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Abstract

TUM-ParticleTyper is a novel program for the automated detection, quantification and mor-

phological characterization of fragments, including particles and fibers, in images from opti-

cal, fluorescence and electron microscopy (SEM). It can be used to automatically select

targets for subsequent chemical analysis, e.g., Raman microscopy, or any other single parti-

cle identification method. The program was specifically developed and validated for the

analysis of microplastic particles on gold coated polycarbonate filters. Our method develop-

ment was supported by the design of a filter holder that minimizes filter roughness and facili-

tates enhanced focusing for better images and Raman measurements. The TUM-

ParticleTyper software is tunable to the user’s specific sample demands and can extract the

morphological characteristics of detected objects (coordinates, Feret’s diameter min / max,

area and shape). Results are saved in csv-format and contours of detected objects are dis-

played as an overlay on the original image. Additionally, the program can stitch a set of

images to create a full image out of several smaller ones. An additional useful feature is the

inclusion of a statistical process to calculate the minimum number of particles that must be

chemically identified to be representative of all particles localized on the substrate. The pro-

gram performance was evaluated on genuine microplastic samples. The TUM-ParticleTyper

software localizes particles using an adaptive threshold with results comparable to the “gold

standard” method (manual localization by an expert) and surpasses the commonly used

Otsu thresholding by doubling the rate of true positive localizations. This enables the analy-

sis of a statistically significant number of particles on the filter selected by random sampling,

measured via single point approach. This extreme reduction in measurement points was

validated by comparison to chemical imaging, applying both procedures to the same area at

comparable processing times. The single point approach was both faster and more accurate

proving the applicability of the presented program.
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Introduction

Microplastic (MP) may be formed from plastic over time by, fragmentations under the influ-

ence of UV light and mechanical abrasion, as well as oxidation and biological breakdown [1].

MP has been found in air [2–4], water [3, 5–7] and soil samples [8]. However, MP particles are

very challenging to analyze, as the term “microplastic” describes a heterogeneous mixture of

polymer types (at varying stages of degradation), sizes (1 μm-1 mm) and shapes (fragments,

fibers, films, and spheres). Consequently, chemical and morphological heterogeneity is com-

bined with low analyte concentrations in the respective samples and a high contamination

potential from any plastic material used during sampling or processing [9]. Ideally, all chemi-

cal and morphological characteristics, such as polymer types, size distribution and number

concentration, of MP should be analyzed and quantified for each sample to answer the ques-

tion: “How many MP particles are in the sample?”

The general scheme for single particle analysis of MP is a workup step for the extraction and

purification of MP [10] after which all remaining particles–microplastic as well as residual envi-

ronmental colloids–are deposited on a smooth filter surface. The smoothness of the filter is of

high importance, as any subsequent measurement, be it Fourier-transform infrared spectros-

copy (FTIR) or confocal Raman microspectroscopy, will depend on a flat surface to enable opti-

mal focus on the particles [11, 12]. This is especially true if automated routines are used, where

particles are first identified by acquiring images for a morphological assessment, including the

determination of the particle centers for the subsequent measurement. Programs enabling these

automated routines are commercially available and open source alternatives exist [13–18].

However, almost all routines lack a calibration and validation tool. The problem with the valida-

tion of a particle localization program is that spheres are typically used to demonstrate segmen-

tation efficiency. This is a valid procedure and has the benefit that a ground truth is easily

accessible through computer generated images. Unfortunately, this does not accurately validate

the procedure for the multitude of shapes and color inhomogeneities within the sample.

Another possible validation procedure is to extract images from several publications, represent-

ing several image capture devices and settings, and then analyzing those images with the pro-

cessing routine in question [15]. This is a good routine to show the generalizability of the

implemented functions but lacks the ground truth for each image. A third path is to apply an

automatic thresholding routine, which can be overruled by the user to “make the segmentation

look good”. This is also a valid approach, used in most commercial software, as the current gold

standard for the identification of particles in images is still the human operator. The drawbacks

of this approach are the missing reproducibility, its high dependency on the operator and the

lack of validation possibilities. Therefore, we focused on building a particle detection program

(TUM-ParticleTyper) that can be calibrated and assembled a manageable validation procedure

in accordance with With et al. and Udupa et al. [19, 20]. It can be transferred to the output of

the readers preferred software. The initial focus was on microscopy images taken with darkfield

illumination, and it was subsequently adapted to the analysis of SEM and fluorescence images.

Merely detecting and morphologically characterizing the particles is not enough as so far, the

results produced by any image processing routine do not include the chemical properties of the

particles [21]. So, after this first step we are still unable to distinguish between microplastic and

native particles and can therefore not yet answer the question: “How many microplastic particles

do we have in our sample?” At this stage, results from the particle detection can be used, however,

to substantially reduce the measurement time of the sample. By only targeting the particle centers

the number of e.g. Raman spectra to be measured and classified via database matching is reduced

to the number of particles found in the sample. Provided that the measurement of only one spec-

trum at the particle’s center is representative for the entire particle, this reduction is common
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practice [5, 6, 9] and was implemented into TUM-ParticleTyper. The reduction was nonetheless

tested and validated through a comparison with a chemical image of the same area, analyzed in a

comparable time frame. Area and time were chosen as fixed parameters, as the area of the filter,

which is measured, is synonymous with representatively in the case of imaging, and time is the

variable that needs to be optimized. This means that the resolution and timeframe of the mapping

process is set to match the “single point measurement at each particle” strategy.

Even so, assuming that a filter contains only 200 000 particles and one spectrum is acquired

in the center of each particle, sample analysis of would still take N (number of particles, i.e. 200

000) � t (acquisition time e.g. 20 s) = 47 days. Thus, a subsampling on the filter is a requirement

for feasible MP analysis. There are currently many subsampling schemes [5, 6, 22]. However, it

has not been determined, which strategy yields the most accurate extrapolation. A random

sampling tool was implemented into the software to allow a sample reduction according to

Anger and von der Esch et al. 2018 [9], the csv-output file generated by TUM-ParticleTyper
can be used to extract the particle coordinates for any selection scheme.

