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Abstract 

Non-invasive glucose sensing has been a long sought after target in diabetes 

management, promising to avoid the inconvenient monitoring of blood glucose based 

on direct blood measurements by finger prick. Currently, reliable glucose sensing is 

done with the Clarke electrode, which requires invasive blood measurements, which 

are inconvenient for daily use. Minimally invasive biochemical sensing (mostly 

transdermal) has offered a promising alternative to glucose sensing, avoiding the use 

of blood samples. However, these technologies indirectly sense glucose in the 

interstitial fluid, sweat, salvia, or tear, and not in blood, coming with a recommendation 

to verify traditional blood sampling readings. Moreover, transdermal measurements of 

glucose concentrations suffer from low reproducibility because of changes in the 

volumes of extracted tear, salvia, sweat, or ISF, dilution, and evaporation of these fluids 

prior to sampling, as well as contamination, irritation, and variations in skin temperature 

and pH. Optical and optoacoustic methods have also been investigated for glucose 

sensing and offer non-invasive operation, which provides better tolerability and safety 

over fluid sensing techniques. Despite these advances, the accuracy and precision of 

previously reported optical and optoacoustic studies are all limited by their use of 

indiscriminate “bulk skin” measurements to quantify glucose. These inaccuracies can 

arise from variations in background absorption between different skin layers. Last but 

not least, all previous optical and optoacoustic methods are limited when measuring 

target molecules in aqueous solution by strong water absorption, particularly at infrared 

wavelengths, reducing detection sensitivity. 

 

In this study, we propose a new non-invasive glucose measuring concept that senses 

glucose within the blood vasculature, i.e., at the organ of interest where glucose offers 
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the highest concentration. This is achieved by a layer-specific optoacoustic sensor 

(LSOS) operating in the short-wavelength infrared (SWIR). Powered by machine 

learning, LSOS identifies different skin layers and characterizes glucose concentration 

in the highly vascular hypodermal plexus. Validated against blood-glucose strips 

serving as the gold-standard, we observed that the hypodermis' glucose 

measurements showed a higher correlation coefficient. We conclude that layer-specific 

detection is essential for optical measurements through the skin and can lead to a new 

portable glucose sensing concept. 

 

To avoid the problem of water absorption, which is a common problem in all IR 

spectroscopies, we suggested another technique to push the limitation of previous 

spectroscopy techniques.  Based on the optoacoustic signal's dependence on the 

temperature of the probed medium, we introduce cooled IR optoacoustic spectroscopy 

(CIROAS) to mute water contributions in optoacoustic spectroscopy. We showcase 

that spectral measurements of proteins, lipids, and glucose in the short-wavelength 

infrared (SWIR) region, performed at 4 °C, lead to marked sensitivity improvements 

over conventional optoacoustic or IR spectroscopy. We elaborate on optoacoustic 

signals' dependence on water temperature and demonstrate polarity changes in the 

recorded signal at temperatures below 4 °C. We further elucidate the optoacoustic 

signal's dependency and the muting temperature on sample concentration and 

demonstrate that changes in these dependencies enable quantification of the solute 

concentration. We discuss how CIROAS may enhance the abilities for molecular 

sensing in the infrared. 
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Abstrakt 

Nicht-invasive Glukoseerfassung ist seit langem ein begehrtes Ziel bei der Behandlung 

von Diabetes und verspricht, die unbequeme Überwachung des Blutzuckers auf der 

Grundlage direkter Blutmessungen mit einem Fingerabdruck zu vermeiden. Derzeit 

erfolgt eine zuverlässige Glukoseerfassung mit der Clarke-Elektrode, für die invasive 

Blutmessungen erforderlich sind, die aber für den täglichen Gebrauch unpraktisch sind. 

