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Abstract: The European heatwave of 2018 led to record-breaking temperatures and extremely dry
conditions in many parts of the continent, resulting in widespread decrease in agricultural yield, early
tree-leaf senescence, and increase in forest fires in Northern Europe. Our study aims to capture the
impact of the 2018 European heatwave on the terrestrial ecosystem through the lens of a high-resolution
solar-induced fluorescence (SIF) data acquired from the Orbiting Carbon Observatory-2 (OCO-2)
satellite. SIF is proposed to be a direct proxy for gross primary productivity (GPP) and thus can
be used to draw inferences about changes in photosynthetic activity in vegetation due to extreme
events. We explore spatial and temporal SIF variation and anomaly in the spring and summer months
across different vegetation types (agriculture, broadleaved forest, coniferous forest, and mixed forest)
during the European heatwave of 2018 and compare it to non-drought conditions (most of Southern
Europe). About one-third of Europe’s land area experienced a consecutive spring and summer
drought in 2018. Comparing 2018 to mean conditions (i.e., those in 2015–2017), we found a change
in the intra-spring season SIF dynamics for all vegetation types, with lower SIF during the start
of spring, followed by an increase in fluorescence from mid-April. Summer, however, showed a
significant decrease in SIF. Our results show that particularly agricultural areas were severely affected
by the hotter drought of 2018. Furthermore, the intense heat wave in Central Europe showed about
a 31% decrease in SIF values during July and August as compared to the mean over the previous
three years. Furthermore, our MODIS (Moderate Resolution Imaging Spectroradiometer) and OCO-2
comparative results indicate that especially for coniferous and mixed forests, OCO-2 SIF has a quicker
response and a possible higher sensitivity to drought in comparison to MODIS’s fPAR (fraction of
absorbed photosynthetically active radiation) and the Normalized Difference Vegetation Index (NDVI)
when considering shorter reference periods, which highlights the added value of remotely sensed
solar-induced fluorescence for studying the impact of drought on vegetation.

Keywords: chlorophyll fluorescence; remote sensing; ecosystems; spring–summer; forest

1. Introduction

Anthropogenic global warming is estimated to currently have reached about 1 ◦C above
preindustrial levels and is estimated to further increase to 1.5 ◦C between 2030 and 2052 under
current rates of greenhouse gas (GHG) emissions [1]. This increase in global temperature is expected
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to lead to an increase in intensity and frequency of extreme events such as heatwaves, drought, and
associated wildfires [2–4]. In 2018, Europe faced such an extreme event characterized by record-breaking
temperatures and long-lasting dryness, referred to as “hotter drought” [5]. According to the European
Drought Observatory of the European Commission, most of Northern and Central Europe was affected
by such hotter drought in 2018. On the contrary, much of the Southern Mediterranean Europe
experienced relatively cool and moist conditions [6,7]. For Central Europe, various news and media
articles reported severe decrease in crop yields, increase in elderly mortality, and forest fires along with
many other adverse impacts. According to a quick attribution study by the World Weather Attribution
on the heat in Northern Europe [8], the anthropogenic climate change has more than doubled the
probability of occurrence of such a heatwave in the region.

Along with severe economic implications and adverse health impact on the public, such record-
breaking hotter drought events severely affect ecosystems. A direct comparison of vegetation response
to the drought in 2018 and the 2003 European heatwaves using MODIS’s vegetation indices concluded
that negative impacts in 2018 were even stronger than in 2003, with a strong decline in agricultural
land and forests, especially in Central Europe [6]. Such drought events strongly affect the carbon cycle
by leading to plant mortality and reductions in ecosystem carbon dioxide (CO2) uptake, with the
potential to convert ecosystems from carbon sinks into carbon sources [9,10].

Gross primary productivity (GPP) is a measure of ecosystem CO2 assimilation. The estimation
and modeling of regional or global GPP involves various uncertainties arising from model
parameterization [11,12], thus demanding a more direct and reliable approach to estimate GPP.
With recent advances in satellite-based measurements of solar-induced (chlorophyll) fluorescence
(SIF), it is now possible to use SIF as a direct proxy for photosynthesis or GPP worldwide [13–17].
SIF is an electromagnetic signal emitted in the wavelength range of 600 to 800 nm by chlorophyll
molecules [18]. Since SIF is directly associated with photosynthesis, it is more physiologically-based
compared to the traditionally used vegetation indices (VIs), such as the Normalized Difference
Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) [19,20]. Over the last decade,
several studies have demonstrated a strong linear relationship between satellite-based SIF and
GPP [13,15,21–28], indicating that SIF might provide a useful approximation of GPP. The SIF retrievals
obtained from the Japanese Greenhouse Gases Observing Satellite (GOSAT) and the European Global
Ozone Monitoring Experiment-2 (GOME-2) were most widely used in the last decade (2007–2017;
see studies in [21–24,28]). However, due to coarse spatial resolution of the SIF footprint (10 km diameter
for GOSAT and 40 × 40 km2 for GOME-2), these satellites presently impose serious limitations in
detecting ecophysiological changes across different vegetation types. The recent NASA’s Orbiting
Carbon Observatory-2 (OCO-2) satellite (launched in September 2014) provides SIF data at a much
higher spatial resolution of 1.3 × 2.25 km2 with increased SIF acquisition frequency, thereby allowing
us to resolve SIF responses of various vegetation types under different climatic conditions [15,29].

