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This paper aims at identifying ontological categories as higher-order knowledge

structures that underlie engineering students’ thinking about technical systems. Derived

from interviews, these ontological categories include, inter alia, a focus on the

behavior, structure, or purpose of a technical system. We designed and administered

a paper-based test to assess these ontological categories in a sample of N = 340

first-year students in different engineering disciplines. Based on their activation patterns

across ontological categories, students clustered into six different ontological profiles.

Study program, gender as well as objective and self-perceived cognitive abilities

were associated with differences in jointly activated ontological categories. Additional

idiosyncratic influences and experiences, however, seemed to play a more important

role. Our results can inform university instruction and support successful co-operation

in engineering.

Keywords: conceptual knowledge, ontologies, engineering education, higher education, cluster analysis

INTRODUCTION

Many of today’s challenges are engineering problems that refer to the design, construction, or
maintenance of technical systems—frommobile phones or car brakes to power plants or automatic
production facilities. Such technical systems consist of several interrelated technical components
that belong together in a larger unit and work together to achieve some common objective
(Lauber and Göhner, 1999; VDI, 2011). They may comprise software, mechanical, and electronic
components. To solve engineering problems, technical content knowledge is necessary (Ropohl,
1997; Abdulwahed et al., 2013). However, due to the complexity of technical systems, different
content knowledge could be activated to think about a certain engineering problem. For instance,
imagine you had to construct a soccer-playing robot, what comes to your mind immediately might
differ inter-individually and range from depicting the robot body to reflecting on programming
solutions. The question we ask in this study is whether there is a superordinate structure that
determines what comes to your mind immediately and that could be described as a thinking
tendency adopted to deal with engineering problems. A problem solver, for example, could have
the tendency to focus on the logical relations and object classifications within the technical system
(e.g., reflecting on programming solutions), the configuration of the different components (e.g.,
what components the soccer robot is made of), on the behavior of the system (e.g., how sensory
information leads to certain bodymovements), or on its appearance (e.g., depicting the robot body)
to name just a few. As knowledge structures, these tendencies are subject to change: they develop
based on prior experiences and can potentially be modified by instruction (Chi et al., 1981, 2012;
Jacobson, 2001; Vosniadou et al., 2012; Björklund, 2013; Smith et al., 2013). Being able to identify

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2020.00066
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2020.00066&domain=pdf&date_stamp=2020-05-29
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles
https://creativecommons.org/licenses/by/4.0/
mailto:frank.reinhold@tum.de
mailto:sarah.hofer@lmu.de
http://orcid.org/0000-0003-2785-8819
https://doi.org/10.3389/feduc.2020.00066
https://www.frontiersin.org/articles/10.3389/feduc.2020.00066/full
http://loop.frontiersin.org/people/884600/overview
http://loop.frontiersin.org/people/836861/overview
http://loop.frontiersin.org/people/981732/overview


Hofer et al. Students’ Thinking About Technical Systems

such tendencies in thinking about engineering problems can
open up new ways of analyzing communication in engineering
teams and designing instruction in engineering education.

A focus on the “appearance of a technical system” (e.g.,
depicting the robot body in the above example) can be considered
to represent higher-level conceptual knowledge that activates
subordinate knowledge including procedural knowledge about
designing pleasant facial expressions or conceptual knowledge
about the look and feel of different surface materials. Likewise,
a focus on the “logic of technical systems” (e.g., reflecting
on programming solutions) may represent another higher-level
knowledge element that triggers subordinate elements such
as knowledge about repeat or while algorithms. Since these
higher-level knowledge elements to some extent determine the
possibility space of thinking, they are called ontological categories
(e.g., focus on appearance, logic, behavior, or on structures of
technical systems). Since one may activate several ontological
categories (e.g., focus on the appearance and the behavior of
a system) during engineering problem solving, we speak of
ontological profiles to describe the joint activation of different
ontological categories.

Most instruments focus on the assessment of conceptual
or procedural knowledge, for example, about programming
languages, characteristics of different surface materials for
soccer-playing robots, physics laws or circuits. Examining
ontological profiles allows us to describe similarities and
differences in first-year civil-, mechanical-, electrical-,
and software engineering students’ tendencies in thinking
about technical systems. Acknowledging and explicitly
addressing ontological categories in engineering education
could improve university instruction and support student
learning. To do so, we first aim to identify the ontological
categories that students entering engineering disciplines
may activate when they think about engineering problems.
In this paper, we present and discuss an approach to
assess these higher-level knowledge structures in first-year
engineering students.

FIGURE 1 | Visualization of a potential hierarchical structure of knowledge elements in the context of “technical systems” with ontological categories at the highest

level, intermediate-level conceptual knowledge, and procedural and declarative knowledge elements at the lowest level. The trees could be extended in any manner.

In the following sections, we first briefly describe the cognitive
architecture model this work is based on and illustrate the idea
of ontological categories and ontological profiles. Covariates of
ontological profiles and the assessment of conceptual knowledge
structures are addressed in the next sections before we focus on
the present study.

Conceptual Knowledge Structures
Knowledge is organized in several layers of hierarchically
and network-like structured knowledge elements (see Figure 1

for an exemplary structure in the context of technical
systems)—with basic declarative knowledge, like surface feel,
and procedural knowledge, like sketching, at the lowest
level that may be grouped to intermediate-level conceptual
knowledge structures, like material (Gupta et al., 2010; Chi
et al., 2012). Conceptual knowledge structures describe content-
specific knowledge elements and their interrelations (Posner
et al., 1982; Chi, 1992; de Jong and Ferguson-Hessler, 1996;
Carey, 2000; Duit and Treagust, 2003), shaping reasoning,
communication, and thus thinking in the respective knowledge
domain (Schneider and Stern, 2010; Shtulman and Valcarcel,
2012). Higher-level conceptual knowledge structures are also
referred to as ontologies that provide categories for thinking
about entities, like “appearance” in Figure 1. Attributes of an
ontological category describe its substantial characteristics (e.g.,
entities in the ontological category “appearance of technical
systems” all share attributes such as purposeful or visual, and
entities in the ontological category “animals” all share attributes
such as has blood or breathes, see Slotta et al., 1995). Building
on the ideas of Piaget’s cognitive constructivism (Powell and
Kalina, 2009), individuals actively construct intermediate- and
higher-level conceptual knowledge structures based on their
existing knowledge.Without formal instruction, these knowledge
structures often reflect naïve theories or everyday experiences.
They develop and change with increasing expertise in a content
domain (Baroody, 2003; Chi, 2006; Ericsson, 2009; Kim et al.,
2011; Vosniadou et al., 2012).
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Ontological Categories and Ontological

Profiles
The often cumbersome process of developing and revising
existing conceptual knowledge on the intermediate-level has been
investigated and described in conceptual change studies (Hake,
1998; Hofer et al., 2018; Vosniadou, 2019). However, only a
few researchers have assessed higher-level conceptual knowledge
structures (i.e., ontological categories). With the exception of
the assessment and modification of the ontological categories
sequential processes and emergent processes in the specific context
of understanding diffusion, heat transfer, and microfluidics in a
sample of undergraduate engineering students (Yang et al., 2010),
ontological categories in engineering have been largely unknown
so far.

