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Numerically estimating the integral of functions in high dimensional spaces is a non-

trivial task. A oft-encountered example is the calculation of the marginal likelihood in

Bayesian inference, in a context where a sampling algorithm such as a Markov Chain
Monte Carlo provides samples of the function. We present an Adaptive Harmonic Mean

Integration (AHMI) algorithm. Given samples drawn according to a probability dis-
tribution proportional to the function, the algorithm will estimate the integral of the

function and the uncertainty of the estimate by applying a harmonic mean estimator

to adaptively chosen regions of the parameter space. We describe the algorithm and its
mathematical properties, and report the results using it on multiple test cases.

Keywords: Probability and statistics; integral estimation; evidence; MCMC.
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1. Introduction

Sampling algorithms, such as Markov Chain Monte Carlo (MCMC),1 are often used

to generate samples distributed according to nontrivial densities in high dimensional

spaces. Many algorithms have been developed that allow generating samples {Λ}
from an unnormalized target density f(λ):

Λ ∼ f(λ) , f(λ) ≥ 0 .
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In many applications, it is desirable or even necessary to be able to normalize the

target density; i.e. to calculate

I ≡
∫

Ω

f(λ)dλ , (1)

where Ω is the support of f . This integral can be computationally very costly or

impossible to compute using standard techniques; e.g. if the volume of the support

where the target f is non-negligible occupies a very small region of the full support.

An important area where such integration is necessary is Bayesian inference.2,3

Bayes’ formula, for a given model M , is

P (λ|Data,M) =
P (Data|λ,M)P0(λ|M)

P (Data|M)
, (2)

where here λ denotes the parameters of the model and the data are used to update

probabilities for possible values of λ from prior probabilities P0(λ|M) to posterior

probabilities P (λ|Data,M). The denominator is usually expanded using the Law

of Total Probability and written in the form

Z = P (Data|M) =

∫
P (Data|λ,M)P0(λ|M)dλ . (3)

Z goes by the name “evidence,” or “marginal likelihood,” and is an example of the

type of integral that we want to be able to calculate (here the data are fixed and

f(λ) = P (Data|λ,M)P0(λ|M)). An example use of Z is the calculation of a Bayes

factor to compare two models:

BF ≡ P (Data|MA)

P (Data|MB)
=
ZA
ZB

.

We are specifically interested in providing an algorithm applicable in a setting

where samples are available from the target density f(λ) but with possibly no

further recourse to generating more samples. For this purpose, we investigate the

use of a modified harmonic mean estimator (HME).4 We introduce the use of a

reduced integration region to improve the HME performance. After a description

of the technique, we report on numerical investigations using Metropolis–Hastings

MCMC samples. Our work has in common with5 the use of the ratio of samples

found in the limited support region to the number found in the full support, but

we use a substantially different integral estimation technique.

2. Reduced Volume HME

We are interested in estimating the integral I from Eq. (1). We start by defining

the integral

I∆ ≡
∫

∆

f(λ)dλ (4)
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with ∆ ⊂ Ω a finite integration region, and the ratio

r ≡ I∆
I
. (5)

Given our assumption that the sampling algorithm has successfully sampled from

f(λ), we use the following as an estimator to our ratio

r̂ =
N∆

NΩ
, (6)

which is the fraction of the total number of samples that fall within ∆ ⊂ Ω. Defining

the normalized density over ∆

f̃∆(λ) =
f(λ)

I∆
, λ ∈ ∆ , (7)

allows us to perform a harmonic mean calculation as follows:

E

[
1

f(λ)

]

f̃∆(λ)

=

∫

∆

1

f(λ)
· f̃∆(λ)dλ =

∫

∆

1

f(λ)
· f(λ)

I∆
dλ =

V∆

I∆
, (8)

where V∆ is the volume of the region defined by ∆. An estimator for this expectation

value is the harmonic mean

X̂ =
1

N∆

∑

λi∈∆

1

f(λi)
. (9)

The HME for the reduced volume integral then follows as

Î∆ =
V∆

X̂
=

N∆V∆∑
λi∈∆

1
f(λi)

. (10)

This calculation is performed directly from the values of the target density f(λi)

given by the sampling algorithm, and does not require any extra sampling. An

estimator for the integral over the full space Ω can then be written down as

Î =
Î∆
r̂

=
NΩV∆∑
λi∈∆

1
f(λi)

. (11)

The task of estimating our integral, therefore reduces to choosing one or several

subspaces ∆ — typically small regions around local modes of f(λ). The full space

Ω over which the integration ought to be performed can be large or even infinite,

while this does not affect the outcome of our integral estimate. We discuss the bias

and uncertainty of this estimator in the following subsection.