SIF acquired from GOSAT and GOME-2 have been previously used to study the effect of drought
on vegetation. Using GOSAT’s SIF [30] showed that midday fluorescence explained the water stress
over the Amazonian forests during a dry season in 2010. Yoshida et al. [31] used GOME-2′s SIF to
study the impact of the 2010 Russian drought, and they highlighted the drought-related SIF decrease
for croplands and grasslands. Sun et al. [32] studied the drought onset mechanisms and its impact
on agriculture using GOME-2 SIF during the drought of 2011 in Texas and that of 2012 in the central
Great Plains, United States. They concluded that SIF is sensitive to both structural and physiological
variation in vegetation during drought and considered it an appropriate tool for drought monitoring.
Koren et al. [33] developed a GOME-2 based SIF product to show that spatial SIF response was in
good agreement with meteorological (temperature, soil moisture, evapotranspiration, and terrestrial
water storage) anomalies during the 2015–2016 El Niño Amazon drought. Recently, Zhang et al. [34]
constructed a global gridded SIF dataset (CSIF) using a neural network trained by OCO-2 and MODIS
data, which they also employed for drought monitoring. Their preliminary result showed that the
CSIF well captured the spatial extent of droughts during the 2015 European heatwave.
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Here, we present the impact of the 2018 European hotter drought on the terrestrial ecosystem as
perceived through OCO-2 SIF data. The novelty of this study is highlighted through the detection of
spatial and temporal patterns of OCO-2 SIF responses to drought and heat across different vegetation
types. We capture and analyze the spring–summer seasonal variation and anomaly in chlorophyll
fluorescence across different vegetation types and tracked it with vapor pressure deficit (VPD) and
temperature anomalies. Furthermore, we compare SIF responses of different vegetation types under
drought and non-drought conditions in Europe to explore the ability of OCO-2 SIF for drought impact
characterization. We also discuss and compare our results with recent MODIS-based NDVI drought
impact study. Finally, we discuss the drought-induced changes in satellite-based SIF measurements
and perspectives of OCO remote sensing satellite products for future studies.

2. Materials and Methods

2.1. Study Area

The study area is restricted to the European Union. About a third of Europe (1.8 M km2, drought
area, Figure 1a–c) was under consecutive spring (March–May; SPEI-3 of May month) and summer
(June–August; SPEI-3 of August month) meteorological drought (drought area), according to the widely
accepted Standardized Precipitation Evapotranspiration Index (SPEI) [35] (Figure 1a–c). In addition,
from mid-July to mid-August, Central Europe was affected by heatwaves with temperatures more than
5 ◦C higher than average for more than a week (NOAA Global Climate Report for July and August
2018 [36,37]). These drought and heat conditions resulted in a severe decline in agricultural yields and
early leaf senescence as well as forest fires across Central and Northern Europe. At the same time, about a
third of Europe (2 M km2, non-drought area, Figure 1a–c) experienced non-drought (i.e., normal or wet)
conditions during spring and summer, mostly across the Mediterranean (Figure 1a–c). Although Spain
and Portugal did experience record-breaking temperatures during summer, above-normal precipitation
prevented drought conditions to prevail. Thus, Europe in 2018 provides us the opportunity for a
comparative study between the productivity under consecutive spring–summer drought and that
under non-drought conditions.

2.2. Description of Datasets

2.2.1. SIF Data

Light energy absorbed by the leaf chlorophyll molecules has three different pathways:
photochemistry, nonphotochemical quenching (NPQ, i.e., heat dissipation), and a small fraction
re-emitted as SIF [18]. Theoretically, SIF can be expressed as shown in Equation (1) [22]:

SIF = APAR × ΦF × ΩC = PAR × fPAR × SIFyield (1)

where APAR is the absorbed photosynthetically active radiation in Watts/m2, which is the product
of photosynthetically active radiation (PAR) and the fraction of photosynthetically active radiation
absorbed (fPAR) by the vegetation/canopy. SIFyield is the emitted SIF per photon absorbed [17] and is
also defined as the effective fluorescence yield of the canopy. SIFyield is the product of fluorescence yield
in the wavelength band of measurement (ΦF) and an escape probability term (ΩC). SIFyield is expected
to vary with the plant’s photosynthetic light use efficiency [38,39] and canopy structural characteristics
like leaf area index (LAI). However, with a satellite-based SIF measurement, it is challenging to separate
the canopy physiological (ΦF) and structural components (ΩC) from SIFyield [32,40], and this is still an
active area of research.
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Figure 1. Drought severity map of Europe in (a) spring (SPEI-3 of May) and (b) summer (SPEI-3 of
August) of 2018. The map is based on the Standardized Precipitation Evapotranspiration Index (SPEI)
Global Drought Monitor (http://spei.csic.es/index.html). (c) Drought area and non-drought area used in
the study. Drought area has 2018 spring and summer SPEI values less than −1. Non-drought area has
2018 spring and summer SPEI values greater than −1.

