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Abstract: Dynamic soaring is a non-powered flight mode that enables extremely high speeds by
extracting energy from thin shear wind layers. Trajectory optimization is applied to construct solutions
of the maximum speed achievable with dynamic soaring and to determine characteristic properties
of that flight mode, using appropriate models of the vehicle dynamics and the shear wind layer.
Furthermore, an energy-based flight mechanics model of high-speed dynamic soaring is developed,
with reference made to trajectory optimization. With this model, analytic solutions for high-speed
dynamic soaring are derived. The key factors for the maximum speed performance are identified and
their effects are determined. Furthermore, analytic solutions for other, non-performance quantities of
significance for high-speed dynamic soaring are derived. The analytic solutions virtually agree with the
results achieved with the trajectory optimization using the vehicle dynamics model. This is considered
a validation of the energy-based model yielding analytic solutions. The analytical solutions are also
valid for the high subsonic Mach number region involving significant compressibility effects. This is
of importance for future developments in high-speed dynamic soaring, as modern gliders are now
capable of reaching that Mach number region.

Keywords: aircraft performance optimization; dynamic soaring; high-speed flight; closed-form solutions

1. Introduction

Dynamic soaring is a flight mode by which an energy gain can be achieved from horizontally
moving air so that the energy loss due to the drag can be compensated and non-powered flight becomes
possible [1,2]. The type of horizontally moving air necessary for dynamic soaring shows changes with
altitude, yielding what is termed shear flow or shear wind. Furthermore, a minimum in the strength of
the wind shear is necessary for sustained non-powered flight by means of dynamic soaring [3].

Shear winds whose existence is fundamental for dynamic soaring show various features. One feature
is that the change of the wind extends over a comparatively large altitude interval so that there are wind
changes for the entire vertical motion during a dynamic soaring cycle [4]. Thus, a glider flies in a wind
scenario where the wind always varies with respect to the flight path. Another shear wind feature is a
thin shear layer that separates a region of constant, horizontally blowing wind from a region below the
shear layer where the air is at rest [5]. This means that the shear layer is only traversed by a glider in the
ascending and the descending flight phases of a dynamic soaring cycle, while the other flight phases
take place in a constant wind field or in a zone of zero wind.

A thin shear-wind layer offers a unique mode of dynamic soaring in terms of a high-speed capability
for gliders. This type of shear wind exists in the leeward side of ridges, where a thin layer separates the
wind blowing over the ridge from a zone of still air below the layer [6]. By exploiting the difference in
the velocities of the two adjacent air masses, dynamic soaring enables extremely high speeds. Such shear
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winds are utilized by radio-controlled gliders for dynamic soaring [5–7]. This has led to ever-growing
speed records over the past years, which have reached now a value as high as 545 mph (244 m/s) [8].

The experience gained in high-speed dynamic soaring is an item of interest. This can relate to
initial testing of dynamic soaring where the strong shear, easy access, and relatively obstruction-free
environment makes ridge shears attractive.

The possibility of gaining energy for non-powered flight has stimulated research interest in
using the wind as an energy source for technical applications. Evidence for this perspective are
biologically inspired research and development activities directed at utilizing the dynamic soaring
mode of albatrosses for aerial vehicles [9–15].

The goal of the present paper is to determine the maximum speed achievable in high-speed
dynamic soaring and to find out the characteristic properties of this flight mode. For that purpose,
a trajectory optimization is performed. This is based on appropriate flight dynamics and wind scenario
models and a suitable optimization procedure. A further goal is to derive analytic solutions of this
soaring mode. For that purpose, an energy-based model of dynamic soaring is developed. With this
model, it is possible to determine the quantities decisive for the high-speed performance problem
under consideration. The key factors for high-speed dynamic soaring are identified, and their effects
on the maximum speed performance are determined. With reference to the results of the trajectory
optimization, the analytical solutions are confirmed.

Further to the goal of the present paper, it is shown that the analytic solutions derived in this paper
are also valid for the high subsonic Mach number region where compressibility exerts significant effects
on the aerodynamic characteristics, involving relationships that are more complex. This is important for
future developments in high-speed dynamic soaring in order to be able to solve problems related to the
compressible Mach number region, as this region is now reached by modern gliders.

2. Trajectory Optimization

2.1. Modellings of Shear Wind and Vehicle Dynamics

The mode of dynamic soaring appropriate for achieving high speeds is schematically shown in
Figure 1. It is possible in wind scenarios where a thin shear layer separates a region of high wind speed
from a region of no wind. Such wind scenarios exist in areas leeward of ridges [5]. The high-speed
dynamic soaring trajectory consists of a circle-like closed loop where the wind shear layer is traversed
upwards in the climb phase and downwards in the descent phase. Characteristically for high-speed
dynamic soaring, the inclination of the loop relative to the horizontal is small [16].
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The dynamic soaring trajectory comprises four flight phases that are characteristic for this flight
mode (indicated by nos. 1 to 4 in Figure 1):

(1) Windward climb;
(2) Upper curve in region of high wind speed;
(3) Leeward descent;
(4) Lower curve in region of zero or low wind speed.

