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Abstract: To satisfy an increasing demand to reconstruct an athlete’s motion for performance
analysis, this paper proposes a new method for reconstructing the position and velocity in the
context of ski jumping trajectories. Therefore, state-of-the-art wearable sensors, including an inertial
measurement unit, a magnetometer, and a GPS logger are used. The method employs an extended
Rauch-Tung-Striebel smoother with state constraints to estimate state information offline from
recorded raw measurements. In comparison to the classic inertial navigation system and GPS
integration solution, the proposed method includes additional geometric shape information of the
ski jumping hill, which are modeled as soft constraints and embedded into the estimation framework
to improve the position and velocity estimation accuracy. Results for both simulated measurement
data and real measurement data demonstrate the effectiveness of the proposed method. Moreover, a
comparison between jump lengths obtained from the proposed method and video recordings shows
the relative root-mean-square error of the reconstructed jump length is below 1.5 m depicting the
accuracy of the algorithm.

Keywords: state estimation; constrained filtering; position and velocity estimation; inertial sensors;
GPS; sensors fusion

1. Introduction

Acquiring an accurate estimation of the position and velocity of the athlete during a ski jump has
always been of great interest to athletes, coaches, and sport researchers to analyze the movement for
improving the jumping performance. Traditional solutions to meet this demand are video analysis
techniques based on camera recorded videos [1]. However, such a system has the disadvantage that it
generally only covers limited parts of the jumping area [2]. To record the entire jump, a large number of
cameras would be required making the system expensive and hard to calibrate. Furthermore, camera
systems merely provide information about the athlete’s position, while velocity and acceleration have
to be estimated via numeric differentiation, which may be subject to large error.

In recent years, wearable sensors, such as inertial measurement units (IMUs) and global navigation
satellite system (GNSS) receivers, have been widely employed for motion analysis in sports including
ski jumping [3]. Chardonnens et al. [4] presented an IMU-based system measuring ski jumping
dynamics including the position and velocity of the center of mass perpendicular to the table during
take-off. Groh et al. [2] proposed a measurement system with IMUs and a light barrier to estimate
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the ski velocity and jump length. Blumenbach [5] designed and tested a helmet with a high-precision
Global Positioning System (GPS) receiver for the positioning of ski jumpers. Fasel et al. [6] presented a
solution to estimate the center of mass and its velocity using differential GNSS and IMUs for alpine
skiing. In comparison to video analysis techniques, trajectory estimation using wearable IMUs and
GNSS sensors has the advantages of being easy to use and maintain and having full coverage over all
phases in a ski jump. For coaches and athletes, such a system provides the possibility to give feedback
after each jump regarding the jumper’s performance, such as jump length and take-off velocity data.

Trajectory reconstruction techniques are a class of methods to achieve an accurate state estimation
of a moving object by properly combining information from the kinematic model with measurement
data from sensors, including but not limited to IMUs, magnetometers, and GNSS receivers. Trajectory
reconstruction techniques are also termed flight path reconstruction in the aerospace field. A systematic
overview of such methods for an aircraft can be found in [7]. Göttlicher and Holzapfel [8] reconstructed
an aircraft’s flight path using low-cost sensors with the extended Rauch-Tung-Striebel (RTS) smoother.
Similar techniques can be also applied to ski jumping applications.

From a methodological point of view, a trajectory reconstruction problem can be interpreted as
a state estimation problem: One powerful tool to solve this is the classic RTS smoother, which was
first proposed for linear systems in [9] using a linear Kalman filter [10] as the forward-time estimator.
The extended RTS smoother is a modification of the classical RTS smoother capable of considering
nonlinear systems. It employs the extended Kalman filter (EKF) as the forward-time filter to deal with
the nonlinearity of the system. In this paper, the extended RTS smoother is adopted as an estimator.
Moreover, we can formulate state equality constraints in a state estimation problem. Different methods
to solve state estimation problems with state constraints, which are termed as constrained filtering (or
smoothing) problems, are discussed in the survey [11].

In this paper, we present an offline method based on the extended RTS smoother to estimate
the trajectory, including the position and velocity, of a ski jumper by the inertial navigation system
and GPS integration. Additionally, to fully utilize all available information to improve the estimation
quality, the geometric shape of the ski jumping hill is modeled as a set of additional soft constraints
and included in the smoothing framework.

2. Data Acquisition

The measurement data were collected during a summer session in June 2018 on the jumping hill
Schattenbergschanze (Hill Size = 106 m) in Oberstdorf, Germany. During this summer session, the hill
slope was covered with water-soaked plastic. The measurement setup consists of the following sensors:
a Qstarz BT Q1000eX GPS data logger and an iPhone 7, which contains an InvenSense ICM-20600 IMU,
and an Alps HSCDTD008A magnetometer. Table 1 summarizes the performance characteristics of the
sensors provided by the respective manufacturers. The GPS data logger provides position and velocity
measurements with a 10 Hz sample rate. The IMU measures triaxial rotational rates as well as specific
forces (i.e., non-gravitational accelerations) at 100 Hz frequency. The magnetometer provides triaxial
local magnetic field flux density measurements also at 100 Hz. To the best of our knowledge, the IMU
and magnetometer sensor chips in the iPhone 7 provide raw measurement data with a similar accuracy
level as previous studies, e.g., [2,4,6,8]. The raw data measured by the smartphone was logged via the
application Phyphox [12] and was attached to the jumper’s right upper arm using a running armband
with the orientation shown in Figure 1. The GPS logger was fixed to the top of the helmet by adhesive
tapes for better signal reception.
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Table 1. Sensors and their key performance information.

