(t)φk(s), (5)

where the obtained λk and φk(t) fulfill Equation (3). In addition, eigenvectors φk(t) are orthonormal
and their inner product follows the equation:

< φk(t), φl(t) >=
∫

D
φk(t)φl(t)dt = δkl , k, l ≥ 1, (6)

where δkl is the Kronecker delta function. In addition, X(t) is a zero-mean process, the total variance
of the X(t) can be derived as below:

∫
D

Var[X(t)]dt =
∫

D
E[X2(t)]dt =

∫
D
E[(

∞

∑
k=1

√
λkξkφk(t))2]dt =

∞

∑
k=1

λk. (7)

The sum of all λk indicates the integrated variance of the process. In practice, Equation (2)
is truncated at a certain order K. Therefore, the relative error ε of the truncated expansion can be
calculated as below:

ε = 1− ∑K
k=1 λk∫

D R(t, t)dt
= 1− ∑K

k=1 λk

∑∞
k=1 λk

. (8)

1− ε is called the cumulative variance ratio. As mentioned before, X(t) is a process with zero
mean. It means that E[X(t)] = 0 for all t ∈ D. Considering an arbitrary process Y(t), the truncated KL
expansion series of an arbitrary process can be represented by adding its mean as below:

Y(t) ≈ E[Y(t)] +
K

∑
k=1

√
λkξkφk(t), (9)

where λk is sorted in descending order as λ1 ≥ λ2 ≥ ... ≥ 0. As the eigenvectors φk are orthonormal
and Y(t)−E[Y(t)] is zero mean, the realizations of ξk computed using Equation (4) satisfy
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E[ξk] = 0, Var[ξk] = 1, E[ξkξl ] = δkl , (10)

which indicates that random variables ξk are mutually uncorrelated to each other, and distributed with
zero mean and unit variance. In a particular case that the random process is a Gaussian process, all ξk
are independent standard Gaussian distributed. For the non-Gaussian process, the dependence among
ξk can be described by the joint distribution of ξk. New samples of ξk sampled from the distribution of
ξk allow us to generate new realizations of the stochastic process using Equation (9).

2.2. Vine Copula

The integration of a vine copula into KL expansion is proposed to deal with the dependent ξk.
A brief introduction related to the copula is presented. For details, the readers are referred to [17,19].
Based on the theorem of Sklar [20], the joint distribution F of the dependent ξk can be decomposed by
the marginal cumulative distribution functions (CDF) Fk and a copula structure C as below:

F(ξ1, ξ2, ..., ξK) = C
(

F1(ξ1), F2(ξ2), ..., FK(ξK)
)
. (11)

As Fk is the CDF of ξk, the realization of Fk is uniformly distributed. C describes the dependence
among ξk and eliminates the impact of the marginal distributions. The probability density f is
computed as below:

f (ξ1, ξ2, ..., ξK) = c
(

F1(ξ1), F2(ξ2), ..., FK(ξK)
) K

∏
k=1

fk(ξk). (12)

As the truncated order K of the KL expansion might go to 20 or more for highly accurate reconstruction,
the copula density function c becomes too complex. Based on the Rosenblatt transformation [21] and the
conditioning arguments [17], the vine copula approach allows us to construct a K-dimensional copula
density function using K(K−1)

2 bivariate copula densities. The maximum likelihood method is applied
to estimate the bivariate copula densities based on the given data. An example of a three-dimensional
probability distribution constructed from three bivariate copula densities is presented in Appendix A. Since
the construction of high dimensional copula in Equation (A3) is not unique, [22] describes a sequential
strategy to obtain the most suitable construction structure. After the vine copula dependence model of
ξk is obtained, dependent samples of the ξk can be generated using the vine copula. Based on the KL
expansion and vine copula methods, the procedure of the stochastic process reconstruction and regeneration
is summarized in Algorithm 1.