In general, MCMC samples come with weights (e.g. repeated samples, with the

weight being the number of repetitions). We therefore rewrite Eq. (11) as

Î =
WΩV∆∑
λi∈∆

wi

f(λi)

(12)
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Fig. 1. Demonstration of the reduced harmonic mean technique with the unit normal distribution.

The left panel shows in blue the mean (solid line) and the region covering 68 % of results (from
1.5 · 104 repeated trials) of the integral estimates as a function of the window extent. The true

integral value is 1.0, indicated in red. The gray shaded distribution shows the unit normal pdf

(right y-axis scale). For the three window extents indicated by the black, vertical lines (Window 1:
|x| < 0.24, Window 2: |x| < 1.61, Window 3: |x| < 4.20) the full distribution of integral estimates

from the 1.5 · 104 trials are plotted on the right side as histograms.

variation in the integral results is largest for small windows due to the small number

of samples used, and for large windows due to the divergence of the harmonic mean

estimator. We discuss the biases in the next section.

2.2. Bias and Uncertainty of the Estimator

We can estimate the bias and uncertainty on Î given in Eq. 11 by separately ana-

lyzing the behavior of r̂ and X̂. As described below, we choose regions ∆ for which

the range of target density values is moderate. For i.i.d. sampling, this would imply,

via the Central Limit Theorem, that X̂ follows a Normal distribution. Assuming we

can approximate the distribution of X̂ with a Normal distribution, we have

P (X̂) ≈ N
(
µ̂X = X̂, σ̂2

X =

∑
λi∈∆( 1

λi
− X̂)2

N∆(N∆ − 1)

)

where P (X̂) is the probability distribution for X̂ with mean µ and variance σ2

estimated from the observed samples. Since X̂ appears in the denominator in Eq. 11,

this produces a bias in our integral of size σ̂2
X/µ̂

2
X . The fractional uncertainty in

our integral estimator is σ̂X/µ̂X .

The estimator r̂ will also typically follow approximately a Normal distribution

with parameters that can be estimated from i.i.d. sampling and Binomial statistics

Fig. 1. (Color online) Demonstration of the reduced harmonic mean technique with the unit
normal distribution. The left panel shows in blue the mean (solid line) and the region covering

68% of results (from 1.5 ·104 repeated trials) of the integral estimates as a function of the window

extent. The true integral value is 1.0, indicated in red. The gray shaded distribution shows the
unit normal pdf (right y-axis scale). For the three window extents indicated by the black, vertical

lines (Window 1: |x| < 0.24, Window 2: |x| < 1.61, Window 3: |x| < 4.20) the full distribution of

integral estimates from the 1.5 · 104 trials are plotted on the right side as histograms.

with wi the weights assigned to the samples at parameter values λi and WΩ =
∑
i wi

the sum of all weights. The use of weights also allows this technique to be applied

to samples obtained from, for example, importance sampling.

2.1. Illustration of the technique

To illustrate our technique for applying harmonic mean integration, we consider

the unit normal distribution p(x) = N (x|µ = 0, σ = 1). A fixed number of samples

(3 · 103) was generated from directly sampling the unit normal distribution, and

Eq. (11) was used to calculate the integral for different subregions ∆. These regions

are defined as windows of x centered on 0 and varied in width from 0.02 up to

9. This was repeated 1.5 · 104 times, and the mean and standard deviation were

evaluated. Figure 1 shows the results of the integration as a function of window

size. As is seen in the figure, harmonic mean integration applied to a finite region

gives an accurate value for the integral over a wide range of sampling windows. The

variation in the integral results is largest for small windows due to the small number

of samples used, and for large windows due to the divergence of the harmonic mean

estimator. We discuss the biases in the next section.

2.2. Bias and uncertainty of the estimator

We can estimate the bias and uncertainty on Î given in Eq. (11) by separately ana-

lyzing the behavior of r̂ and X̂. As described below, we choose regions ∆ for which

the range of target density values is moderate. For i.i.d. sampling, this would imply,
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via the Central Limit Theorem, that X̂ follows a normal distribution. Assuming we

can approximate the distribution of X̂ with a normal distribution, we have

P (X̂) ≈ N
(
µ̂X = X̂, σ̂2

X =

∑
λi∈∆

(
1
λi
− X̂

)2

N∆(N∆ − 1)

)
,

where P (X̂) is the probability distribution for X̂ with mean µ and variance σ2 esti-

mated from the observed samples. Since X̂ appears in the denominator in Eq. (11),

this produces a bias in our integral of size σ̂2
X/µ̂

2
X . The fractional uncertainty in

our integral estimator is σ̂X/µ̂X .