Sensor Type Frequency Performance Characteristics

GPS logger Qstarz BT Q1000eX 10 Hz
Position accuracy: 3 m circular error probable (50%),
velocity accuracy: 0.1 m/s. [13]

IMU InvenSense ICM-20600 100 Hz
Gyroscope: measurement range: ±2000 ◦/s, rate
noise spectral density: ±0.004 (◦/s)/

√
Hz;

Accelerometer: measurement range: ±16 g, noise
spectral density: 100 µg/

√
Hz. [14]

Magnetometer Alps HSCDTD008A 100 Hz Measurement range: ±2.4 mT. [15]

GPS Logger

iPhone7 
(IMU+Magnetometer)

Bx

By

Bz

Figure 1. Illustrative figure on the placement of the sensors (based on a body scanning figure).

3. Methods

In this section, we first introduce the extended RTS smoother framework for a general system
in Section 3.1. Next, modifications made for the joint state and parameter estimation as well as the
state constraints in Section 3.2. Finally, the system model for ski jumping, which is implemented in the
extended RTS smoother framework, is presented in Section 3.3.

3.1. Extended Rauch-Tung-Striebel Smoother

The extended RTS smoother is an offline estimation method utilizing the entire batch of
measurements over a fixed time interval [16]. It combines a forward filtering pass using the EKF with
a backward smoothing pass with the RTS smoother.

A state-space representation for a general nonlinear system described by ordinary differential
equations (ODEs) can be written as

ẋ = f (x, u, w) , x(t0) = x0 , (1)

y = g(x) , (2)

z = y + v , (3)
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where x ∈ Rnx is the state vector, u ∈ Rnu is the known input vector, y ∈ Rny is the model outputs,
and z ∈ Rny represents the measurements. Symbols w ∈ Rnw and v ∈ Rny denote process and
measurement noise vectors. This system can be linearized and discretized into the following form [16]:

xk = Φk−1xk−1 + Γu,k−1uk−1 + Γk−1wk−1 , (4)

yk = Hkxk , (5)

zk = yk + vk , (6)

where Hk = ∂g(xk)/∂x. The transformation matrices Φk−1, Γu,k−1, and Γk−1 are computed as

Φk−1 = exp(Ak−1∆tk−1) =
∞

∑
i=0

(Ak−1∆tk−1)
i

i!
, (7)

Γu,k−1 =
∫ ∆tk−1

0
exp(Ak−1τ)Bk−1 dτ =

(
∞

∑
i=1

Ai−1
k−1∆ti

k−1
i!

)
Bk−1 , (8)

Γk−1 =
∫ ∆tk−1

0
exp(Ak−1τ)Fk−1 dτ =

(
∞

∑
i=1

Ai−1
k−1∆ti

k−1
i!

)
Fk−1 , (9)

where Ak−1 =
∂ f (xk−1,uk−1,wk−1)

∂x , Bk−1 =
∂ f (xk−1,uk−1,wk−1)

∂u , Fk−1 =
∂ f (xk−1,uk−1,wk−1)

∂w , and ∆tk−1 = tk −
tk−1. The noise processes {wk} and {vk} are assumed to be zero-mean, uncorrelated, white Gaussians,
i.e., wk ∼ N (0, Qk), vk ∼ N (0, Rk), E[wjwk] = Qkδjk, E[vjvk] = Rkδjk, and E[wjvk] = 0, where δjk is
the Kronecker delta.

3.1.1. Extended Kalman Filter

The EKF is a sequential state estimation method for nonlinear systems [11,16]. First, the initial
state x̂0|0 and covariance P0|0 for the EKF are given as

x̂0|0 = x̄0 , (10)

P0|0 = P̄0 , (11)

where x̄0 is an a priori estimate of the initial states x0 and P̄0 is the covariance of the estimation error
of x̄0. Then, for each time point tk with k ∈ {1, 2, . . . , N}, the EKF consist of a prediction and an update
step as follows:

1) Prediction step:

x̂k|k−1 = x̂k−1|k−1 +
∫ tk

tk−1

f (x̂k−1|k−1, ũk−1, 0)dτ , (12)

Pk|k−1 = Φ>k−1Pk−1|k−1Φk−1 + Γ>k−1Qk−1Γk−1 , (13)

where x̂k|k−1 represents the a priori state estimate at time tk based on measurements up to time tk−1 ,
i.e., x̂k|k−1 = E(xk|z1, · · · , zk−1), and Pk|k−1 denotes the covariance of the estimation error of x̂k|k−1 .
To evaluate Φk−1 and Γk−1, matrices Ak−1 and Fk−1 in Equation (7) and Equation (9) are linearized

as Ak−1 =
∂ f (x̂k−1|k−1,uk−1,0)

∂x and Fk−1 =
∂ f (x̂k−1|k−1,uk−1,0)

∂w . The integral in Equation (12) is numerically
solved via the classic 4-th order Runge–Kutta method with ũk−1 = tk−τ

tk−tk−1
uk−1 +

τ−tk−1
tk−tk−1

uk .
2) Update step:

Kk = Pk|k−1H>k [HkPk|k−1H>k + Rk]
−1 , (14)

x̂k|k = x̂k|k−1 + Kk[zk − g(x̂k|k−1)] , (15)

Pk|k = [Inx − Kk Hk]Pk|k−1 , (16)
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where x̂k|k denotes the a posteriori state estimate at time tk based on measurements up to time tk ,
i.e., x̂k|k = E(xk|z1, · · · , zk), and Pk|k denotes the covariance of the estimation error of x̂k|k . The
symbol Inx denotes an nx by nx identity matrix, and Hk is approximated by Hk = ∂g(x̂k|k−1)/∂x .