In this project, it was our objective to create a particle detection software that operates on

Raman microscopy, fluorescence microscopy and scanning electron microscopy (SEM)

images. Furthermore, the goal was to deliver calibration and validation tools for the particle

detection within the images. The validation protocol should be generally applicable and trans-

ferrable to the output of any other particle detection software. For Raman microspectroscopy,

an additional validation addressed the often-used single point measurement approach for

chemical characterization. Further, to reduce the overall measurement time, it was our goal to

implement a subsampling routine into the software. To show the prospects and limits of our

automated morphological and chemical characterization routine, we subsequently applied it to

a washing machine water sample.

The paper was split into three parts: 1) The main text, which informs on the general analysis

routine and highlights the strengths and challenges of TUM-ParticleTyper. 2) The supplementary

information, which gives details on the experiments conducted for the development, calibration,

and validation of the program. 3) The software documentation, which gives details on the program

itself and highlights the functions used for the particle detection. The program documentation, the

TUM-ParticleTyper software and test images are available freely in our TUMmedia repository [23].

This partitioning of the publication was necessary so that each target group can easily find the nec-

essary information for their purpose 1) general information 2) and 3) for the reproduction of our

results and for the application of TUM-ParticleTyper. Furthermore, it enabled us to write an inter-

active documentation, where the functions of our program can easily be looked up, while coding.

Material and methods

Roughness testing for the development of filter holders

To define a parameter to optimize the smoothness of filters as prerequisite for optimal focus in

FTIR or Raman spectroscopy, the flattening potential of different filter fixation techniques was

evaluated by measuring the maximum peak-to-peak distance. This is the distance of the highest

to the lowest pixel on the surface: the smaller this distance is, the smoother is the surface and

the better the fixation method. For details, we refer to the full procedure in the SI section 1.1.

Production of reference materials for the development of the image

processing program and optimization of image acquisition procedures

Reference materials were produced by ultrasonication of solid polymers and filtrated onto

gold coated polycarbonate filters [24]. The filters carrying the reference materials were then
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used to optimize the camera settings of the Raman microscope (alpha300R Raman Micro-

scope, WITec GmbH, Germany) and the scanning electron microscope (Sigma 300 VP, Carl

Zeiss AG, Germany).

The most important parameters when producing images for the characterization of particles

are 1) contrast, 2) definition, 3) resolution, and 4) color range of the image. The settings used

for Raman microscopy, fluorescence microscopy and SEM can be found in the SI section 1.2.

Acquisition of chemical information via Raman microspectroscopy

Chemical information can be acquired by measuring Raman spectra and comparting the spec-

tra with a database. For this study, spectra at a single position (particle centers determined by

TUM-ParticleTyper) were measured as well as maps, which combine many short measure-

ments at specified distances to create a chemical image according to the procedure developed

by Käppler et al. 2016 [25]. For details, we refer to the full procedure in the SI section 1.3.

Fiber detection in washing machine water

To test the applicability of our particle localization and characterization program, a washing

machine sample was deposited on a filter and processed with TUM-ParticleTyper. The goal

was to determine how many textile microfibers were present in the sample and to characterize

them chemically via Raman spectroscopy. For details, we refer to the full procedure in the SI

section 1.4.

Results and discussion

Morphological and chemical analysis of MP reference materials via

TUM-ParticleTyper
Flat filter surfaces as a prerequisite for optimal focus. A smooth surface is a prerequisite

for optimal focus in a confocal measurement with Raman microspectroscopy [9]. One possibility

to achieve this is to use inherently stiff filter materials like silicon wafers [12]. However, silicon

wafers are expensive and show a very strong Raman signal, which may interfere with the identifi-

cation of MP. Therefore, a subtraction of the silicon signal from all spectra before a database

matching is required. Alternative filter materials were tested by Ossmann et al. 2017 [11], who

found aluminum-coated polycarbonate filters to have the lowest interference in the recorded

particle spectra. Furthermore, they found that the particles are best visualized using darkfield illu-

mination delivering highly defined and high contrast images of particles down to 1 μm [11]. As

alternative gold coated polycarbonate filters can be used for Raman and infrared spectroscopy [6,

26]. To combine both a smooth surface and low signal interference, a series of filter holders was

developed (S1 Fig in S1 File) and tested with commercially available gold-coated polycarbonate

filters. After optimization the roughness, which was expressed as the distance of the highest to

the lowest part of the filter on 12 mm × 12 mm area could be reduced from originally 63.1 μm to

5.8 μm, which is comparable to a silicon wafer (details in SI section 2.1).

Localization and morphological characterization of particles with TUM-ParticleTy-
per. Independent of the original image (fluorescence, optical, or SEM), the TUM-ParticleTy-
per delivers three outputs. First, an overlay of the original image with the extracted contours is

created. Therefore, the user can see what particles were recognized and roughly assess the suc-

cess of the automatic particle detection. This is not to be confused with a proper validation.

Second, a black and white image with all detected particles is generated. This can be used to

transfer the particle detection information into any other software using an automatic thresh-

olding technique, as only black and white pixels exist. For example, the user can combine the
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TUM-ParticleTyper localization with the automated measurement of the Witec ParticleScout
or any software that allows the import of images and the assignment of a space transformation.

Third, should a graphical input not be possible the TUM-ParticleTyper delivers a csv-file that

contains the measurement coordinates and the morphological features of the detected particles

(Fig 1). If the system (fluorescence microscope, Raman microscope, FTIR microscope or

SEM) has a way of importing coordinates via csv, this is how coordinates can be assigned for

subsequent Raman, FTIR, or EDX measurements. We decided to create this set of outputs

rather than trying to control any measurement devices directly. This has the benefit that if the

measurement device can load images or csv files the particle locations can be transferred to it.