The wind scenario at the leeward side of the ridge shows features important for high-speed
dynamic soaring. There is a shear layer that separates two regions involving different wind characteristics.
The region above the layer shows a high wind speed, whereas the region below the layer involves calm
air or low wind speeds. Furthermore, the shear layer is thin, implying a small vertical extension.

The model of the wind scenario used in the trajectory optimization of dynamic soaring is presented
in Figure 2. The shear layer involves a rapid increase of the wind speed from zero to the value of the
free stream wind speed, denoted by Vw,re f . The transitions to the zero-wind region and to the high
wind speed region are modelled as gradual changes in the wind speed.
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The motion of aerial vehicles performing high-speed dynamic soaring can be mathematically
described using a point-mass dynamics model. Accordingly, the equation of motion in an inertial
reference system can be expressed as

dui/dt = −au1D/m− au2L/m

dvi/dt = −av1D/m− av2L/m

dwi/dt = −aw1D/m− aw2L/m + g

dxi/dt = ui

dyi/dt = vi

dh/dt = −wi

(1)

The coefficients au1,2, av1,2 and aw1,2 are factors used for describing relationships regarding the flight
path, bank and azimuth angles (γa, µa, χa), yielding



Aerospace 2020, 7, 47 4 of 22

au1 = cosγa cosχa

au2 = cosµa sinγa cosχa + sinµa sinχa

av1 = cosγa sinχa

av2 = cosµa sinγa sinχa − sinµa cosχa

aw1 = − sinγa

aw2 = cosµa cosγa

(2)

The lift L and the drag D in Equation (1) can be written as

D = CD(ρ/2)V2
a S

L = CL(ρ/2)V2
a S

(3)

The airspeed, Va, used for describing L and D is relating to the inertial speed components, ui, vi
wi, and the wind speed, Vw, according to

Va =

√
(ui + Vw)

2 + v2
i + w2

i (4)

The drag in high-speed dynamic soaring is modelled as being dependent on the lift and the Mach
number Ma, yielding

CD = CD(CL, Ma) (5)

The fact that the dependence of CD on Ma needs to be accounted for is a unique feature of high-speed
dynamic soaring. Usually, gliders soar at a low speed level that relates to the incompressible flight
regime so that CD depends only on CL, but not on Ma. By contrast, gliders capable of high-speed
dynamic soaring can reach speeds that are in the high subsonic Ma region where compressibility exerts
an influence on the aerodynamic characteristics of aerial vehicles (for example, in the case of the above
speed record). This holds especially for the drag which shows a significant increase with the Mach
number, yielding what is termed compressibility-related drag rise.

The modelling of the drag characteristics for the glider under consideration is graphically
addressed in Figure 3 which presents the relationship between CD, CL and Ma. This figure shows that
compressibility exerts a strong effect on CD which progressively increases with Ma. Further quantities
for modelling the vehicle are the wing reference area S = 0.51 m2, the aspect ratio A = 22.5 and the
mass m = 8.5 kg. For the described modelling of the vehicle, reference is made to existing vehicles and
to experience in this field [6,17,18].Aerospace 2020, 7, x FOR PEER REVIEW 5 of 22 
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2.2. Formulation of Optimal Control Problem

The optimization problem is to determine the maximum speed achievable with dynamic soaring.
This means to find out the closed-loop dynamic soaring trajectory that shows the maximum speed in
the course of the loop. For this purpose, the following performance criterion is specified

J[x(t)] = Vinert
(
t f

)
(6)

For maximizing J[x(t)], the optimal control problem can be formulated as to determine the
optimal controls

u∗(t) = [Ĉ∗L(t),µ
∗

i (t)]
T

(7a)

the optimal states
x∗(t) = [u∗i (t), v∗i (t), w∗i (t), x∗(t), y∗(t), h∗(t)]T (7b)

and the associated optimal cycle time tcyc, subject to the dynamic system according to Equation (1)

.
x(t) = f(x(t), u(t)) (7c)

to control and state constraints
CL,min ≤ CL ≤ CL,max

h ≥ hmin
(7d)

and to periodicity boundary conditions

Ψ(x) = x
(
tcyc

)
− x(0) = 0 (7e)

The optimal control problem is solved using the direct optimal control tool FALCON.m [19].

