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Abstract: With knowledge of geometry and density-distribution of topography, the residual terrain
modelling (RTM) technique has been broadly applied in geodesy and geophysics for the determination
of the high-frequency gravity field signals. Depending on the size of investigation areas, challenges
in computational efficiency are encountered when using an ultra-high-resolution digital elevation
model (DEM) in the Newtonian integration. For efficient and accurate gravity forward modelling in
the spatial domain, we developed a new MATLAB-based program called, terrain gravity field (TGF).
Our new software is capable of calculating the gravity field generated by an arbitrary topographic
mass-density distribution. Depending on the attenuation character of gravity field with distance, the
adaptive algorithm divides the integration masses into four zones, and adaptively combines four types
of geometries (i.e., polyhedron, prism, tesseroid and point-mass) and DEMs with different spatial
resolutions. Compared to some publicly available algorithms depending on one type of geometric
approximation, this enables accurate modelling of gravity field and greatly reduces the computation
time. Besides, the TGF software allows to calculate ten independent gravity field functionals, supports
two types of density inputs (constant density value and digital density map), and considers the
curvature of the Earth by involving spherical approximation and ellipsoidal approximation. Further
to this, the TGF software is also capable of delivering the gravity field of full-scale topographic gravity
field implied by masses between the Earth’s surface and mean sea level. In this contribution, the TGF
software is introduced to the geoscience community and its capabilities are explained. Results from
internal and external numerical validation experiments of TGF confirmed its accuracy at the sub-mGal
level. Based on TGF, the trade-off between accuracy and efficiency, values for the spatial resolution
and extension of topography models are recommended. The TGF software has been extensively tested
and recently been applied in the SRTM2gravity project to convert the global 3” SRTM topography
to implied gravity effects at 28 billion computation points. This confirms the capability of TGF for
dealing with large datasets. Together with this paper, the TGF software will be released in the public
domain for free use in geodetic and geophysical forward modelling computations.

Keywords: gravity forward modelling; topographic gravity field; RTM gravity field

1. Introduction

The gravitational field, including the gravitational potential and its first and second derivatives, is
one of the Earth’s fundamental properties. It provides insights into the mass-density distributions,
such as inner structures and subsurface density variations. The topographic gravity field is the
field contribution generated by Earth’s topographic masses and is computed using gravity forward
modelling techniques (e.g., [1]). The topographic gravity field plays an essential role in geodesy
and geophysics applications, e.g., smoothing gravity observation in the remove-compute-restore
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procedure [2,3], reduction of the gravity observations in boundary-value problem [4,5], for prediction
of high-frequency gravity field constituents [6–8], and for the reduction of omission errors in height
system definitions and unification [9].

In the last few decades, considerable attention has been given to the forward modelling approaches,
either in the spectral domain through spherical harmonic analysis (SHA) of height-density functions
(globally, e.g., [10–12]; regionally, e.g., [13]) and spherical harmonic synthesis (SHS) for computation
points, or in the spatial domain using analytical or numerical gravitational formulas of geometries. In
the spectral domain, the evaluation of gravitational field relies on the spherical harmonic expansions
of powers of the topography. The classical libraries such as SHTOOLS [14] permit to expand a given
field up to spherical harmonic degree 2,800, and ultra-high resolution (e.g., 10,800 and beyond) SHA
based on Fast Fourier Transform (FFT) together with quadrature technique by Rexer and Hirt [15]. The
spectral gravity modeling (SGM) technique shows great efficiency in the long-/medium-wavelength
global gravity field studies where gravitational potential is modelled through different mass layers,
such as in the development of layer-based topographical gravitational field dV_ELL_EARTH2014 [16]
and RWI_TOPO_2015 [17] up to degree and order of 2,160, dV_ELL_EARTH2014_5480 [12,18] up
to degree of 5480, and the most up-to-date Rock-Ocean-Lake-Ice (ROLI) Topographic Gravity Field
Model to degree of 3660 [19]. Due to their lack of detailed resolution, such approaches and models,
however, are not optimal for local applications demanding high-resolution gravity knowledge such as
reduction of gravity-related observations, hydrological mass transports and redistribution, and inertial
navigation. A viable, well-known and frequently used approach is gravity forward modelling through
Newtonian integration (NI) in the spatial domain.

The topography generally has a complex geometric structure, which makes a general analytical
solution of Newton’s integral for an arbitrary-shaped body impossible. Therefore, the discretization
and approximation with primitive mass-elements (e.g., prism or tesseroid) mimicking the shape of the
mass sources with a series of regular geometries [20] is common practice. The composite gravitational
field is then obtained by summing up the effects of all mass-elements around the evaluation point
located on or above the Earth’s surface.

As primitive mass-elements, usually polyhedra, prisms, tesseroids and point-masses are adopted
to model and approximate the mass-density distributions. Based on different regularization techniques,
a variety of studies and algorithms were implemented and developed over past decades, e.g., the
“TC” program for NI with flat-topped prism as mass elementary [6], FFT terrain correction program
“tcfour” [6], “tcq” algorithm with Gaussian quadrature [21], C programming “Tesseroids” combining
Gauss-Legendre Quadrature (GLQ) with tesseroid-based discretization and regularization [22],
“POLYHEDRON” for analytical computation of gravitational field of arbitrary shaped polyhedra [23].
In theory, high-resolution DEMs together with complex geometries, e.g., as represented through a set
of polyhedrons, yield a better and more accurate terrain representation, but at the expense of numerical
efficiency [24]. In order to achieve the trade-off between accuracy and efficiency, the MATLAB tool
GTeC [25] combines three types of geometries (flat-topped square prism, triangle prism and polyhedron)
and DEMs with various resolutions within different integration zones. Besides, the efficiency was
improved by the parallel computing functions and from the vectorization code. However, the GTeC is
limited to the calculation of gravity anomalies of terrain correction and Bouguer effect.