The challenge for any particle detection software is to automatically identify the contours of

all particles and fibers depicted in the image that match the user’s input specifications. To this

end, the image is first transformed into gray scale. Thereafter often a global thresholding

method (like Otsu [15, 27]) is applied to the image. This might lead to different results in dif-

ferent parts of the image if the lighting or the background is inhomogeneous. In addition,

since not all particles share the same gray values (some appear darker, some appear lighter),

global thresholding will not result in optimal outcome. Even though increasing contrast and

brightness could separate the image strictly into black and white so that the use of a global

threshold could work in theory, the parametrization is difficult in practice. Enhancing the con-

trast and brightness too much also increases the noise in the image, which is then detected as

particles leading to artefacts. Furthermore, the hard-coded parameters are not very well gener-

alizable and different settings, in which the optical image was taken, might lead to different

qualities of particle detection. This issue is illustrated by Anger and Prechtl et al. 2019 [15],

who presented an open source software package based on Otsu’s algorithm, which was built to

enable detection and morphological characterization of particles. A common workaround for

Fig 1. TUM-ParticleTyper output. Parameters needed for a subsequent Raman measurement (blue box);

morphological data (green box) represented by the area (pixel that exceed the brightness threshold within the

determined contour); diameters min / max (determined by the Feret’s method, meaning that the width and length of

the smallest possible box that encloses the contour yield the diameters); the classification in particles and fibers (purple

box).

https://doi.org/10.1371/journal.pone.0234766.g001
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this problem is to implement features into the program where the user can adjust contrast,

brightness or the threshold itself. However, as Prata et al. 2019 pointed out this approach,

while sometimes effective, leads to non-reproducible results. An example image that challenges

these adjustments is the following SEM image (Fig 2).

As can be seen in Fig 2 the particles at the bottom of the image become better visible when

increasing the contrast and the brightness of the image slightly, whereas the particles at the top

are still not recognizable. Only when enhancing them further do they become apparent, but at

the price of a greater noise in the lower half of the image. This is the reason why a global-

thresholding fails for these kinds of images. The logical consequence is to change the thresh-

olding approach to suit the variable lighting conditions and the brightness range of the parti-

cles. Therefore, the global thresholding strategy was changed to an adaptive threshold, where

only pixels in proximity influence the threshold in the TUM-ParticleTyper software. Our pro-

cedure also starts with the transformation of the image into a gray scale image. Subsequently

the contours are found by using an adaptive threshold with a Gaussian window [28]. The back-

ground interference problem is alleviated by blurring the image and then applying the adaptive

threshold. The blurring is required to reduce the runtime of the particle detection and to pre-

vent random noise from being falsely detected as particles. With this procedure, we were able

to solve the problem, as can be seen in Fig 3 (Further information on the program sequence

can be viewed in the program documentation [23]).

Another challenge was that the area of the particles and the size of the Gaussian window

influenced each other. A large Gaussian window resulted in excellent detection of large parti-

cles, but poor recognition of small particles. When the Gaussian window was small, the oppo-

site effect was observed. For a more accurate detection, the image is analyzed twice, first with a

large window to find the large particles only. The second run with the small Gaussian window

focuses on the small objects only. This two-step process leads to 5 trainable hyperparameters:

The neighborhood size and C-value (constant subtracted from the mean of the neighborhood)

of each of the two thresholds and the size boundary between small and large objects. Their

parametrization is described later. An overview is given in Table 1:

The program generates and saves the input image in gray values, with contours of particles

marked in green (particles detected by the first run with the large gaussian window) or yellow

(particles detected by the second run small gaussian window) and contours of fibers marked in

blue. Additionally, their centers are depicted. The analyzed example image can be seen in Fig 4.

After all contours were extracted, the morphological characteristics for each particle could

be calculated. For further characterization, the area, coordinates of the center, and Feret’s

diameters are required, as these yield the size distribution of the sample and enable us to

Fig 2. When image enhancement fails. Original SEM image of PS spheres of nominally d = 80 nm (A); SEM image with slightly enhanced contrast and brightness

(B); SEM image with strongly enhanced contrast and brightness (C).

https://doi.org/10.1371/journal.pone.0234766.g002
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classify the particle shape roughly in general categories (particle or fiber). This estimation was

done by checking the ratio between the maximum and the minimum Feret’s diameter to be

larger than 2.0 and checking the ratio between the product of minimum and maximum Feret’s

diameter and the area of the contour to be larger than 4.0. If either of these criteria is fulfilled,

the object will be classified as a fiber, otherwise the object will be classified as a particle (further

information in the documentation under challenges in the analysis). The centers of the parti-

cles are used for a subsequent Raman measurement in our case. One problem is however, that

the center of a contour does not always lie within the contour (e.g. when the contour is bow-

shaped) or lies inside of a hole within the contour (e.g. when the object is torus-shaped). An

example can be seen in the following image (Fig 5).

These cases can be detected firstly by checking the color of the pixel on which the center is

positioned (a dark pixel indicates the background) and secondly by calculating the distance to

the contour, which will be negative if the center lies outside of the contour and positive other-

wise. Therefore, centers within holes, centers outside of contours or centers not far enough on

Fig 3. Successful particle detection with TUM-ParticleTyper. Sample SEM image with marked ground truth in red (A) and SEM image analyzed by

TUM-ParticleTyper (B).

https://doi.org/10.1371/journal.pone.0234766.g003

Table 1. Trainable hyperparameter for the adaptive threshold.

Name Meaning Effect Typical Range

Neighbourhood

Size

The number of nearby pixels considered for the

thresholding of each pixel.