For this study, the SIF product from NASA’s OCO-2 satellite was used since other satellite-based
SIF retrievals were of coarser spatial resolution (GOSAT and GOME-2). OCO-2 SIF is made available by
the CO2 Data Portal managed by the Jet Propulsion Laboratory of the California Institute of Technology,
United States (https://co2.jpl.nasa.gov/). The OCO-2 spectrometer measures spectra in the O2-A band
(757–775 nm, full width at half maximum = 0.042 nm), with far-red SIF, retrieved at 757 and 771 nm
based on the infilling of Fraunhofer lines [29,41]. The SIF retrieved at 771 nm is typically about 1.5 times
smaller than obtained at 757 nm [41]; therefore, we utilized the SIF retrieved at 757 nm in our study.
The major advantage of OCO-2 SIF includes a roughly 100-fold increase in data acquisition frequency

http://spei.csic.es/index.html
https://co2.jpl.nasa.gov/
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over GOSAT and finer spatial resolution (1.3 × 2.25 km2). This enables OCO-2 to acquire more than 105

clear-sky soundings on land per day, thus providing the opportunity to perform in-depth SIF based
analysis, such as regional ecophysiological change detection [42,43]. However, OCO-2 SIF soundings
do not have full spatial coverage (Figure S1). In this study, the SIF retrievals from the Level-2 OCO-2
Lite product, data version SIF v8 (version 8) were used from their first availability (6 September 2014)
to 1 October 2018 for the whole European continent. The OCO-2 Lite product is bias-corrected and
contains only good quality SIF soundings [44]. The OCO-2 takes measurements in three different
observation modes, namely nadir, glint viewing, and a special target mode with different viewing
zenith angle (VZA), typically alternatively with a repeat cycle of 16 days. Although SIF values are
affected by VZA [45], grouping all the SIF soundings over a large area results in no significant SIF
difference in the mean SIF between nadir and the combined modes [13,16] (see Supplementary Table S1.
In this study, we used SIF soundings from only nadir and glint mode, with each mode contributing
to about half of the total number of soundings. The percentage of nadir and glint mode data was
consistent throughout the study period (Table S2). Figure S1 illustrates the trajectory and spatial
distribution of the SIF soundings for Europe in 2018. The OCO-2 is a sun-synchronous satellite with
a local overpass time at 1:30 p.m. compared to 9:30 a.m. for GOME-2 and 1:00 p.m. for GOSAT.
Thus, compared to GOME-2, OCO-2 might better capture the sensitivity of fluorescence yield to water
stress, which is higher in the afternoon when plant water stress tends to peak, as shown by field
studies [46]. Two important environmental factors that regulate plant photosynthesis are temperature
and vapor pressure deficit (VPD). The SIF Lite data files also included VPD and temperature data from
ECMWF for each SIF measurement.

2.2.2. MODIS Data

Theoretically, SIF is directly related to fraction of absorbed photosynthetically active radiation
(fPAR; Equation (1)). Thus, for improving the interpretation of SIF variation and anomalies, we used the
MODIS Aqua fPAR product (MYD15A2H) version 6 [47,48], which is an 8-day composite dataset with
a spatial resolution of 500 m covering the same period as the OCO-2 SIF dataset. The fPAR calculation
is based on the 3D radiative transfer equation (Look-Up-Table based approach [49]), which takes the
“best” quality spectral information of red and near-infrared bands within the 8-day period as an input,
and a backup algorithm uses the empirical relationship based on NDVI. In addition, we also used the
standard MODIS 16-day composite NDVI product [50] with a spatial resolution of 250 m, taken from
Terra (MOD13Q1) and Aqua (MYD13Q1) for comparison with SIF. These composite products are
constructed using the “best” quality pixel (i.e., low clouds, low view angle, and highest NDVI) over
the 16-day period of Terra and Aqua measurements [50]. The MODIS products were obtained from the
NASA Land Processes Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/products).
Moreover, only good quality MODIS pixels (VI quality variable = 0, indicating good quality as per [50])
for fPAR and NDVI were chosen for subsequent analysis.

2.2.3. Corine Land Cover Data

To study the SIF variation across different vegetation types (agriculture, broadleaved forest,
coniferous forest, and mixed forest), we used the most recent Corine Land Cover (CLC) 2018, Version
20b2 provided by the European Environmental Agency (EEA) (Figure S2). The CLC 2018 uses Sentinel-2
and Landsat-8 imageries for its construction, thereby achieving a minimum mapping width (resolution)
of 100 × 100 m (CLC2018 Technical Guidelines, 2017; [51]). Agricultural land comprising arable lands,
pastures, and heterogeneous agricultural area covered most of the parts of drought area (53%) and
non-drought area (57%), followed by coniferous forest of about 37% in the drought area (Table S3).

2.3. Data Analysis

The gridded SPEI data for spring (March, April, and May (MAM); SPEI-3 for May month) and
summer (June, July, and August (JJA); SPEI-3 for August month) were obtained from the SPEI Global

https://lpdaac.usgs.gov/products
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Drought Monitor (http://spei.csic.es/index.html). The drought areas were defined as the areas which
showed SPEI less than or equal to −1 (meteorological drought conditions) for both spring and summer
season [52,53] of 2018, whereas the non-drought areas were the ones with SPEI greater than −1
(near normal and wet conditions, or non-drought conditions) for both spring and summer of 2018.