Therefore, to the best of our knowledge there is no gravity forward modelling software code freely
available that (1) combines different types of elementary mass-elements especially the more efficient
tesseroid and point-mass, while (2) offering the option to calculate various gravity field functionals in
(3) different spectral band-widths, including high-frequency gravity modelling (known as residual
terrain modelling or RTM) and full-banded modelling where a full topographic mass-model is used as
input, (4) with coding made in MATLAB, allowing rather easy modification and adaption of the code
for scientific studies. In order to fill this gap, we have developed the new terrain gravity field (TGF)
calculation software, which combines four regularization methods: polyhedron, prism, and the more
efficient tesseroid and point-mass in form of a readily-usable MATLAB code. The software facilitates
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the use of various combinations of zone-radius, DEM resolution levels, regularization geometry, and
allows calculation of various gravitational field functionals in different spectral bands

The TGF software enables to calculate topography implied gravitational field, including functionals
of geoid height, gravity anomaly and all components of the gravity gradient tensor. The TGF software
is expected to be beneficial to geodesy and geophysics for scientific tasks related to geometry, gravity
field and geological structure of the planet. The topography-implied geoid heights are potentially
used to refine the global geoid height model and achieved an accuracy of cm-level [26]. This could be
extensively applied in the unification of national height systems on a global scale in order to reduce
omission errors of global gravity field models significantly, and transformation of Global Positioning
System (GPS) measured geodetic height to physical orthometric height. Besides, topography is one of
the main contributors to gravity anomalies. In geophysical studies, the topographic gravity effects
are usually reduced before interpretation and modelling of sub-surface structures. Further to the
above, the TGF software allows for the calculation of gravity gradients, which contain higher frequency
information than gravity anomalies and therefore allow a better localization of mass anomalies.
Therefore, this software can be of interest to geophysicists who are interested in modelling lateral
density variation of lithospheric structures [27,28].

The goal of this paper is to introduce the new software TGF for gravitational field forward
modelling calculations. We briefly outline theoretical aspects of gravity forward modelling in the
spatial domain (Section 2), then introduce the software design, structure and workflow in Section 3,
and present results from external and internal evaluations of topographic and RTM gravity field
calculations (Section 4). Based on the investigations on the trade-off between accuracy and numerical
efficiency, suitable parameters are recommended allowing accurate yet efficient RTM computations
(Section 4). Some conclusions are given in Section 5.

2. Forward Modelling in Space Domain

The gravitational potential caused by a general mass-density distribution at computation point P
located on or above the Earth’s surface is expressed by Newton’s gravitational integral:

V(P) = G
∫

v

ρ(Q)

l(P, Q)
dv (1)

with G denoting the universal gravitational constant, l(P, Q) being the Euclidean distance between
evaluation point P and the topographic mass element Q, ρ(Q) indicating the volume’s density over
the mass element Q, and v representing the infinitesimal volume element.

In practice, no analytical solution exists for Equation (1) for general mass distributions with
arbitrary shape. Instead, the geometry is divided into a model of mesh which can be arbitrarily
synchronized to the grid of the available geometrical data (DEMs) and physical parameters (mass density
model) (Figure 1a). Analytical or numerical integration schemes are used to evaluate the Newton’s
integral, and its first and second derivatives, over each regular volume element. The composite gravity
effect over calculation point is then obtained through the summation of all individual contributions.
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Figure 1. Discretization and regularization of the mass-distributions.

While the gravitational field attenuates with increasing distance from the evaluation point,
the masses in the vicinity of the computation point play a crucial role in the forward modelling
procedure, especially for the first and second derivatives of gravitational potential. In order to
achieve high accuracy and efficiency, in the TGF software, the mass distributions are divided into
four zones (Figure 1c). Polyhedron, prism, tesseroid and point-mass (Figure 1d) are optionally
combined by definition of radius of four zones respectively, e.g., using high-resolution DEM and
density model together with high-accurate regularization method (e.g., polyhedron or prism) in the
closest neighbourhood, using coarse DEM and density map with efficient geometries (e.g., tesseroid or
point-mass) in the distant zones.