Higher number of pixels: More accurate detection of

larger particles. Worse detection of smaller particles.

> 49 pixels for a large

window

small / large > 9 pixels for a small

window

Smaller number of pixels: vice versa.

Scales with the

resolution of the image

C-value A constant subtracted from the weighted mean of the

neighbourhood pixels

Larger constant: smaller difference between brightness of

object and brightness of background needed for a

detection.

[-10; +10]

small / large

Smaller constant: vice versa.

Size boundary Decision boundary for which particles will be considered

during the first run of the program and which in the second.

Higher number of pixels: Used when we expect the

particles to be larger.

> 50 pixels

Scales with the

resolution of the

image.

Smaller number of pixels: Used when we expect the

particles to be smaller.

https://doi.org/10.1371/journal.pone.0234766.t001
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the inside of a contour, will be drawn far inside of the contour by the program. This ensures

that the laser does not miss the object or hits it just on its edge. Therefore, yielding a robust

coordinate selection for the measurement of the particle’s or fiber’s spectrum.

Another challenge was the separation of particles that lie in proximity to each other or are

agglomerated. An example of such situations is depicted in the following fluorescence image

(Fig 6). The task was to selectively detect and quantify the dyed MP fragments, ideally by their

respective color.

The filtering of colors is achieved through a preprocessing step. The analysis mode is used

to select the RGB-color, all other color values are set to zero. Therefore, only particles with the

fitting colors are distinguished from the black background. After the selection, the contrast

and brightness are enhanced to ensure that the particles appear white after the transformation

Fig 4. Sample optical image for Raman analyzed by TUM-ParticleTyper. Full scale images can be downloaded from our TUMmedia

repository [23]. The scale bar was added after processing, as it is otherwise recognized as an object by the image processing software.

https://doi.org/10.1371/journal.pone.0234766.g004
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into gray values. For the fluorescence images automatic thresholding via Otsu was found to be

suitable, so it was applied here while Raman and SEM images require the Gaussian window

thresholding. Both the blue and the red stained particles can be detected separately and a com-

parison between operator and TUM-ParticleTyper shows, that the program delivers reasonable

results. In the processed images we see that the borders of the particles fit the contours of the

particles very well and result in good size estimates. We could however not completely over-

come the problem that grouped or agglomerated particles are detected as a large particle. In

this instance 20 particles were detected as 9 particles, leading to a lower particle count by the

TUM-ParticleTyper. Overall, we observe that the particle counts are similar but if we investi-

gate the objects detected as particles, we do see differences between the operator and the soft-

ware. Which is why not only the total particle number but also the false positives and false

negatives should be considered during validation. As red and blue selective channels were

already introduced into the software, a green selective channel was added to enable the prese-

lection of microplastic through Nile red staining for subsequent Raman identification. Nile

Red is a fluorescent dye that has been used to stain both pristine and aged microplastic [16, 29,

30]. While Shim et al. 2016 reported false positive and false negative staining of microplastic in

the range of 100 μm – 300 μm, Erni-Cassola et al. 2017 found that all microplastics in the

range of 20 μm – 1000 μm were stained by this dye (n = 60 overall, npolymer = 37, negative con-

trol nnonpolymer = 23). This makes fluorescent preselection for further IR or Raman analysis an

attractive way to reduce the number of particles that need to be analyzed, if and only if, the

method indeed provides an effective staining on environmental microplastic.

An alternative to reduce the sample size, by random sampling was also implemented. This

feature selects an appropriately large subset of measurement targets according to the users

specifications on the margin of error, confidence interval and estimated microplastic content

of the sample [9]. The selection will then be exported into a separate file.

Parametrization

A very important part of this project is the parametrization and validation of the program. To

make sure that the program’s output is as close as possible to a predefined consensus value, it is

necessary to tune the hyperparameters accordingly and to make sure that the program’s error

be as small as possible. To perform this parametrization, it was separated into different steps:

1. Creating the consensus value: To evaluate the program’s performance and to adapt hyper-

parameters based on an error function, a consensus value is needed. Therefore, an expert

Fig 5. Center correction for curved fiber. The contour is drawn in turquoise. Originally calculated center (A). Corrected center (B).

https://doi.org/10.1371/journal.pone.0234766.g005
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manually analyzed seven images for each Raman and SEM and marked all particles and

fibers in red. Using the "red_fluorescence" function of the program, it is easily possible to

extract all needed information for each particle from the labeled images. The most impor-

tant information hereby is the number and position of the particles.

2. Performing grid-search: A search over all five hyperparameters (neighborhood size small /

large, C-value small / large and the size boundary) is performed. All combinations of hyper-

parameters within a certain range are tested using a predefined step size. A smaller step size

results in a longer runtime of the search but ensures a thorough search. The result is the test

of all possible combination of hyperparameters within the defined range. This range was

not chosen arbitrarily but based on the experience of prior analysis using the program and

in a way that analyses with useless results are omitted. Besides the program’s usual output,

the summed up area, summed up minimum Feret's diameters and the summed up maxi-

mum Feret's diameters of all particles of each image are saved.

3. Evaluating the grid-search results: After the grid-search, the best-performing hyperpara-

meter sets are selected. This is done by comparing the mean of the relative errors of the

number of found particles, the total size of all found particles and the sum of each particle’s

minimum and maximum Feret’s diameter for each image. The mean of these four relative

errors is used as a comparative value between all iterations of the grid search. A smaller

value indicates a more accurate result.

Fig 6. Particle localization using the fluorescence channels. Original fluorescence microscopy image by Hannes Imhof and Astrid

Bartonitz, TUM, Aquatic Systems Biology Unit (A). TUM-ParticleTyper output for the blue channel (B) and for the red channel (C).