The estimator r̂ will also typically follow approximately a normal distribution

with parameters that can be estimated from i.i.d. sampling and binomial statis-

tics as

P (r̂) ≈ N
(
µ̂r = r̂, σ̂2

r =
r̂(1− r̂)
NΩ

)
.

Since r̂ also appears in the denominator, it will also produce a bias in our integral

of size σ̂2
r/µ̂

2
r. The fractional uncertainty in our integral estimator from r̂ is, in the

approximation of i.i.d. sampling and a normal distribution, σ̂r/µ̂r.

We can therefore write down an explicit correction factor

b =

(
1− σ̂2

X

µ̂2
X

− σ̂2
r

µ̂2
r

)
(13)

that we apply to the integral estimate Î by multiplication.

The correction is illustrated in Fig. 2 using the same numerical experiments

discussed in Subsec. 2.1. The resulting uncorrected and corrected average integral

values are displayed. Focusing on small window sizes, it can be seen that the term
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Fig. 2. Left: The average uncorrected (Eq. 11) and corrected (b · Î) integrals as a function of the

extent of the window used to accept samples. The results are from averaging 1.5 · 104 integration

results, where each integration test was performed from 3 · 103 samples in the full function range.
Right: Individual contributions to the bias correction from the Binomial (r̂) and the 1/f terms.

as

P (r̂) ≈ N
(
µ̂r = r̂, σ̂2

r =
r̂(1− r̂)
NΩ

)

Since r̂ also appears in the denominator, it will also produce a bias in our integral

of size σ̂2
r/µ̂

2
r. The fractional uncertainty in our integral estimator from r̂ is, in the

approximation of i.i.d. sampling and a Normal distribution, σ̂r/µ̂r.

We can therefore write down an explicit correction factor

b = (1− σ̂2
X

µ̂2
X

− σ̂2
r

µ̂2
r

) (13)

that we apply to the integral estimate Î by multiplication.

The correction is illustrated in Fig. 2 using the same numerical experiments

discussed in section 2.1. The resulting uncorrected and corrected average integral

values are displayed. Focusing on small window sizes, it can be seen that the term

from r̂ dominates, as the binomial uncertainty is largest for small numbers of sam-

ples. With the bias correction applied, already for as few as ≈ 20 samples inside

the integration volume (corresponding to roughly |x| < 0.01), accurate results are

produced, while without the correction factor applied much large windows, starting

at around |x| < 0.5, are necessary.

Towards larger windows the bias produced from X̂ become dominant, as the

range of values of f of the contained samples grows. The bias correction successfully

mitigates this effect as illustrated.

Once the window size exceeds the space where samples are present, the integral

starts diverging. For our example using 3 · 103 samples, we expect those to cover a

region up to only |x| ≈ 3.58, which explains well the observed trend.

Fig. 2. Left: The average uncorrected (Eq. (11)) and corrected (b · Î) integrals as a function of the
extent of the window used to accept samples. The results are from averaging 1.5 · 104 integration

results, where each integration test was performed from 3 · 103 samples in the full function range.
Right: Individual contributions to the bias correction from the binomial (r̂) and the 1/f terms.
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from r̂ dominates, as the binomial uncertainty is largest for small numbers of sam-

ples. With the bias correction applied, already for as few as ≈ 20 samples inside

the integration volume (corresponding to roughly |x| < 0.01), accurate results are

produced, while without the correction factor applied much large windows, starting

at around |x| < 0.5, are necessary.

Toward larger windows the bias produced from X̂ become dominant, as the

range of values of f of the contained samples grows. The bias correction successfully

mitigates this effect as illustrated.

Once the window size exceeds the space where samples are present, the integral

starts diverging. For our example using 3 · 103 samples, we expect those to cover a

region up to only |x| ≈ 3.58, which explains well the observed trend.

Many samplers such as MCMC algorithms generate strong correlations among

samples and using the binomial uncertainty discussed here can be inaccurate. We

therefore also numerically evaluate the uncertainty as described in detail below.