3.1.2. Rauch-Tung-Striebel Smoother

After the forward-time filtering pass, the EKF estimation of the states x̂N|N and its error
covariance PN|N is used to initialize the corresponding values in the RTS smoother for the final
time point tN :

x̂s
N = x̂N|N , (17)

Ps
N = PN|N , (18)

where the superscripts “s” indicate the smoothed estimates. Then, the RTS smoother runs backward in
time for tk with k ∈ {N − 1, N − 2, . . . , 0} as

Ks
k = Pk|kΦ>k (Pk+1|k)

−1 , (19)

x̂s
k = x̂k|k + Ks

k[x̂
s
k+1 − x̂k+1|k] , (20)

Ps
k = Pk|k + Ks

k[P
s
k+1 − Pk+1|k](K

s
k)
> , (21)

where the smoothed estimate x̂s
k can be regarded as the state estimate of time point tk utilizing all

measurements, i.e., x̂s
k = E(xk|z1, . . . , zN) [17], and Ps

k is the covariance of the estimation error of x̂s
k.

3.2. Adaption for Parameter Estimation and Soft Constraints

To account for unknown parameters and known constraints for the estimation problem, the
extended RTS smoother for state estimation is modified by the following adaptations.

3.2.1. Joint State and Parameter Estimation

When the model also includes parameters p ∈ Rnp to be estimated, these parameters are treated
as additional states with ṗ = 0 so that they are compatible with the extended RTS smoother framework.

Therefore, with the augmented state vector defined as xa =
[
x> p>

]> ∈ Rnx+np , the augmented
system ODEs become

ẋa = fa(xa, u, w) =

[
f (x, u, p, w)

0

]
. (22)

3.2.2. Constrained Filtering

Suppose that a system satisfies the nonlinear state equality constraints as

ck = h(xk) . (23)

In order to include these into the extended RTS smoother framework, the constraints can be
treated as additional pseudo measurements in the form of[

zk
ck

]
=

[
yk

h(xk)

]
+

[
vk

vc,k

]
. (24)

For the case that equality constraints are satisfied exactly, which is termed as hard constraints
in [11,18], the pseudo measurements can be treated as perfect with pseudo measurement noises vc,k = 0 .
Contrary, soft constraints are only required to be fulfilled approximately, i.e., ck ≈ h(xk) . In this case,
we assume vc,k are zero-mean Gaussian noises with small covariance Qc , i.e., vc,k ∼ N (0, Qc) .
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We further write Equation (24) as

ya = ga(xa) , (25)

za = ya + va , (26)

where za =
[
z>k c>k

]>
, ya =

[
y>k h(xk)

>]>, and va =
[
v>k v>c,k

]>
. By Equations (22), (25), and (26), we

formulated the state-space presentation of an augmented system for state and parameter estimation
with state constraints in the form of Equations (1)–(3).

3.3. System Model

After introducing the estimation framework for a general system in the previous two subsections,
the system model for the ski jumping application is presented in this subsection.

3.3.1. Coordinate Frame Definitions

The first necessary frame is the hill reference frame OxNyNzN. As shown in Figure 2, its origin O
is located at the end of the in-run table. The xN axis and zN axis are both within the symmetric plane
of the jumping hill and point horizontally forward and vertically down, respectively. The yN axis
is perpendicular to xN and zN axes to form a right-handed coordinate system. rN = [xN yN zN]

>

denotes the coordinate matrix in the hill reference frame of the jumper’s (or, to be exact, the IMU
sensor’s) relative position vector r with respect to the origin O. Another necessary frame is the local
north-east-down (NED) frame OxOyOzO. The origin of the local NED frame coincides with point
O, and the three axes xO, yO and zO point to north, east, and down directions respectively. Finally,
the sensor’s body frame OBxByBzB is defined as following: the origin OB is located at the center of
the cellphone, and the three axes are fixed to its three axes of symmetry as shown in Figure 3. The
coordinates in the NED frame of the relative position vector r are denote by rO = [xO yO zO]

> .

Figure 2. Definitions of the local north-east-down frame and the hill reference frame.

Bx By

Bz

BO

Figure 3. Definition of the sensor body frame.
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3.3.2. Conversion of GPS Position Measurements to the Hill Reference Frame

The position measurements from GPS receivers are usually provided in geodetic coordinates, such
as the World Geodetic System 1984 (WGS84) frame [19], as a time sequence of latitude µ, longitude λ,
and height h. For ski jumping applications, it is more useful to calculate relative positions of the ski
jumper with respect to the jumping hill.

With the frame definitions stated before, the GPS-measured positions rWGS,GPS = [µ λ h]>

in the WGS84 frame are first transformed into the local NED frame rO, GPS = [xO yO zO]
> by the

following equations:

xO = (Mµ + h)(µ− µ0) , (27)

yO = (Nµ + h)cos µ0(λ− λ0) , (28)

zO = −(h− h0) , (29)

where µ0, λ0, and h0 are the latitude, longitude, as well as height of the hill reference frame’s origin O,
and parameters for the WGS84 reference ellipsoid [19] can be found in Table 2.

