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A B S T R A C T   

The transition of the energy system to a renewable energy source based system requires methods on how to 
incorporate uncertainty in modeling the energy system. There are different approaches starting from mainly 
variation based approaches up to including stochastic programming. 

For this work, a modified version of stochastic dual dynamic programming (SDDP) has been implemented into 
the open source framework urbs. The framework consists of a linear optimization for energy dispatch and 
expansion planning and has been extended to include uncertain inputs for volatile energy sources like wind or 
solar. Different paths on how much these sources are providing for the feed-in can be modeled by packing one or 
more time steps to so-called realizations with different probabilities. The solution algorithm itself is based on a 
modified Benders decomposition approach, which is adapted to the constraints specifically relevant for power 
system analysis. The relation of SDDP and Benders decomposition is used to overcome the exponential growth of 
variables typically involved in classic stochastic programming. 

The novel approach is tested on a case study of Germany and shows how a more realistic economic dispatch 
can be calculated with a stochastic approach compared to a deterministic one.   

1. Introduction 

Today’s energy systems face new challenges due to the integration of 
renewable energy sources. Instead of few large power plants, many 
smaller units are distributed over the country. System operators have to 
take these changes into account, especially as renewable energy sources 
bring more volatility into the system. Hence, methods on how to 
incorporate these uncertainties into system models are needed to pro
vide more robust and reliant insights into the system operation. 

There are many different approaches in how to include uncertainties 
in optimization [1] or more specific in context of power systems [2,3]. 
Typical examples include robust optimization [4,5], fuzzy programming 
and stochastic optimization [6]. Robust optimization is often referred to 
as too conservative, as it optimizes the worst-case of the modeled un
certainty by using an uncertainty set. The optimization itself is therefore 
highly dependent on a reasonable modeling of this uncertainty set and 
is, hence, subject to research [7,8]. Another important aspect in the 
research efforts for robust optimization lies within solving the bilinear 
problem resulting from reformulating the minimax problem into a pure 
maximization by using duality theory. Different approaches like refor
mulating the problem into a linear [9] or using special algorithms are 
the main proposed solutions [10]. 

Stochastic programming represents the uncertain parameter by a 
random variable [6,11]. For each so-called stage, the random variable 
can take several possibilities according to its probability. This has the 
disadvantage of computational complexity with an increased number of 
realizations of the random variable as the tree of possibilities grows 
exponentially over the stages. 

For the later, stochastic dual dynamic programming (SDDP) has been 
developed to overcome the so-called curse of dimensionality resulting 
from formulating the stochastic optimization problem as its determin
istic equivalent, where each possible state gets its own variable. The idea 
of SDDP is to approximate the expected costs of the later stages, also 
called future costs by hyperplanes, which are generated out of the dual 
variables of the later stages. 

As the structure of the stochastic multi-stage problem and its SDDP 
algorithm resembles the general workings of Benders decomposition, we 
use this structural benefits by applying a novel cut generation developed 
for Benders decomposition to the SDDP algorithm. The general idea 
behind the new cut generation is explained and the resulting algorithm 
is applied to a case study for Germany. 

To increase transparency, the method is implemented into an open- 
source framework urbs [12]. It is written in python and originally used to 
solve linear optimization problems for energy dispatch and expansion 
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planning (c.f. [13,14]). The user can define the number of modeled re
gions and which processes per region exist or are allowed to be 
expanded. Furthermore, transmission lines between the regions, energy 
storage and other energy-specific features can be defined. The imple
mentation of all these features is kept flexible, hence it is easily adapt
able to applications including technologies like P2X [15]. 

Over the past years, many such frameworks for the context of energy 
system optimization have been published. One of the reasons for 
choosing urbs as basis for the implementation of SDDP lies within the 
fact, that no additional licenses for a program is needed to work with it, 
in contrast e.g. to Balmorel [16], where GAMS is the underlying lan
guage. As it has been pointed out for other open-source frameworks, the 
reproducibility and transparency they provide by publishing their code 
is important for acceptance in policy decisions [17,18]. Additionally to 
the code, the input data and all steps to process the input as well as the 
output data for analysis are published [19], too. 

The structure of the paper is as follows: First, basics of SDDP and the 
general idea of the cuts will be explained. Section 3 focuses on the 
improved cut generation, while section 4 shows a practical application 
of the introduced method on a model of Germany. 