The integration regions are chosen such that the bias correction can be neglected.

2.3. Relation to other techniques for evidence calculation

A variety of techniques to calculate the marginal likelihood in Bayesian calcula-

tions have been successfully developed. A summary can be found in Ref. 8, where

a number of MCMC related techniques are reviewed, including Laplace’s method,9

harmonic mean estimation,4 Chib’s method,10 annealed importance sampling tech-

niques,11,12 nested sampling13 and thermodynamic integration methods.14,15 Only

the HME and Laplace techniques allow the direct estimation of the evidence from

available samples, and the Laplace technique makes the unwanted assumption that

the target density is a single multivariate Gaussian. The Laplace approximation

fails badly for multimodal distributions or distributions with significant probability

mass in the tails of the distribution.

In the Bayesian literature,4 the HME for the evidence, Z, is formulated as

follows:

1

Z
=

∫
P (λ|Data,M)

P (Data|λ,M)
dλ (14)

= E

[
1

P (Data|λ,M)

]

P (λ|Data,M)

. (15)

The difference with our formulation is that the prior P0(λ|M) is not included in

the expectation value, and the integration volume does not appear. In order to

perform this HME calculation, it is necessary to know separately the value of the

likelihood and the prior at the sampling points. The HME method has been strongly

criticized (even called “worst Monte Carlo method ever”16), since the evaluation of

the denominator in Eq. (14) can have very large variance. Reducing the variance

by limiting the integration region is not as straightforward as in our formulation

since it requires an integral of the prior function over the reduced support whereas

this is not needed in our formulation.
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3. An Adaptive Harmonic Mean Integration Algorithm

Adaptive Harmonic Mean Integration (AHMI) uses the HME on multiple subregions

∆i to estimate the integral of f(λ) over its full support Ω. In this section we

present our example algorithm in detail and will show benchmark tests on several

distributions in Sec. 4. As discussed previously, defining a set of suitable regions

is crucial in obtaining a robust and unbiased estimate of the integral of f(λ). In

particular, to avoid biasing the result, it is essential not to use the same elements

of the sample set {Λ} for both the definition of ∆i and estimates of the integral Îi.

(1) Start with samples {Λ} from

density f(λ) and apply

whitening transformation.

(2) Split into two mutually

exclusive, uncorrelated and

equally sized subsets A and B.

(3) Generate seed points λseed
i (via

space partitioning tree).

(4) Create a small hyper-cube ∆̃i

around each seed point λseed
i .

(5) Adjust the faces of the

hyper-cubes, resulting in

hyper-rectangles.

(6) Use the resulting

hyper-rectangles ∆B
i created

with sample {ΛB} for the

harmonic mean estimates ÎAi
on {ΛA} and vice versa.

(7) Use individual estimates Îi to

compute combined estimate

and variance for A and B.

(8) Compute final estimate by

combining the independent

estimates ÎA and ÎB weighted

by their variance.
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The general flow of the AHMI algorithm, including the procedure of defining

the ∆i, is summarized in Fig. 3. The various involved steps are discussed in more

technical detail in the following subsections.

(1) Start with samples {Λ} from

density f(λ) and apply whiten-

ing transformation

{Λ}

(2) Split into two mutually ex-

clusive, uncorrelated and equally

sized sub-sets A & B

{ΛA} {ΛB}

(3) Generate seed points λseed
i

(via space partitioning tree)
λseed,A
i λseed,B

i

(4) Create a small hyper-cube

∆̃i around each seed point λseed
i

∆̃A
i ∆̃B

i

(5) Adjust the faces of the

hyper-cubes, resulting in hyper-

rectangles

∆A
i ∆B

i

(6) Use the resulting hyper-

rectangles ∆B
i created with sam-

ple {ΛB} for the harmonic mean

estimates ÎAi on {ΛA} and vice-

versa

ÎAi ({ΛA} ∈ ∆B
i ) ÎBi ({ΛB} ∈ ∆A

i )

(7) Use individual estimates Îi
to compute combined estimate

and variance for A & B

ÎA, σ
2
A ÎB , σ

2
B

(8) Compute final estimate by

combining the independent es-

timates ÎA and ÎB weighted by

their variance.

Î

Fig. 3. Overview of the different steps in the AHMI algorithm, including the procedure of finding
subvolumes ∆i and computing integral estimates Îi.
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The general flow of the AHMI algorithm, including the procedure of defining

the ∆i, is summarized in Fig. 3. The various involved steps are discussed in more

technical detail in the following subsections.