Table 2. Parameters for the WGS84 reference ellipsoid.

Name Symbol Value

The semi-major axis a 6378137.0 m
The first eccentricity e 0.0818191908426

The meridian radius of curvature Mµ a 1−e2

(1−e2 sin2 µ0)
3
2

The radius of curvature in the prime vertical Nµ
a√

1−e2 sin2 µ0

Then, the GPS-measured positions rN, GPS in the hill reference frame are obtained by

rN, GPS = MNOrO, GPS , (30)

where MNO is the transformation matrix from local NED to hill reference frame as

MNO =

 cos ψN sin ψN 0
− sin ψN cos ψN 0

0 0 1

 , (31)

where ψN denotes the hill azimuth angle, which is defined as the rotation angle from the xO axis (the
north) to the xN axis, as shown in Figure 2.

3.3.3. Constraint Modeling of the Geometric Shape of a Ski Jumping Hill

The geometric shape of the ski jumping hill is used as additional a priori information and included
in the trajectory reconstruction problem as a set of constraints for further improvement of the estimation
quality. The mathematical model of a ski jumping hill is described in [20], which was published by the
International Ski Federation (Fédération Internationale de Ski, FIS) as the guideline to construct ski
jumping hills. Additionally, all necessary model parameters can be found in the jumping hill certificate,
which is also issued by the FIS. In our case, we have the certificate of jumping hill - No. 215/GER 29 [21]
for the Schattenbergschanze.
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Figure 4. The Longitudinal Profile of a Ski Jumping Hill.

Figure 4 shows the geometric profile of a FIS-certified ski jumping hill in the longitudinal
plane. The curve from the point A to the origin O is called the in-run where the jumper skis down
following the track before take-off. For any point P1 on the in-run curve, we assume its coordinates
to be (xP1, 0, zIR(xP1)) where zP1 = zIR(xP1) denotes the mapping relationship for the in-run in the
vertical plane. Since the trajectory of the jumper before take-off must coincide with the in-run curve,
we define the constraints for the in-run curve in the longitudinal and lateral plane as

cV, IR = zN − zIR(xN) , (32)

cH, IR = yN . (33)

When the jumper is in the in-run area before take-off, i.e., tk ≤ tTO , the constraints should fulfill
that cV, IR ≈ 0 and cH, IR ≈ 0 . The curve BC in Figure 4 is the landing area (including the landing
slope and the out-run). For a point in the landing area P2, its position coordinate in the hill reference
frame is (xP2, yP2, zLA(xP2)) where zP2 = zLA(xP2) is the mapping relationship of the landing area in
vertical plane. The jumper would land somewhere in between and afterward skiing along this surface.
Therefore, we can formulate another constraint as follows:

cV, LA = zN − zLA(xN) . (34)

After the jumper’s landing, i.e., tk ≥ tTD , the constraints should be active such that cV, LA ≈ 0 .
The method for detecting the take-off time point tTO and the touch-down time point tTD using raw
measurements is introduced in Appendix A.

3.3.4. Measurement Error Models

To model the measurement error of the inertial sensor, constant bias terms ∆ω and ∆a for the
gyroscope and accelerometer as well as zero-mean, white, Gaussian noise terms wgyro and wacc are
explicitly considered as

ωB, gyro = ωB + ∆ω + wgyro , (35)

aB, acc = aB + ∆a + wacc , (36)

where ωB, gyro represents the rotational rates measurement from the gyroscope, aB, acc denotes the
measurement from the accelerometer, and ωB as well as aB are the true rotational rates and specific
forces respectively.

The measurement error model of the magnetometer is considered to be

mB, mag = (1 + diag(∆Sm))mB + ∆m + vmag , (37)

where mB, mag is the magnetometer measurement of the local magnetic field strength, ∆Sm represents
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the vector of the scaling factor error and diag(∆Sm) denotes the corresponding square matrix with Sm

being its diagonal elements, ∆m denotes the constant bias vector, mB is the true local magnetic field
strength, and vmag represents the zero-mean, white, Gaussian measurement noise.

The GPS measurements are modeled as

rN,GPS = rN + vpos , (38)

vO,GPS = vO + vvel , (39)

where rN is the true position in the hill reference frame, vO is the true velocity in the local NED
frame, rN,GPS and vO,GPS are the GPS measurements accordingly, and vpos and vvel are the measurement
noise terms.

3.3.5. State, Output, and Constraint Equations

The system states vector x is given by

x =
[
r>N v>B q>BO

]>
, (40)

where vB denotes the triaxial velocity in the body-fixed frame, and qBO represents the attitude
quaternions of the body-fixed frame with respect to the local NED frame. The input vector u contains
the IMU measurements ωB, gyro and aB, acc as

u =
[
ω>B, gyro a>B, acc

]>
. (41)

The parameter vector p to be estimated includes the biases of the gyroscope ∆ω, the
accelerometer ∆a, the magnetometer ∆m, and the scaling factor error of the magnetometer ∆Sm:

p =
[
∆ω> ∆a> ∆m> ∆S>m

]>
. (42)

The process noise vector w consists of influences from both gyroscope and accelerometer:

w =
[
w>B, gyro w>B, acc

]>
. (43)

With the definitions above, the state equations ẋ = f (x, u, p, w) stated in Equation (22) can be
assembled by the equations of inertial navigation mechanism and kinematics as follows:

ṙN = MNOM>BOvB , (44)

v̇B = aB + MBOgO + ωB × vB , (45)

q̇BO =
1
2


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

ωB , (46)

where MBO is the transformation matrix from the local NED frame to the body-fixed frame as

MBO =

q2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 + q0q3) 2 (q1q3 − q0q2)

2 (q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2 (q2q3 + q0q1)

2 (q0q2 + q1q3) 2 (q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 , (47)

and gO =
[
0 0 g0

]>
represents the gravitational vector in the local NED frame. The term aB
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in Equation (45) can be substituted by aB = aB, acc − ∆a−wacc using the accelerometer measurement
model Equation (36). Similarly, ωB can be written as ωB = ωB, gyro − ∆ω−wgyro via the gyroscope
measurement model Equation (35) and be further substituted into Equation (46).