2. Problem formulation 

For explaining our methodology, we use a general stochastic two- 
stage linear optimization problem: 

min
χ0 ;χ1r

cT
0 χ 0 þ

X

r¼1

R

p1rcT
1 χ 1r (1)  

s:t: A0χ 0 � b0 (2)  

E0χ 0þA1rχ 1r � b1r 8r 2 f1;…;Rg (3)  

χ 0; χ 1r � 0 8r 2 f1;…;Rg (4) 

The variables of the first and second stage are denoted by χ0 and χ1, 
respectively. The second stage variable is dependent of the outcome of 
the first stage variable, hence, the stages cannot be easily decoupled. 
Uncertainty is included by realization r of the uncertain parameters A1r 

and b1r. In literature, this structure of uncertainty (only included in the 
matrix and right hand side parameter of the constraints), is said to have 
technology and objective constraints [20]. There are in total R realiza
tion, which the second stage can take. 

This formulation for a stochastic problem results from expressing the 
– mostly continuous – probability of the uncertainty with help of a 
sampling as discrete probabilities. We will not further go into the details 
about the sample average approximation, as many papers and books 
focus on that method [6,11] and other methods on how to create 
respective scenarios [21,22]. 

We will keep the basic SDDP approach, introduced by Pereira and 
Pinto [23], which is basically a Benders decomposition or L-shaped 
method [6]. As the classic stochastic approach includes the exponential 
growth of variables due to realizations per stage, the idea of SDDP is to 
bundle same realizations of stages into one and hence, reduce the sce
nario tree. For this, mostly independence or at least an underlying 
Markov process is assumed, which is, of course, not always the case. 
However, we also require these assumptions for our algorithm as it is 
closely based on the original idea of the SDDP algorithm. 

The idea of the algorithm introduced by Pereira and Pinto is to split 
the problem into its stages and approximate the later stages by a so- 
called future cost function α. The first stage reads as: 

min ​
χ0

cT
0 χ 0 þ αðχ 0Þ (5)  

s:t: A0χ 0 � b0 (6)  

χ 0 � 0; (7)  

while the secoond stage represents the future costs function: 

αðχ 0Þ¼min
χ1r

X

r¼1

R

p1rcT
1 χ 1r (8)  

s:t: A1r χ 1r � b1r � E0χ 0 (9)  

χ 1r � 0 8r 2 f1;…;Rg (10) 

Instead of calculating every possible outcome to get a representation 
for the future cost function α, an approximation is created by generating 
cuts from the solution of the dual problem of the second stage: 

α �
X

r¼1

R

p1rγ�;T1r ðb1r � E0χ 0Þ (11) 

The dual variables γ1r are the dual variables corresponding to con
straints (9). One problem of this particular representation lies within the 
extension to the multistage case as noted by Vel�asquez et al. [24], as for 
every new cut, another dual variable will be added and hence, the cut 
will become longer and longer. With the improved cut we use derived 
for Benders decomposition, this problem can easily be avoided. We will 
show not only this benefit, but the main idea behind the cut generation 
and apply it to an optimal dispatch problem for an energy system. 

3. Improved SDDP algorithm 

The main improvement of our SDDP algorithm lies within the used 
cut generation based on Benders decomposition cuts, which ensure a 
faster convergence of the algorithm as shown by Stursberg [26]. The 
motivation behind finding a “good” cut is visualized in Fig. 1. Both, the 
green and orange cut touch the epigraph of the future cost function bα. As 
the orange cut not only touches the set in one point, but a facet, the cut 
orange is a better cut than the green cut. 

The cut generation is nothing else, than finding a hyperplane which 
touches the surface of the epigraph of the future cost function, hence, the 
underlying problem results in a geometric problem: Finding a hyper
plane which separates the current solution from the solution space, 
while touching most of surface. The generated cut is dependent on the 
problem formulation. Brandenberg and Stursberg [25,26] explain the 
mathematical background. The underlying idea is as follows: A cut 
which not only touches the epigraph in one point but a facet is better 
than the other cut. Therefore, these so-called facet cuts would be bene
ficial for a cut generating algorithm to get a better approximation of the 

Fig. 1. Illustration of improved cut idea [25].  
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future cost function. They also explain the relation to Pareto-optimal cuts 
[27], which dominate a cut with respect to the domain. In Fig. 1 the 
domain is indicated by X . 

Brandenberg and Stursberg [25] draw the relation between the 
alternative polyhedron and the reverse polar set based on findings by 
Cornu�ejols and Lemar�echal [28] and Fischetti et al. [29]. The later set is 
of interest as it contains all possible normal vectors of separating hy
perplanes, while the former set can be easily derived from the optimi
zation problem. The separation problem can be reduced to finding the 
optimal vertex of the reverse polar set, as every vertex corresponds to a 
facet of the original set. As it cannot be derived easily, the relation be
tween the reverse polar set and the alternative polyhedron is important: 
Stursberg [26] derives that for a certain problem formulation, the 
reverse polar set is a linear projection of the alternative polyhedron. 
Meaning that finding a vertex of the easily computable alternative 
polyhedron leads to a vertex of the reverse polar set under special 
conditions. 