2.3. Spectral Representation

The SR method is often applied to deal with a stationary stochastic process. SR describes the
features of the process in the frequency domain using the power spectral density (PSD) function P(ω).
P(ω) can be computed via the Fourier transformation of the autocovariance function RX(t + τ, t) of
the process [23] as below:

P(ω) =
∫ ∞

−∞
RX(t + τ, t)e−iωτdτ, (13)

where ω is the angular frequency and τ is the time lag between two time points. RX(t + τ, t) = RX(τ)

for the stationary process, and it can be obtained based on the inverse Fourier transformation as below:

RX(t + τ, t) =
1

2π

∫ ∞

−∞
P(ω)eiωτdω. (14)
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Algorithm 1 Procedure of the stochastic process reconstruction and regeneration

1: Collection of the measured realizations of the stochastic process Y
2: Center the data Y using X(t) = Y(t)−E[Y(t)]
3: Calculate the autocovariance R(t, s) of X using Equation (1)
4: Obtain the eigenfunctions φi and eigenvalues λi via the eigendecomposition of R(t, s) using

Equation (5)
5: Calculate the cumulative variance ratio 1− ε using Equation (8) and set the truncated order K

depending on the required 1− ε.
6: Calculate the coefficients ξk, where k = 1, 2....K using Equation (4)
7: if Reconstruct the original process then
8: Calculate the Yrec using the computed ξk based on the Equation (9)
9: end if

10: if Regenerate the new process then
11: Estimate the marginal distributions of ξk

12: if Independent Sampling then
13: Get samples of ξk via sampling individually from the marginal distributions
14: else if Copula Sampling then
15: Estimate the vine copula of ξk.
16: Get samples of ξk via the copula sampling
17: end if
18: Calculate the Ynew using the sampled ξk based on the Equation (9)
19: end if

For a finite stationary stochastic process with zero-mean X(t), t ∈ [0, T], it can be represented
using the exponential form of the Fourier series expansion as below:

X(t) =
∞

∑
k=−∞

Fkeik∆ωt =
∞

∑
k=−∞

|Fk|eiψk eiωkt, (15)

where ωk = k∆ω = k · 2π/T andFk is the Fourier coefficients. |Fk| and ψk are the frequency amplitude
and corresponding phase, respectively. Fk can be calculated via the Fourier inverse transformation
as below:

Fk =
1
T

∫ T

0
X(t)e−iωktdt. (16)

The average power of the process P is defined as

P =
1
T

∫ T

0
X2(t)dt =

1
T

∫ T

0

(
∞

∑
k=−∞

Fkeiωkt

)2

dt. (17)

Since the inner product of the exponential terms in Equation (17) satisfies

<
eiωkt
√

T
,

eiωl t
√

T
>=

∫ T

0

eiωkt
√

T
e−iωl t
√

T
dt = δkl , (18)

the average power P can be rewritten as below:

P =
∞

∑
k=−∞

|Fk|2 =
∞

∑
k=−∞

Pk, (19)

where Pk is the power for the specific ωk. Substitute |Fk| using
√

Pk in Equation (15):
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X(t) =
∞

∑
k=−∞

√
Pkeiψk eiωkt =

∞

∑
k=−∞

√
PkTeiψk

eiωkt
√

T
. (20)

Therefore, RX(τ) in Equation (14) can be rewritten in the Fourier series expansion:

RX(τ) =
∞

∑
k=−∞

Pkeiωkτ =
∞

∑
k=−∞

Pkeiωk(t−s) =
∞

∑
k=−∞

PkT <
eiωkt
√

T
,

eiωks
√

T
>, (21)

where t, s ∈ T. For an infinite stationary process, P(ω) can be obtained by taking the limit of PkT when
T → ∞ as follows:

P(ω) = lim
∆ωk→0

2πPk
∆ωk

= lim
T→∞

PkT, f or ωk ∈ [ωk−1, ωk], (22)

where ∆ωk = ωk −ωk−1. Compare the representation equation Equation (15) with the KL expansion
equation Equation (2), and the autocovariance equation Equation (21) with Equation (5), respectively.
It shows that λk = PkT and φk = eiωkt/

√
T are the solution of the integral equation Equation (3).

It reveals that the SR and the KL expansion coincide in the construction of a finite stationary process.
For the infinite stationary process, it is worth mentioning that P(ω) is continuous and has two sides
ω < 0 and ω > 0. However, the λk in KL expansion method is discrete and the corresponding ωk is
always larger than 0.

3. Results and Discussion of Wind Process Modeling

This section starts with a turbulence model construction. Wind data generated from a well-known
von Karman turbulence model is used to compare the KL expansion and the SR method. Then, the wind
series during the operational flight is reconstructed and regenerated using the KL expansion method.
The original headwind data is estimated based on 849 flights of a B747-8F that landed on the same
runway. A preprocessing of the data is implemented using the Rauch-Tung-Striebel smoother smoother
to improve the data quality. For the details of the data smoothing, readers are referred to reference
given in [24]. Modeling of headwind data during the final approach is presented, followed by another
case study of the horizontal wind shear ramps construction.