The output vector y is written as

y =
[
r>N v>O m>B, meas

]>
, (48)

where rN can be directly obtained from the state vector, the velocity vO is calculated as

vO = M>BOvB , (49)

and mB, meas is the estimated magnetometer measurement. By taking the magnetometer model
Equation (37) into account, mB, meas is estimated by

mB, meas = (1 + diag(∆Sm))MBOmO, WMM + ∆m , (50)

where mO, WMM is the reference value of the local magnetic field strength in the local NED frame from
the World Magnetic Model 2015 [22].

Accordingly, the measurement vector is z =
[
r>N, GPS v>O, GPS m>B, mag

]>
with measurements

from the GPS logger (rN, GPS and vO, GPS) and the magnetometer (mB, mag). The measurement noise

vector is therefore v =
[
v>pos v>vel v>mag

]>
.

The vector of constraints c is defined to be

c =
[
cq cV, IR cH, IR cV, LA

]>
, (51)

where cq = ‖qBO‖2 − 1 is the constraint for attitude quaternions. Here, cq ensures a unit quaternion,
i.e., ‖qBO‖2 = 1 . The constraints cV, IR, cH, IR, and cV, LA are geometric constraints given by the shape
of the jumping hill, which are introduced in Section 3.3.3.

4. Results and Discussion

In this Section, trajectory reconstruction results from both simulated and real measurement data
are presented. The configuration for the extended RTS smoother is first introduced in Section 4.1. The
simulated measurements are used to theoretically validate the purposed method in Section 4.2. Results
based on real measurements are presented in Section 4.3. The jump length obtained from both the
proposed method and video recordings are compared in Section 4.4 to further validate the results
based on real measurement data.

4.1. Setting

We first introduce necessary configurations for the extended RTS smoother algorithm. For

the initial states x̄0 =
[
r̄>N,0 v̄>O,0 q̄0

]>
, the GPS measurement at initial time t0 is adopted as an

estimation for the initial position and velocity as r̄N,0 = rN, GPS,0 and v̄O,0 = vO, GPS,0 . The estimated
value for initial attitude q̄0 is calculated via the factored quaternion algorithm proposed in [23] using
the accelerometer and magnetometer measurements at time t0. The initial guess for all measurement

error parameters is chosen to be zero as p̄0 =
[
∆ω>0 ∆a>0 ∆m>0 ∆S>m,0

]>
= 0 . For the augmented

initial states x̄a,0 =
[

x̄>0 p̄>0
]>

, the estimated covariance matrix for the initial states error P̄0 is set as
shown in Table 3. In addition, the covariance matrix of noises Q and R is considered constant and
the estimated values of Q and R are listed in Tables 4 and 5 respectively. Within the model, the hill



Sensors 2020, 20, 1995 11 of 24

azimuth angle ψN is set as 312.6 ◦ for the jumping hill Schattenbergschanze. The gravitational constant
at the site is calculated to be g0 = 9.8053 m/s2 according to the Earth Gravitational Model 1996 [19].

Table 3. Diagonal elements of the estimated initial states error covariance matrix P̄0.

System States Symbol Estimated Variance

Position rN,0 diag([5 5 15])2 [m2]
Velocity vB,0 diag([1 1 3])2 [(m/s)2]

Attitude quaternions qBO,0 (0.1I4)
2 [−]

Gyroscope bias ∆ω0 (0.0873I3)
2 [(rad/s)2]

Accelerometer bias ∆a0 (0.2I3)
2 [(m/s2)2]

Magnetometer bias ∆m0 (5I3)
2 [(µT)2]

Magnetometer scaling error ∆Sm,0 (0.1I3)
2 [−]

Table 4. Diagonal elements of the estimated process noise covariance matrix Q.

System Inputs Symbol Estimated Variance

Gyroscope ωB, gyro (0.0175I3)
2 [(rad/s)2]

Accelerometer aB, acc (0.1I3)
2 [(m/s2)2]

Table 5. Diagonal elements of the estimated measurement noise covariance matrix R.

System Measurements Symbol Estimated Variance

GPS position rN, GPS diag([3 3 5])2 [m2]
GPS velocity vO, GPS diag([0.1 0.1 0.3])2 [(m/s)2]

Magnetometer mB, mag (5I3)
2 [(µT)2]

Quaternions constraint cq 0.012 [−]
In-run vertical constraint cV, IR 0.12 [m2]

In-run horizontal constraint cH, IR 0.12 [m2]
Land area vertical constraint cV, LA 0.12 [m2]

4.2. Validation by Simulated Measurement Data

To validate the accuracy of the proposed algorithm, an artificial measurement data set is generated
by assuming a true value and adding sensor error and noise. This data set is generated based on
the result from real measurements as a reference trajectory, ensuring similar observability of the
estimation problem as in the real world. Trajectory optimization techniques with least-squares costs
are used to obtain a trajectory with similar acceleration and angular velocities as the measured data.
By adding path constraints to the trajectory optimization, the true trajectory also fulfills the constraints
in Equations (32)–(34). The true value for the generated trajectory also complies with the kinematic
models in Equations (44)–(46). The sensor errors and noises are added to the true values according
to Equations (35)–(39), with the noise covariance values shown in Tables 4 and 5 to generate artificial
measurements.