For this paper, using the method derived for Benders decomposition 
on a stochastic optimization problem the second stage problem formu
lation for the r-th realization results in: 

min
λr ;χ0 ;χ1r

λr (12)  

s:t: A1rχ 1r þE0χ 0 � b1r (13)  

χ 0¼ χ �0 þ λω (14)  

cT
1rχ 1r �α� þ ω0λ (15) 

The difference to the above problem (8)-(10) lies in the relaxation 
with λ. Additionally, the first stage variable χ0 is also optimized in the 
second stage, set with the relaxed constraint (14) to the optimal value of 
the first stage optimization. This constraint, while increasing the num
ber of variables, also ensures that it is highly probable that a facet cut is 
calculated. Using equation (14), χ0 could be substituted in equation (13) 
by the corresponding expression, eliminating all additional variables 
except λ. A corresponding substitution is typically also performed by the 
optimization algorithm used to solve the problem, making the compu
tational cost of the additional variables negligible. Instead of directly 
optimizing the cost function, the relaxation parameter λ is minimized. 
The tuning parameters ω and ω0 are set to 1 for this paper like done by 
Fischetti et al. [29] with the aim of reducing the cardinality of the 
support of the optimal vertex. As proposed by Stursberg [26], additional 
information about the problem can be used to improve the choice of the 
parameters, or even to adapt them in each iteration. Evaluating the ef
fect of different choices of the parameter in the context of SDDP would 
be an interesting topic for future research. For further implementations, 
these tuning parameters could also be optimized for each iteration 

according to Brandenberg and Stursberg [25]. Stursberg [26] shows in 
his thesis, that his relaxed approach speeds up convergence of Benders 
decomposition by a factor between 2 and 3. As a classic SDDP approach 
closely resembles a Benders decomposition, it is reasonable to assume an 
improvement of the convergence speed for SDDP as well. 

With this relaxed formulation, the resulting and novel cut for SDDP 
reads as: 

X

r¼1

R

p1rλ�r �
X

r¼1

R

p1r
�
γT

ωr

�
χ 0 � χ �0

�
þ γT

αrðα � α�Þ
�
: (16) 

This formulation can easily be expanded for the multistage case as it 
has been done for the application of this paper. 

3.1. Application 

The presented novel approach for cut generation for SDDP is used for 
a short-term study of Germany represented by 17 regions (16 states þ
one offshore region). The goal of the study is to minimize system costs 
for the German power system while fulfilling a given demand and CO2 
targets. This minimization is conducted with a classic deterministic 
perfect foresight approach, meaning all inputs are known and mostly 
data from 2015, and the presented stochastic approach. The uncertain 
parameter in this study is the volatile wind production of the system. In 
urbs the available percentage of capacity is modeled by a time series. 
This so-called capacity factor is the uncertain parameter. With help of the 
study, differences in the results because of modeling choices will be 
explained. 

The data is conducted openly [19] and processed as input for an 
extension of the open-source framework urbs [12]. The installed ca
pacities of the power plants are given in the appendix (Table 2 its 
visualization in Fig. 7). As CO2 emission bounds, official statistics of 
2015 have been used [30]. This new implementation featuring the 
presented cut generation method and the SDDP algorithm in general is 
also published under an open license. The complete package (data þ
code) can be downloaded for further analysis and reproduction [31]. 

3.2. Uncertainty modeling 

The first two days of March 2015 are taken as a time horizon in an 
hourly resolution for the optimization. These weeks are chosen because 
they both do not fall in neither extreme conditions like winter (nearly no 
PV) or summer (more than average PV production). Additionally, no 
major holidays fall in that time period which indicates a more regular 
power demand. 

With the presented method also longer time periods can be modeled, 
however, more iterations might be needed and hence more time will 
pass until the method converges. This also highly depends on the chosen 

Fig. 2. Representation of implemented realizations.  
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Fig. 3. Resulting economic dispatch in path mid with SDDP and perfect foresight approach. Vertical lines indicate modeling ranges.  

Fig. 4. State of charge over iterations for path mid with SDDP and perfect foresight. Vertical lines indicate modeling ranges.  
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time ranges which are taken as one stage. As each stage can be calcu
lated in parallel, more realizations for uncertain variables can be easily 
be incorporated. In this case, calculation times might vary due to more 
path options. This highly depends on the additional realizations which 
will be modeled, e.g. are they even more extreme realizations or just 
refining the probability space. 