3.1. Turbulence

The conventional wind turbulence model in aviation is described using the PSD function of the
SR method. For an aircraft flying at speed V through a frozen turbulence field, PSD functions Φ(Ω) of
the von Karman model [10] in three directions are shown as below:

Φu(Ω) = σ2
u

2Lu

π

1
[1 + (1.339LuΩ)2]5/6 , (Longitudinal)

Φv(Ω) = σ2
v

Lv

π

1 + 8
3 (1.339LvΩ)2

[1 + (1.339LvΩ)2]11/6 , (Lateral)

Φw(Ω) = σ2
w

Lw

π

1 + 8
3 (1.339LwΩ)2

[1 + (1.339LwΩ)2]11/6 , (Vertical)

(23)

where u, v and w refer to the longitudinal, lateral and vertical turbulence, respectively. σu, σv, and σw

are the intensity measures of the turbulence. Lu, Lv, and Lw (in feet) are the length scales of the
turbulence. Ω is the spatial frequency, which is equal to the angular frequency ω divided by V.
In general, ω is in the range of [0, 100π] [10]. With respect to ω, the PSD S(ω) is computed as follows:

S(ω) =
Φ(Ω)

V
=

Φ(ω/V)

V
. (24)

When the altitude of aircraft h (in feet) is less than 1000 feet, the L and σ can be calculated as below:
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Lw = h,

Lu = Lv =
h

(0.177 + 0.000823h)1.2 ,
(25)

σw = 0.1VW20,

σu = σv =
σw

(0.177 + 0.000823h)0.4 ,
(26)

where VW20 is the wind speed measured at 20 feet (6.10 m). Given a certain flight condition, for example,
h = 600 feet (182.88 m), VW20 = 15 knots (7.72 m/s), and V = 140 knots (72.02 m/s), the PSD of the
turbulence model in three directions is shown in Figure 1. 2000 time series of 256 s in 16 Hz are
generated for each direction using the Equation (23) in the same flight condition. One example of
the generated time series is shown using the blue dash line in Figure 2. The KL expansion method is
implemented based on the generated 2000 turbulence series. Compared with the PSD, eigenvalues
with the corresponding index in KL expansion are also shown in Figure 1.

Figure 1. Comparison of the SR and KL construction for turbulence data in a certain flight condition.

Figure 1 shows that the shape of PSD and eigenvalues in the KL expansion are similar.
As mentioned in Section 2.3, the index k of the KL expansion terms corresponds to a certain angular
frequency ωk and the eigenvalue λk in the KL expansion is equivalent to the PSD P(ω). The PSD of the
turbulence model decreases with an increase of ω. Meanwhile, the eigenvalues λk in the KL expansion
are sorted. Thereby, the shape of PSD and eigenvalues is almost similar. This result validates that the
KL expansion method coincides with the SR method for the stationary stochastic process.

Two truncated orders K = 30 and K = 100 are selected in the KL expansion of turbulence.
One example of KL reconstructed results is shown in Figure 2. It shows that the reconstructed process
and the series generated from the PSD match very well. The reconstructed accuracy is improved with
the increase of the truncated order. As the high order term is corresponding to the high frequency in this
case, higher frequencies are neglected in the lower order truncated KL reconstruction. To quantify the
influence of the KL truncated order K, the cumulative variance ratio 1− ε of the KL expansions in the
case of longitudinal turbulence is calculated using Equation (8) and also shown in Figure 3a. It shows
that the reconstructed turbulence with K = 100 can achieve 84.6% of variance. When K increases
to 200, 92.6% of variance is achieved. Furthermore, the PSDs of the 2000 reconstructed longitudinal
turbulence series using KL expansions are computed and shown in Figure 3b. The ’theoretical’ black
line is computed directly based on the von Karman model using Equation (23). The ’raw data’
indicates the PSD are cumputed based on the turbulence data generated from the von Karman model.
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The ’K = 200, 100, 30’ shows the mean of PSD computed based on the KL reconstructed turbulence data
with difference truncated orders. It also shows that the accuracy of PSD obtained from reconstructed
data will be improved with the increasing order K. This property is also indicated by the cumulative
variance ratio. Nevertheless, the KL expansion with sufficient orders based on the turbulence data
is consistent with the conventional von Karman model. This approach allows us to construct the
turbulence wind process.