3.1. Samples, preprocessing and splitting

We start with a given set of samples {Λ} that we assume are drawn according to

the probability distribution proportional to our function f , obtained for example

from MCMC sampling.

In order to de-correlate the sample space we apply a whitening transformation.

In general, a whitening transformation maps a set of random variables with a known

nonsingular covariance matrix to a new set of variables with a covariance matrix

equal to I. A Cholesky Decomposition is used to whiten the samples, and the AHMI

estimator for the integral becomes

Î =
WΩV

′
∆

detR ·∑λ′
i∈∆

wi

f(λ′
i)

, (16)

where detR is the determinant of the whitening matrix and the primed symbols

represent the quantities in the transformed space. In the following we drop this

explicit addition of prime symbols and work in the whitened space (unless otherwise

stated).

The full set of samples is then divided into two equally sized and mutually

exclusive subsets A and B.

3.2. Hyper-rectangle generation

We illustrate the hyper-rectangle generation steps in more detail using a two-

dimensional Gaussian shell example with distribution

f(λ|~c, r, ω) =
1√

2πω2
exp

(
− (|λ−~c| − r)2

2ω2

)
. (17)

In our examples, we use the following settings: radius r = 5, width ω = 2 and

~c = ~0. The integration region extends from [−25, 25] in each dimension. Samples

from this distribution are shown in Fig. 4(a).

The algorithm starts by creating seed points around which to construct the

integration regions ∆i. These points should lie in areas of high density and should

result in broadly distributed starting points. In order to limit computation time, a

simple space-partitioning tree is used to divide the whitened space into subsets of

nonoverlapping regions. A tree is constructed by performing cuts in every dimension

in such a way to have an equal number of samples on the left and right leaves. The

number of cuts in each parameter axes is determined by the total number of samples

and the number of dimensions and is chosen in a way, that the number of samples

in each leaf does not exceed 200. An example of such a space-partitioning tree is
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Fig. 4. Process of finding integration regions in a two dimensional example for the Gaussian shells
test function.

the following condition:

fmax

fmin
≤ t . (18)

Although this threshold is user-selectable, by default it is equal to 500 (an example

of integration with different threshold values is shown in Sec. 4.1).

To createM regions for integration, we select the seed point λseed
i with the overall

largest value f(λseed
i ) and follow the steps below. Then we recursively repeat the
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the following condition:

fmax

fmin
≤ t . (18)

Although this threshold is user-selectable, by default it is equal to 500 (an example

of integration with different threshold values is shown in Sec. 4.1).

To createM regions for integration, we select the seed point λseed
i with the overall

largest value f(λseed
i ) and follow the steps below. Then we recursively repeat the

(d) Hyper-rectangles after adjustments. Only
the red hyper-rectangles are used in the final
integral estimate.

Fig. 4. Process of finding integration regions in a two-dimensional example for the Gaussian
shells test function.

shown in Fig. 4(b). For each partition i, the sample with the largest function value

contained in that partition is defined as seed point λseed
i .

The following steps produce hyper-rectangle-shaped regions suitable for AHMI.

In order to limit this variance and ensure numerical stability, the ratio between the

highest and the lowest probability of samples inside a hyper-rectangle is bound by
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the following condition:

fmax

fmin
≤ t . (18)

Although this threshold is user-selectable, by default it is equal to 500 (an example

of integration with different threshold values is shown in Subsec. 4.1).

To create M regions for integration, we select the seed point λseed
i with the

overall largest value f(λseed
i ) and follow the steps below. Then we recursively repeat

the same procedure M − 1 times using the remaining seed points.

(1) The algorithm starts by building a small hyper-cube ∆̃i around the selected

seed point λseed
i , see Fig. 4(c).

(2) This hyper-cube is then incrementally either increased or decreased in size,

until the probability ratio of contained samples matches the threshold t within

some tolerance, or until it contains more than 1% of the total samples.

(3) The faces of the hyper-cube are then iteratively adjusted (expand or contract),

to adapt to the density of the contained samples, while enforcing the condition

fmax/fmin ≤ t. This step turns the D-dimensional hyper-cube into a D-

dimensional hyper-rectangle. This hyper-rectangle adaptation algorithm con-

tinues as long as changes to the hyper-rectangle’s faces are accepted. The

stopping criterion is based on the fraction of samples accepted or rejected com-

pared to expectation from the volume change. However, the hyper-rectangle

adaption algorithm always ensures that no modification to the hyper-rectangle’s

faces are made if such a modification would result in fmax/fmin > t.