To this end, a full discretization of the optimal control problem on the time grid
−

t is performed, resulting in

the discretized states
−
x and controls

−
u. The dynamic constraints given by the equations of motion are

replaced by a set of defect equations (equality constraints)

ceq,k(x, u) =
−
xk+1 −

−
xk −

tk+1 − tk

2

[
f
(
−
xk+1,

−
uk+1

)
+ f

(
−
xk,
−
uk

)]
= 0 (8)

at every point on the discretized time grid. These constraints represent a trapezoidal quadrature of the
dynamic equations. Furthermore, all path constraints given in Equation (7d), i.e., box constraints on
selected control and state variables, are evaluated on this grid, yielding

cineq,k(x, u) =


CL,min −CL,k

CL,k −CL,max

hmin − hk

 ≤ 0 (9)

for every point tk on the discretized time grid. Using the above-mentioned discretized approximations
of the objective function, differential equations and constraints contained in the original optimal control
problem, the Lagrangian function can be constructed for a nonlinear programming (NLP) problem:

L = λ0 ·Vinert
(
t f

)
+ λT

k · ceq,k(x, u) + λT
Ψ ·Ψ(x) + µT

k · cineq,k(x, u) (10)

The optimization software IPOPT [20] is utilized to find the solution of the constructed NLP
problem which employs an interior-point method solving for the (Karush–Kuhn–Tucker) first-order
optimality conditions
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(optimality) ∇zL = 0 (11a)
( f easibility) ∇λL = 0 (11b)
(complementarity) µT

k · cineq,k(x, u) + τ = 0 (11c)

where z represents the primal variables
(
x, u, t f

)
, λ and µ represent dual variables, i.e., the vectors of

Lagrange multipliers to equality and inequality constraints, respectively, and τ is the barrier parameter
which is driven to zero by the interior-point optimization software. The corresponding function
values, gradient and Hessian matrices are supplied to IPOPT by FALCON.m during every iteration.
After calculation of an efficient step in the primal and dual variables, IPOPT returns an updated value
of these variables until Equations (11a)–(11c) are satisfied. The solution of the original optimal control
problem can be reconstructed from the solution of the NLP.

2.3. Results on Trajectory Optimization

A goal of this chapter is to show characteristic features of high-speed dynamic soaring, with
emphasis on the features holding in the case of the maximum speed. Another goal is to provide a
physical basis that is suitable for developing and validating analytical solutions of high-speed dynamic
soaring which will be presented in the next chapter.

Results of the trajectory optimization for dynamic soaring are shown in Figure 4 which provides a
perspective view of the closed-loop trajectory of a maximum-speed cycle. The achievable maximum
speed determined by the described method of trajectory optimization amounts to Vinert,max = 268.6 m/s
(for a given wind speed of Vw,re f = 28.5 m/s). The trajectory point where Vinert,max occurs is at about the
end of the upper curve which is in the upper altitude region where the wind blows. Furthermore, Figure 4
shows how the optimized trajectory relates to the wind and the shear layer.

In Figure 5, top and side views are presented for the optimized trajectory. The side view in terms
of a projection on the xi-h plane shows that this involves two lines which are nearly straight and close
to each other. Thus, the trajectory can be seen as being virtually in a plane. Furthermore, the inclination
of the trajectory is small. The top view in terms of a projection on the xi-yi plane shows that this yields
a circular-like shape. That feature and the small inclination suggest that the circular characteristic also
holds for the trajectory itself. The described trajectory characteristics are part of the basis of a dynamic
soaring model that is suitable for developing analytical solutions in the following chapter.
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Figure 5. Side and top views of dynamic soaring trajectory optimized for maximum speed Vinert,max =

268.6 m/s.

The time histories of the speeds, Vinert and Va, and the altitude, h, are presented in Figure 6. The Vinert
time history is plotted such that the maximum speed, Vinert,max = 268.6 m/s, occurs at the beginning of
the cycle and, because of periodicity reasons, at the end. The altitude shows an oscillation around the
middle of the shear layer. The altitude at which Vinert,max is reached is above the middle plane of the
shear layer, implying that it is not at the lowest point of the trajectory but well above. With reference to
Figure 2, the altitude time history shows that the top of the trajectory is above the shear layer and the
bottom of the trajectory is below the shear layer. The airspeed Va the highest value of which is smaller
than that of Vinert features two oscillations which are rather similar.