Depending on the discipline and situational requirements,
the activation of certain ontological categories may be more
beneficial than others. Accordingly, physics experts have been
found to flexibly apply different ontological categories to deal
with intermediate-level concepts such as energy or quantum
particles depending on situational goals and requirements such
as communication with novices or experts (Gupta et al., 2010).
In studies on complex systems problem solving, novices thought
about complex systems as static structures, while experts thought
about complex systems as equilibration processes (Jacobson,
2001; Chi et al., 2012).

An engineering problem that is defined by the underlying
technical system is by definition multi-facetted and allows
approaching a solution from several perspectives—as illustrated
at the beginning with the soccer-playing robot. To give another
example, if you had to sketch a shelf stocker system, you
could immediately think about the appearance of the system,
or the processes performed by the system, or the functions
of different elements of the system, or the logic behind the
system. We think of these different tendencies in thinking as
examples of ontological categories that might be activated in the
context of engineering problems. We refer to different patterns
of ontological categories that are activated when thinking about
engineering problems as ontological profiles.

Covariates of Ontological Profiles
Due to the complexity of engineering problems, we expect that
first-year students without formal discipline-specific education
may tend to activate several of such ontological categories during
problem solving—whereas experts might tend to adhere to
particular ontological categories that reflect common discipline-
specific thinking approaches (to give an example from the field
of medicine, for instance, like a dermatologist might focus
on a patient’s skin and a neurologist on a patient’s behavior
when diagnosing). What first comes to these students’ minds
when thinking about technical systems, however, cannot be
expected to be arbitrary but to depend on cognitive prerequisites
and prior experiences (Chi et al., 1981, 2012; Jacobson, 2001;
Vosniadou et al., 2012; Björklund, 2013; Smith et al., 2013). We
accordingly included objective as well as self-perceived measures
of ability (e.g., general reasoning, spatial ability, self-concept)
that have proven to correlate with success in technology-related

domains (Deary et al., 2007; Marsh and Martin, 2011; Wei et al.,
2014; Hofer and Stern, 2016) to explore whether differences in
ontological category activation are associated with differences on
these variables.

More specifically, differences and similarities may be
associated with individual characteristics that have been found to
predict achievement in STEM subjects. General reasoning ability
and verbal abilities were identified as predictors of academic
achievement in general (e.g., Deary et al., 2007). While numerical
abilities turned out to be particularly predictive of science
achievement, the spatial ability to mentally manipulate figural
information successfully predicted spatial-practical achievement
(Gustafsson and Balke, 1993). There is broad evidence that
spatial abilities, especially mental rotation, contribute to the
development of expertise in STEM domains and, in particular, in
engineering (e.g., Shea et al., 2001; Sorby, 2007; Wai et al., 2009).
In a sample of engineering students, for instance, spatial ability
could significantly predict overall course grades (Hsi et al., 1997).
A recent study assessing undergraduate mechanical engineering
and math-physics students, reported that verbal and numerical
abilities were associated with students’ achievements on most
physics and math courses, whereas spatial ability was associated
with students’ achievements on an engineering technical drawing
course (Berkowitz and Stern, 2018). Based on existing literature,
we can accordingly expect general reasoning ability as well as
verbal, numerical and—in particular—spatial abilities to affect
thinking about engineering problems in specific underlying
ontological profiles. In addition to basic cognitive abilities,
students’ subject-specific belief in their own abilities—their
self-concept—turned out to be a frequent predictor of academic
success (Marsh, 1986; Marsh and O’Mara, 2008; Marsh and
Martin, 2011; Marsh et al., 2012). Students’ self-concept related
to technology may hence be informative when interpreting
ontological profiles in engineering.

In addition, students choosing different study programs in the
engineering domain (e.g., mechanical engineering vs. software
engineering) may also differ in their thinking approaches (e.g.,
a stronger focus on the behavior and purpose of a system vs.
a stronger focus on classification and logic; see Vogel-Heuser
et al., 2019). Although in the first semester at the university these
knowledge structures can be expected to be still rather unaffected
by formal education in the different engineering disciplines,
student self-selection effects reflecting their prior experiences can
be expected.

Assessing Conceptual Knowledge
Structures
Conceptual knowledge structures have been assessed directly,
for example, by means of thinking-aloud protocols (Ford and
Sterman, 1998) that externalize participants’ thinking processes,
and indirectly by means of observations of actual behavior
(Badke-Schaub et al., 2007; Jones et al., 2011; Silva and Hansman,
2015), in the context of design briefs, for instance (Björklund,
2013). Those methods are rather time-consuming and not fit for
efficient data collection in large groups. More efficient concept
tests that are based on single- or multiple-choice questions have
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been proposed for different STEM contents (Hestenes et al.,
1992; Klymkowsky and Garvin-Doxas, 2008; Hofer et al., 2017;
Lichtenberger et al., 2017)—but have not been applied to assess
higher-level conceptual knowledge up to as far as we know.