Figure 4(d) shows the resulting set of M hyper-rectangles for our example.

An in-depth description of the algorithm can be found in Ref. 19 and an open-

source implementation of it is available as part of the BAT.jl software package.20

3.3. Integral estimates

Once M integration regions are defined, we can compute the integral estimates ÎAi
for each ∆B

i , according to Eq. (12). The procedure is the same for ÎBi , so we shall

drop the superscripts A and B in the following two subsections. The two resulting,

separate estimates ÎA and ÎB will then be combined in Subsec. 3.5 to obtain the

final estimate.

From the distribution of all estimates Îi we select only the 68% central percentile

to reject outliers — a procedure that was empirically found to work well. This is

indicated in Fig. 4(d) labeled as “accepted” and “rejected” rectangles. We proceed

to combine the remaining estimates Îi into a single estimate Î using a robust and

unbiased estimator for the combination of correlated measurements as suggested in

Ref. 17

Î =
∑

i

wiÎi , σ2(Î) =
∑

i,j

wiwj σ̄ij , (19)
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where the weights wi are defined as:

wi =

1
σ̄2
i∑
j

1
σ̄2
j

. (20)

The variances σ̄2
i ≡ σ̄ii and covariances σ̄ij of the mean assigned to integration

regions ∆i and ∆j are estimated in the next section.

3.4. Covariance estimate

The following procedure is used to estimate the covariance between individual in-

tegral estimates Îi:

(1) We partition {Λ} into a number S of subsets {Λ1}, {Λ2} · · · {ΛS}, chosen in a

way that reduces their correlation. The default value for S is 10.

(2) Separate estimates Îi,k (k enumerates the S partitions) of the integral are then

performed for all sample subsets {Λk} resulting in S integral estimates for each

subspace ∆i: [
Îi,1 Îi,2 · · · Îi,S

]
.

(3) The covariance of the separate integral values then is

σ2
ij =

1

S − 1

S∑

k=1

(Îi,k − Īi)(Îj,k − Īj)

with

Īi =
1

S

S∑

k=1

Îi,k .

(4) The estimate of the covariance of Īi ≈ Îi and Īj ≈ Îj is then σ̄2
ij =

σ2
ij

S .

3.4.1. Alternative covariance estimation method

As S cannot be large without requiring a very large number of samples, the entries

of σ̄ij tend to be noisy. In practice, we have found this to be tolerable. However,

we have developed an optional alternative procedure to estimate σ̄ij , for use cases

where the total number of samples does not allow for a sufficient number of subsets.

The diagonal elements σ̄2
ii can be estimated based on the theoretical uncertain-

ties derived in Subsec. 2.2, using the effective number of samples (estimated from

the autocorrelation of the samples).

The off-diagonal elements σ̄i 6=j are estimated heuristically, based on the overlap

of the hyper-rectangles (quantified as the total weight of the samples they share):

σ̄i 6=j = ρi 6=j σ̄iσ̄j ,

where

ρi 6=j =
W∩(i, j)

W∪(i, j)
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with W∩(i, j) and W∪(i, j) being the number of weighted samples in ∆i ∩∆j and

∆i ∪∆j , respectively.

Some details of this alternative procedure are still under development, so we do

not present an in-depth description and formal arguments for it is validity here.

We have observed close agreement with the empirical covariance (step 3) in many

cases and hope to further refine this method in the future.

3.5. Final AHMI integral estimate

As we have now obtained two values of Î and two variances σ2(Î) from the two sets

{ΛA} and {ΛB}, we combine those into the final result like

Î =
ÎA/σ2

A + ÎB/σ2
B

1/σ2
A + 1/σ2

B

with variance estimate

σ2 =

(
1

σ2
A

+
1

σ2
B

)−1

.

4. Benchmark Examples

To validate our algorithm, we apply it to estimate the integral of several test func-

tions in varying dimensionality (up to d = 25) for which an analytic (or accurate

numerical) solution of the integral value is available.

The test functions were chosen to pose different challenges to the algorithm.

For our first test problem, we start with the canonical example of a multivariate

normal distribution. For the second test case we look at Gaussian shells, for which

the mode of the distribution does not lie on a single point but has infinite modes

on (d−1)-dimensional surface. Next we study the heavy-tailed Cauchy distribution

with multiple modes, and in the end explore the asymmetric “Funnel” function.