Additional processed images can be found in the repository [23]. False positives are marked in purple, false negatives in yellow and

incorrect separation is marked in blue. The expert particle assignment is indicated trough red stars. The evaluation is further described

in Table 2.

https://doi.org/10.1371/journal.pone.0234766.g006

Table 2. Evaluation of the particle localization using the fluorescence channels.

Operator TUM-ParticleTyper False positive False negative Incorrect separation

Blue channel 106 96 4 4 20 in 9 inst.

Red channel 33 34 3 2 0

https://doi.org/10.1371/journal.pone.0234766.t002
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4. Investigating the best results: The results of the elected hyperparameter sets are manually

checked regarding the following classifications.

a. True Positive: An object of the consensus value was detected at the same position as one

object in the analysis.

b. False Negative: An object of the consensus value was not detected.

c. False Positive: An object was detected in the analysis with no corresponding object of the

consensus value.

Based on these steps the best performing hyperparameter set (neighborhood size small /

large, C-value small / large and the size boundary) was chosen and implemented in the soft-

ware. Since images of different use cases might vary, these values can be adjusted in the pro-

gram code to fit the application. Additionally, the neighborhood sizes of the adaptive

threshold scale with the resolution of the image, since the same particle occupies a different

number of pixels in a low-resolution image and a high-resolution image, which means that

also a different number of neighborhood pixels must be considered for the same result. Often-

times the image’s quality has a larger impact on the analysis than small variations within the

parameters. As can be seen in Fig 7, with decreasing number of pixels to represent an image

(hence decreasing resolution), the information contained in the image decreases and therefore

the number of detectable particles decreases too, and the shapes of the detected objects are less

detailed.

Furthermore, it is important to mention that there is no "perfect" parametrization. There

are a lot of parameter sets that work well on the images and produce similar results. But depen-

dent on the image, the objects and the task, different parameters might lead to better results.

During the evaluation of the particle assignment of two experts, we found that they produce

deviant results, which is in accordance with Prata et al. 2019 [13]. Leading to the conclusion

there is a margin in uncertainty / inaccuracy that can be tolerated when analyzing the optical

images.

Example: For the first grid-search based on optical images for Raman, the results for the

constraints we searched with (minPixels of 20, min Feret’s diameter of 5 and resolution of 0.5

pixel/ μm) resulted in 171 false negatives (particles that were not detected) in all test images

and showed that 62.6% occurred for object areas below 51 pixels, when using the best

Fig 7. Results of the analysis of an image with different resolutions.

https://doi.org/10.1371/journal.pone.0234766.g007
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performing parametrization. The limit of a minimal area of 51 pixels for the successful detec-

tion is the limiting factor for the lowest detectable particle area but this area is relative to the

resolution. Therefore, if smaller particles are to be detected a higher resolution is necessary.

With our current setup we are limited to particles larger than 10 μm (Fig 8). By taking smaller

images with the same objective we can distribute the maximal number of pixels (8000 × 8000)

on a smaller area (e.g. 4000 μm × 4000 μm) creating a higher resolution (resolution = 2 pixel/

μm) image enabling the search for smaller particles.

This implies that the TUM-ParticleTyper is limited regarding small particles. When reana-

lyzing the parametrization considering only objects larger than 50 pixels, the parametrization

used above was still in the top 5 of best-performing parameters and the number of false posi-

tives decreased substantially. The other four top results had very similar parameters.

Validation

For the validation of a program for image analysis and to ensure its functionality it is recom-

mended to test its performance before the application. The performance was validated accord-

ing to the following six factors for "performance evaluation in image processing" [19]:

1. Accuracy: How well has the algorithm performed with respect to some reference?

The accuracy is covered during the parametrization step, when the program’s performance

is compared to the consensus value of the expert.

2. Robustness: An algorithm’s capacity for tolerating various conditions.

With the use of an adaptive threshold the algorithm can overcome inhomogeneous condi-

tions in images (e.g. lighting). To test the algorithm’s robustness, a real-life sample from a

washing machine was analyzed. Even though the filter is overloaded with particles and

dried foam, which built a cake on top of the filter, the TUM-ParticleTyper was able to detect

fibers on this cluttered surface.

Fig 8. Size distribution of particles non detected with TUM-ParticleTyper during parametrization of optical

images for Raman.

https://doi.org/10.1371/journal.pone.0234766.g008
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3. Sensitivity: How responsive is the algorithm to small changes in features?

In general, the adaptive threshold works independent of the shape of the particle. It’s size,

however, is the most influential feature on the detection quality. When the user chooses the

“minPixels” input-value too small, the algorithm might detect a high number of false posi-

tives and false negatives. It is therefore very sensitive to decreasing sizes of particles. How-

ever, this can be overcome by capturing high resolution images possibly also switching to

higher magnification objectives and choosing values for “minPixels” accordingly.

4. Adaptability: How well does the algorithm deal with variability in images?

The adaptability of the algorithm is demonstrated by the different modes (Raman, SEM and

flourescence) it can handle. Additionally, the program was tested for proper functioning

not only with images taken in our own laboratory, but also with images from other publica-

tions and therefore from other cameras and camera setups. Since promising results were

achieved, the program’s ability to adapt to different images has been demonstrated.

5. Reliability: The degree to which an algorithm, when repeated using the same stable data,

yields the same result.

Since the algorithm is deterministic, every analysis of an image using the same parameters

results in the same found contours. Additionally, tests with flipped, rotated and cropped

images were performed. They all generated the same results. Deviations only occurred at

the edges of the cropped images since objects were cut-off and therefore the area or diame-

ters did not fit anymore.

6. Efficiency: The practical viability of an algorithm.

Since the program needs to handle large-size images, blurring the image before the extrac-

tion of contours ensures that small particles (noise) will be reduced or removed. This is

important to guarantee an acceptable runtime. Since the algorithm focuses on particles

starting at a certain size, the neglection of smaller ones is not a problem. To show the enor-

mous improvement regarding the time of analysis, a comparison between the expert’s time

on creating the consensus value and the program’s runtime was made on the test images for

SEM. While the expert needed approximately 16 seconds to find and mark a particle, the

program requires approximately 1 millisecond for each particle (on the developer’s

machine. Results may vary). This results in a speedup of a factor over 1500.