Figure 2. Comparison between the generated turbulence based on the PSD and the reconstructed
turbulence using the KL expansion.

3.2. Headwind

Headwind has a significant influence on landing performance. A case of headwind process
construction is demonstrated in this section. The headwind from 1000 feet (304.80 m) to 50 feet (15.24
m) above ground level (AGL) is estimated from the operational flight data in the final approach phase.
849 series of headwind (in knots) are resampled from the smoothed headwind based on the altitude
(in feet) shown in Figure 4a. All wind series are homogenized after resampling.

The KL expansion method is implemented based on the headwind series of 849 flights. Figure 4b
shows the relationship between the cumulative variance ratio and the truncated order K. K = 20
is selected in this case, and more than 99.9% variance of the process is obtained. Eigenfunctions φk
of the autocorrelation matrix are shown in Figure 4c. According to the Equation (9), three arbitrary
reconstructed wind series using the calculated ξk are illustrated and compared with raw wind series
data in Figure 4d. Although only 20 terms KL functions are used in the construction, the reconstructed
wind series and raw wind series match very well, which indicates that truncated KL expansion can be
used to reconstruct the headwind series.
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(a) (b)
Figure 3. KL expansion results of longitudinal turbulence. (a) Cumulative variance ratio of KL
expansion; (b) PSD comparison of reconstructed turbulence.

New samples of the ξk are required to generate the new wind series. The marginal distribution of
each ξk is studied. Box plot of ξk in Figure 5a shows the computed ξk are distributed close to zero mean
and unit variance, which is also derived in Equation (10). However, Figure 5a also reveals that the median
of ξk is not always zero. The empirical CDF of ξk and standard Gaussian distribution are compared in
Figure 5b. All blue dash lines are related to the empirical CDF of ξk. It indicates that some of ξk are almost
following the standard Gaussian distribution. However, some deviations of CDF do exist in this case.
Furthermore, marginal distributions for all ξk are estimated using maximum likelihood methods from the
distribution candidates, such as ’Gaussian’, ’Student-t’, ’Generalized Extreme Value’, ’t Location-Scale’,
’Logistic’ distributions, and so on. Estimated probability densities of ξk are compared in Figure 5c, and the
corresponding distribution parameters are shown in Table A1 of Appendix B. Deviations in PDF between
the estimated distributions and Gaussian distribution are obvious. Instead of Gaussian distribution, the
estimated marginal distributions of ξk are used to generate the realizations of ξk, which are subsequently
used for the new wind series production based on the Equation (9).

As mentioned before, dependence among ξk might exist for non-Gaussian distributed ξk. A vine
copula approach is applied to capture the dependence of the obtained ξk. To analyze the pairwise
dependence between two ξk, the empirical contour plots using the copula data are shown in Figure A1
of Appendix C. The copula data has three scales: X scale denoted by ξX

k , U scale denoted by ξU
k , and Z

scale denoted by ξZ
k . ξX

k is the same with the raw data ξk. ξU
k is obtained via transforming all samples

of ξk into the uniform space as follows:
ξU

k = Fk(ξk), (27)

where Fk is the CDF of the marginal distribution of ξk. ξZ
k is used in the normalized contour plots,

and it is obtained via transforming all samples of ξk into the standard Gaussian space using:

ξZ
k = Ψ−1(Fk(ξk)), (28)

where Ψ is the CDF of the standard Gaussian distribution. Figure A1 shows that most dependence
between two ξk is small, but some pair dependence exist, for example, the dependence between ξ10

and ξ16. A vine copula with the estimated marginal distributions is used in this case to capture the
dependence. The parametric and nonparametric bivariate copula are used separately and normalized
contour plots on the Z scale are shown in Figure A2a,b, respectively. The parametric bivariate copula is
using the defined copula function to fit the data, and the unknown parameters in the copula functions
are estimated [17]. In contrast, the nonparametric bivariate copula is using the empirical function
for two variables, which is the same as the empirical CDF for one variable. New realizations of ξk
can be generated via independent sampling, parametric vine copula sampling, and nonparametric
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vine copula sampling. To visualize the difference of generated samples, sample plots between ξ10 and
ξ16 are shown in Figure 6. The raw data (Figure 6a), independent samples (Figure 6b), parametric
(Figure 6c) and nonparametric copula samples (Figure 6d) in Z scale are illustrated, respectively.
The dependence between ξ10 and ξ16 is evident in this case. Compared with the individually sampling
from the marginal distributions, samples generated using the vine copula capture the dependence of
the raw data and thus give a better representation of the raw data.