The Present Study
Supporting students to become successful problem solvers in
engineering domains can be considered one central goal of
engineering education. To reach this goal, one reasonable step
is to learn more about how students think about technical
systems and advance research on the identification, assessment,
and description of engineering students’ ontological categories.
The present study aims at assessing tendencies in thinking
about engineering problems. Since ontological categories in
engineering have been largely unknown so far, a first goal of this
study was to identify the different ontological categories activated
by individuals when thinking about engineering problems. For
this first step, a structured interview study was conducted. To
efficiently assess the ontological categories identified in the first
step in larger groups, a test instrument inspired by existing
concept tests was developed and evaluated in the next step. In the
third step and main part of this study, this test was administered
to a sample of first-year civil-, mechanical-, electrical-, and
software engineering students.We expected engineering students
at the beginning of their studies to show ontological profiles
that are characterized by several ontological categories that are
activated when thinking about technical systems. We further
assumed that inter-individual differences in ontological profiles
might be associated with differences in cognitive prerequisites
and prior experiences. Accordingly, cluster analyses were used

to describe students’ ontological profiles. Objective and self-
perceived measures of ability as well as study program were used
as covariates of profile membership to better understand and
interpret students’ ontological profiles.

METHODS AND MATERIAL

Figure 2 represents the research design of this study. To
assess tendencies in thinking about engineering problems, we
proceeded in three steps. First, we conducted an interview
study to identify ontological categories occurring in novices’ and
experts’ thinking about technical systems. In a second step, we
designed test items to assess these categories on a quantitative
level and evaluated our instrument in a pilot study. In the main
study, we applied this test instrument to first-year university
students and clustered the data to describe their ontological
profiles in engineering.

Participants
Twenty-nine students and professionals in electrical-, civil-,
mechanical-, or software engineering were recruited at different
German universities to participate in the interview study on a
voluntary basis. Forty-two participants from the educational and
mechanical engineering department of the Technical University
of Munich, Germany, served to evaluate our test instrument to
assess ontological categories in engineering. A total of N = 340
students (26.8% female) took part in themain study. They studied
electrical-, civil-, mechanical-, or software engineering in their
first year at different German universities. For a subsample of n
= 254 students (28.5% female), we have data on both ontological

FIGURE 2 | Schematic representation of the research design. Time flows from left to right. Corresponding information is vertically aligned. The first row provides

information on the step within the research process, the second row on its purpose, and the third row on the samples examined in each step.

Frontiers in Education | www.frontiersin.org 4 May 2020 | Volume 5 | Article 66

https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Hofer et al. Students’ Thinking About Technical Systems

TABLE 1 | Total number of participants, gender, and study program distribution.

Overall sample Subsample

N Female Male NAa N Female Male NAa

Total 340 91 246 3 254 72 181 1

Civil engineering 120 46 73 1 99 42 56 1

Electrical engineering 66 14 52 0 60 12 48 0

Software engineering 49 11 37 1 26 5 21 0

Mechanical engineering 101 18 82 1 65 11 54 0

NAb 4 2 2 0 4 2 2 0

aThree participants did not report their gender.
bFour participants did not report their study program.

profiles and covariates (see Table 1). Their mean age was 20.8
years (SD= 2.8).

Identification of Ontological Categories:
The Interview Study
Ontological categories for thinking about engineering problems
were derived from structured interviews with open card sorting
tasks, where N = 29 participants with varying expertise were
asked to describe what comes to their minds when dealing
with technical systems, i.e., a bicycle gearing (including shifting
mechanism, sprocket, and chain) and an extended pick and place
unit (including stack depot, crane, sorting belt, and stamp; see
Vogel-Heuser et al., 2014). Instead of written or verbal stimuli,
we used two short silent video sequences that visualized the
technical system without any descriptions that could influence
participants’ thinking in a certain direction (for the bicycle
gearing-scenario, we used a video zooming in on a common
bicycle gearing in action; for the extended pick and place unit,
see Video 1 in the Supplementary Material). After watching a
video, participants were instructed to describe what they saw
in the film in their own words. They were asked to verbalize
their initial impression of what they saw. After that, they used
empty cards of different color and shape that they could label to
visualize their thinking about the technical system, while thinking
aloud. To give some examples, they used the cards to represent
different components of the bicycle gearing or the pick and place
unit and arranged the cards on the table reflecting the shape
of the technical system. Other participants used the cards to
indicate functions of elements of the system or included arrows to
visualize a process or temporal order. Their verbalized thoughts
during this activity helped us to understand the meaning of their
card sorting (for a more detailed description of the interview
study, see Vogel-Heuser et al., 2019). When finished, the whole
procedure was repeated with the video of the second technical
system. The order of the two technical systems was randomized.
Participants gave written consent for the use of the recorded
audio files as well as photographs of the produced card sorting
models for research purposes by the authors.

Based on Grounded Theory (Charmaz and Belgrave, 2015) all
available data—interview data and the products from the open
card sorting tasks—were jointly scrutinized to derive potential

categories of thinking that were present in the interviewees’
mental representations of the technical systems. These potential
categories were then described in a coding manual (general
description of each category, indicators) and used by three
raters to code the data of all interviewees. Discussions of
the results of the coding process within the author team
led to the exclusion, merging, refining, broadening, and/or
renaming of categories. This process was repeated until all
interviewees’ representations could be unambiguously described
by relating their statements and visual structures to specific
ontological categories. These empirically derived categories are
theoretically substantiated by existing research in psychology and
engineering (see Table 2). For each of the nine final categories
Behavior, Structure, Purpose, Classification, Logic, Appearance,
Function,Animism, and Prerequisites,Table 2 gives brief category
descriptions, substantiating literature references, and two sample
items from the test we developed in the next step.

Development and Piloting of Test Items
We developed a test instrument asking students to judge
whether or not statements representing each of the nine
ontological categories in the context of a variety of different
engineering problems conform with their spontaneous mental
representation of the problem. The spontaneous mental
representations triggered by short paragraphs describing the
respective engineering problem (like drafting an elevator) should
reflect the ontological categories that shape students’ thinking.
The engineering problems were embedded into different
technical systems, i.e., coin sorter, assembly line, shelf stocker,
traffic lights, Leonardo’s alternate motion machine, elevator,
respirator, bicycle gearing, computer, hamburger automat, drip
coffee maker, TV remote control device, ticket machine, and
robot in assembly line production (the seven technical systems
printed in bold type are included in the final instrument).

Each engineering problem requires the student to contemplate
nine forced-choice items representing the nine ontological
categories and asks students to judge whether or not each
statement conforms with their initially activated mental
representation (i.e., activated knowledge structures). Sample
items from the final test are provided in Table 2 for the coin
sorter and the elevator.