The trajectory is reconstructed with only the noisy artificial measurements known to the extended
RTS smoother. The reconstruction result is presented in Figure 5. Here, it can be observed that the
smoothed trajectory agrees closely with the true reference. To quantify the error of the estimated
position and velocity, we calculated the error by

∆rN = r̂s
N − rN,ref , (52)

∆vO = v̂s
O − vO,ref , (53)

where variables with subscript “ref” are the true values from the generated data. The error of these
estimated positions and velocities are presented in Figure 6a,b respectively. To intuitively display the
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attitude, the quaternions qBO are converted to the corresponding Euler angles (in z-y-x order): the
bank angle φ, the pitch angle θ, and the azimuth angle ψ by

φ = arctan

(
2 (q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3

)
, (54)

θ = arcsin (−2 (q1q3 − q0q2)) , (55)

ψ = arctan

(
2 (q1q2 + q0q3)

q2
0 + q2

1 − q2
2 − q2

3

)
. (56)

Figure 5. Comparison of the extended RTS smoother reconstructed trajectory (color-coded line), the
generated reference trajectory (black line), and the GPS measured trajectory (purple dots) plotted on
the ski jumping hill model.

Then, we use the error in Euler angles to represent the attitude estimation error as

∆φ = φ̂s − φref , ∆θ = θ̂s − θref , and ∆ψ = ψ̂s − ψref . (57)

The Euler angle estimation error is presented in Figure 6c. The root-mean-square (RMS) error for
position, velocities, and Euler angles are summarized in Table 6. This result shows that the proposed
algorithm can successfully reconstruct the trajectory and that the position accuracy for the assumed
noise covariance is in decimeter magnitudes.

Table 6. The root-mean-square error for estimated variables.

Variables ∆xN ∆yN ∆zN ∆vO,x ∆vO,y ∆vO,z ∆φ ∆θ ∆ψ

RMS Error: 0.159 m 0.123 m 0.109 m 0.021 m/s 0.026 m/s 0.023 m/s 0.584 ◦ 0.319 ◦ 0.759 ◦
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Figure 6. The RTS smoother estimation error for the generated reference data.
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4.3. Validation by Real Measurement Data

Now, we apply the extended RTS smoother on real measurement data to the ski jumping trajectory
reconstruction problem. The results for a reconstructed ski jump are presented in the following part.

In Figure 7, the three-dimensional trajectories of the jumper are plotted with a digital ski jumping
hill model based on [20,21]. The purple solid line with dots shows the converted raw GPS position
measurements rN, GPS where each dot on the line represents a measurement sample. Furthermore, the
line consisting of color-coded dots represents position reconstructed by the extended RTS smoother,
where the color of one dot represent the velocity Vs = ‖vO‖2 =

√
v2

O, x + v2
O, y + v2

O, z . Note that we
use the relative local height hN here instead of zN in the figure for convenience. The relationship
between hN and zN is directly hN = −zN . The subplot on the top-right corner of Figure 7 presents
the projection of the jumping trajectories on the xN-zN plane (focusing mainly on the flight part). The
comparison between GPS-measured and extended RTS smoother reconstructed position as well as
velocity time histories is presented in Figures 8 and 9 respectively.

Both GPS measurements and the smoother estimation in Figure 7 show the trajectory of an entire
jump from start to stop. By comparing the GPS-measured trajectory to the jumping hill model for
the in-run and out-run parts, it shows that the GPS height channel contains relatively large errors.
After the jumper starts his run along the track during the in-run phase, the GPS-measured trajectory
indicates that the jumper starts to move horizontally, but remains at the same height vertically. For part
after the touch-down in the landing area, the GPS-measured trajectory shows large error leading to the
position being above the ground. Therefore, in this case, the GPS-measured trajectory is not adequate
for the demand for analyzing the ski jump limited to its accuracy. It is worth mentioning that the GPS
measured trajectory does not necessarily encounter the same type of error in the height channel as in our
case. Nevertheless, due to the trilateration positioning principle of the GPS technology employed, the
GPS height measurement is far less accurate than the latitude and longitude measurements. The GPS
service standard [24] reported that the GPS has a global average positioning accuracy of ≤ 9 m (95%)

horizontal error and ≤ 15 m (95%) vertical error.
On the other hand, besides the GPS measurements as a data source, the extended RTS smoother

uses IMU and magnetic measurements as well as geometric information of the jumping hill to
perform data fusion. The application of the RTS smoother reconstructs the trajectory despite a lower
GPS measurement frequency and the existence of some GPS height errors as shown in Figures 7–9.
In Figure 7, the reconstructed trajectory shows the entire process of the jump. The jumper first slides
down along the in-run track with increasing speed VS. For the flight part, this can be clearly observed
from both the three-dimensional plot and the subplot in Figure 7. It can be observed that the height
above the ground is decreasing until the jumper’s touch-down with the speed further increasing. After
the touch-down, the jumper skis down on the landing area of the hill with his speed still accelerating.
After reaching the flat part at the hill bottom, the jumper decelerates due to the friction and his break
action and then comes to a full stop. In comparison to the GPS measurement, the estimated position
and velocity are improved especially in the height channel, which reveals more information for the
jump analysis, and the sampling frequency on the trajectory is also increased.