While for the first 12 hours the capacity factor time series for wind is 
taken as a certain prediction, the later hours can take three realizations 
low, mid and high. Realization mid is based on historical wind capacity 
factors for 2015, low and high are shifted time series based on the mean 
positive and negative deviations of the last 20 years from the 2015 time 
series. 

The modeled time is not divided hourly but in certain ranges as 
illustrated by Fig. 2. The first 12 hours of the optimization horizon are 
assumed to be known (indicated by). The next 12 hours are represented 
by three 4 hour blocks which can take one of three possible realizations 
for the wind time series. The second day is then separated into three 8 
hour blocks with the same three realization possibilities. 

The presented formulation leads to a relaxation of several con
straints: First, the state of charge at the overlapping time steps can be 
relaxed by λ. Second, the already emitted CO2 is collected in a variable. 
The state of this variable is passed between subproblems and can hence 
be relaxed. At the end of the modeled time horizon the total emitted 
emissions has to be smaller than the user defined bound. In case of an 
expansion scenario, not only these two groups of variables can be 
relaxed, but also the installed capacities of power plants, storages and 

transmission lines. 

3.3. Results 

To analyze the results, it has to be clarified what conclusions can be 
drawn from the calculated case study. With the given setup, 36 ¼ 729 
paths have been taken into account. As it is not sure, which path will 
happen, the main focus has to be on the first certain 12 hours. For 
comparison, the path which consists only of the realization mid is pre
sented against a complete perfect foresight approach with the same in
puts as the path mid. However, the dispatch of the shown SDDP result 
will hold for all possible paths. 

Fig. 3 shows the dispatch for whole Germany for the complete time 
horizon of two days. Even in the predicted first 12 h, differences in the 
dispatch of the gas plants are clearly visible. As already mentioned, the 
shown result for SDDP only consists of the realization mid. As the first 12 
hours of both approaches (SDDP and perfect foresight) are assumed as 
certain, it is interesting to see how the system behaves differently in both 
cases. For SDDP, the gas power plants are already dispatched more 
often. This is mainly due to the fact, that a lower wind realization would 
lead to higher CO2 emissions and hence, a technology has to be chosen 
which does not emit as much CO2 as for example a lignite power plant 
would. Additionally, regional differences have to be taken into account, 
as a lower wind realization has only small impact in a region with less 
wind installations than in a state which highly depends on wind (c.f. 
Table 2 and Fig. 7). From Fig. 3 it is also clearly visible, that the storage 
plays a vital role in ensuring a resilient system which can surpass low 
wind realizations easily. 

This is even more visible in Fig. 4, which visualizes the state of 
charge over several iterations in contrast to the perfect foresight 
approach. Steep ramps indicate the need of relaxation between sub
problems. While the iterations proceed, the relaxation of the state of 
charge between subproblems gets more and more tightened. Hence, 

Table 1 
Costs for short term study scaled to one year in billion €   

Perfect foresight SDDP Worst-case 

Cost 13.41 14.04 14.45  

Fig. 5. Resulting economic dispatch in path mid with SDDP and perfect foresight approach for the first 12 h in Schleswig-Holstein.  
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high ramps will vanish. In contrast to the perfect foresight approach, the 
storage is more often used in the SDDP case, as the system has to be able 
to deal with worse wind constellations. 

Table 1 present the costs for three approaches scaled to one year. 
This is calculated by upscaling hourly costs like production and variable 
costs to one year. Investment costs are multiplied with an annuity factor 
calculated from the deprecation time of the installed capacities. More 
information on the cost structure in urbs can be found in the mathe
matical documentation [32]. Regarding the total costs, the SDDP 
approach has 4.7% higher expected costs compared to the perfect 
foresight approach, as it takes several paths into account which are 
worse. In contrast to a complete worst-case analysis, where the system 
would have been optimized for the worst-case path, the total system 
costs are 2.8% lower for SDDP. This worst-case analysis has been 
calculated by using the same approach as for the deterministic perfect 
foresight case, but changing the time series for the capacity factor to the 
low realization. 

Comparing the values one might ask why an SDDP approach should 
be used compared to a deterministic one regarding the higher costs: the 
reason for this lies in the value of the insight into the system perfor
mance. The costs calculated by a perfect foresight approach do not meet 
realistic conditions as there is no perfect foresight and redispatch actions 
are taken every day to fulfill system requirements. Hence, using an SDDP 
approach gives more insight and a more realistic price than the deter
ministic perfect foresight approach. 