This approach allows detecting the pattern of activation across
the nine ontological categories. The first draft of the instrument
with all of the 14 technical systems listed above was evaluated in
an unpublished pilot study with an independent sample of N =

42 participants. In addition to the psychometric analysis of the
test items, participants’ comments were recorded, discussed, and
considered in the test instrument, if applicable. This evaluation
led to the exclusion of seven technical systems and modifications
in the instructions and item wording. The final instrument (i.e.,
Ontological Categories in Engineering Test, OCET) contains
the seven technical systems printed in bold type above (see
Vogel-Heuser et al., 2019, for a more detailed description of the
test development process). Accordingly, the OCET assesses each
ontological category with seven items that refer to seven different
engineering problems.
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TABLE 2 | Nine ontological categories and their reliability, their descriptions, literature references, and two sample items from the Ontological Categories in Engineering

Test (OCET).

Description Exemplary Items from the OCET

Coin sorter: I think, i.e., about … Elevator: If I had to develop an elevator,

than one of my first steps would be to

think about …

Behavior (ω = 0.56) Thinking is focused on the behavior or the

procedure that is implemented

(Vogel-Heuser, 2014)

The machine’s behavior, i.e., the machine in

operation (e.g., I imagine how coins move

through the machine).

How an elevator behaves during operation

(e.g., upward movement, decelerating,

opening doors).

Structure (ω = 0.60) Thinking is focused on the components of

the technical system and their configuration

(Vogel-Heuser, 2014)

The machine’s structure, i.e., of which

components it is made of (e.g., box, slides,

containers, weighing scale).

Which particular components an elevator

is made of (e.g., door, control system,

sensors, engine).

Purpose (ω = 0.68) Thinking is focused on the purpose of the

whole technical system (Björklund, 2013)

The machine’s purpose (e.g., counting and

sorting of coins).

Which purpose an elevator serves (e.g.,

passenger elevator in apartment buildings,

car lift in carhouse, elevator in mall, cargo

elevator).

Classification (ω = 0.70) Thinking is focused on the classification of

elements of the technical systems based on

defining characteristics (Vogel-Heuser, 2014)

Categories of elements which have common

characteristics (e.g., collecting containers,

sensors, slides).

Which classes or categories of

components must be considered (e.g.,

switches, sensors, deflection elements).

Logic (ω = 0.61) Thinking is focused on logical or causal

relationships between elements of the

technical system (Medeiros et al., 2019)

The logic that determines how the machine

operates (e.g., the coins’ mass determines to

which storage compartment it will be allocated).

How the elevator must be programmed

(e.g., if button Y is activated, level Y must

be head for).

Appearance (ω = 0.78) Thinking is focused on the appearance of the

technical system in a non-formal and

concrete way (Chi et al., 1981)

A realistic and concrete image of such a

machine (e.g., size, shape, color).

How the elevator should look like (e.g.,

color, design).

Function (ω = 0.61) Thinking is focused on the functions of

elements of the technical system

(Vogel-Heuser, 2014)

The function of the machines’ components

(e.g., component to collect coins, component to

determine a coins’ mass).

Which function different components of an

elevator must fulfill (e.g., measured value

acquisition, steering, propulsion).

Animism (ω = 0.62) Thinking is focused on implicit notions of

human-like behavior of the technical system,

e.g., “thinking” or “deciding” (Ben-Ari and

Yeshno, 2006)

A machine with human traits (e.g., swallows and

spits out coins, decides to which storage

compartment coins are allocated).

how an elevator thinks (e.g., elevator

decides when and where it is going).

Prerequisites (ω = 0.70) Thinking is focused on the requirements for

the technical system to operate, e.g.,

“electricity” (Berkovich et al., 2011)

Prerequisites which have to be fulfilled (e.g.,

electricity supply, deposition of coins).

Which prerequisites must be given before

the elevator can be put into operation

(e.g., how it is driven, where it can be

assembled, which safety standards have

to be fulfilled).

The Main Study
Assessment Instruments

In the following sections, we introduce the instruments used
in the main assessment of the study that aimed at describing
and understanding students’ ontological profiles. Study program
(electrical-, civil-, mechanical-, or software engineering) was
directly assessed in a brief demographic questionnaire.

Ontological categories in engineering test (OCET)
With the OCET, we assessed the following nine ontological
categories of thinking about engineering problems: Behavior,
Structure, Purpose, Classification, Logic, Appearance, Function,
Animism, and Prerequisites. Each ontological category is
measured by seven items across seven different technical systems
(i.e., the engineering problem context). McDonald’s ω was
calculated for each ontological category (see Table 2) and ranged
from ω = 0.56 (Behavior) to ω = 78 (Appearance). The, in part,
rather low reliability scores could be explained by the different
engineering problem contexts that might have stimulated the
activation of particular ontological categories in first-year
students. For instance, students might be more likely to activate

the ontological category “Behavior” when they have to think
about a “hamburger automat” (preparing hamburgers) compared
to “traffic lights.” Capturing the fluctuation (several ontological
categories activated across the seven problem contexts in the
OCET) and uniformity (the same few ontological categories
activated across the seven problem contexts) of ontological
category activation, is one of the objectives of the OCET. Table 2
provides more detailed information on this test instrument.
An independent double coding of 50% of all tests revealed an
excellent inter-rater reliability, κ= 0.98. For the final instrument,
please contact the corresponding authors of this paper.

Cognitive and affective scales
We assessed verbal, numerical, spatial, and general reasoning
ability, and students’ self-concept regarding technical systems.

Verbal Ability was measured with a verbal analogies scale: 20
items; possible scores range from 0 to 20; ω = 0.67; pair of words
given, missing word in a second pair must be picked out of five
possible answer alternatives to reproduce the relation represented
in the given pair; part of the Intelligence Structure Test IST 2000
R (see Liepmann et al., 2007).
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Numerical Ability was measured with a calculations scale:
20 items; possible scores range from 0 to 20; ω = 0.78; basic
arithmetic problem given that has to be solved with the solution
being a natural number; part of the Intelligence Structure Test
IST 2000 R (see Liepmann et al., 2007).

Spatial Ability was measured with a mental rotation scale:
24 items; possible scores range from 0 to 24; ω = 0.93; three-
dimensional geometrical structure built out of cubes given, the
two correctly rotated structures must be picked out of four (see
Peters et al., 1995, 2006).