Additional information of the number of integration volumes used and the compu-

tation time are only provided for the first example, as these are very similar for the

other three examples.

The samples {Λ} on which our integration is based are obtained from

Metropolis–Hastings MCMC,20 and in the case of the multivariate normal from

i.i.d. sampling. The sample size is fixed to 2 · 106 for Gaussian shells example and

it is equal to 106 for other examples.

4.1. Multivariate normal distribution

The first test case is a unit normal distribution (centered at zero, width one) in

two up to 25 dimensions. The samples input to AHMI are obtained from i.i.d.

sampling. The resulting integral estimates are shown in Fig. 5 as a function of the

dimensionality for three different threshold values t = [100, 500, 1000].
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of the algorithm and will be the subject of future studies. The coverage for one

standard error for t = 500 (220 trials) is 0.52±0.03. For the threshold value t = 100

we get an unbiased integral estimate up to 14 dimensions, and after that hyper-

rectangles can no longer be created. The default value of t = 500 was used for the

remaining examples below.
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as a function of dimensionality for three threshold values t = [100, 500, 1000]. The solid black

lines give the mean result over ten independent trials and the shaded bands show the standard

deviation of these trials. The dashed lines show the average errors reported by AHMI. Samples
are obtained from i.i.d. sampling, 106 for each run.

For both threshold values, t = [500, 1000], we get unbiased and consistent results

up to around 21 dimensions, after which results start to become positively biased for

t = 1000. This bias seems to be intrinsic to the method itself or our implementation

of the algorithm and will be the subject of future studies. The coverage for one

standard error for t = 500 (220 trials) is 0.52 ± 0.03. For the threshold value

t = 100 we get an unbiased integral estimate up to 14 dimensions, and after that
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hyper-rectangles can no longer be created. The default value of t = 500 was used

for the remaining examples below.

In Fig. 6 we show the execution time of the algorithm, and the number of

hyper-rectangles used for integration for the threshold value t = 500. The execution

time rises with the number of dimensions almost linearly. The change in slope at

low dimensionality is likely due to CPU caching behavior. The number of hyper-

rectangles starts to decay after 18 dimensions indicating that there exist fewer

hyper-rectangles that satisfy Eq. (18).

4.2. Gaussian shell distribution

The functional form was given in Eq. (17) and an example distribution in the first

two dimensions is shown in Fig. 7. The AHMI algorithm results (Fig. 8) show a
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The functional form was given in Eq. 17 and an example distribution in the first two
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standard error of 0.48± 0.04 (160 trials).

4.3. Multimodal Cauchy Distribution

The Cauchy distribution, with its heavy tails, is a notoriously difficult problem and

used here to point out possible weaknesses of our algorithm. We further increase

complexity for the hyper-volume creation process by using four separate, shifted

Cauchy distributions creating multiple modes. The functional form can be written
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Fig. 7. One and two dimensional distributions of samples along the first two dimensions of the
Gaussian shell target function.

Fig. 7. One- and two-dimensional distributions of samples along the first two dimensions of the
Gaussian shell target function.
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Fig. 8. AHMI value for the Gaussian shell distribution as ratio to the true integral shown as a

function of dimensionality. The solid line gives the mean result over ten independent trials and
the shaded band show the standard deviation of these trials. The dashed lines show the average

errors reported by AHMI. The samples are obtained from Metropolis–Hastings MCMC and the

sample size is 2 · 106.

similar behavior as for the multivariate normal distribution for this more compli-

cated test function. However, integration was possible up to 17 dimensions. Up to

that point the integral estimates, including errors, are well behaved, with a coverage

for one standard error of 0.48± 0.04 (160 trials).

4.3. Multimodal Cauchy distribution

The Cauchy distribution, with its heavy tails, is a notoriously difficult problem

and used here to point out possible weaknesses of our algorithm. We further in-

crease complexity for the hyper-volume creation process by using four separate,

shifted Cauchy distributions creating multiple modes. The functional form can be

written as

f(λ) =

2∏

i=1

1

2
[Cauchy(λi|µ, σ) + Cauchy(λi| − µ, σ)]