A more regional analysis of the dispatch in the first 12 hours shows 
how SDDP changes the scheduling of some plants. Schleswig-Holstein, a 
state in the North of Germany with 4:7GW installed wind power, can be 
analyzed as an example: Fig. 5 visualizes how the biomass plant runs 
more evenly in the SDDP case, meaning that is runs all 12 hours and not 

only in the morning hours (8–11). More power is exported to neigh
boring states as there is a constant over-fulfillment of the demand. These 
observations, especially the usage of technologies with lower CO2 
emissions, can me made for several states and can be explained by 
regional CO2 emissions: Not only the whole country but also each state 
wants to fulfill certain restrictions and hence, the whole system will act 
differently. The CO2 emissions per region are presented in Fig. 6. It 
shows that coal relying states such as North Rhine-Westphalia have to 
reduce their amount of emitted CO2 as they might violate their bound 
otherwise. States like Hesse on the other hand emit more CO2 during the 
first 12 hours as the gas power plants in this region are used more often 
to minimize CO2 emissions in neighboring states like North Rhine- 
Westphalia. 

4. Conclusion 

The paper presented two main contributions: A novel cut generation 
for the SDDP algorithm and a transparent case study for a short-term 
dispatch problem of Germany. 

The cut generation, which was adapted from Benders decomposition, 
was explained and the implications on the problem formulation stated. 
Additionally, insight in how to implement the cuts have been presented. 
Furthermore, the implementation can be accessed as it is published 
under an open license [31]. 

To highlight how valuable a stochastic perspective on a typical 
dispatch problem can be, a case study on Germany was presented. The 
presented method was applied to a 48 hours short-term dispatch opti
mization problem of a 17-node representation of Germany. While not 
only the preparation of the input assumptions was published, also the 
processing of the output data is available online [19]. The case study 

Fig. 6. CO2 emissions per state for the SDDP and perfect foresight approach. Vertical lines indicate modeling ranges.  
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shows how valuable it is to be able to react to low wind realizations and 
how this affects not only the storage usage but the dispatch of power 
plants as well. A stochastic modeling seems to be able to present the 
current situation more realistically than a perfectly planned optimiza
tions, as the higher usage of the reserve market indicates. 

Integrating renewables into the current energy system still pose a 
challenge to the community and policy makers. Studies like these can 
help operators to be able to face uncertain futures while staying cost 
optimal. 
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Appendix 

The following table and figure show the installed capacities of the German electricity system.

Fig. 7. Visualization of input data for process capacities in Germany per state (c.f. Table 2)   

M. Stüber and L. Odersky                                                                                                                                                                                                                     



Energy Strategy Reviews 29 (2020) 100486

8

Table 2 
Installed process capacities in Germany per state in MW[33,34].  

Site Process BW BY BE BB HB HH HE NI MV 

Biomass 1,022 1,535 61 539 9 61 294 1,476 379 
CC 434 3,568 444 282 15 127 345 2,174 183 
Geothermal 1 25 0 0 0 0 0 0 0 
Hard coal 4,667 847 777 0 772 194 753 2,162 514 
Hydro 864 2,091 0 4 20 0 81 58 3 
Lignite 0 0 0 4,409 0 0 34 352 0 
Natural gas 518 487 467 301 0 22 1,114 701 136 
Nuclear 2,712 2,698 0 0 0 0 0 2,696 0 
Oil 702 1,384 218 334 86 0 25 56 0 
Other 0 0 0 0 0 0 0 19 0 
Solar 4,985 10,943 78 2,861 38 36 1,761 3,429 1,270 
Waste 98 214 36 118 91 24 112 73 17 
Wind 605 1,465 4 5,445 151 51 1,080 8,095 2,594 
Site  NW OF RP SL SN ST SH TH 
Process 
Biomass  866 0 176 19 282 589 441 272 
CC  4,968 0 1,728 75 440 449 0 291 
Geothermal  0 0 8 0 0 0 0 0 
Hard coal  7,827 0 13 1,822 0 0 680 0 
Hydro  159 0 232 11 210 26 5 33 
Lignite  10,618 0 0 0 4,325 1,136 0 0 
Natural gas  1,714 0 185 58 113 238 22 177 
Nuclear  0 0 0 0 0 0 1,410 0 
Oil  332 0 0 0 17 212 320 0 
Other  0 0 0 0 0 0 0 0 
Solar  4,039 0 1,845 404 1,558 1,785 1,474 1,095 
Waste  432 0 83 28 16 185 17 12 
Wind  3,684 776 2,694 239 1,082 4,306 4,726 1,185  
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