General Reasoning was measured with a short form of Raven’s
Advanced Progressive Matrices: 12 items; possible scores range
from 0 to 12; ω = 0.69 (see Arthur and Day, 1994).

In addition, we adapted standardized measures for
participants’ self-concept (Marsh and Martin, 2011) on
four-point Likert-scales—as beliefs in one’s own abilities
regarding technical systems (Self-Concept; 5 items; possible
scores representing the mean Likert-scale-scores across the five
items range from 1 to 4; ω = 0.85; sample item: “I am perceived
as an expert with technical systems”).

An independent double coding of 7% of the sample revealed
acceptable to excellent inter-rater reliabilities: all scales showed
inter-rater reliabilities of κ > 0.96, with the exception of the
Calculations scale with κ = 0.65.

Data Collection Procedures
Participants were tested in their major lectures during the
first semester of their university studies. All instruments were
paper-based and conducted under controlled and standardized
conditions by the authors.

Participants received the cognitive and affective scales in a 40-
page booklet. We kept to the time limits recommended for each
scale resulting in a total working time of 45min. In a subsequent
lecture, students worked on the OCET (a 44-page booklet) for
40min (as shown in the pilot study, this time limit allows working
on the test without time pressure). The OCET was explicitly
introduced as a non-evaluative test instrument that does not
assess correct or wrong answers.

Participants took part in the study on a voluntary basis
and were not given any remuneration. They were asked for
their informed consent in both tests separately. Consent could
be withdrawn within a time period of two months—15.4% of
the students attending the lectures did not give consent and
were excluded from the analyses. Data from both tests were
matched using anonymized personal codes. A list matching the
anonymized personal codes and participants’ names was kept
by one person not related to this study and was destroyed
after the given time for withdrawing consent—resulting in
completely anonymized data. Data was analyzed only after this
anonymization process was completed.

Statistical Analyses
All statistical analyses were run in R (R Core Team, 2008).
In a first step, a hierarchical cluster analysis on the data
of the full sample of N = 340 participants was conducted
on the nine ontological categories (i.e., Behavior, Structure,
Purpose, Classification, Logic, Appearance, Function, Animism,

and Prerequisites). As we were interested in ontological profiles
across all nine ontological categories—and not mere differences
in the scale values—we used a hierarchical clustering algorithm
with Pearson correlation coefficients as proximity measures in
combination with a complete linkage approach. Scores were
z-standardized within the scales before clustering. We took
quantitative and qualitative indicators (elbow criterion, gap
statistic, consideration of the explanatory value of each cluster
solution) into account to specify the number of clusters.

In a second step, the resulting ontological profiles (i.e., the
clusters) were further described by analyzing the distribution
of study program within the profiles and the profile-specific
manifestations of the cognitive and affective covariates described
above. For study program, we used Chi-squared tests to check
for differences in the distributions between each profile and the
total sample.

For the cognitive and affective covariates, we conducted
one-sample t-tests against reported means from comparable
reference groups based on the subsample of n = 254 students
(see Table 1) for which data on both the ontological profiles
and the cognitive and affective covariates were available. For
verbal and numerical abilities, the reference sample are 21–
25-year-old students from Germany with comparable formal
education (i.e., higher education entrance qualification, German:
“Abitur,” see Liepmann et al., 2007). For general reasoning, we
compared our sample to a sample of US university students
with a mean age of 21.4 years, which represent the only
available published reference values for the short form of the
Raven APM (see Arthur and Day, 1994). For spatial ability, we
compared our sample to a gender-matched university students’
sample from Germany within science study fields (see Peters
et al., 2006). For technology-related self-concept, we refer to
an own data collection of N = 1,268 university students in
engineering study programs at the very beginning of their
first semester.

RESULTS AND DISCUSSION

We used the OCET to assess first-year students’ answer patterns
across the nine ontological categories which are assumed to
reflect tendencies in thinking about engineering problems. A
cluster analysis was conducted on the nine ontological categories,
which were each standardized at the category mean. Based
on the elbow criterion, the gap statistic, and with respect to
the explanatory value of each cluster solution, we decided to
interpret a solution that distinguished between six ontological
profiles shown in Figure 3. In addition to study program,
we used standardized measures of general reasoning, verbal,
numerical, and spatial ability as well as students’ technology-
related self-concept to describe similarities and differences in
the resulting ontological profiles. To ease interpretation, the
profile-specific scores on these measures were compared to
published reference values or representative samples (only for
self-concept), respectively (seeTable 5). The results of all analyses
are reported jointly in the context of the descriptions of
the six ontological profiles. For the sake of readability, the
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FIGURE 3 | Left: Cluster centers of the six ontological profiles (and 95% CIs), resulting from the cluster analysis of 340 university students based on the OCET,

assessing nine ontological categories in engineering. Values are z-standardized for each ontological category on the total sample. Values differing significantly (i.e., p <

0.05) from the total sample are colored in orange. Right: Ontological profile-specific scores on the covariates compared to published reference values (i.e., general

reasoning, verbal, numerical, and spatial ability; see Arthur and Day, 1994; Peters et al., 2006; Liepmann et al., 2007) or the sample mean (i.e., technology-related

self-concept). Values are z-standardized for each covariate on the reference sample. Values differing significantly (i.e., p < 0.05) from the reference values are colored

in orange.

description and interpretation of the ontological profiles are
not reported in separate sections but jointly presented in the
next sections.

Six Different Ontological Profiles
In the following, we describe the ontological profiles by focusing
on those ontological categories within each profile that show
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TABLE 3 | Z-standardized values and one-sample t-tests (H0 = 0) of the

ontological categories-scales in the OCET for each ontological profile used in

Figure 1.