To show the program’s validity, its results were not only compared to the data created by a

single expert, but also to the estimate of a second expert and the detection using Otsu-thresh-

olding as in [15]. Hereby, each detected object was classified into true positive (if it corre-

sponds to a particle also identified by the expert) or false positive (if it was not identified by the

expert). Additionally, the particles identified by the expert that do not have a correspondence

in the analyzed image are classified as false negative. For each classification the rate regarding

the total number of particles in each test image was calculated and averaged over all seven test

images to weight each test image equally. The results can be seen in Fig 9.

The TUM-ParticleTyper achieved detection rates that lie between the estimates of both

experts for true positives and false negatives. With blurring the images, the accuracy is

decreased, since the original data is altered beforehand and therefore information is lost. How-

ever, the impact is relatively minor, and it is necessary to guarantee an acceptable runtime. The

software using Otsu-thresholding from [15] fails to detect many particles (58.1%) and is clearly

outperformed. The rate of false positives for TUM-ParticleTyper is higher than the second

expert and the Otsu-method. This has two reasons: First, the program is in general more
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sensitive than the Otsu-method, which detected less objects in general. It has a smaller false

positive rate, since it detects only the most characteristic parts of the image, which are clearly

recognizable objects. The second reason is that oftentimes objects were indeed detected in a

position where also expert one marked a particle but their areas oftentimes did not fulfill the

criterium “minPixels” larger than 51 in expert one’s findings but did so in the analysis with

TUM-ParticleTyper due to small inaccuracies in the exact extraction of the contour.

For the seven SEM test images (See TUMmedia repository [23]), outstanding detection

rates were achieved: The best parameter set achieved a detection rate of 98.3% for the true pos-

itives, accordingly 1.7% for the false negatives and only a false positive rate of 2.9%. Compared

to the results from the Raman images these rates are remarkably good. However, as mentioned

above analyzing too complicated SEM images may result in worse rates, due to their more

complex nature.

All in all, the analysis with TUM-ParticleTyper generates solid results within the margin of

the error of the two experts and can therefore be considered as valid alternative. The validation

protocol applied here can generally be used to evaluate the performance of an image process-

ing program.

Method comparison of the single point approach vs. imaging

An alternative to the single point measurement of particles (localization and measurement of

particles at their centers) is the imaging of filter areas to analyze all particles therein, by cluster-

ing the resulting spectra and calculating the size of the particles based on the spectral signature.

This approach is prominently used for the automated μ-FTIR analysis [17, 18, 26, 31] of micro-

plastics but can also be applied for Raman microspectroscopy as demonstrated by Käppler

et al. 2016 [25]. One of the drawbacks of the mapping approach is that large datasets (~ 30 GB)

are created and need to be processed for spectral identification. The supposed advantage of the

imaging procedure is that no particles are overlooked and that there are multiple spectra for

each particle, which can be averaged to yield a clean spectrum. The single point approach on

the other hand only considers one measurement position per particle, but the integration time

is longer for each measurement resulting in a higher signal to noise ratio for the specific point

that is measured. In our approach, a maximum of 7000 particles is analyzed resulting in a

Fig 9. Average detection rates of second expert, TUM-ParticleTyper with and without blur and a program using

Otsu-thresholding compared to the particles identified by expert one.

https://doi.org/10.1371/journal.pone.0234766.g009
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much smaller dataset and faster analysis (~315 MB for 7000 spectra). The comparison of a

mapping and a single point measurement for an area of 1 mm2 is shown in Fig 10. In order to

validate the extreme reduction of measurement points in the single particle approach, particles

Fig 10. Comparison of Raman mapping vs Raman single point measurement in the same 1000 × 1000 μm square of a

PLA reference sample, with the goal to analyze the area in a similar period. Mapping with 10 μm steps, 5 mW, 500ms/

scan, 532 nm laser, 20× magnification (A). Measurement of multiple points on a particle to determine if all points on a

particle are equally representative, with 3 mW, 4×5s/ scan, 532 nm laser, 20× magnification (B). Purple indicates the

presence of the target PLA, blue indicates the prevalence of the background polycarbonate signal from the filter. All

spectra that could not be identified are marked red. For large areas, single point measurements are both efficient and

representative.

https://doi.org/10.1371/journal.pone.0234766.g010
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were localized with TUM-ParticleTyper and multiple measurements were performed for each

particle to see if all measurement points on one particle yield equal results regardless of their

position, thus proving that one point is sufficient. As can be seen in Fig 10 most measurement

points yield the same spectrum for each particle. The spectra acquired within the boundaries

of the particle differ solely by the achieved hit quality indices (HQI) but would have led to the

identification of the particle in an average of 82% of all cases, even when the points are close to

the boundary. Comparing these findings to images from μ-FT-IR imaging, it becomes clear

that the signal intensity of the spectrum is highest in the particle center and decreases towards

the edges [18, 31]. Furthermore, refractive errors occur for irregularly shaped materials [32]

which introduces artefacts to the spectra and may lead to an underestimation of particle size,

as these spectra are difficult to classify. To determine the influence of the measurement posi-

tion on the HQI we correlated it to the distance of the measurement position in reference to

the point, where the highest HQI was determined. The result of this analysis is that the HQI

decreases when the distance to the particle center increases, which is consistent with the obser-

vations for μ-FT-IR imaging [18, 31]. When comparing our results from Raman imaging and

Raman single point measurements it becomes clear that this effect will be even more pro-

nounced when short integration times are needed for the acquisition of spectra. In our Raman

images we see that less particles (7 out of 13) were identified as poly lactide and that the particle

size is severely underestimated, because the spectral quality of the boundary regions is so poor

that it is not classified as PLA through clustering. Specifically, the combined total area of all

particles from imaging yielded 35.47 mm2 for seven particles (incorrectly segmented particles

were joined for this count) vs. 109.3 mm2 for 13 particles that were chemically identified by

single point measurements and morphologically characterized based on the evaluation of the

optical microscopy image via TUM-ParticleTyper. This 82% difference in overall area could

however be remedied by using a smaller step size and / or a longer integration time per scan,

which would substantially increase the measurement time. With the parameters applied here a

1000 μm × 1000 μm area was measured in 2 h (3.3 times longer than the single point measure-

ments referring to our Raman system).