In the closest zone, mass-distributions cover a square area around the computation point and
extend to the distance of r1 from elevation point (Figure 1b). The mass-distributions, located in the
closest zone, are discretized and regularized with highly accurate polyhedra. The polyhedra, as shown
in Figure 1(d-1), is composed of five square faces and two inclined triangle tops, with their corners
coinciding with the grid nodes (cell-center) of the applied DEM (Figure 2), and horizontal sides are
equal to the DEM grid resolution. The tops are defined by the ‘DetailedDEM’ used as input (Figure 3),
their heights at the top corners (‘A’, ‘B’, ‘C ‘and ‘D’ in Figure 1(d-1)) sharing the elevation values over
respective grid centers of ‘DetailedDEM’, while the lower square face (‘EFGH’ in Figure 1(d-1)) is
defined by ‘DetailedREF’ (Figure 3) and holds the average height of lower boundary-grid nodes at ‘E’,
’F’, ’G’, and ‘H’. It is worth noting that, with former polyhedron definition, there might exist special
cases as shown in Figure 4 where the tops’ corners are located on the different sides of the bottom
surface. This means that tops and lower square face meet in a line. Non-analytical solution exists for
Newton’s integral of such geometries. In the TGF software, such cases are automatically detected
depending on the relations among points and planes. Involving a surface of constant height −1000 m,
each irregular geometry was divided into two polyhedrons: (1) one was bounded by the top surface
(detailed DEM) and the constant surface (−1000 m), (2) another was defined by the bottom surface
(reference DEM) and the constant surface. The potential over the arbitrary geometry is obtained by the
difference of these two regular geometries.
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For Newton’s integral solution of polyhedron, the Fortan code ‘polyhedron.f’ by Tsoulis [23]
is applied and combined with our MATLAB software via a so-called MEX-function. With the
MEX-function, the corresponding .mex file is necessary for running FORTRAN code in the
MATLAB-based TGF software. In the software package, we have built the mex-file .mexa64 for
Linux (64-bit), and .mexw64 for Windows (64-bit). For other systems, mex-setup, select the default
outline complier and build .mex file are required beforehand. In such cases, a compatible outline
FORTRAN compiler for MATLAB is necessary, please refer to the https://de.mathworks.com/support/
compilers.html for supported compilers by MathWorks products. If there are multiple versions
of compilers, use ‘mex –setup FORTRAN’ to select and change the default compiler for building
FORTRAN compiler.

The second zone extends up to distance of r2 from calculation point, which shares the same
DEM grid with the closest zone but using flat-topped prism for regularization. The flat-topped
prism (Figure 1(d-2)) located at the center of each grid, with lateral and vertical sides corresponding,
respectively, to the grid size and to vertical radius. The analytical solutions of flat-topped prism
potential and its derivatives are coded as described in [29] and [30]. The Earth’s curvature and effect of
plumblines’ convergence are fully taken care of by adopting the methodology of transforming between
the prism-based and computation point-based north-oriented local Cartesian coordinate systems [31].
As a consequence of using polyhedral with DEM grid center as corners and the prism centers coinciding
with grid center, there occurs a square–circle leakage of half DEM resolution between prism zone and
polyhedron zone shown in Figure 2 denoting the adjacent zone (blue outlined square in Figure 1c)
between prism and polyhedron. To minimize the leakage, these masses are separately evaluated using
tailored prisms.

In the third zone, tesseroids are adopted for regularization. The tesseroid (Figure 1(d-3)) is
composed of three pairs of surfaces bounded by a pair of longitudes, a pair of latitudes, and a pair of
radii as boundaries. Since there is no analytical solution for tesseroid integrals, the numerical evaluation
by expanding the integral kernel to a third-order Taylor series is applied in the TGF software [32].
In this software, no special effort (like subdivision) was made for tesseroid integration of adjacent
masses. Therefore, to avoid numerical problems, the tesseroid representation is not recommended
for masses integration of the very near zones around the computation point, instead the polyhedron
representation is to be preferred.

https://de.mathworks.com/support/compilers.html
https://de.mathworks.com/support/compilers.html
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In the fourth zone, tesseroids are replaced by point-mass (Figure 1(d-4)) of the same mass. In
this method, each mass-element in the fourth zone is approximated by a point-mass. The point-mass
is located in the mass-center of mass-element. Depending on the attenuation character of gravity
with increasing distance, point-mass together with a coarse DEM grid are used for efficient forward
modelling of distant masses. The numerical evaluation of point-mass is more than ten times faster
than the numerical evaluation of polyhedral and prism [33].

The TGF software distinguishes between forward modelling with a full topographic mass model
and with a residual topographic masses model, also known as residual terrain modelling (RTM, [6]).
The definition of extensions of each zone will be further investigated in Section 4.3.

Accurate gravity forward modelling in the spatial domain requires integration over the domain of
all mass-sources, which often extend to the entire globe for the full-scale gravity field calculation and up
to tens of kilometers for RTM gravity field application. Considering the curvature of the Earth, in such
cases, the often used local planar approximation is usually not sufficient for the accurate computations.
The TGF software therefore adopts the more rigorous spherical or ellipsoidal approximation levels.
In the ellipsoidal approximation, the Earth is approximated by a spheroid with a latitude-dependent
Earth radius. The relevant coordinates are, ellipsoidal height H and geodetic latitude ϕ and longitude
λ. All forward computations model the topographic masses relative to the surface of GRS80 ellipsoid.
In spherical approximation, Newtonian integration treats the topographic relative to a reference
sphere, with GRS80 semi-major axis as radius, and the spherical latitudes, longitudes and heights as
coordinate basis.

As for the RTM technique, in some cases calculation points can be located below the reference
surface and buried in the mass-distributions. For these points, the direct forward modelling yields the
non-harmonic gravitational potential and does therefore not anymore correspond to values observed
in harmonic condition, such as observations in the boundary value problem (cf. [34]). It is well-known
that some kind of a harmonic correction is required for these points [2]. The mass condensation
technique, which has been implemented in the widely-used TC software [6], has been adopted in the
TGF software as harmonic correction for RTM gravity calculations, applied for points located inside
the reference topography. Following Forsberg [6], this technique condenses the mass layer between the
computation point and the reference surface into an infinitesimal thick mass layer immediately below
the computation point via,

∆gHC = 4πGρ∆H (2)

where ∆H is the height difference between the DEM and reference height of the calculation point, ρ
is Bouguer density of 2670 kg/m3. Equation (2) is automatically applied by the TGF software for the
gravity computations based on the RTM technique.