Furthermore, the controls which are the lift coefficient, CL, and the bank angle, µa, are presented
in Figure 6. The lift coefficient features an oscillatory behavior around CL = 0.5, with the lowest values
occurring in the windward climb phase. The bank angle involves an oscillatory behavior around −1.5
where the banked attitude is smaller during the lower curve when compared with the upper curve.
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The energy characteristics of the optimized trajectory are presented in Figure 7 which shows the
energy gain from the wind and the energy loss due to the drag. The line denoted by energy gain from
wind shows that the energy gain is achieved in the second half of the cycle. This cycle half is relating
to the upper curve, as shown in Figure 4. The upper curve, together with the high wind speed in
that altitude region, is essential for a large energy gain [21]. In the first half of the cycle, there is no
energy gain because the vehicle is in a zone of zero wind. Other than the energy gain, the energy loss
due to the drag takes place throughout the entire cycle. The energy loss shows a continuous increase
which appears as a nearly straight line. At the end of the cycle, the energy gain from the wind and the
energy loss due to the drag agree, to the effect that there is an energetically balanced flight condition.
The described characteristics concerning the energy gain and the energy loss will be used in developing
the dynamic soaring model that is suitable for deriving analytical solutions in the following chapter.
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Figure 7. Energy gain from wind and energy loss due to drag during dynamic soaring cycle optimized
for maximum speed Vinert,max = 268.6 m/s.

For controlling the drag as the cause of the energy loss and for minimizing related detrimental
effects, the relationship between drag and lift as a measure for the aerodynamic efficiency is important.
Appropriate quantities for describing this are the actual lift-to-drag ratio, CL/CD, and the maximally
possible lift-to-drag ratio, (CL/CD)max. The time histories of these quantities are plotted in Figure 8.
Comparing the two curves, it turns out that they are close to each other and overlap in parts. As a
result, the flight is performed close to or at the highest aerodynamic efficiency in terms of the maximum
lift-to-drag ratio, (CL/CD)max. This characteristic will also be used in developing the dynamic soaring
model that is suitable for deriving analytical solutions in the following chapter.
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3. Energy Based Model of High-Speed Dynamic Soaring

To develop an energy-based flight mechanics model appropriate for deriving analytical solutions of
high-speed dynamic soaring, assumptions about the trajectory and speeds are made. These assumptions
are related to the results on trajectory optimization that are presented and discussed in the previous chapter.
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As a starting point of developing an appropriate flight mechanics model, an oblique view of a
dynamic soaring loop is presented in Figure 9. It is assumed in accordance with Figure 5 that the
dynamic soaring loop is circular and the inclination is small. Furthermore, it is presupposed that the
shear layer thickness is infinitesimally small. Another modeling aspect is that the dynamic soaring
loop can be subdivided into two sections of which one is in the upper part of the loop where the wind
is blowing and the other is in the lower loop part where the wind is zero.

Each time the shear layer is traversed, there is an approximate speed increase of (1/2)Vw cosγtr.
This yields for the airspeed in the windward climb after the transition point

Va = Vinert +
1
2

Vw cosγtr (12)

and for the inertial speed in the leeward descent after the transition point

Vinert = Vinert +
1
2

Vw cosγtr (13)

where Vinert is the average inertial speed of the loop and γtr is the flight path angle at the transition
point. These speed relations, together with the speed relations before the transition points (as indicated
in Figure 9), relate to the periodicity characteristic of the loop cycle. This includes the effect of drag on
the speed in the upper and lower parts of the loop, also indicated in Figure 9, yielding for the speed
decreases ∆Va = −(1/2)Vw cosγtr and ∆Vinert = −(1/2)Vw cosγtr, respectively.
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In the speed relations presented in Figure 9, the order of magnitude in the relationships between
the speeds Vinert, Va and Vw is accounted for. These relationships are graphically addressed in Figure 10,
where speed vector triangles at two distinct points are presented; one refers to the windward climb
and the other to the upper curve around the top of the trajectory. These results are from the trajectory
optimization treatment performed in the previous chapter. The speed vector triangles in Figure 10
show that

Vw � Vinert

Vw � Va
(14)
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Thus, the following relation applies in the wind region

Va ≈ Vinert (15a)

In the zero-wind region, both speeds are equal, yielding

Va = Vinert (15b)

The described order of magnitude regarding Vinert, Va and Vw can be considered as characteristic for
high-speed dynamic soaring.

Windward Climb 

Upper Curve

Va

Vinert

Vw

Horizontal

Vinert

Va

Vw

Figure 10. Speed vector triangles in windward climb (flight phase 1) and in upper curve (flight phase 2).

The energy gain from the wind is achieved in the upper section of the loop where the wind is
blowing, as shown in Figure 7. This leads to an energy increase given by the kinetic energy increase
between the two transition points which are at the same altitude, yielding

Eg =
m
2

[(
Vinert +

1
2

Vw cosγtr

)2
−

(
Vinert −

1
2

Vw cosγtr

)2]
= mVinertVw cosγtr (16)

The energy increase Eg which is the net energy increase accounting for the drag-related loss in the
upper loop section is required for balancing the work done by the drag in the lower loop section.