N M SE t p

Behavior

Condition-focused 34 0.017 0.177 0.094 0.926

Concrete-intuitive 61 −0.283 0.126 −2.248 0.028

Concrete-dynamic 60 0.338 0.102 3.307 0.002

Concrete-static 39 −0.853 0.177 −4.813 0.000

Applying 94 0.445 0.074 6.002 0.000

Component-focused 52 −0.233 0.141 −1.655 0.104

Structure

Condition-focused 34 −0.344 0.184 −1.872 0.070

Concrete-intuitive 61 −0.565 0.112 −5.039 0.000

Concrete-dynamic 60 −0.281 0.104 −2.714 0.009

Concrete-static 39 0.529 0.123 4.302 0.000

Applying 94 0.090 0.109 0.827 0.410

Component-Focused 52 0.652 0.106 6.142 0.000

Purpose

Condition-focused 34 −0.729 0.181 −4.032 0.000

Concrete-intuitive 61 0.448 0.084 5.343 0.000

Concrete-dynamic 60 −0.030 0.098 −0.301 0.765

Concrete-static 39 −0.010 0.157 −0.065 0.948

Applying 94 0.570 0.057 10.039 0.000

Component-focused 52 −1,037 0.152 −6.844 0.000

Classification

Condition-focused 34 0.158 0.176 0.901 0.374

Concrete-intuitive 61 −0.387 0.116 −3.328 0.001

Concrete-dynamic 60 0.091 0.116 0.787 0.435

Concrete-static 39 −0.184 0.146 −1.263 0.214

Applying 94 −0.190 0.108 −1.772 0.080

Component-focused 52 0.728 0.109 6.652 0.000

Logic

Condition-focused 34 0.665 0.128 5.216 0.000

Concrete-intuitive 61 −0.746 0.115 −6.475 0.000

Concrete-dynamic 60 −0.035 0.123 −0.282 0.779

Concrete-static 39 −0.519 0.136 −3.811 0.000

Applying 94 0.552 0.085 6.473 0.000

Component-focused 52 −0.128 0.121 −1.062 0.293

Appearance

Condition-focused 34 −0.699 0.164 −4.277 0.000

Concrete-intuitive 61 0.475 0.098 4.828 0.000

Concrete-dynamic 60 0.718 0.075 9.619 0.000

Concrete-static 39 0.349 0.114 3.049 0.004

Applying 94 −0.464 0.098 −4.736 0.000

Component-focused 52 −0.352 0.148 −2.382 0.021

Function

Condition-focused 34 0.204 0.144 1.412 0.167

Concrete-intuitive 61 −0.678 0.115 −5.925 0.000

Concrete-dynamic 60 −0.490 0.124 −3.941 0.000

Concrete-static 39 0.126 0.133 0.950 0.348

Applying 94 0.444 0.096 4.652 0.000

Component-focused 52 0.330 0.120 2.740 0.008

(Continued)

TABLE 3 | Continued

N M SE t p

Animism

Condition-focused 34 0.974 0.162 6.030 0.000

Concrete-intuitive 61 0.645 0.148 4.357 0.000

Concrete-dynamic 60 −0.116 0.105 −1.105 0.274

Concrete-static 39 −0.506 0.140 −3.614 0.001

Applying 94 −0.213 0.076 −2.800 0.006

Component-focused 52 −0.497 0.099 −5.042 0.000

Prerequisites

Condition-focused 34 0.468 0.170 2.756 0.009

Concrete-intuitive 61 −0.027 0.111 −0.240 0.811

Concrete-dynamic 60 −0.457 0.094 −4.860 0.000

Concrete-static 39 0.166 0.159 1.049 0.301

Applying 94 0.395 0.103 3.819 0.000

Component-focused 52 −0.587 0.131 −4.462 0.000

N = Cluster size; M = Mean; SE = Standard error; t = t-test statistic; p = p-value.

a significant difference (see Table 3) to the sample mean (see
Figure 3) and provide a short interpretation. Please refer to
Table 4 for profile sizes and the distribution of gender and study
program for each ontological profile.

The profiles do not reflect traits that are enduring and stable
but rather the actual state of students’ higher-level conceptual
knowledge structures that are malleable and expected to change
in the course of their discipline-specific socialization at university
(Schneider and Hardy, 2013; c.f., Flaig et al., 2018).

Condition-Focused Profile
Students in theCondition-Focused profile focus on the conditions
that determine the technical system—both logical and regarding
more general prerequisites (e.g., “What conditions and
conditional relations have to be considered in order that
the system can work?”). They do not care much about the
appearance and purpose of the system, and rather tend to
animistic thinking. Despite above-average numerical abilities,
they also show below-average verbal abilities and lower
technology-related self-concept (Tables 3, 5).

Concrete-Intuitive Profile
The Concrete-Intuitive profile consists of students who report
animism as one major ontological category when thinking about
engineering problems. Their thinking is context-driven in the
sense that they focus on the concrete appearance (e.g., “How
does the technical system look like?”) and the purpose of the
technical system at hand. They do not focus on the classification
of elements of technical systems, logical relationships between
those elements, their function, behavior, or structure (Table 3).
These students hence show a profile that rather reflects intuitive
thinking and a naturalistic, pragmatic approach to technical
systems. Besides above-average numerical abilities, they reached
below-average scores on the verbal and spatial ability measures,
and a low technology-related self-concept (Table 5).
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TABLE 4 | Profile size, gender and study program distribution for each ontological profile.

Gender Study program

N Female Male X2 p CE EE SE ME X2 p

Condition-focused 34 13 21 2.18 0.14 12 8 1 13 4.18 0.24

Concrete-intuitive 61 24 36 5.14 0.02 31 9 12 8 11.73 0.01

Concrete-dynamic 60 21 39 1.95 0.16 22 15 7 14 2.15 0.54

Concrete-static 39 7 32 1.62 0.20 14 6 5 13 0.57 0.90

Applying 94 18 74 2.58 0.11 29 15 14 36 3.40 0.33

Component-focused 52 8 44 3.56 0.06 12 13 10 17 3.98 0.26

Total sample 340 91 246 120 66 49 101

N= Profile size. Study program: CE= Civil engineering; EE= Electrical engineering; SE= Software engineering; ME=Mechanical engineering; X2 = Chi-squared statistic; p= p-value.

Concrete-Dynamic Profile
Students in the Concrete-Dynamic profile seem to have a very
naturalistic (focused on appearance) and dynamic conception
(focused on behavior) of the technical system when solving
engineering problems: they activate a realistic representation
of the system at work. They do so without zooming in on
the components of the system and their function and without
zooming out to consider the general prerequisites for using
the system (Table 3). Students in this profile show above-
average general reasoning abilities in addition to above-average
numerical abilities.