3. TGF: Structures and Functions

The TGF software works in two modes: in interactive mode with Graphical User Interface (GUI)
interface and in batch mode without the GUI interface.

Running in GUI interface: Figure 3 shows the working interface of TGF software. It is divided
into four parts, comprising the input of computation points, definition of the mass distributions,
specification to the functionals and computation zones, output files.

The computation point information is located and read in the ’Computation Points’ panel. The
computation file is defined in binary format with vector for (Ni, ϕi, λi, hi)—point number, latitude,
longitude and height respectively. The coordinates should be consistent with those of the reference
model, e.g., geodetic latitude and ellipsoidal height when referring to an ellipsoid, spherical latitude
and orthometric height when using sphere of radius R as reference model.

The ’Forward Mass’ module defines the input file to define the topographic masses, via
the geometric upper and lower boundaries and density values. For practical computations, the
mass distributions are divided into four zones and defined by three sets of DEM and density
inputs, where resolutions varying with zone-distance from computation point. A detailed DEM
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(pushbuttons—‘DetailedDEM’, ‘DetailedREF’ for RTM computation) defines the masses for polyhedron
and prism. ’TessMasses’ with ’TESSDEM’, ’TESSREF’ and ’TessDensity’ defines the tesseroid applied
zone, and a coarse DEM (pushbuttons—‘CoarseDEM’, ‘CoarseREF’ for RTM computation) are required
for point-mass modeling. Through choosing the respective ’displayed’ button, all DEM can be imaged
and displayed for pre-access. ‘displayRTM’ and ‘displayCRTM’ show the height differences between
Earth surface and its smooth reference surface. It works only when RTM gravitational field has been
selected. The checkbox ‘idensity’ represents the flag for mass-density, 0 for constant density, 1 for
various density map. A density map, e.g., CRUST 1.0 [35] and New Zealand digital density map [36],
is used and required when ‘various density’ is selected, otherwise a constant mass-density value as the
most common case. Density unit in all cases is g/cm3. Elevation data is in binary format of vector
‘[minphi manphi resphi minlam maxlam reslam elevation]’, minimum, maximum and resolution of
DEM grid latitude, minimum, maximum and resolution of DEM grid longitude, and DEM height.
Similarly, mass density models are of format in vector ‘[minphi manphi resphi minlam maxlam reslam
density]’.

In the module ‘Gravitational Field’, as listed in the Table 1, ‘ikind’ defines the potential type with
values of 1 for the topographic gravitational field, and 2 for RTM gravitational field. ‘itype’ defines
required computation functions with values of 0 for height anomaly/geoid height (ζ), 1 of vertical
deflections (VD) (ξ, n) and gravity disturbances (δg), 4 of vertical deflections and gravity anomaly
(∆g), 2 for gravity tensors, 10 for ten elements (geoid, gravity disturbance, vertical deflections and
five independent components of gradient tensor, 103 for geoid height, vertical deflection and gravity
disturbance, and 104 for geoid, vertical deflections and gravity anomaly. The formulas are shown in
Equations (3)–(8) with r indicating the vertical radius and γ representing normal gravity at calculation
point with latitude ϕ and longitude λ. The (x, y, z) triple defines the coordinates of calculation point in
the local north-oriented coordinate system, ‘rzones’ defines the extension of each zone in degree. As
demonstrated in Section 2, prism or polyhedron is suggested in the very near zone (e.g., 0.03◦ from
calculation point) to avoid unacceptably large errors. A larger radius of integration zones generally
increases the computational load and memory demand. ‘iflag’ defines the reference model, with ‘0’
when referring to a sphere of radius of R = 6378137 m, and ‘1’ when referring to an ellipsoid (WGS84
parameters are adopted in the TGF software).

ζ =
T
γ

(3)

ξ = −
1
rγ
∂T
∂ϕ

(4)

n = −
1

rγcos∂ϕ
∂T
∂λ

(5)

∆g = −
∂T
∂r
−

2
r

T (6)

δg = −
∂T
∂r

(7)

tensor = [

Txx Tyx Tzx

Txy Tyy Tzy

Txz Tyz Tzz

] = [

∂2T
∂x∂x

∂2T
∂y∂x

∂2T
∂z∂x

∂2T
∂x∂y

∂2T
∂y∂y

∂2T
∂z∂y

∂2T
∂x∂z

∂2T
∂y∂z

∂2T
∂z∂z

] (8)
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Table 1. Parameter specification for TGF forward modeling.

Nr Parameter Explanation Values

1 idensity
Flag for mass-density

0 or 10—constant value is used

1—density map is used

2 ikind
Flag for type of modelling

1 or 21—topographic masses are used

2—residual masses are used

3 itype

Specification of field functionals

0, 1, 2, 10, 103
or 104

0—geoid height

1—VDs and gravity disturbance

2—all gradients

10—all functionals

103—geoid height, VDs and gravity disturbance

104—geoid height, VDs and gravity anomaly

4 iflag
Flag for Earth approximarion

0 or 10—spherical approximation

1—ellipsoidal approximation

5 rzones

Vector of four elements specifying the computation zones in [degree]

0.001◦ to ~5◦

(typically)

rzones = [r1 r2 r3 r4]

r1 = radius for polyhedra

r2 = radius for prisms

r3 = radius for tesseroids

r4 = radius for point mass

[e.g., 0.02 0.03 0.15 2.0]

The publicly available DEM datasets are generally prepared with tiles that contain a matrix of
elevation values arranged at a regularly spaced grid in geographic latitude and longitude, such as
SRTM DEMs. By pressing the pushbutton ‘grid2bin’, the interface ‘grid2bin’ (Figure 5) is displayed
and helps converting such grid file to binary format which could be recognized by TGF software. The
‘grid2bin’ interface allows the definition of grid file including the minimum, maximum and resolution
of latitude and longitude, and locating the elevation matrix. The user shall press the pushbutton ‘ok’
to get the binary file with format of ‘.bin’.
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4. Validation and Numerical Results

In this section, the TGF software is applied for computation of gravity values implied by the
Earth’s global topography (Section 4.1) and for residual (high frequency) gravity effects, as generated
by a residual terrain model (RTM, Section 4.2). Both types of computations are compared against
independent reference values which have been demonstrated of sub-mGal level accuracy, allowing
us to verify the TGF computational results. Further, some optimization experiments are presented
showing how the efficiency of the numerical integration can be increased.