The drag work in the lower loop section can be expressed as

WD = −

tcyc∫
t1

DVinertdt (17)

where t1 refers to the transition from the wind region to the zero-wind region.
For expanding the drag work expression, the relation between the drag and the lift in curved

flight is accounted for, yielding

D =
CD

CL
L =

CD

CL
nmg (18)
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It is assumed for the problem under consideration that the CD/CL ratio and the load factor n are
constant. Thus, the following approximate result of the drag work can be derived from Equation (17)

WD = −
CD

CL
nmgs (19)

where
s = πRcyc (20)

is the length of the lower loop section.
Further to expanding the drag work expression, the relation between n, Rcyc and Vinert in curved

flight is introduced, yielding for sufficiently small flight path angles

n =

√√√√
1 +

V
2
inert

Rcycg


2

(21a)

Since the load factor in high-speed dynamic soaring is of the order of n = 100 [5,6,16], Equation (21a)
can be replaced by

n =
V

2
inert

Rcycg
(21b)

Thus, the drag work can be expressed as

WD = −π
CD

CL
mV

2
inert (22)

The balance of the drag work and the energy gain is given by

Eg + WD = 0 (23)

Using this relation and Equation (22), the average inertial speed is obtained as

Vinert =
1
π

CL

CD
Vw cosγtr (24)

4. Maximum Speed Performance

The results presented in Figures 6 and 9 show that the highest speed in the dynamic soaring
loop—which is larger than Vinert—occurs in the leeward descent at the transition point, as given by
Equation (13). Accounting for this, and the fact that average inertial speed Vinert shows its greatest
value at the maximum lift-to-drag ratio (CL/CD)max according to Equation (24), the following result on
the maximum speed is obtained

Vinert,max =

[
1
2
+

1
π

( CL

CD

)
max

]
Vw cosγtr (25)

Assuming γtr � 1 in accordance with the results of the trajectory optimization on the smallness of the
trajectory inclination (Figure 5), the relation of the maximum speed can be simplified to yield

Vinert,max =

[
1
2
+

1
π

( CL

CD

)
max

]
Vw (26)

This relation provides an analytical solution for the maximum speed. Thus, a main goal of the treatment
of high-speed dynamic soaring is achieved, and results of generally valid nature can be obtained.
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Further to the relation given in Equation (26), the key factors for the maximum speed are
identified, yielding

(1) Wind speed, Vw;
(2) Maximum lift-to-drag ratio in terms of (CL/CD)max.

This means that there is no other factor that has an influence. For instance, the size or the mass of
the vehicle or the altitude which usually have significant effects on the flight performance of aerial
vehicles are without influence.

Moreover, the influence of the key factors on the achievable maximum speed is determined.
The effect of the key factors on the achievable maximum speed is such that each of them yields a linear
influence on Vinert,max. The overall effect is due to the product of both key factors.

The relationship between Vinert,max and the key factors Vw and (CL/CD)max is graphically addressed
in Figure 11. The objective here is to show the validity of the energy-based model and the related
analytical solution. Two Vinert,max curves are presented: one is the outcome of the analytical solution
described by Equation (26), and the other is the outcome of the trajectory optimization using the vehicle
dynamics model of the previous chapter. Basically, the two Vinert,max curves are close to each other and
overlap in parts, with the result that both solutions virtually agree. This can be seen as a validation of
the energy-based model. In the following sections, more details on the validity issue are provided.
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Examining the curve characteristics in Figure 11, the left part of the Vinert,max curve shows a
comparatively large and constant gradient, whereas the gradient in the right part is reduced. Relating the
behavior of the Vinert,max gradient to the Mach number Ma indicated on the ordinate shows that the
change in the gradient starts in a zone where compressibility becomes effective . This is the zone where
compressibility begins to become effective for the aerodynamic characteristics of the vehicle. Thus, the left
part of the Vinert,max curve can be related to the incompressible Ma region, whereas the right part to the
compressible one.