In Figure 8, we can observe that two lines fit well for xN . For yN in the extended RTS smoother
result (the green line), the constraint cH, IR correct the position yN to 0 before take-off. Afterward, the
reconstructed trajectory matches the GPS measurements with some differences. For the hN channel,
as also mentioned before, the raw GPS measurement has a relatively large error which can be clearly
observed in Figure 7. The smoother reconstructed height by considering the vertical constraints cV,IR
and cV,LA is moving in the in-run curve before the take-off and on the surface of the landing area after
the touch down (see Figure 7). The height history is closer to a real physical movement. In Figure 9, for
horizontal velocity vO, x and vO, y , the reconstruction and measurement fit accurately. The extended
RTS smoother result gives a bit different estimation of vO,z compared to the GPS measured one.
Considering the fact that after the jumper starts gliding down around 610.5 s, the vertical velocity
afterward should be positive (moving downwards). So, the vertical speed measured by GPS also
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contains an error for the in-run part which is associated with the height error. Since the extended RTS
smoother considers kinetics ḣN = −vO,z , the smoother estimated vertical speed is linked to the height
estimation. Combining the result in Figures 7 and 8 for the in-run part (around 610.5 s to 616.8 s),
the positive vO,z estimates the smoother giving out is more close to the fact that jumper is moving
vertically down in the in-run. This indicates that the extended RTS smoother improves the velocity
comparing to the GPS with the assistance of information from other sources.

Figure 7. Comparison of the extended RTS smoother reconstructed trajectory (color-coded line) and
the GPS measured trajectory (purple solid line with dots) plotted on the ski jumping hill model (orange
lines and the gray surface).
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Figure 8. Converted GPS position measurements rN, GPS (blue dots) and the extended RTS smoother
reconstructed relative positions rN (green line).
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Figure 9. GPS velocity measurements vO, GPS (blue dots) and the extended RTS smoother reconstructed
velocity vO (green line).

600 605 610 615 620 625 630 635 640
-0.5

0

0.5  

600 605 610 615 620 625 630 635 640
-0.5

0

0.5

600 605 610 615 620 625 630 635 640
-0.5

0

0.5

Figure 10. The extended RTS smoother estimated geometric constraints c (green line) and pseudo
measurements (blue dots).
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Figure 11. The extended RTS smoother estimated attitude angles: φ, θ, and ψ.
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Figure 12. Real magnetometer measurements mB, mag (blue dots) and the extended RTS smoother
estimated magnetometer measurements mB, meas (green line).

The improvement of the estimation accuracy is achieved by fusing data from different sources
including measurement sensors, kinematics, and geometric information of the hill. The gyroscope
and accelerometer data, after removing the estimated bias error, are used for propagating the states
including attitude, velocity, and position together with a priori knowledge of the uncertainties. The
GPS measurements and the magnetometer are included as additional data sources for the correction
step. Furthermore, the introduction of the geometric constraints from the jumping hill model provides
an additional information source, which contributes to the estimation. The constraints cV, IR and cV, LA ,
as shown in Figure 10, establish a strong relationship between states xN and zN on the vertically plane
for each part of the trajectory (before take-off and after touchdown).

Although the major aim of applying the extended RTS smoother is to obtain a better position
and velocity estimation, it is worth to mention that the RTS smoother also provides an attitude
estimation of the IMU sensor. Furthermore, the estimation of the IMU attitude is essential to attribute
the accelerometer measured specific forces into the correct direction (see Equations (45) and (49) ). By
applying Equations (54)–(56) , the converted Euler angles reconstructed by the extended RTS smoother
are shown in Figure 11. From Equation (37), we know that the magnetic field measurements change
with the attitude. Therefore, the similar tendency of extended RTS smoother estimated mB, meas and
magnetometer measurements mB,mag in Figure 12 indicates good attitude estimation.

To conclude the result presentation, measurements from the gyroscope and the accelerometer are
shown in Figures 13 and 14.
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Figure 13. The gyroscope measurements ωB, gyro (red dots).
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Figure 14. The accelerometer measurements aB, acc (red dots) .

From the measurement campaign, we collected valid data sets for five different jumps in total. The
reconstruction results for the rest of the four jumps are shown in Figures 15–18. Comparing to the result
from Jump No. 1 (Figure 8), the results show similar characteristics as before which demonstrated the
repeatability of the results.

Figure 15. Trajectory Reconstruction result for Jump No. 2.
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Figure 16. Trajectory Reconstruction result for Jump No. 3.

Figure 17. Trajectory Reconstruction result for Jump No. 4.
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Figure 18. Trajectory Reconstruction result for Jump No. 5.

4.4. Validation by Jump Length

To validate the trajectory reconstruction results, we calculate the jump length results for the five
collected trials obtained from the trajectory reconstruction LTR for comparison with the jump length
measurements from video recordings LVR . The process of determining the jump length from the video
recordings is explained in Appendix B. The validation result of five different jumps is shown in Table 7.

Table 7. Comparison between jump length obtained from the trajectory reconstruction results (proposed
method) and video recordings (reference).