Standardized meteorological-based drought indices can sometimes misrepresent actual climatic
water balance (CWB) [54]. The SPEI values of less than −1 for the study area in 2018 completely
indicated water deficit conditions with negative CWB values during the summer season (Figure S3).
Figure 1c shows the drought and non-drought area used in this study. Thereafter, the OCO-2 SIF
sounding data for the drought and non-drought areas were spatially joined to the CLC based on
geographic intersection (intersection of SIF soundings and the CLC polygons). To study the variation
of SIF across the drought and non-drought areas in spring and summer for Europe, we spatially
aggregated all the daily SIF soundings for each of the above described vegetation types separately for
drought and non-drought areas over the spring and summer season.

SIF changes because of two reasons—firstly due to natural seasonal vegetation change during the
growing season (e.g., change in chlorophyll content during the seasonal cycle) and secondly due to
stress (e.g., heat and drought stress). To study the inter- and intra-seasonal SIF variation and anomalies
during the drought in spring and summer, we compared the SIF, temperature, and VPD of 2018
(i.e., SIF_2018, Temp_2018, VPD_2018) with their baseline value (mean of 2015–2017, i.e., SIF_Mean,
Temp_Mean, VPD_Mean) on a 5-day running average [9]. These anomalies of the average SIF at a given
date would eliminate the SIF changes due to seasonality. It is important to note that Central Europe
suffered from a heat wave during summer of 2015, with record high temperatures and a precipitation
deficit [55,56], which may lower our detected impact of 2018. For each OCO-2 footprint, co-located
MODIS’s NDVI and FPAR were interpolated in time and space so that the same sample is used for each
dataset. Finally, the OCO-2 SIF was aggregated spatially (i.e., drought area) and temporally (i.e., 8-day)
for it to be compared with NDVI and fPAR.

We performed a Wilcoxon-rank sum test [57] to test for a significant location shift
(i.e., the nonparametric difference of means) between the SIF_2018 and SIF_Mean. SIF, temperature,
and VPD anomalies (i.e., SIF-diff, Temp-diff, and VPD-diff) were defined as differences between 2018
and average (e.g., SIF-diff = SIF_2018–SIF_Mean). With continued drought condition during the
summer, Central Europe also experienced an intense heatwave during late July to early August 2018.
The heatwave was pronounced in Belgium (BEL), Netherlands (NLD), Denmark (DEN), and Germany
(DEU), according to the reports published by the Royal Meteorological Institute of Belgium [58],
the Royal Netherlands Meteorological Institute [59], the Danish Meteorological Institute [60], and the
German Meteorological Office [61], respectively. To quantify the impact of this heatwave, SIF soundings
of BEL, NLD, DEN, and DEU from 15 July to 15 August 2018 were analyzed for all the vegetation types
and compared to the mean of 2015–2017. All analyses were processed in R [62] and extended by the
packages stats, ggplot2 [63] and dplyr [64].

3. Results

3.1. Overall Spring–Summer SIF Variation and Anomaly

Overall, the whole of Europe showed average SIF_2018 values of 0.642 W/m2/sr/µm compared to
SIF_Mean of 0.670 (Table 1a) during spring and summer seasons. Although the SIF anomaly (SIF-Diff)
was not significant for spring and the combined spring–summer season for drought areas (Figure S1)
and for the whole of Europe, the summer season showed a significant decrease (p-value < 0.001)
in SIF_2018 compared to the SIF_Mean in the drought area (Table 1; Figure 2). The patterns of
the combined spring–summer season SIF-Diff for drought and non-drought area (Figure 1c) were
complementary to each other (Table 1a). In addition, the drought areas showed positive SIF-Diff
for spring and negative SIF-Diff for summer and the combined spring–summer season, whereas
the non-drought area showed positive SIF-Diff for spring and the combined spring–summer season.

http://spei.csic.es/index.html
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Although most of the SIF-Diff was not significant (p-value > 0.05), it is, however, interesting to see a
distinct pattern between seasonal variability of SIF in relation to drought.

Table 1. European-wide mean SIF_757nm (W/m2/sr/µm) values in spring, summer, and the combined
spring–summer season and their corresponding anomaly (SIF-Diff) for whole of Europe, drought area
and non-drought area.

Area
(a) Combined Spring–Summer (b) Spring (c) Summer

SIF_2018 SIF_Mean SIF-Diff SIF_2018 SIF_Mean SIF-Diff SIF_2018 SIF_Mean SIF-Diff

Europe 0.642 0.670 −0.028 0.523 0.534 −0.011 0.766 0.820 −0.054 *
Drought area 0.558 0.596 −0.038 0.407 0.388 0.019 0.711 0.814 −0.103 *

Non-drought area 0.684 0.660 0.024 0.601 0.560 0.041 0.766 0.767 −0.001

* p-value < 0.001.

Figure 2. Overall solar-induced (chlorophyll) fluorescence (SIF) variation in (a) spring and (b) summer
season for drought areas in 2018 (SIF_2018, in orange) compared to mean SIF values from 2015–2017
(SIF_Mean, in grey). Bars indicate the histogram of the SIF, whereas curves represent the density plot
of the histogram.