The differences in the left and right curve parts are due to the effect of compressibility on
the maximum lift-to-drag ratio (CL/CD)max as one of the key factors for Vinert,max, Equation (26).
Evidence of the compressibility effect is provided by Figure 12 which presents results from an
examination of the drag polar plotted in Figure 3 with regard to (CL/CD)max. In the incompressible
Ma region, (CL/CD)max is constant and shows the highest level. In the Mach number zone where
compressibility becomes effective, (CL/CD)max begins to decrease to become continually smaller with
Ma in the compressible Ma region.
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Returning to Figure 11 and examining the Vinert,max characteristics with due regard to the described
findings on (CL/CD)max, it becomes clear that these characteristics are the result of the (CL/CD)max
properties. This explains why there are two curve parts showing distinct differences, caused by
corresponding differences in (CL/CD)max. Concerning the left curve part, the fact that the gradient
is constant and large is due to the constancy and largeness of (CL/CD)max. In the right curve part,
the gradient is reduced. This is caused by the decrease of (CL/CD)max in the compressible Ma region.

The relationship between Vinert,max and the key factors Vw and (CL/CD)max is rather simple in the
incompressible Ma region because of the constancy in (CL/CD)max. In the compressible Ma region,
this relationship is more complex. Nevertheless, the analytical solution achieved with the energy-based
model and the solution obtained with the vehicle dynamics model of the previous chapter agree here
too. This fact notably provides evidence for the validity of the energy-based model.

5. Further Issues Concerning High-Speed Dynamic Soaring

The key factors Vw and (CL/CD)max dealt with above are decisive for the maximum speed
performance in terms of Vinert,max. There are further significant topics of high-speed dynamic soaring
where other aspects not related to the speed performance are involved. This concerns issues such as
controllability of the vehicle at extremely high speeds or flyability in case of very short cycle periods,
high loads acting on the vehicle, required air space and altitude related effects. For these issues,
the following quantities can be regarded as representative and relevant:

- cycle time tcyc

- load factor n
- trajectory extension and loop radius Rcyc

- altitude h

5.1. Cycle Time tcyc

The cycle time, tcyc, plays a significant role in high-speed dynamic soaring. This relates to cases of
very small tcyc values which cause difficulties in flying and controlling the vehicle. Small tcyc values are
a characteristic feature of high-speed dynamic soaring [5,6,17]. There are tcyc values of such small a
magnitude in high-speed dynamic soaring that they are regarded critical. This is because cycle times
of around 2 s, or smaller, are considered as difficult to fly in practice.
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The cycle time is basically given by the relation

tcyc =
2πRcyc

Vinert
(27)

For expanding this expression, reference is made to the load factor relation in curved flight

n =
CL(ρ/2)V

2
inertS

mg
(28)

Using this relation and accounting for Equation (21b), the cycle time dependent on the average speed
Vinert and the lift coefficient CL can be expressed as

tcyc = 2π
m

CL(ρ/2)SVinert
(29)

The optimal lift coefficient for achieving the maximum speed Vinert,max is the one associated with
(CL/CD)max. Denoting this lift coefficient by C∗L, and referring to Equations (24) and (26), the following
result for the optimal cycle time dependent on the maximum speed Vinert,max is obtained, yielding

tcyc = 2π
m

C∗L(ρ/2)S(Vinert,max −Vw/2)
(30)

The relationship between tcyc and Vinert,max is graphically addressed in Figure 13. There is a decrease of
tcyc with Vinert,max until a value of about Vinert,max = 260 m/s is reached. Thereafter, an increase of tcyc

occurs. With reference to the Vinert,max = 260 m/s value and Figure 11, it can be concluded that the
Vinert,max region involving the tcyc decrease relates to the incompressible regime, while the Vinert,max
region showing the tcyc increase is associated with the compressible regime.

The reason why tcyc shows an increase in the upper Vinert,max region (rather than a continuation
of the decrease) is due to C∗L and its dependence on the Mach number Ma. The relationship between
C∗L and Ma is shown in Figure 14, based on an examination of the drag polar presented in Figure 3
with regard to (CL/CD)max and C∗L, respectively. This relationship is such that C∗L is constant in the
incompressible Ma region whereas there is a decrease of C∗L in the compressible Ma region. That decrease
of C∗L is so strong that it outweighs the opposing effect of the increase of Vinert,max in the denominator
of Equation (30), with the result that tcyc is increased.

The results presented in Figure 13 show that the decrease of tcyc is stopped and even reversed,
occurring in the upper Vinert,max range where the tcyc level is lowest. This can be considered a favorable
effect, especially if tcyc is very small and of a magnitude regarded as critical.
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5.2. Load Factor n

The loops performed in high-speed dynamic soaring involve rapid turning at a large speed.
The centrifugal force associated with this flight condition leads to high loads acting on the vehicle,
yielding load factors of an order of magnitude as large as 100 [5]. Accordingly, large loads are typical for
high-speed dynamic soaring [6].