Jump Length: From Trajectory Reconstruction LTR From Video Recording LVR Error ∆L

Jump No. 1 91.6 m 90.0 m 1.6 m
Jump No. 2 85.8 m 85.0 m 0.8 m
Jump No. 3 98.6 m 97.5 m 1.1 m
Jump No. 4 69.5 m 70.0 m -0.5 m
Jump No. 5 86.0 m 85.5 m 0.5 m

The error ∆L in Table 7 is defined as ∆L = LTR − LVR , and the RMS error for the jump length

estimation is therefore ∆L =
√

1
5 ∑5

i=1 ∆L2 = 1.0 m. Considering that the estimate of the LVR value

could contain an error of 0.5 m as worst case, we calculate the upper bound of the RMS error as ∆Lub =√
1
5 ∑5

i=1(|∆L|+ 0.5)2 = 1.5 m .

5. Conclusions and Discussion

This paper presents a novel method for trajectory reconstruction in ski jumping using wearable
sensors by applying the extended RTS smoother with state constraints. The result of simulated
measurement data validates the proposed method and shows that it has a theoretical accuracy of
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decimeter magnitude in positions. The results based on real measurements show the method can
successfully reconstruct the trajectories of ski jumps. By formulating the geometric information of
the jumping hill as soft equality constraints, the estimation accuracy of positions and velocities is
largely improved comparing to the GPS measurements. Jump length data for the five collected trails
obtained from video recordings demonstrate good accordance with the reconstruction results with
the root-mean-square error upper bound of 1.5 m. This provides strong supporting evidence for the
validity of the proposed method.

For future research, a quantitative assessment of the accuracy of the proposed method by further
real measurement data needs to be carried out. Therefore, another measuring system providing higher
accuracy of position and velocity, e.g., a well-calibrated camera system, needs to be employed in order
to compare the results of the two systems. For future device developments, wearable sensors providing
better position and velocity measurement accuracy, such as differential GPS receivers, which could
provide centimeter-level accuracy [6], are recommended to gain better estimation of the jumper’s
trajectories. In addition, GPS receivers with higher sampling frequency can be tested which could
potentially improve the results. On the other hand, due to the importance of size and weight in the
performance of ski jumping, the wearability of such sensors is still a major aspect to be considered.
Future measurements should include more trials performed by different athletes in order to increase
the statistical confidence. After further development, this technique is promising to be implemented to
provide quantified motion feedback in ski jumping training.
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Appendix A. Take-Off and Touch-Down Time Point Detection

The method implemented for detecting the time points for take-off tTO and touch-down tTD
is introduced in this section: Due to the change of the ground reaction forces, both take-off and
touch-down phase show abrupt changes in acceleration, which is measured by the accelerometer.
Previous studies on ski jumping take-off [25] and landing [26,27] also presented similar acceleration
changing behavior in their measurement-based results. Therefore, we propose to determine tTO
and tTD by detecting these abrupt changes in the accelerometer measurement.

First of all, since the take-off and touchdown would happen when the jumper is moving with a
high speed, we limit the analyzing time interval to the part when the GPS measured speed VGPS(tk) =

||vGPS(tk)||2 =
√

u2
GPS(tk) + v2

GPS(tk) + w2
GPS(tk) is greater than 10 m/s . Next, within this time

interval, the L2 norm of the triaxial specific force measured by accelerometer for discrete time

points tk are calculated by anorm(tk) = ||aB,acc(tk)||2 =
√

a2
x, acc(tk) + a2

y, acc(tk) + a2
z, acc(tk) as shown
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in Figure A1. Then, two peaks (local maximums) with very large anorm and time difference more
than 1.5 s (based on experience) are selected by the following rule as shown in Figure A1 as circles:

tpeak1 = argmax
tk

(anorm(tk) | VGPS(tk) > 10 m/s) , (A1)

tpeak2 = argmax
tk

(anorm(tk) | VGPS(tk) > 10 m/s, −1.5 s ≤ tk − tpeak1 ≤ 1.5 s) . (A2)

These two peaks indicate large ground reaction forces for take-off and landing. Finally, the take-off time
points tTO is determined as the earlier peak. As presented in [26,27], the actual touch-down point in
the landing process is a short moment before the maximal ground reaction peak, approximately 0.05 s
as we estimated. Therefore, the touch-down time points tTD is determined as 0.05 s before the later
peak as:

tTO = min{tpeak1, tpeak2} , (A3)

tTD = max{tpeak1, tpeak2} − 0.05 s . (A4)
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Figure A1. An illustrative example on detecting the take-off and touch-down time points by the raw
measurement data.

Appendix B. Jump Length Detected by the Video Recordings

In this section, the process for detecting the jump length detected using the video recordings is
explained. Cameras with a frame rate of 50 fps are set up at the side of the landing area to record the
jumper’s landing movement. Figure A2 shows a picture of overlaid snapshots from one of the video
recordings. The time difference between each pair of neighboring snapshots is 0.1 s (with a distance of
5 frames). First, the frame for the jumper’s touchdown determined indicated by both skis basically
touching the ground. Then, the jump length is detected by the middle point of the ski with the help of
the distance markers on the other side of the hill, as shown by the red dash lines in Figure A2. Overall,
we consider the detected jump length is within an accuracy of 0.5 m.
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Figure A2. A picture of overlaid snapshots from video recordings to illustrate the jump length detection
from video recordings.
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