×
n∏

j=3

Cauchy(λj |0, σ) , (21)

where µ = 1, σ = 0.2 and n is a dimensionality of λ. An example of this target

distributions is provided in Fig. 9. The integration region extends from [−8, 8] in

each dimension. Our results are collected in Fig. 10 and indicate that integration is

possible up to seven dimensions, given the fixed sample size of 106. For this range,

the AHMI results are very reliable. The coverage (120 trials, one standard error)

for this function is 0.42± 0.05.
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as

f (λ) =
2∏

i=1

1

2
[Cauchy (λi | µ, σ) + Cauchy (λi | −µ, σ)] ·

n∏

j=3

Cauchy (λj | 0, σ) ,

(21)

where µ = 1, σ = 0.2 and n is a dimensionality of λ. An example of this target

distributions is provided in Fig. 9. The integration region extends from [−8, 8] in

each dimension. Our results are collected in Fig. 10 and indicate that integration is

possible up to seven dimensions, given the fixed sample size of 106. For this range,

the AHMI results are very reliable. The coverage (120 trials, one standard error)

for this function is 0.42± 0.05.

4.4. Funnel Distribution

The final problem we study is the so-called “Funnel” distribution, that is described

in.21 The functional form of this distribution can be written as

f (λ) = N
(
λ1 | 0, a2

) n∏

i=2

N (λi | 0, exp (2bλ1)) , (22)

where a = 1, b = 0.5 and n is a dimensionality of λ. An example of the distribution

in its first three dimensions on the parameter range [−50, 50] is provided in Fig. 11.

The results (Fig. 12) show a similar performance as for the previous example with

reliable estimates up to seven dimensions, with a coverage of 0.41±0.04 (120 trials,

one standard error).

Fig. 10. AHMI value for the multimodal Cauchy distribution as ratio to the true integral shown
as a function of dimensionality. The solid line gives the mean result over twenty independent

trials and the shaded band show the standard deviation of these trials. The dashed lines show the

average errors reported by AHMI.
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5. Conclusion

We have developed an Adaptive Harmonic Mean Integration (AHMI) algorithm

that can be used to integrate a non-normalized density function using the samples

Fig. 11. One- and two-dimensional distributions of samples along the first three dimensions of

the Funnel target function.
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5. Conclusion

We have developed an Adaptive Harmonic Mean Integration (AHMI) algorithm

that can be used to integrate a non-normalized density function using the samples

Fig. 12. AHMI value for the “Funnel” distribution as ratio to the true integral shown as a
function of dimensionality. The solid line gives the mean result over twenty independent trials,

with the shaded band showing the standard deviation of these trials. The dashed lines show the
average errors reported by AHMI.
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4.4. Funnel distribution

The final problem we study is the so-called “Funnel” distribution, that is described

in Ref. 21. The functional form of this distribution can be written as

f(λ) = N (λ1|0, a2)

n∏

i=2

N (λi|0, exp(2bλ1)) , (22)

where a = 1, b = 0.5 and n is a dimensionality of λ. An example of the distribution

in its first three dimensions on the parameter range [−50, 50] is provided in Fig. 11.

The results (Fig. 12) show a similar performance as for the previous example with

reliable estimates up to seven dimensions, with a coverage of 0.41±0.04 (120 trials,

one standard error).

5. Conclusion

We have developed an Adaptive Harmonic Mean Integration (AHMI) algorithm

that can be used to integrate a non-normalized density function using the samples

drawn according to the probability distribution proportional to the function. The

fundamental assumption is that the sampling algorithm has faithfully produced

samples from this distribution. Given this, the AHMI algorithm can be used to

produce both an estimate of the integral of the function over its full support as

well as an estimate of the uncertainty of the integral. In this first implementation

of the AHMI algorithm, finite hyper-rectangles are generated in the whitened space

of the samples covering the full support. The adaptive algorithm ensures that the

range of function values enclosed by the hyper-rectangles is limited such that the

variance of the integral results are moderate. This allows for reliable results both

for the integral values as well as for reliable uncertainty estimates.

The algorithm has been tested on a number of examples and found to produce

reliable and unbiased integral estimates up to around 20 dimensions for the first

two test problems, and up to seven for the latter two, more difficult test cases.

The reported errors provide a useful measure of uncertainty, while slightly under

covering at around 40–50% (expecting 68%). The use of hyper-rectangles however

limits the applicability to a not-too-large number of dimensions (≈ 20 in the case

of the multivariate normal distribution) because a large fraction of the volume is in

the corners of the hyper-rectangles. In cases where we have a unimodal distribution,

we anticipate that regions defined as shells between hyper-spheres of different radii

would be more appropriate. We leave this for a future development of the algorithm.
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