4.1. External Validation of the Topographic Field Calculation

In order to demonstrate TGF’s performance in topographic gravity field calculation, the TGF
computations have been compared with independent calculations using the in-house Newtonian
integrator by Curtin University, as described in [37]. In the Curtin’s Newtonian integrator (CNI),
prism and tesseroid are combined for discretization. The CNI has already been comprehensively
tested and widely applied in the calculation of topographic gravitational potential up to second-order
derivatives [37], the study of spectral characters of band-limited topography generated gravity
field [8,38], and the calculation of SRTM2gravity [1,34], showing its capability to provide topographic
gravity at a precision level at 0.1 mGal level or better. In this experiment, the gravity field calculated
by CNI provides a reference to validate the TGF software. The agreement between gravity field
computations from TGF and CNI would provide an insight into the accuracy of the topographic gravity
field calculated by TGF software.

For this external validation experiment, the test area was located at the most rugged Himalaya
area bounded by 27◦N~28◦N in latitude and 87◦E~88◦E in longitude. Topographic heights taken
from Multi-Error-Removed Improved-Terrain (MERIT) DEM represent the upper boundary and the
EGM96 geoid the lower boundary of the topographic masses. The masses over the entire globe were
considered and were subdivided into five zones, approximated and represented by prism to 15◦ around
the computation point and tesseroids to cover the whole globe, up to 180◦ radius. Table 2 gives the
definition of each zone, regularization model, DEM resolution and zones extension used in TGF and
CNI. As gravity functional, we calculated two sets of gravity disturbances (radial derivatives of the
gravitational potential) at 15” grid resolution over our study area with CNI (δgCNI see previous results
by [8] and with TGF (δgTGF) respectively. The topographic gravity disturbances calculated with TGF
δgTGF were then compared to the corresponding values from CNI δgCNI.

Table 2. The resolutions and extensions in topographic and RTM gravity field calculation.

Zones 1 2 3 4 5

CNI

geometry prism prism prism prism tesseroid
extension 20′ 2◦ 6◦ 15◦ global
resolution 3” 15” 1′ 3′ 15′

TGF-NI

geometry polyhedron prism prism prism tesseroid
extension 0.00 20′ 2◦ 15◦ global
resolution 3” 3” 15” 1′ 15′

RTM

geometry polyhedron prism Tesser-oid Point-mass /
extension 1.2′ 1.8′ 9′ 1◦ /
resolution 3” 3” 3” 30” /

Figure 6 and Table 3 show the results of this comparison. The agreement between both calculations
is always better than 0.3 mGal, with a mean value of ~ −0.06 mGal and RMS of the differences of



Remote Sens. 2020, 12, 1063 11 of 21

0.07 mGal. Overall, the results of this validation experiment provide a satisfactory check on the
TGF software. The statistical results suggest the promising results of TGF software in the full-scale
topographic gravity field calculations, and demonstrate its calculation accuracy would to be at ~0.1
mGal level.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 20 
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Figure 6. External validation over Himalaya mountainous area. (a) topographic gravity disturbances
calculated by Curtin software δgNI, (b) the difference between topographic gravity disturbances
calculated by Curtin software δgNI and topographic gravity disturbances calculated by TGF software
δgTGF−NI.

Table 3. External validation for topographic gravity calculation over Himalayas regions (Unit: mGal).

Min Max Mean RMS

δgNI 41.32 785.42 335.71 378.70

δgTGF−NI 41.31 785.52 335.76 378.76

δgNI − δgTGF−NI −0.29 0.06 −0.06 0.07

δgNI represents topographic gravity disturbances calculated by Curtin software, δgTGF−NI represents topographic
gravity disturbances calculated by TGF software.

4.2. External Validation of the Residual Gravity Field Calculation

The short-scale (RTM) gravity field modelling capability of TGF is validated here through
comparison with a new, highly accurate RTM baseline solution defined in [34]. This RTM baseline
solution was obtained from a combination of gravity values from a full-scale global numerical
integration (NI) and the long-wavelength signal from spectral-domain gravity forward modelling
(SGM). In the full-scale NI method, the topographic masses between the geoid height and the Earth’s
surface represented by 3” MERIT DEM were considered. The full-scale gravity signals were evaluated
in the spatial domain using CNI with resolution levels and grid extensions displayed in Table 2. The
ultra-high degree SGM solution generated by [34] yields the gravity signals implied by the reference
topography of MERIT Spherical Harmonic coefficients (SHCs) to degree and order 2160 and provides
the long-wavelength signals. In both calculations, a constant density assumption of 2670 kg/m3

was adopted.
The key inputs for RTM gravity field calculations with TGF were upper boundary of 3” MERIT

DEM, reference surface of MERIT SHCs to degree 2160, and a constant density value of 2670 kg/m3.
For the parameters used in the TGF software, see again Table 2. The residual masses within 1◦ distance
from the calculation point were considered and divided into four zones. Polyhedron and prism with 3”
DEM were primarily applied in the vicinity zones and extends up to 0.02◦ and 0.03◦ distance around
each calculation point, while tesseroid with 3” DEM extending to 0.15◦, and point-mass for the outside
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distances with DEM of 30” resolution. Accordingly, the RTM models high-frequency field signals at
spatial scales of ~10 km to ~100 m. The differences between NI and SGM provide the RTM reference
solution (cf. [34]) that is used here as an independent check on the RTM gravity calculation with our
TGF software.