3.2. Intraseasonal SIF Variation and Anomalies for Different Vegetation Types

The drought area was characterized by higher temperatures during the second half of both spring
and summer season (Figure 3b). For the drought area, SIF-Diff was initially significantly negative at the
start of the spring season for the agricultural area, whereas the difference was not significant for forests.
Here, significance is considered as a departure of (SIF/fPAR/NDVI) values >1 standard error [31,32],
e.g., for Figure 3a, when the blue and red shades are not overlapping. However, with increase in
Temp-Diff and VPD-Diff from a couple of weeks after the middle of spring season (Day of the year
(DOY) - 120), SIF-Diff significantly increased across all land cover types (Figure 3a,b), with SIF-Diff
values as high as 0.25, 0.65, 0.25, and 0.4 W/m2/sr/µm for agricultural area, broadleaved, coniferous, and
mixed forests, respectively. The broadleaved forests (BLF) in the drought area occur across a large range
of latitude (from 45 N in Germany to 70 N in Norway; Figure S2) and Köppen climate zones (warm
summer and cool summer). More intense and early spring warming occurred in the warm summer
climate, whereas a moderate and later warming occurred in the cool summer climate zone (blue and
black line in Figure S7). This seems to have caused leaf flushing (represented by the blue and green box
in Figure S7) at a difference of about 20 days between the two climate zones. Now, since our result is
spatially and temporally aggregated, this shows two peaks during the spring for BLF. Thus, although
there was no overall change in SIF for the spring season (Section 3.1), we observed a change in the
intra-spring SIF variation pattern in 2018 compared to the mean, with an initial decrease (March to
April) followed by a significant increase in SIF in May. This intra-spring SIF variation was reflected in
the fPAR variations during the spring season for the drought area (Figure S4a). Thus, SIF variation
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in spring was strongly related to fPAR for drought areas where continuously higher temperature
and VPD were observed in the second half of the spring season (April–May). The summer season of
2018 was characterized by negative SIF-Diff (Figure 3), especially for agricultural areas which showed
continuously negative values throughout the summer season (Figure 3). For forest areas, however,
we observed significantly negative SIF-Diff only in the later part of summer (from July, DOY 185–215)
when the temperature values were more than 5 degrees higher than the mean (Figure 3b).

Figure 3. (a) Intra-seasonal SIF variability based on a 5-day running mean for drought areas across
different vegetation types. (b) Corresponding SIF anomalies (SIF-Diff), and vapor pressure deficit
(VPD) (gray line), and temperature (black line) anomalies. Positive values indicate a surplus of SIF,
temperature (Temp), and VPD; negative values indicate lower values in comparison to the mean in
2015–2017. Shaded area (light blue for “Mean”; red for “2018”) in part (a) is ± standard error of mean
obtained after spatially aggregating the samples. The vertical dashed lines divide the DOY into spring
(DOY 60–150) and summer (DOY 151–245) season. Temp-Diff = Temp_2018–Temp_Mean; VPD-Diff =

VPD_2018–VPD_Mean.

The non-drought areas were characterized by significantly higher temperatures only during the
end of April (DOY 105–120) as illustrated in Figure 4b. Here, we observed the spring variation to be
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similar to that of the drought area (Figure 4a,b), which is also visible in the fPAR data (Figure S4a).
In contrast to the drought area, summer in the non-drought area featured positive SIF-Diff for all the
vegetation types and especially for the agricultural area. For the non-drought area, fPAR in summer
was higher than the mean value (Figure S5a) and also seems to closely relate to the SIF variation.

Figure 4. (a) Intra-seasonal SIF variability based on 5-day running mean for non-drought areas across
different vegetation types. (b) Corresponding SIF anomalies (SIF-Diff), and VPD (gray line), and
temperature (black line) anomalies. Positive values indicate a surplus of SIF, Temp, and VPD; negative
values indicate lower values in comparison to the mean in 2015–2017. Shaded area (light blue for
SIF_Mean; red for SIF_2018) in part (a) is ± standard error of mean obtained after spatially aggregating
the samples. The vertical dashed lines divide the DOY into spring (DOY 60–150) and summer
(DOY 151–240) season. Temp-Diff = Temp_2018–Temp_Mean; VPD-Diff = VPD_2018–VPD_Mean.

3.3. SIF Variation during the Heatwave

Apart from the extensive drought conditions, Central Europe (i.e., BEL, NLD, DEN, and DEU) was
also largely affected by the 2018 heatwave, which was characterized by unusually high temperature
anomalies (+5–8 ◦C) from mid-July to mid-August (Figure 3a). Overall, during this heatwave in
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Central Europe, the SIF_2018 was 31% lower than SIF_Mean. This difference was most pronounced
in agricultural areas which showed 34% lower SIF_2018 followed by mixed forest (25%), coniferous
(22%), and broadleaved forest (16%) (Figure 5).

Figure 5. Boxplots illustrating SIF variation across the four vegetation type during the heatwave
(15 July to 15 August) in central Europe (i.e., Germany, Denmark, Belgium, and Netherlands) along
with temperature differences. Dots inside the boxplots represent the corresponding mean values.