We conclude that neither imaging nor single point measurement is flawless but selecting sin-

gle points based on particle recognition is a valid way to reduce the overall measurement time,

In addition, the morphological characterization based on image processing of the microscopy

image yields better results than the size estimation based on the spectral fingerprint.

How complex may images be to allow for successful analysis? Application

to a real sample for fiber detection in washing machine water

To prove that TUM-ParticleTyper is also able to handle very complex images, microplastic

analysis was conducted in a sample of washing machine water. The aim was to detect fibers

originating from synthetic clothing treated in the washing step. After the localization and mor-

phological characterization via TUM-ParticleTyper 2000 of 4000 found fibers were analyzed.

Thereof 320 could be automatically assigned via TrueMatch, and additional 109 fibers could be

identified via manual assignment. The segmentation of the particles is shown in Fig 11. Due to

matrix interference from dried detergent on the filter surface it is difficult to manually locate

fibers. In the processed image the particle counts may not be reliable anymore, as there are too

many particles on the filter surface and they are therefore detected as aggregates. The fibers on

the other hand can still be localized. This shows that also complex samples can be morphologi-

cally analyzed via TUM-ParticleTyper. However, since the success of the particle detection crit-

ically depends on the quality of sample treatment and of the image, it is recommended to

validate the performance for each sample type, image acquisition setup and research question.
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Challenges in the analysis

Despite the program’s successful performance, a few challenges remain to be resolved in fur-

ther improvements. The first are holes in contours. As mentioned earlier, the program has an

algorithm to move the center away from such holes to the inside of a particle (e.g. for torus-

shaped particles). Nevertheless, the hole affects the calculated area of the particle, since the

hole’s area cannot be calculated and subtracted easily.

A second challenge are long fibers that shape a ring. The contour might contain a huge area

that is not part of the fiber, but which is nonetheless considered in the calculation of the area.

Here Primpke et al. 2019 proposed the determination of fiber sizes using a skeletonize function

which is superior to our fiber size estimation [33].

A third issue is the detection of agglomerated particles. Since the algorithm for contour detec-

tion cannot separate agglomerates, particles that overlap or adjoin to each other are detected as

one contour and therefore as one particle. Usually an approach using a watershed algorithm

allows the separation of agglomerates, but the images also contain fibers. Watershed has a poor

performance on fibers and separates them into several small fractions [15]. It is therefore not

suitable and not implemented so that agglomerates remain a restriction in the program.

As fourth aspect, the TUM-ParticleTyper can have a weak performance when the minimum

area is chosen too small. Even though blurring usually removes noise, false positive detections

still occur more frequently for smaller minimum sizes. Finally, SEM images can contain bright

and dark objects, but only the performance on images with only bright ones can be regarded

as satisfactory. An approach to overcome this challenge is the inversion of the colors of the

image. Dark objects then appear as bright objects and can be detected in a second analysis.

A general problem is the fact that the program’s performance can only be validated in rela-

tive terms. There are no images with perfectly extracted particles available that would provide

a defined true value. The only ways to assess the performance is to manually evaluate the

Fig 11. Segmentation accuracy for samples with intense matrix background. Original image (A), processed image (B). Fibers are marked in blue, particles

are marked in green, but were ignored for the chemical identification, as here the focus was on fibers.

https://doi.org/10.1371/journal.pone.0234766.g011
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image and assign a consensus value, considering that even the particle detection by two experts

does not yield the same result. If the program’s output is within an acceptable range of devia-

tion from this consensus value, we can consider it as functioning properly.

Conclusion and outlook

TUM-ParticleTyper is an open access image processing tool for the morphological characteri-

zation of particles in optical, fluorescence and scanning electron microscopy images. It is the

first such tool that can be calibrated to fit the camera system of the user, the requirements of

the analysis, as well as the complexity of the sample. The essential part of the work presented

here was not only the development of such a tool but also the development of validation proto-

cols for the particle localization with TUM-ParticleTyper and the sample reduction from full

filter imaging to single point measurements at the particle centres. It is recommended to pre-

pare a test sample, to analyse it with the TUM-ParticleTyper and to parallelly do a manual par-

ticle identification, by marking all particles in red. The found particle number, mean area and

Feret’s diameters should be compared to get a rough quality assessment, but it is important to

access the true positives, false positives and false negatives as described in the protocol pre-

sented here to access the accuracy. As demonstrated a 100% accuracy is not possible to achieve

with complex samples as even the assessment of two experts deviates by ~30%, which is why

no ground truth can be found for the assessment only a consensus value. The protocol can be

transferred to alternative systems and programs for quality control, enabling users to check

their current or future analysis protocols. To enable such an analysis, the sample surface must

be as flat as possible. Therefore, a filter holder was developed, produced and characterized.