Concrete-Static Profile
Students in the Concrete-Static profile also seem to have a very
naturalistic (focused on appearance) but—different from the
Concrete-Dynamic profile—static conception of the technical
system that is characterized by a focus on its structure with
little consideration of its behavior. They tend to visualize the
appearance of the system with its structural components but
without considering the logical relationships between them.
These students do not show an animistic approach when thinking
about technical systems (Table 3). They are characterized by
above-average general reasoning abilities in addition to above-
average numerical abilities (Table 5).

Applying Profile
Within the Applying profile, students focus on what the technical
system can be used for (purpose), its requirements to operate
(prerequisites), its behavior, as well as on logical relationships
and the functions of its elements. These students show a profile
that vividly considers many aspects and conditions that are
important for its application without considering its appearance
and without implicit notions of human-like behavior (animism)
of the technical system (Table 3). They reached above-average
general reasoning and numerical ability scores (Table 5).

Component-Focused Profile
In addition to low animistic tendencies, students within the
Component-Focused profile do not think about the purpose, the
appearance, or the prerequisites of a technical system. They
rather focus on its structural components, their classification,

and their specific functions within the technical system. These
students seem to follow a rather theoretical approach that focuses
on the characteristics and functions of the components of the
technical system (Table 3). They likewise show above-average
general reasoning and numerical ability scores (Table 5).

Summary
Importantly, students in all six ontological profiles show above-
average numerical abilities (see Figure 3 and Table 5), which can
be considered a fundamental prerequisite for choosing a study
program in the field of engineering (representing onemain driver
for self-selection into engineering disciplines, e.g., Gustafsson
and Balke, 1993). Students in the last four profiles (Concrete-
Dynamic, Concrete-Static, Applying, Component-Focused), all
show the same pattern of above-average general reasoning
abilities in addition to above-average numerical abilities,
although they largely differ in their ontological profiles (Table 5).
The only thing that they have in common is a low tendency
for animism. The two remaining profiles, Concrete-Intuitive
and Condition-Focused, seem to have activated the ontological
category animism more often during engineering problem
solving. Together with the students’ lower technology-related
self-concept and lower scores on the verbal ability measure in
both profiles, this tendency may reflect higher uncertainty in
dealing with engineering problems.

There are three profiles described as Concrete that all tend
to a non-formal and naturalistic approach to engineering
problem solving (focus on appearance). Students in the Concrete-
Intuitive profile, with slightly less favorable cognitive and affective
preconditions, additionally focused on purpose and animism,
compared to a focus on either the behavior or structure of
a technical system in the Concrete-Dynamic and Concrete-
Static profiles.

Contrasting the three profiles not concerned with the
appearance of a technical system, students in the Condition-
Focused profile have in mind what is necessary for the system
to work—both in terms of general requirements like electricity
and in terms of the logic behind all operations such as “if-
then” relations. By contrast, students in the Component-Focused
profile seem to zoom in on the individual constituents of the
system. Students in the Applying profile, on the other hand, focus
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TABLE 5 | Values and one-sample t-tests against reported means from

comparable reference groupsabcd of the cognitive and affective scales for each

ontological profile used in Figure 1.

N M SD t p

Verbal abilitiesa 478 13.07 3.85 — —

Condition-focused 23 11.22 3.49 −2.546 0.018

Concrete-intuitive 41 11.46 3.19 −3.228 0.002

Concrete-dynamic 47 13.36 2.63 0.760 0.451

Concrete-static 33 13.67 2.06 1.667 0.105

Applying 71 13.45 2.45 1.307 0.195

Component-focused 39 13.49 1.86 1.399 0.170

Numerical abilitiesa 478 14.17 3.85 — —

Condition-focused 23 16.04 2.79 3.223 0.004

Concrete-intuitive 41 16.02 3.13 3.798 0.000

Concrete-dynamic 47 16.26 2.90 4.929 0.000

Concrete-static 33 15.42 3.29 2.191 0.036

Applying 71 15.94 3.63 4.118 0.000

Component-focused 39 15.77 3.07 3.250 0.002

Spatial abilitiesb 506 13.67 4.91 — —

Condition-focused 23 13.39 6.31 −0.213 0.834

Concrete-intuitive 41 11.10 6.07 −2.717 0.010

Concrete-dynamic 47 13.13 6.65 −0.560 0.578

Concrete-static 33 14.67 5.55 1.031 0.310

Applying 71 12.35 6.41 −1.733 0.088

Component-focused 39 14.41 5.31 0.870 0.390

General reasoningc 246 8.1 2.5 — —

Condition-focused 23 8.91 2.37 1.644 0.114

Concrete-intuitive 41 7.93 2.09 −0.530 0.599

Concrete-dynamic 47 9.55 1.92 5.188 0.000

Concrete-static 33 9.42 1.66 4.586 0.000

Applying 71 8.69 2.13 2.336 0.022

Component-focused 39 8.85 1.99 2.337 0.025

Technology-related self conceptd 1,268 2.89 0.58 — —

Condition-focused 23 2.55 0.54 −2.931 0.008

Concrete-intuitive 41 2.69 0.48 −2.611 0.013

Concrete-dynamic 47 2.91 0.58 0.311 0.757

Concrete-static 33 2.96 0.54 0.759 0.453

Applying 71 2.91 0.53 0.350 0.727

Component-focused 39 3.03 0.51 1.710 0.096

N = Sample size; M = Mean; SD = Standard deviation; t = t-test statistic; p = p-value.
aReference value for 21–25-year-olds with high school-diploma (see Liepmann et al.,

2007).
bReference value for a gender-matched university subsample (Peters et al., 2006).
cReference value for a university sample (mean age 21.4 years, see Arthur and Day, 1994).
dReference value from own data of N = 1,268 university students in engineering study

programs at the beginning of their first semester.

on both conditions and the functionality of the system, from a
dynamic (behavior) perspective and without thinking about the
component structure and component classification.