(a) (b)

(c) (d)
Figure 4. Headwind series and KL expansion results. (a) Headwind of 849 flights; (b) Cumulative
variance ratio of KL expansion; (c) Eigenfunctions of KL expansion; (d) Reconstruction of three arbitrary
wind series.

The statistical characteristics of the generated wind series are analyzed to validate the construction
results. 5000 samples of ξk are generated using the independent sampling and the vine copula sampling.
Then the corresponding 5000 wind series are generated for independent samples and dependent
samples, respectively. The empirical CDFs and the kernel fitted PDFs of headwind speed at four
different altitudes: 1000 feet (304.80 m), 600 feet (182.88 m), 300 feet (91.44 m), and 50 feet (15.24 m)
are shown in Figures 7 and 8. It indicates that the generated wind series obtain a similar statistical
distribution at a certain altitude compared with the raw data. Moreover, there is no significant
difference in the headwind distribution between the independent and dependent sampling in 1000
feet, 600 feet, 300 feet. However, headwind distribution densities at 50 feet using the parametric and
nonparametric copula sampling are closer to the raw data than the independent sampling.

To further analyze the results, the first four order sample moments of the observed wind data
along with the altitude are calculated and shown in Figure 9. It shows that the constructed series
have a good match at the mean and standard deviation with the raw data. For the independent
sampling, the skewness is close to 0, and the kurtosis is always close to 3 for all altitudes. It is close
to the moments of Gaussian distribution. In terms of the skewness and kurtosis, results show that
the generated series can not exactly capture the skewness and kurtosis. However, the statistical
moments using the parametric and nonparametric copula are closer to the raw statistical moments
than the independent sampling, especially at the low altitude. Since there is no significant deviation
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in the numerical value of the skewness and kurtosis, the generated headwind series can be used in
simulations for the quantitative assessment.

(a) (b)

(c)
Figure 5. Marginal distributions of ξk. (a) Box plot of ξk; (b) Empirical CDF of ξk; (c) Estimated PDF of ξk.

3.3. Windshear

A safety-critical wind series, low-level wind shear, has been recognized as a severe hazard for
flight safety. To analyze and quantify the occurrence probability and severity of the wind shear,
the significant change of headwind VW with the change of the altitude h, so-called horizontal wind
shear ramps, are extracted from the flight data. The algorithm is to detect the extreme incremental
values of ∆VW within a certain interval Γ, which is defined as a certain height deviation in this case.
A headwind increment for a moving window with a given width of ∆H = Γ/2 is defined as below:

∆VW = max VW(h : h + ∆H)−VW(h). (29)

A headwind series of one flight is illustrated in Figure 10. The headwind speed incremental
threshold ∆V∗W and the detected hight window ∆H∗ are predefined. As shown in Figure 10,
the incremental threshold ∆V∗W is set to 5 knots (2.57 m/s) and the width of the rolling window
∆H is set to 100 feet. Two wind shear ramps with ∆VW ≥ 5 knots and Γ = 2∆H = 200 feet are
extracted from this flight.
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(a) (b)

(c) (d)
Figure 6. Different sample sets of ξ10 and ξ16 in Z scale (standard Gaussian space). (a) Raw samples;
(b) Independent sampling; (c) Parametric copula sampling; (d) Nonparametric copula sampling.

Figure 7. Comparison of the empirical CDFs of headwind at a certain altitude.
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Figure 8. Comparison of the estimated PDFs of headwind at a certain altitude.

Figure 9. Statistical moments comparison of headwind along with the altitude.

Figure 10. Detection of wind shear ramps in one flight.
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The detection algorithm is applied to the 849 flights. The incremental threshold of ∆VW is set
to 5 knots, and the search window is set to 50 feet, 100 feet, and 200 feet, respectively. The mean
and standard deviation of the extracted wind shear ramps series and the corresponding number of
extracted series are visualized in Figure 11. It shows that the features of the mean and standard
deviation depend on the width of the search window.

Γ = 100 feet,
184 series detected

Γ = 200 feet,
252 series detected

Γ = 400 feet,
208 series detected

Γ = 100 feet
Γ = 200 feet

Γ = 400 feet

Figure 11. Mean and standard deviation of the extracted and generated wind shear ramps.