4. Discussion

4.1. Drought Impact on SIF

Our study showed a clear impact of the European hotter drought of 2018 on overall and
intra-seasonal SIF variation for different vegetation types as captured by the OCO-2 SIF. Early spring of
2018 was characterized by lower than average temperatures and VPD (i.e., non-stressed stage) followed
by above-average temperatures and VPD in the later part of spring (April–May; Figure 3b). Such cooler
and wetter conditions in early spring can result in poor crop development and lower productivity [65]
and thus lower SIF values ([66]; Figure 3b). Moreover, the initially cooler conditions in spring might
have delayed the leaf flushing in deciduous trees, resulting in lower SIF values of broadleaved forests
(Figure 3b). This pattern was less evident for the coniferous and mixed forests, probably due to the
presence of evergreen trees. In addition, the wet conditions during early spring most likely built up
enough soil moisture for the later spring season, thus moderating the sudden warming in later spring
season [67,68]. This combination of ample moisture supply with a rise in temperature resulted in an
increase in SIF to above-average values across all vegetation types (Figures 3 and 6). The variation in
SIF depends on the variation of both APAR (and fPAR) and SIFyield (Equation (1), [69]). Both SIF and
fPAR were increasing during the spring season for both drought and non-drought areas (Figures 3
and 4, Figures S4a and S5a). Moreover, for agriculture areas affected by drought, the peaks of fPAR and
SIF were on almost the same day of the year (DOY ~ 145; Figure 3a and Figure S4a). However, this clear
synchronicity was not found for forests. Nevertheless, we conclude that the satellite-based SIF variation
was closely coupled with fPAR variation under non-stress conditions (spring for drought areas and
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for non-drought areas in spring and summer). Previous studies [13,31,32] have also highlighted the
synchronicity of satellite-based SIF with fPAR.

Figure 6. Anomalies (in % difference from “Mean”) of SIF, the Normalized Difference Vegetation Index
(NDVI), and fPAR for drought area across different vegetation types as observed from the Orbiting
Carbon Observatory-2 (OCO-2) SIF, MODIS NDVI product (MOD/MYD13Q1) version 6, and MODIS
fPAR product (MYD15A2H) version 6 in 2018. Positive values indicate a surplus of SIF, NDVI, and fPAR,
negative values indicate lower values in comparison to the mean in 2015–2017. The left and right side
of blue vertical dashed line represents spring and summer season, respectively.

The warming during late spring continued to the summer season, with the later summer season
featuring intense heat. We found decreasing SIF in all investigated vegetation types in the summer of
2018, which was most pronounced in the drought areas. The agricultural areas expressed an immediate
decrease in SIF from early summer onwards most likely because of severe soil moisture deficits caused
by early water depletion in late spring in course of dry weather conditions [70,71]. Ongoing drought
conditions during the summer season showed continuous decrease in SIF for agricultural areas and
with some delay in forests (Figure 3). Similar findings were reported by an NDVI-based study where
agricultural areas, and with some delay, forests in central Europe, faced severe decline in NDVI during
the summer season [6]. Unlike agricultural crops, forests feature a buffered microclimate [72–74],
and given their deeper rooting system in comparison to crops, they have access to deeper soil water and
thus can maintain constant photosynthesis rates for extended periods during drought conditions [75].

Our spring–summer seasonal variation of SIF in 2018 is in close agreement with the one of MODIS
NDVI ([6]) for agricultural areas. However, for the forest ecosystems, we found a less extreme SIF
decline compared to the NDVI-decline in Buras et al. [6]. To further evaluate this difference we
analyzed MODIS NDVI over 4 years (2015–2018), and our results indicate that SIF showed higher
sensitivity compared to NDVI over the 4-year period (Figure S4b and Figure 6). We observed that
for the forest ecosystems in the drought area, fPAR- and NDVI-anomalies were positive during the
summer season (DOY < 215) (Figure S4b and Figure 6), i.e., when the SIF-anomaly was reportedly
negative. While Buras et al. [6] used a reference period spanning 2000–2018, where several normal
and even moist summers were observed, the analyses presented here rely on the 2015–2017 period
due to the comparably shorter mission length of OCO-2. However, in 2015 another severe drought
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hit central and southern Europe, which might have resulted in forest legacy effects [76], i.e., low
productivity and die-back in affected areas in 2016 [77]. Consequently, regarding forests, the fPAR
and NDVI values from 2018 do only marginally differ to the period mean (2015–2017) since forests
could have been suffering at least in 2015 and 2016, i.e., in 2 of the 3 years included in the reference
mean. It is, therefore, not surprising that the extremeness of 2018 in the 4 year NDVI analysis of forests
(Figure S4 and Figure 6) did not capture the forest decline as clearly as in Buras et al. [6] (with a 19-year
reference period) where the majority of reference years represent years with sufficient water supply.
In contrast to NDVI over the four years period, SIF was considerably lower in 2018 compared to the
already low mean of the previous three years (2015–2017), which may indicate its higher sensitivity
to both physiological and structural drought response from plants [32]. This finding highlights the
predominance of SIF over NDVI even if short reference periods are available, for example, SIF available
from OCO-2, the upcoming OCO-3, and the TROPOMI in comparison to ESA’s SENTINEL-2A [78]
(for NDVI).

Vegetation indices (VIs), such as the NDVI, are sensitive to canopy structure and pigment
concentration with no direct link to photosynthesis [79]. This might lead to a reduced sensitivity of
these VIs to capture drought impact when the vegetation, such as high density forests, still remains
green (no changes in chlorophyll content) but reduces its photosynthesis initially during heavily stressed
drought conditions [80] in early summer during the European hotter drought. Similar conditions
might also not have resulted in significant differences of NDVI during the early summer of 2018 from
the mean (Figure S4b). Alternatively, higher sensitivity of SIF (with direct links to photosynthesis) to
drought impact on high density European forest was evident from our study (Figures 3 and 6).