Validation experiments were carried out over two study areas with extremely rugged topography
on the earth-surface: Himalaya mountainous area (27◦ ∼ 29◦N in latitude, and 86◦ ∼ 88◦W in
longitude), and Switzerland around Alpine region (45◦ ∼ 47◦N in latitude, and 7◦ ∼ 9◦W in longitude).
RTM gravity field at 15” grid on the Earth’s surface was calculated by TGF software and compared
with the RTM baseline values. The results and differences are shown in Figure 7 (over Himalayas)
and Figure 8 (over Switzerland), descriptive statistics are reported in Table 4. The RMS differences
between TGF-based RTM gravity disturbances and reference values from global numerical integration
and SGM are smaller than the mGal-level over the two study areas (see Table 4).
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Figure 7. External validation based on RTM baseline δgbaseline [34] over Himalaya mountainous area.
δgRTM indicates TGF calculated RTM gravity disturbances. (a) TGF calculated RTM gravity disturbance;
(b) the difference between RTM calculated gravity disturbance and RTM baseline solution; (c) the
differences over points with negative RTM height; (d) the differences over points with positive RTM
height. HRTM represents RTM height, it is the height difference between surface topography and
reference topography, with HRTM = H −HREF.
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Figure 8. External validation based on RTM baseline δgbaseline [34] over Switzerland. (a) TGF calculated
RTM gravity disturbance; (b) the difference between RTM calculated gravity disturbance and RTM
baseline solution; (c) the differences over points with negative RTM height; (d) the differences over
points with positive RTM height. δgRTM indicates TGF calculated RTM gravity disturbances. HRTM

represents RTM height, it is the height difference between surface topography and reference topography,
with HRTM = H −HREF.

Specifically, for points outside the RTM reference topography (that is, no harmonic correction
(HC) was applied), the differences are as low as 0.22 mGal RMS over Himalaya and 0.38 mGal
RMS over Switzerland. On the other hand, for points inside the RTM reference topography (that is,
the [6] 4πGρHRTM HC was applied in TGF), the approximate character of the HC comes into play.
This is seen from increasing RMS errors to the mGal-level (cf. [34]). Overall, our validation results
show the sub-mGal computational precision that can be achieved with TGF for residual gravity field
computations. Strategies to reduce HC-related approximation errors have been discussed, e.g., in [34],
and are not within the scope of the present study.
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Table 4. External validation For RTM gravity calculation over Himalayas and Switzerland Alpine
regions (Unit: mGal).

Min Max Mean rms

External validation over Himalayas

δgRTM −224.06 109.05 −11.76 39.52
δgbaseline − δgRTM −6.13 11.60 0.16 0.78

δgbaseline − δgRTM with HRTM ≥ 0 −2.28 2.36 −0.04 0.22
δgbaseline − δgRTM with HRTM < 0 −6.13 11.60 0.36 1.07

External validation over Switzerland Alpine regions

δgRTM −217.73 100.91 −11.84 41.53
δgbaseline − δgRTM −9.14 7.19 0.09 0.62

δgbaseline − δgRTM with HRTM ≥ 0 −4.17 3.95 −0.03 0.38
δgbaseline − δgRTM with HRTM < 0 −9.14 7.19 0.22 0.79

δgbaseline is RTM baseline solution. δgRTM indicates TGF calculated RTM gravity disturbances. HRTM represents RTM
height, it is the height difference between surface topography and reference topography, with HRTM = H −HREF.

4.3. Internal Validation and Numerical Efficiency

An important aspect of topographic gravitational field calculations is the computational effort
related to the evaluation of Newtonian integration. The calculation time is linearly correlated with
the number of calculation points and the resolution of integration masses. Many procedures for an
efficient calculation of the topography implied gravitational field have been proposed. For instance,
one approach is to split the topographic masses into two parts according to wavelengths [1,34]: the
long-wavelength signal could be efficiently achieved through SGM, while the residual short-wavelength
parts are modeled in the spatial domain through RTM technique with numerical integration radius
being restricted to the neighbourhood of evaluation points. In the following studies, RTM masses is
modeled as the residual masses between the earth surface (represented by 3” MERIT DEM by [39]) and
reference surface (SHCs to degree 2,160 directly derived from 3” MERIT DEM via spherical harmonic
analysis [34]).

The spatial-domain numerical evaluation methods have been developed and programmed for
given geometries (polyhedron, prism, tesseroid and point-mass) in the TGF software. However, as
discussed above, the computation time often appears as a limiting practical issue considering specific
geometry for large or complex problems. Depending on the attenuation and fluctuation nature of RTM
gravitational field, the geometry switches relying on the trade-off between accuracy and efficiency, and
coarse DEM is adopted and truncated in a distant zone.