Given the detected series of wind shear ramps, the KL expansion method allows us to construct
new series and enrich the database of the wind shear ramps. The KL truncated order K = 10 is used
in the construction of wind shear ramps. 5000 new series of ∆VW ≥ 5 knots are generated via the
independent sampling, parametric and nonparametric copula sampling, respectively. As shown in
Figure 11, the mean value of the raw data and generated series match very well, and there are only
small biases in the standard deviation. In the case of the Γ = 200 feet, the parametric copula sampling
has a better match with the raw data than others. The comparison results show that KL constructed
model can be used to produce the new wind shear ramps series with similar statistical characteristics.

To further validate if the generated series can be used for the analysis of the wind shear intensity,
a metric of max ∆VW/∆h related to the wind shear intensity is defined using the maximum change of
headwind with the altitude as below:

max ∆VW
∆h

=
max VW(h)−min VW(h)

hVW,max − hVW,min

, h ∈ [0, Γ]. (30)

The metric max ∆VW/∆h is computed using the raw data and generated series data, respectively.
The probability densities of the metric in the three cases are compared. The PDFs of the metrics are
estimated using the kernel density functions. As illustrated in Figure 12, the estimated PDFs based on
the raw data and generated new series have a good match for the case Γ = 200 feet. However, the small
deviation exists for the case Γ = 100 feet, and Γ = 400 feet. Since the numbers of the detected wind
shear ramps are limited, increasing the raw data set might improve the results. Nevertheless, the larger
difference in PDFs among the three cases can be captured using the generated series. The constructed
results also show the same statistical characteristics in wind shear intensity with the raw data. The KL
expansion model of wind shear ramps can be used for the analysis of the wind shear intensity.



Sensors 2020, 20, 4634 15 of 19

(a)

(b)

(c)
Figure 12. The estimated PDFs of the change rate of headwind along with the altitude. (a) The change
rate of headwind for ∆VW ≥ 5 knots, Γ = 100 feet; (b) The change rate of headwind for ∆VW ≥ 5 knots,
Γ = 200 feet; (c) The change rate of headwind for ∆VW ≥ 5 knots, Γ = 400 feet.

4. Conclusions

This paper presents an algorithm to construct a stochastic wind model based on the operational
flight data using the KL expansion method with the vine copula dependence model. The generated
wind series based on the KL construction model has the same statistical characteristics as the raw data.
For the stationary wind process like turbulence, the similarity of the KL expansion and SR method is
pointed out in terms of construction equations, and the construction results of the turbulence reveal
that two construction methods coincide. For the non-stationary wind process, KL construction results
of headwind and horizontal wind shear ramps validate that the generated series follow the statistical
characteristics of the raw data. Therefore the KL expansion model of wind series can be used in
simulations for the quantitative analysis.

The vine copula sampling allows us to capture the dependence among the original random
coefficients ξk. Series generated via vine copula sampling reduce the deviation from higher order
moments of the raw series compared to independent sampling. For further study, more flight data
is required to improve accuracy. Additionally, the constructed wind model will be integrated into
the incident model simulation settings to quantify the influence of the wind series on operational
flight safety.
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Appendix A. Three Dimensional Joint Probability Density Function Decomposition

According to the definition of conditional probability, the joint probability density f of three
random variables X1, X2, X3 can be reconstructed as below:

f (x1, x2, x3) = f3|12(x3|x1, x2) f2|1(x2|x1) f1(x1). (A1)

According to the Equation (12), f3|12(x3|x1, x2) and f2|1(x2|x1) can be written as below:

f2|1(x2|x1) =
f12(x1, x2)

f1(x1)

= c12(F1(x1), F2(x2)) f2(x2),

f3|12(x3|x1, x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2)) f3|2(x3|x2)

= c13;2(F1|2(x1|x2), F3|2(x3|x2))c23(F2(x2), F3(x3)) f3(x3),

(A2)

where cij;k is the copula density between the random variables Xi and Xj for a given Xk.
After substitution of f3|12(x3|x1, x2) and f2|1(x2|x1) in Equation (A1), the joint probability density f is
represented by three bivariate copula densities and three marginal probability densities as below:

f (x1, x2, x3) = c13;2(F1|2(x1|x2), F3|2(x3|x2))× c23(F2(x2), F3(x3))× c12(F1(x1), F2(x2))

× f1(x1)× f2(x2)× f3(x3).
(A3)

Appendix B. Marginal Distributions of ξk in Headwind Modeling

The fitted marginal distributions can be used to generate new realizations of ξk individually for
independent sampling. In addition, to study dependence among several variables using a copula
approach, we also have to first find appropriate marginal distributions for each variable involved and
then transform it using the fitted marginal distributions to the uniform copula space. This separates the
marginal behavior from the underlying dependence structure, which is then captured by the copula.
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Table A1. Estimated marginal distributions of ξk in headwind modeling.