The intense heatwave in Central Europe during July and August resulted in a significant decrease
in SIF across all the four vegetation types, which was particularly pronounced for agricultural areas.
The heatwave occurred at the end of the already dry summer, which was preceded by a dry spring.
As a consequence of persisting drought, many crops desiccated, thus not emitting any fluorescence
by the end of July when temperatures were extremely high in Central Europe. Water stress due to
high-temperature anomalies during a drought event can further increase heat stress due to an extended
period of stomatal closure and subsequent reduction in evaporative cooling [81], thus causing positive
feedback resulting in even warmer conditions [82].

4.2. SIF Response during Drought Stress

Water stress adversely impacts photosynthesis, either physiologically or structurally [83].
Physiological alterations include change in leaf biochemistry via reductions in enzymatic activity [84]
or a reduction in mesophyll/chlorophyll, and stomatal conductance [85], resulting in lower CO2 uptake
by the plants and thus reduced photosynthesis (i.e., lower SIF values). The structural changes include
foliar changes like leaf wilting or rolling (changes in leaf inclination), thus reducing effective leaf area
index (LAI), which in turn causes a reduction in fPAR and energy available for photosynthesis and
fluorescence emission [69,86]. Furthermore, plants adopt different mechanisms to minimize water and
heat stress, such as chloroplast avoidance movement, during which plants move their chloroplast
from the cell surface to side walls of cell [87] so as to minimize APAR [88] and thus SIF. MODIS fPAR
decreases due to these protection mechanism, and physiological and structural changes were visible for
agricultural areas during the summer drought (Figure S4 and Figure 6). However, for the forest areas
we found that MODIS fPAR for drought areas during midsummer (DOY 185–215) was not lower than
fPAR in the previous 3 years (Figure 6 and Figure S4). This might imply that a reduction of SIF is likely
caused by a reduction in SIFyield. SIF variation due to changes in SIFyield can be because of the canopy’s
physiological (ΦF term of Equation (1)) or structural change (ΩC term of Equation (1)), or both. The
PAR absorbed by leaves is partitioned into photochemistry, heat dissipation (NPQ), and fluorescence
emission (SIF). Although fPAR (or APAR) did not decrease, the proportion of fPAR (or APAR) that
is used in photochemistry (to drive electron transport for carbon assimilation) decreases, resulting
in a surplus of photosynthetic energy. Now, two other pathways compete to de-excite the absorbed
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light that is not used in photochemistry (i.e., the surplus photosynthetic energy), the energy emitted as
SIF or energy dissipated as heat through NPQ [69]. The competition between these two pathways
depends on environmental stress [89], and during water stress conditions (drought), the reduction
in SIF is linked to higher NPQ [66,90]. This increase in NPQ may result in a weak coupling between
SIF/SIFyield and fPAR under water stress conditions (see Figure S8), which seems to be clearly visible
for coniferous and mixed forests during midsummer (DOY 185–215; Figure S4). It is also possible that
the MODIS fPAR could be erroneous [32] and not be the best estimate of fPAR, especially in case of
high vegetation density (as in Europe). The backup algorithm of MODIS fPAR relies on its relationship
with NDVI [49], which becomes nonlinear with a sharp drop of NDVI sensitivity to fPAR for moderate
to high vegetation density for fPAR values beyond 0.7 (Figure S6). Nevertheless, further research to
differentiate the canopy escape term (ΩC term of Equation (1)) from SIF (as demonstrated by [91,92])
to study changes in fluorescence yield (ΦF) (and SIFyield) during extreme large scale drought event
is recommended.

Our results highlight one more reason why OCO-2 SIF can be useful to study drought impact
on vegetation as different vegetation types have different responses to drought, which was not
efficiently captured for each vegetation types before because of the coarser resolution of preceding
satellite-based SIF data/products. We would like to stress that earlier studies used SIF at coarser spatial
resolutions (from GOME-2 or GOSAT) and mostly were not able to differentiate SIF responses for
different vegetation types from a heterogeneous land-use area during drought conditions. Nevertheless,
regarding the drought response of homogeneous vegetation types, our results are in line with previous
SIF-based drought impact studies [31,32].

4.3. OCO-2 SIF for Studying Drought Impact

OCO-2 with its increased data acquisition frequency and high spatial resolution was shown
to be a promising tool to study large-scale drought impact on vegetation. Although the local pass
time of 1:30 PM of OCO-2, allows for a more accurate estimate of SIFyield sensitivity to physiological
plant water stress [46], there is a possibility of overestimation of this sensitivity during drought
conditions. A combination of derived, improved SIF retrievals from GOME-2 (e.g., SIFTER, [33]),
which has a local pass time of 9:30 AM, and OCO-2 should be used to explore and understand the
morning–afternoon SIF variation during drought conditions. To better understand the mechanism
of stress-induced fluorescence yield variation as captured by the OCO-2 SIF, models that explicitly
represent SIF processes (e.g., SCOPE model) should be applied [31,93,94].