The trade-off between achieved RTM accuracy and computation efficiency is investigated through
a comparison with a defined internal testbed. In the experiment, the internal testbed was defined by the
RTM gravity disturbances calculated from a set of optimal integration parameters, i.e., polyhedron with
3” DEM within the vicinity of 0.33◦ distance, tesseroid with 3” DEM extending to 1◦, and point-mass
for outside and truncated to 2◦. The values of the internal testbed provide reference values for the
internal validation tests.

In the internal validation, 576 calculation points are homogeneously distributed (at 15” grid
resolution) on the surface of the Earth’s roughest Himalaya area within the 0.1◦ × 0.1◦ square, where
forward modelling errors can be expected to be largest. The RTM gravity disturbances over 576 points
are calculated with various combinations of geometry and radius, then compared with internal testbed.
In order to investigate the forward modeling accuracy and computation time with radius choices of
polyhedron and prism, the following procedure for international validation was followed:

(1) Internal testbed δgtestbed calculation over 576 points, with r1 = 0.33◦, r2 = r1, r3 = 1◦, r4 = 2◦;
(2) The radius dataset (r1, r2, r3, r4) definition, where r1 = 0 : 0.01 : 0.33◦, r2 = 0 : 0.01 : 0.33◦,

with fixed r3 = 0.15◦, r4 = 2◦;
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(3) Implementing forward modelling procedure to get RTM gravity field data set δgith with ith
radius combination, and record calculation efficiency;

(4) Residuals’ evaluation through comparison between data set δgith with internal testbed δgtestbed.
They indicate the error level that can be attributed to the variation of regularization with polyhedron
and prism.

(5) Statistical analysis of RMS values of each set of residuals.
The internal validation results are shown in Figure 9. Figure 9a displays the RMS values of residual

gravity disturbances. With increasing of polyhedron radius from 0.00◦ to 0.09◦, the results show a
boost in accuracy, from several mGal to less 1mGal. To achieve 1 mGal accuracy, polyhedron should
be extended farther than 0.03◦ distance from calculation point. Because of the gravity attenuation
character, using polyhedron far than 0.09◦ would gain little improvement. From Figure 9b, it is obvious
that accurate computation always compromises to efficiency. Using polyhedron extending to 0.03◦, the
software could achieve the calculation efficiency of 10 points per second.
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(number per second). r1 extension radius of polyhedron and r2 radius of prism.

A further experiment investigates the choices of tesseroid and point-mass. The extensions are
implemented with r3 = 0.05 : 0.05 : 1◦, r4 = 0.2 : 0.1 : 2◦, and fixed r1 = 0.03◦, r2 = r1. The computed
RTM gravity disturbances, based on each radius dataset, are then compared with the internal testbed.
The results are shown in Figure 10. It demonstrates that with increasing radius, computation generally
takes more time, from 10 points per second to more than 10 seconds per point. The RMS of discrepancies
less than 1 mGal when tesseroid radius is extended to 0.1◦ and point-mass up to distance of 0.5◦. More
safely, r1 = 0.03◦, r2 = 0.03◦, r3 = 0.15◦, r4 = 0.8◦ are recommended for 1 mGal accurate RTM gravity
signal retrieving using TGF software. However, for most of areas where topography is smoother than
that of test area (Himalaya area), the results based on r1 = 0.02◦, r2 = 0.03◦ are accurate enough to
recover 1 mGal gravity signals implied by the topography.
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tesseroid and point mass. (a) RMS in mGal of internal comparison. (b) calculation efficiency in N/S
(number of points per second). r3 extension radius of tesseroid and r4 radius of point mass.

4.4. RTM Gravity Field over Zugspitze Area

In order to exemplify the spectrum of the implemented gravity field functionals, from potential
values to first- and second-order derivatives, the TGF software was applied for regional RTM gravity
field calculations over a test area located in the Zugspitze of German Alps (with longitude between
10.95◦E and 11.25◦E, and latitude between 47.35◦N and 47.5◦N). With MERIT DEM and MERIT SHCs
2160 respectively representing the Earth’s surface and the smooth reference surface, the residual
(RTM) heights vary from -600 m to 1200 m (Figure 11). This makes the test area a good example for
high-frequency gravity field studies over mountain areas.
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The gravity field functionals, calculated for 972,000 points, arranged in terms of a 1” resolution
grid, are displayed in Figures 12 and 13. All computations use a constant density of 2670 kg/m3 and
spherical approximation, and the regularization and discretization method follows the parameters
listed in Table 2. In order to avoid numerical instabilities for the tensor components, the calculation
points are located 1 m above the Earth’s surface rather than on the Earth’s surface itself.



Remote Sens. 2020, 12, 1063 17 of 21

Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 20 

 

residual (RTM) heights vary from -600 m to 1200 m (Figure 11). This makes the test area a good 

example for high-frequency gravity field studies over mountain areas.  

 

Figure 11. Residual height HRTM over Zugspitze (German Alps) area. 

The gravity field functionals, calculated for 972,000 points, arranged in terms of a 1’’ resolution 

grid, are displayed in Figures 12 and 13. All computations use a constant density of 2670 kg/m3 and 

spherical approximation, and the regularization and discretization method follows the parameters 

listed in Table 2. In order to avoid numerical instabilities for the tensor components, the calculation 

points are located 1 m above the Earth’s surface rather than on the Earth’s surface itself. 

Figure 12 displays the calculated: panel (a) -- residual geoid heights (varying from ~ 12 cm to ~ 

8 cm, Panel (b) -- residual gravity disturbance ranging from ~ -120 mGal to ~ 80 mGal, and north-

south (Panel (c)) and east-west (Panel (d)) components of vertical deflections. The large magnitude 

of these components shows the relevance of high-frequency gravity signals in global or regional 

gravity field determination.  