ξk Distribution Parameters

ξ1 Generalized Extreme Value [k, σ, µ] = [−0.2220, 0.9704,−0.3804]
ξ2 Logistic [µ, σ] = [−0.0118, 0.5587]
ξ3 t Location-Scale [µ, σ, ν] = [−0.0222, 0.8706, 8.1359]
ξ4 t Location-Scale [µ, σ, ν] = [−0.0263, 0.7279, 3.9941]
ξ5 t Location-Scale [µ, σ, ν] = [−0.0158, 0.7763, 4.8160]
ξ6 t Location-Scale [µ, σ, ν] = [ 0.0141, 0.7007, 3.6527]
ξ7 t Location-Scale [µ, σ, ν] = [−0.0501, 0.7124, 3.7186]
ξ8 t Location-Scale [µ, σ, ν] = [ 0.0060, 0.6046, 2.7169]
ξ9 t Location-Scale [µ, σ, ν] = [−0.0234, 0.6777, 3.3137]
ξ10 t Location-Scale [µ, σ, ν] = [ 0.0051, 0.6529, 3.2108]
ξ11 t Location-Scale [µ, σ, ν] = [−0.0087, 0.5859, 2.4526]
ξ12 t Location-Scale [µ, σ, ν] = [−0.0262, 0.6376, 2.9137]
ξ13 t Location-Scale [µ, σ, ν] = [ 0.0075, 0.5823, 2.4866]
ξ14 t Location-Scale [µ, σ, ν] = [ 0.0231, 0.6695, 3.2488]
ξ15 t Location-Scale [µ, σ, ν] = [−0.0345, 0.6110, 2.6175]
ξ16 t Location-Scale [µ, σ, ν] = [−0.0016, 0.6387, 2.9972]
ξ17 t Location-Scale [µ, σ, ν] = [−0.0095, 0.5603, 2.3219]
ξ18 t Location-Scale [µ, σ, ν] = [ 0.0147, 0.5131, 2.1901]
ξ19 t Location-Scale [µ, σ, ν] = [−0.0003, 0.5795, 2.4952]
ξ20 t Location-Scale [µ, σ, ν] = [−0.0211, 0.6468, 2.9694]

Appendix C. Dependence of ξk in Headwind Modeling

In Figure A1, marginal histograms of ξU
k are shown in the diagonal. The number from 1 to

20 denotes the corresponding variable ξk. All marginal histograms of ξU
k are close to uniform,

which indicates that the estimated marginal distributions are appropriate. The upper triangle shows
the sample plots of the copula data ξU

k , and the number marked in red color is the estimated Kendall’s
τ between two ξU

k . Empirical contour plots of the normalized copula data ξZ
k are shown in the

lower triangle.

Figure A1. Empirical normalized pairwise contour plots in the headwind modeling (generated using
R package “VineCopula” [25]).
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As the truncated order of the KL expansion is set to 20 in the case of headwind construction,
20 dependent random variables ξk are obtained. Therefore, 20·(20−1)

2 = 190 bivariate copula densities
are estimated. Normalized contour plots of the first three kinds of conditional copula density are shown
in Figure A2. The parametric copula density and nonparametric bivariate copula density functions
are used, respectively. The label above the contour plot indicates the related random variables ξk.
For example, the label of first top left copula ’2,5;3,15’ indicates c2,5;3,15, which is the copula density
between the random variables ξ2 and ξ5 for the given ξ3 and ξ15. The concentric circles in the contour
plots indicate that the two variables are independent, which is obvious in many contour pots of
Figure A2b. Otherwise, dependence exists. Several dependence structures are apparent, especially in
unconditional bivariate copula densities, as shown in the last row of Figure A2a,b.

(a)

(b)
Figure A2. Normalized contour plots of bivariate copulas in headwind modeling ( generated using R
package ’rvinecopulib’ [26]). (a) Contour plots using the parametric bivariate copula; (b) Contour plots
using the nonparametric bivariate copula.
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