The OCO-2 satellite provides a finer spatial resolution SIF data at the cost of temporal resolution
(revisit time of 16 days). This might lead to errors due to sampling effects for drought impact
studies, especially when comparing with MODIS composite products, as the OCO-2 SIF represents
an instantaneous measurement (at 1 PM) performed every 16 days, whereas the MODIS composite
represents the best value over a period (mostly 16 or 8 days). This sampling effect might also explain
the two peaks in SIF data in broadleaved forest (Figure S7), and this effect is not observed in the NDVI
data (Figure S4). However, in our study we deem this effect to be negligible as phenological changes in
broadleaf forest during the spring warming of 2018 was well captured despite (Figure 4 and Figure S7)
a low and dispersed representation of only 4% of the total study area (Table S3). Moreover, the SIF
footprint location keeps changing during every revisit, as the satellite does not operate in a typical
“pushbroom” fashion as other sun-synchronous satellites like Sentinel, Landsat, MODIS, etc. This does
not allow for a pixel-based temporal analysis of the SIF data. However, with a higher data acquisition
rate, this provides a great potential to study large-scale events [42]. Furthermore, a large-scale spatial
aggregation of OCO-2 SIF also reduces the uncertainty in OCO-2 SIF measurement owning to higher
clear-sky data acquisition rate [42].

Our study also demonstrates the strong added value of SIF-products in comparison to more
conventionally used products (NDVI, fPAR), when considering short reference periods (Figure 6
and Figure S4). Moreover, the new sensor of the OCO family (OCO-3) was recently launched on
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3 May 2019, which has the same physical and measurement characteristics as compared to OCO-2.
With this, a longer time series of high temporal frequency and spatial resolution SIF will be available
in the near future. As presented in this study, OCO-2 SIF is sensitive to drought and can serve
as a promising and potentially better satellite-based alternative to study impact of extreme events
(droughts/floods/heatwaves) on terrestrial ecosystems. To further validate the potential of OCO’s SIF
for such studies, a combination of satellite derived vegetation indices, photochemical reflectance index
(PRI), SIF (e.g., TROPOMI), and flux data could be considered. A more in-depth site-based study
is also recommended to get more insight into ecophysiological stress mechanism in forests during
drought. Furthermore, an interpolation of OCO’s dataset through machine learning and statistical
tools [34,95] to cover the vacant areas may provide solutions for more rigorous analyses.

5. Conclusions

This study employed the satellite-based SIF measurements acquired from the recent OCO-2
satellite to study the impact of the 2018 European hotter drought on terrestrial ecosystems. Evidently,
OCO-2 SIF displayed the spatial and temporal dynamics of the 2018 European drought across different
vegetation types (agricultural area, broadleaved forest, coniferous forest, and mixed forest). Our results
show that the agricultural areas were severely affected by the 2018 European hotter drought. While
the SIF of forests showed a less strong reduction, legacy effects may become visible in the next years
and thus, we recommend closely monitoring their behavior. In general, the impact of the heatwave in
Central Europe during the July–August period showed an overall 31% decrease in SIF compared to
the reference mean. The SIF variation was closely explained by fPAR variation during non-stressed
conditions. However, during water-stress conditions (drought), the SIF variation was attributed to
variation in SIFyield. Despite a few technical limitations of the OCO-2 SIF measurement such as the
16-day repeat cycle, it provides an excellent potential to study large-scale vegetation fluorescence
variation at high spatial resolution and can improve our understanding of changes in ecosystem
productivity during extreme events. Furthermore, owing to its direct origin from chlorophyll, OCO-2
SIF can serve as a complementary dataset to MODIS’s vegetation indices (NDVI/EVI). We suggest a
more detailed comparison of vegetation indices and OCO-2 SIF to establish the latter’s sensitivity
to vegetation’s structural and physiological changes. Further application of OCO-2 SIF may include
process-based SCOPE modeling to understand the variation of complex fluorescence yield due to
different environmental stress, as well as its combination with the XCO2 data (main product of OCO-2
satellite) to study regional carbon budgets.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/19/3249/s1.
Table S1: Relative vegetation class area in percentage for drought and non-drought area. Table S2: Percentage of
Nadir OCO-2 measurements mode for the Mean years (2015-2017) and 2018, from total OCO-2 measurements
(Nadir + Glint) mode used in the study. Table S3: Comparison of anomalies (2018 – Mean*) in GSIF and OCO-2 SIF
measurement (used in this study) for three different areas. Figure S1: Illustration of the spatial distribution and
orbit track of OCO-2 SIF soundings of spring and summer season for Europe in 2018. Figure S2: Land cover map
of Europe showing agriculture, broadleaf forest, coniferous forest and mixed forest based on Corine Land Cover
(CLC) 2018, version 20b2. Figure S3: Representation of climatic water balance (CWB) by the SPEI-3 values during
spring (May month) and summer (August month). Figure S4: Variation of (a) fPAR and (b) NDVI for drought area
across different vegetation types as observed from MODIS fPAR product (MYD15A2H) version 6 and MODIS
NDVI product (MOD/MYD13Q1) version 6. Figure S5: Variation of (a) fPAR and (b) NDVI for non-drought area
across different vegetation types as observed from MODIS fPAR product (MYD15A2H) version 6 and MODIS
NDVI product (MOD/MYD13Q1) version 6. Figure S6: Relationship between fPAR and NDVI for different
vegetation types. Figure S7: Two peaks in the broadleaved forest during summer resulting from a different
timing in leaf flushing in the warm summer (Central Europe, blue box) and cool summer (Northern Europe,
green box) climate zones of the drought area. Figure S8: Relationship between SIFyield and fPAR across different
vegetation types.
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