With the setup brought forward here, we advance Raman microspectroscopy analysis of

microplastic particles to accomplish a routine, size-resolved chemical quantification of parti-

cles down to a size limit of 10 μm. Further efforts will need to concentrate on pushing this

boundary towards the detection of even smaller particles.
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12. Käppler A, Windrich F, Loder MG, Malanin M, Fischer D, Labrenz M, et al. Identification of microplastics

by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range

below 1300 cm(-1) for FTIR transmission measurements. Anal Bioanal Chem. 2015; 407(22):6791–

801. https://doi.org/10.1007/s00216-015-8850-8 PMID: 26123441

13. Prata JC, Reis V, Matos JTV, da Costa JP, Duarte AC, Rocha-Santos T. A new approach for routine

quantification of microplastics using Nile Red and automated software (MP-VAT). Sci Total Environ.

2019; 690:1277–83. https://doi.org/10.1016/j.scitotenv.2019.07.060 PMID: 31470490

14. L. Bittrich, Brandt J. GEPARD—Gepard-Enabled PARticle Detection for Raman microscopes. https://

gitlab.ipfdd.de/GEPARD/gepard: Leibniz-Institut für Polymerforschung Dresden e. V.; 2018.

15. Anger PM, Prechtl L, Elsner M, Niessner R, Ivleva N. Implementation of an Open Source Algorithm for

Particle Recognition and Morphological Characterisation for Microplastic Analysis by Means of Raman

Microspectroscopy. Analytical Methods. 2019.

16. Erni-Cassola G, Gibson MI, Thompson RC, Christie-Oleza JA. Lost, but Found with Nile Red: A Novel

Method for Detecting and Quantifying Small Microplastics (1 mm to 20 mum) in Environmental Sam-

ples. Environ Sci Technol. 2017; 51(23):13641–8. https://doi.org/10.1021/acs.est.7b04512 PMID:

29112813

PLOS ONE TUM-ParticleTyper: A detection and quantification tool for automated analysis of (microplastic) fragments

PLOS ONE | https://doi.org/10.1371/journal.pone.0234766 June 23, 2020 19 / 20

https://doi.org/10.1002/anie.201606957
http://www.ncbi.nlm.nih.gov/pubmed/27618688
https://doi.org/10.1016/j.marpolbul.2016.01.006
https://doi.org/10.1016/j.marpolbul.2016.01.006
http://www.ncbi.nlm.nih.gov/pubmed/26787549
https://doi.org/10.1016/j.watres.2015.02.012
http://www.ncbi.nlm.nih.gov/pubmed/25746963
https://doi.org/10.1016/j.envpol.2018.02.069
https://doi.org/10.1016/j.envpol.2018.02.069
http://www.ncbi.nlm.nih.gov/pubmed/29604577
https://doi.org/10.1016/j.watres.2018.05.027
https://doi.org/10.1016/j.watres.2018.05.027
http://www.ncbi.nlm.nih.gov/pubmed/29803096
https://doi.org/10.1016/j.watres.2017.11.011
http://www.ncbi.nlm.nih.gov/pubmed/29145085
https://doi.org/10.1016/j.watres.2016.03.015
http://www.ncbi.nlm.nih.gov/pubmed/27082693
https://doi.org/10.1016/j.envpol.2018.05.008
http://www.ncbi.nlm.nih.gov/pubmed/29753246
https://doi.org/10.1007/s00216-017-0358-y
https://doi.org/10.1007/s00216-017-0358-y
http://www.ncbi.nlm.nih.gov/pubmed/28439620
https://doi.org/10.1007/s00216-015-8850-8
http://www.ncbi.nlm.nih.gov/pubmed/26123441
https://doi.org/10.1016/j.scitotenv.2019.07.060
http://www.ncbi.nlm.nih.gov/pubmed/31470490
https://gitlab.ipfdd.de/GEPARD/gepard:
https://gitlab.ipfdd.de/GEPARD/gepard:
https://doi.org/10.1021/acs.est.7b04512
http://www.ncbi.nlm.nih.gov/pubmed/29112813
https://doi.org/10.1371/journal.pone.0234766


17. Simon M, van Alst N, Vollertsen J. Quantification of microplastic mass and removal rates at wastewater

treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging.

Water Res. 2018; 142:1–9. https://doi.org/10.1016/j.watres.2018.05.019 PMID: 29804032

18. Primpke S, Lorenz C, Rascher-Friesenhausen R, Gerdts G. An automated approach for microplastics

analysis using focal plane array (FPA) FTIR microscopy and image analysis. Analytical Methods. 2017;

9(9):1499–511.

19. Wirth M, Fraschini M, Masek M, Bruynooghe M. Performance Evaluation in Image Processing. EURA-

SIP Journal on Advances in Signal Processing. 2006; 2006(1).

20. Udupa JK, Leblanc VR, Zhuge Y, Imielinska C, Schmidt H, Currie LM, et al. A framework for evaluating

image segmentation algorithms. Comput Med Imaging Graph. 2006; 30(2):75–87. https://doi.org/10.

1016/j.compmedimag.2005.12.001 PMID: 16584976

21. Ogunola OS, Tahavamani P. Microplastics in the Marine Environment: Current Status, Assessment

Methodologies, Impacts and Solutions. Journal of Pollution Effects & Control. 2016; 04(02).

22. Huppertsberg S, Knepper TP. Instrumental analysis of microplastics-benefits and challenges. Anal

Bioanal Chem. 2018; 410(25):6343–52. https://doi.org/10.1007/s00216-018-1210-8 PMID: 29959485

23. Kohles AJ, von der Esch E, Anger PM, Hoppe R, Niessner R, Elsner M, et al. TUM-ParticleTyper: Soft-

ware and Documentation. https://mediatum.ub.tum.de/1547636: TUM 2020. doi: 10.14459/

2020mp1547636

24. von der Esch E, Lanzinger M, Kohles AJ, Schwaferts C, Weisser J, Hofmann T, et al. Simple Genera-

tion of Suspensible Secondary Microplastic Reference Particles via Ultrasound Treatment. Frontiers in

Chemistry. 2020; 8(169).
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