 

Figure 12. Residual gravity field calculated by TGF software, ζRTM indicates residual geoid height
signals, δgRTM residual gravity disturbances, ξRTM and ηRTM represent north-south and east-west
components of vertical deflection separately.

Figure 12 displays the calculated: panel (a)—residual geoid heights (varying from ~ 12 cm to ~ 8
cm, Panel (b)—residual gravity disturbance ranging from ~ −120 mGal to ~ 80 mGal, and north-south
(Panel (c)) and east-west (Panel (d)) components of vertical deflections. The large magnitude of
these components shows the relevance of high-frequency gravity signals in global or regional gravity
field determination.

Figure 13 shows the calculated elements of the Marussi tensor, with the first column illustrating
the diagonal components Vxx (Panel (a)), Vyy (Panel (c)) and Vzz (Panel (e)), and the second column the
off-diagonal components Vxy (Panel (b)), Vxz (Panel (d)) and Vyz (Panel (f)). TGF may prove to be a
beneficial tool for studying the short-scale signal characteristics of the high-order derivatives of the
potential together with highly detailed elevation models.
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5. Conclusions and Applications

The fast and accurate calculation of gravity field functionals generated by a mass-density
distribution of arbitrary-shaped 3D geometries is a prerequisite for many geodetic and geophysical
applications. In this contribution, we developed the new MATLAB-tool TGF to compute the gravity
field implied by terrain masses in the spatial domain. The source code and user manual related to
the TGF software are provided in the Supplementary Materials. Compared to the most up-to-date
MATLAB tool GTeC, our TGF software (1) includes more efficient geometries, i.e., tesseroid and
point-mass, (2) enables calculation of full-scale and high-frequency gravity field functionals including
(3) the gravitational potential, its gradients and second derivatives, (4) considers the curvature of the
Earth by involving spherical approximation and ellipsoidal approximation.

The external validations have been carried out via the comparisons with reference values. In the
first experiments, two sets of full-scale topographic gravity disturbances were calculated using the
Newtonian integrator of Curtin University and using the TGF software, respectively. These calculations
were based on the same DEM inputs, density assumption, and similar discretization methods. The
differences between calculated gravity disturbances indicate the uncertainties in scientific software
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and computation. In the second experiment, comparisons were drawn between a RTM baseline
solution through a combination of SGM and NI method and RTM results calculated by the TGF
software. With same inputs for both calculations, the comparison results show the error level that can
be attributed to methodologies applied in the TGF software and the baseline solution. Both validation
experiments were conducted over the roughest Himalaya area, where large forward modelling errors
can be expected. The comparisons indicate the sub-mGal level accuracy of the TGF in the calculation
of the full-scale topographic and RTM gravity field. Over valleys, large errors up to around 10 mGal
are encountered which were attributed to the applied condensation harmonic correction technique.

Precise gravity forward modelling generally requires the use of complex geometrical bodies such
as polyhedra but at the expense of efficiency in the numerical evaluation. In this study, the trade-off

between accuracy and efficiency was investigated based on the internal validation. In this experiment,
576 calculation points are located on the surface of the Earth’s roughest Himalaya area. Gravity
disturbances were calculated with various values of integration radii for each zone and compared with
an internal testbed solution using a set of optimum integration parameters. Based on the trade-off study
between accuracy and efficiency, a set of parameters (r1 = 0.03◦, r2 = 0.03◦, r3 = 0.15◦, r4 = 0.8◦) are
recommended for RTM gravity field calculations of accuracy at 1 mGal level and efficiency of around 10
points per second when using 3” DEM in the vicinity of the computation point. This demonstrates the
TGF’s potential for processing high-resolution DEMs associated with roughest topography. However,
the integration radii for each zone are also affected by the roughness of the local topography, resolution
of applied DEMs and variations of geological density.

The new TGF software has been found to be well suited for demanding scientific tasks related
to the numerical evaluation of Newton’s integral. For example, the TGF software has already been
extensively tested and recently been applied in the SRTM2gravity project [1] to successfully convert
the global 3” SRTM topography to implied gravity effects at about 28 billion computation points.
In this project, the TGF software was applied in high-frequency (finer than 10 km) residual gravity
signal calculation, and then combined with the long- and medium-wavelength gravity signal from
spectral gravity forward modelling at an accuracy level better than 1 mGal. In [33], the TGF software
was tested by comparison with precomputed gravity effects from the ERTM2160 gravity model, and
TGF was also utilized to study the use of mass-density maps in gravity forward modelling. In New
Zealand, a mass-density map together with RTM technique were combined to investigate the lateral
density variation effect in high-frequency gravity signal calculation. Besides, depending on the input
elevation grids, which define the boundaries of forward masses, the TGF is capable of calculating
various gravity field functionals, implied by the topography gravity field or high-frequency gravity
field. TGF was used in [40] to study the tree bias effect on gravity forward modelling. The topographic
and RTM gravity disturbances were calculated based on SRTM DEM (containing tree bias) and MERIT
DEM (representing the bare-ground surface) separately. The differences between SRTM-based forward
modelling results and MERIT-based results indicated the tree bias effect in gravity forward modelling.
It is our hope that the TGF software proves beneficial to the geodetic and geophysical user community.

Supplementary Materials: The Terrain Gravity Field (TGF) software is freely available online at https://www.lrg.
tum.de/iapg/forschung/schwerefeld/tgf/.
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