The load factor, dependent on the average speed Vinert and the lift coefficient CL, is given by Equation (28).
The lift coefficient for achieving the maximum speed Vinert,max is C∗L. Referring to Equations (24) and (26),
the following result for the load factor flying at the maximum speed Vinert,max is obtained, yielding

n =
C∗L(ρ/2)S

mg
(Vinert,max −Vw/2)2 (31)

The load factor n dependent on Vinert,max is presented in Figure 15. According to Equation (31),
there is a quadratic increase of n with Vinert,max until a value of about Vinert,max = 260 m/s is reached.
Thereafter, n shows a decrease. The two Vinert,max regions, one showing a decrease and the other an
increase of n, relate to the incompressible and compressible regimes, respectively. The reason for these
differences in the n effects is again due to C∗L and its dependence on the Mach number Ma, as shown in
Figure 14.

Eq. (31)
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100n

Trajectory Optimi-
zation (Chapter 2)

V  [m/s]inert,max
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Figure 15. Load factor n dependent on Vinert,max.
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5.3. Trajectory Extensions and Loop Radius Rcyc

High-speed dynamic soaring involves a closed-loop trajectory showing extensions in the longitudinal
and lateral directions. A question is whether or not the extensions of the trajectory depend on the maximum
speed Vinert,max. In case that the trajectory extensions are not independent of Vinert,max, the trajectory
has to be adapted for a change in Vinert,max. This implies that a change in the trajectory extensions is
necessary if Vw changes, because Vinert,max is dependent on the wind speed Vw (Figure 11). The loop
radius is considered a quantity that can be used to describe the relationship between the extensions of
the trajectory and Vinert,max.

With reference to Equations (21b) and (28), the radius of the loop in high-speed dynamic soaring
can be expressed as

Rcyc =
m

CL(ρ/2)S
(32)

Since the lift coefficient for achieving the maximum speed Vinert,max is C∗L, the relation for the
optimal loop radius is obtained as

Rcyc =
m

C∗L(ρ/2)S
(33)

This relation shows that there is no direct dependence of Rcyc on Vinert,max or Vw. The only effect is
due to C∗L in case that C∗L depends on the Mach number Ma (Figure 14). Thus, Rcyc is constant in the
incompressible Ma region since C∗L is constant here. In the compressible Ma region, Rcyc shows changes
inversely proportional to C∗L, to the effect that Rcyc increases with Vinert,max because of the decrease of
C∗L with an increase of Ma.

The dependence of Rcyc on Vinert,max is presented in Figure 16. The loop radius is constant up to
a Vinert,max value where compressibility becomes effective. Thereafter, a continual increase of Rcyc

takes place. The results from the trajectory optimization (Chapter 2) are determined using the average
of the greatest extensions in the xi nd yi directions.

Eq. (33)
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]
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Figure 16. Optimal loop radius Rcyc dependent on Vinert,max.

5.4. Effects of Altitude h

There are different aspects concerning the effects of the altitude on high-speed dynamic soaring.
Basically, these effects are due to the dependencies of the air density and the speed of sound on the
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altitude h, i.e., ρ = ρ(h) and a = a(h). This relates to all quantities treated above, including Vinert,max as
well as tcyc, n and Rcyc.

A main aspect is how the maximum speed performance in terms of Vinert,max is influenced by
the altitude. The relation of Vinert,max given in Equation (26) shows that there is no term involving an
explicit dependence on the altitude h. However, there is an altitude effect which is associated with the
dependence of (CL/CD)max on Ma (Figure 12). This refers to the following relation between Ma and h:

Ma = Va/a(h) (34)

Since this is relevant only if compressibility becomes effective for (CL/CD)max, it can be
distinguished between the incompressible and the compressible Ma regions regarding the effect
of h on Vinert,max. In the incompressible Ma region, where (CL/CD)max is constant, there is no altitude
effect so that Vinert,max is independent of h. In the compressible Ma region, an altitude effect exists due
to the dependence of (CL/CD)max on Ma. As the speed of sound, a, shows comparatively little changes
with h (e.g., 3% between 0 and 3000 m), the relation for Vinert,max, Equation (26), together with the
dependence of (CL/CD)max on Ma, Figure 12, suggests that the effect of h on Vinert,max is mall.