Differences Between Study Programs
Only in the Concrete-Intuitive profile, the distribution over
study programs significantly deviated from expectations, X2(3,
N = 336) = 11.73, p < 0.01. It is noteworthy that there were

significantly more women within that profile than could be
expected from the existing gender ratio within the total sample,
X2(1,N = 337)= 5.14, p< 0.05. Since a high number of students
in the Concrete-Intuitive profile attend study programs with a
relatively high proportion of female students (especially civil
engineering) and a low number of students in this profile study
mechanical engineering with the lowest proportion of female
students, differences between study programs could be attributed
to a gender effect (gender-specific preferences resulting in self-
selection into particular study programs; Table 3). However, self-
selection effects and effects of experiences gained in different
engineering study programs cannot yet be separated in this
study. Although still at the beginning of their studies, students
attending civil engineering classes might have already developed
more intuitive, naturalistic, and pragmatic thinking approaches
adequate for problem solving in this engineering domain. By
contrast, this ontological profile might be particularly different
from problem solving approaches encountered at the beginning
of mechanical engineering studies. Apart from the effects
reported for the Concrete-Intuitive profile, study program per-
se could not explain differences and similarities in ontological
profiles. With the exception described above, how individuals
think about engineering problems does not seem to influence
their choice of study program within the engineering domain
or, to put it the other way around, first contact with their
specific study program apparently did not yet influence their
thinking approaches. Accordingly, first-year students’ ontological
profiles may rather reflect idiosyncratic preconditions and
personal experiences than self-selection or the socialization into
discipline-specific thinking that only has just begun in the first
semester of their study program.

Limitations and Future Research
Following up on the previous section, the cross-sectional design
of the study can be considered a limitation of this study.
Considering ontological categories in longitudinal models of
knowledge development in engineering, future research may be
able to differentiate between idiosyncratic variation (including
prior experiences with engineering topics, for instance), variation
by self-selection, and variation by socialization into different
study programs. Such designs also allow investigating differences
between discipline experts and novices in terms of lower- and
higher-level knowledge as well as ontological flexibility reflecting
the ability to flexibly activate different profiles depending on the
problem context and the collaboration partner. For instance, a
reversed u-shaped development could be expected for ontological
flexibility, with many years of socialization in a specific discipline
leading to less flexibility after an initial increase.

The solution of complex problems often involves co-
operations between many different individuals—who need
to understand each other. Although ways of thinking and
underlying knowledge structures may differ largely, people
tend to extrapolate from own knowledge to the knowledge of
others (the so-called false-consensus bias). In consequence, co-
operations are likely to suffer from misunderstanding and often
fail to reach their full potential (Bromme, 2000; Godemann, 2006,
2008; Reif et al., 2017). Existing research focuses on infrastructure
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and organizational techniques supporting co-operation or on
consequences of differing and shared knowledge (Bromme
et al., 2001; Gardner et al., 2017). Assessing and identifying
ontological profiles reflecting tendencies in thinking about not
only engineering but also other complex problems might open
up new ways to investigate and support team work.

Our assessment instrument, the OCET, does not capture the
time sequence of ontological category activation on a more fine-
grained level. With slight modifications—instructing participants
to indicate what came to their minds first (what second, third,
etc.) in a single-choice format, for instance—we could use
the OCET to learn more about the hierarchy of ontological
categories. In this first study, we did not include any achievement
measures to be related to the ontological categories and profiles.
We are currently conducting a follow-up study where we have the
chance to look at students’ examination performance in addition.

Implications for Practice
Developing sensitivity for different thinking tendencies, which
are subject to change themselves, can be an important step toward
university instruction that acknowledges diversity and against
uniform teaching for a selective group of students. Addressing
higher-level knowledge structures (i.e., ontological categories
and ontological profiles) can pave the way for constructing
and reconstructing intermediate-level knowledge elements (i.e.,
concepts). For example, students thinking about technical
systems mostly in terms of the behavior of the system (Concrete-
Dynamic andApplying) may struggle with instructional materials
that assume a structure-perspective and try to integrate the new
content into the behavior-focused thinking approach. If students
have to work with a block definition diagram, for instance, the
Component-Focused profile might be particularly beneficial. This
ontological profile is the only one where thinking is focused
on the classification of elements of the technical systems based
on defining characteristics. Classification is a central element
of block definition diagrams. Other thinking approaches might
be advantageous when doing a fault tree analysis, a deductive
procedure that requires the specification of manifold human
errors and system failures potentially causing undesired events.
A fault tree analysis of a technical system, such as a space capsule,
may be easier having activated the Applying profile with its focus
on logic (event A leading to event B if C), function (knowledge of
the function of each system element under normal conditions),
behavior (knowledge of the different system states and their
succession), and prerequisites (knowledge of requirements of the
system to function normally). Constructive university instruction
may explicitly address ontological knowledge structures—
thereby also facilitating intermediate-level conceptual learning
(Jacobson, 2001; Yang et al., 2010; Chi et al., 2012). Direct
teaching of an emergent-causal ontological category to interpret
non-sequential science processes, for instance, helped students
develop appropriate conceptual knowledge on the emergent
process of diffusion (Chi et al., 2012). Ontological flexibility
may further be supported by university instruction that explicitly
discusses how different ontological categories shape thinking
in different situations, when working on engineering problems.
By doing so, students may develop metacognitive knowledge

on the relation between ontological categories, intermediate-
level conceptual knowledge, and situational requirements (Gupta
et al., 2010). In addition to meta-knowledge on when to activate
which connection, this kind of model flexibility requires highly
interconnected knowledge (Krems, 1995).

CONCLUSION

This study identified and interpreted similarities and differences
in the higher-order knowledge structures—the ontological
categories—that underlie engineering problem solving in a
sample of first-year students in engineering disciplines. These
students seem to begin their studies with quite different
conceptions of engineering problems that vary with individual
characteristics such as study program or technology-related self-
concept to some extent. Additional idiosyncratic influences and
experiences, however, seem to play a more important role at
this early stage of their subject-specific socialization. Individual
engineering-related experiences like special engineering courses
or activities at secondary school (e.g., Dawes and Rasmussen,
2007) or different attitudes toward engineering (e.g., Besterfield-
Sacre et al., 2001) may affect students’ thinking approaches.
Just as it is the case for intermediate knowledge structures,
the ontological profiles described in this paper may also partly
reflect diverse everyday experiences (Baroody, 2003; Chi, 2006;
Ericsson, 2009; Kim et al., 2011; Vosniadou et al., 2012).
This study is explorative in nature and confirmatory follow-up
studies are required to substantiate—and further explain—our
results. While we focused on a sample of first-year students, the
approach suggested in this paper allows modeling how individual
characteristics and discipline-specific learning opportunities may
shape thinking about engineering problems and knowledge
development over time.
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