The described relationship between Vinert,max and h is graphically addressed in Figure 17 which
shows Vinert,max dependent on Vw for h = 0 and h = 3000 m, thus including Vinert,max for the
altitude range between these values. The left part of the Vinert,max curve which is associated with the
incompressible Ma region holds for both h values, whereas the right curve part associated with the
compressible Ma region shows a small reduction at h = 3000 m compared to h = 0.
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In regard to the quantities tcyc, n and Rcyc, there are effects of the altitude h associated with the
air density ρ and the speed of sound a. The expressions given in Equations (30), (31) and (33) show
that the effect of ρ manifests explicitly in a dependence that is linear in ρ or inversely proportional
to ρ. The effect of a relates to the dependencies of C∗L and (CL/CD)max on Ma (Figures 12 and 14) and the
relation between Ma and a(h) as given by Equation (34). Accordingly, it can be distinguished between
the incompressible and the compressible Ma regions regarding the effects of h. In the incompressible Ma
region, there is no altitude effect on C∗L and (CL/CD)max so that each of tcyc, n and Rcyc is only dependent
on ρ as described by Equations (30), (31) and (33). In the compressible Ma region, an additional altitude
effect exists due to the dependencies of C∗L and (CL/CD)max on Ma.
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Concerning the optimal cycle time, the effect of the altitude is presented in Figure 18 which shows
tcyc for two altitude cases. Basically, tcyc increases with an increase of h. This is a favorable effect, especially
in the case of very small tcyc values. Furthermore, the difference between the two tcyc curves is significant.
For the incompressible Ma region in Figure 18, where tcyc is only dependent on ρ, the following result on
the relation between tcyc and h can be obtained from Equation (30) to yield

tcyc =
ρ0

ρ(h)
tcyc,0 (35)

with ρ0 and tcyc,0 denoting the values at h = 0.
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The effect of altitude on the optimal loop radius Rcyc is presented in Figure 20, where Rcyc is
plotted for the two altitude cases under consideration. Basically, Rcyc increases with the altitude h and
the shape of the Rcyc curve involving a constant part for a large Vinert,max range is retained. The constant
part of Rcyc relates to the incompressible Ma region, where Rcyc is dependent only on ρ. Here, the effect
of the altitude can be expressed as

Rcyc =
ρ0

ρ(h)
Rcyc,0 (37)

where Rcyc,0 denotes the optimal loop radius at h = 0. In the compressible Mach number region,
there are additional altitude effects due to the dependencies of C∗L and (CL/CD)max on Ma.

Trajectory Optimi-
zation (Chapter 2)Eq. (33)

         

h=0
         

h=3000m
         

R
 [
m

]
cy

c

100

50

V  [m/s]inert,max

0 200 300
0

Figure 20. Effect of altitude h on optimal loop radius Rcyc.

5.5. Final Remark on Validity of Energy Based Model and Related Analytical Solutions

Concerning the results presented in the current Chapter 5, the goal here is also to show the
validity of the derived analytical solutions. The analytical solutions using the energy-based model and
the results obtained with the trajectory optimization using the vehicle dynamics model of Chapter 2
“Trajectory Optimization” virtually agree. This holds for all topics of high-speed dynamic soaring dealt
with, including the maximum inertial speed Vinert,max as the most important quantity, the cycle time
tcyc, the load factor n, the loop radius Rcyc and the effects of the altitude. This is considered a validation
of the energy-based model and the related analytical solutions of dynamic soaring.

6. Conclusions

Trajectory optimization is used as a means to determine the maximum speed achievable in high-speed
dynamic soaring and to find out characteristic properties of that flight mode. With reference to the
trajectory optimization results, an energy-based flight mechanics model is developed with the goal to
derive analytic solutions. The analytic solutions regarding the performance concern determination of the
achievable maximum speed. It is shown that the wind speed and the maximum lift-to-drag ratio are
the key factors each of which exerts a linear influence on the maximum speed. Furthermore, analytic
solutions are derived for other, non-performance quantities that are relevant for high-speed dynamic
soaring. This concerns issues such as controllability of the vehicle at extremely high speeds or flyability
in case of very short cycle periods, high loads acting on the vehicle, required air space and effects of the
altitude. It is shown that the derived analytic solutions compare well with the trajectory optimization
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results. This also holds for the high subsonic Mach number region involving substantial compressibility
effects which is now reached using modern model glider configurations. A main effect is that the increase
in the achievable maximum speed is reduced in the compressible Mach number region.

Author Contributions: Conceptualization, G.S.; methodology, G.S.; software, B.G.; validation, G.S. and B.G.;
formal analysis, G.S. and B.G.; writing—original draft preparation, G.S. and B.G. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

a speed of sound
aij coefficients
CD drag coefficient
CL lift coefficient
C∗L lift coefficient associated with maximum lift-to-drag ratio
D drag
E energy
g acceleration due to gravity
h altitude
J performance criterion
L lift
Ma Mach number
m mass
n load factor
Rcyc loop radius
S wing reference area
t time
u, v, wi speed components
u control vector
Va airspeed
Vinert inertial speed
Vw wind speed
Vw,ref reference wind speed
x longitudinal coordinate
x state vector
W work
y lateral coordinate
A aspect ratio
χ azimuth angle
γ flight path angle
µ bank angle
ρ air density
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