Die minimal-invasive biochemische Messung (meistens transdermal) bietet eine 

vielversprechende Alternative zur Glukoseerfassung, wobei die Verwendung von 

Blutproben vermieden wird. Diese Technologien erfassen jedoch indirekt Glukose in 

der interstitiellen Flüssigkeit, im Schweiß, im Salvia oder in der Träne und nicht im Blut, 

und es dabei wird empfohlen, die herkömmlichen Blutproben zu überprüfen. Darüber 

hinaus leiden transdermale Messungen der Glukosekonzentrationen unter einer 

geringen Reproduzierbarkeit aufgrund der Änderungen des Volumens der extrahierten 

Tränen, Salbei, Schweiß oder ISF, Verdünnung und Verdunstung dieser Flüssigkeiten 

vor der Probenahme sowie Kontamination, Reizung und Hautveränderungen 

Temperatur und pH. Optische und optoakustische Methoden wurden ebenfalls für die 

Glukoseerfassung untersucht und bieten eine nicht-invasive Funktionsweise, der eine 

bessere Verträglichkeit und Sicherheit gegenüber Flüssigkeitserfassungstechniken 

bietet. Trotz dieser Fortschritte sind die Genauigkeit und Präzision der zuvor 

gemeldeten optischen und optoakustischen Studien durch die Verwendung wahlloser 

Messungen der Hautmasse zur Quantifizierung von Glukose begrenzt. Diese 

Ungenauigkeiten können sich aus Schwankungen der Hintergrundabsorption 

zwischen verschiedenen Hautschichten ergeben. Last but not least sind alle bisherigen 

optischen und optoakustischen Verfahren begrenzt, wenn Zielmoleküle in wässriger 

Lösung durch starke Wasserabsorption, insbesondere bei Infrarotwellenlängen, 

gemessen werden, wodurch die Nachweisempfindlichkeit verringert wird. 

 

In dieser Studie schlagen wir ein neues nicht-invasives Glukosemesskonzept vor, das 

Glukose im Blutgefäßsystem erfasst, d. H. An dem interessierenden Organ, an dem 

Glukose die höchste Konzentration bietet. Dies wird durch einen schichtspezifischen 

optoakustischen Sensor (LSOS) erreicht, der im kurzwelligen Infrarot (SWIR) arbeitet. 

Durch maschinelles Lernen identifiziert LSOS verschiedene Hautschichten und 

charakterisiert die Glukosekonzentration im hochvaskulären Plexus hypodermalis. 
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Validiert gegen Blutzuckerstreifen, die als Goldstandard dienen, beobachteten wir, 

dass die Glukosemessungen der Hypodermis einen höheren Korrelationskoeffizienten 

zeigten. Wir schließen daraus, dass die schichtspezifische Detektion für optische 

Messungen durch die Haut wesentlich ist und zu einem neuen tragbaren Glukose-

Sensorkonzept führen kann. 

 

Um das Problem der Wasserabsorption zu vermeiden, das bei allen IR-Spektroskopien 

häufig auftritt, haben wir eine andere Technik vorgeschlagen, um die Beschränkung 

früherer Spektroskopietechniken zu verschieben. Basierend auf der Abhängigkeit des 

optoakustischen Signals von der Temperatur des untersuchten Mediums führen wir 

die gekühlte optoakustische IR-Spektroskopie (CIROAS) ein, um die Wasserbeiträge 

in der optoakustischen Spektroskopie zu dämpfen. Wir zeigen, dass spektrale 

Messungen von Proteinen, Lipiden und Glucose im kurzwelligen Infrarotbereich 

(SWIR) bei 4 ° C zu deutlichen Empfindlichkeitsverbesserungen gegenüber 

herkömmlicher optoakustischer oder IR-Spektroskopie führen. Wir gehen auf die 

Abhängigkeit optoakustischer Signale von der Wassertemperatur ein und zeigen 

Polaritätsänderungen im aufgezeichneten Signal bei Temperaturen unter 4 ° C. Wir 

untersuchen die Abhängigkeit des optoakustischen Signals und die Muting-

Temperatur von der Probenkonzentration weiter und zeigen, dass Änderungen dieser 

Abhängigkeiten eine Quantifizierung der Konzentration gelöster Stoffe ermöglichen. 

Wir erforschen, wie CIROAS die Fähigkeit zur molekularen Erfassung im Infrarot 

verbessern kann. 
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1 Introduction 

Diabetes is a chronic metabolic disorder that is considered to be one of the main 

threats to human health in the 21st century, mainly because of lifestyle changes [1]. 

More than 420 million humans suffer due to diabetes worldwide [1], and the incidence 

rate is increasing. A primary necessity for diabetes management today relies on 

frequent and accurate glucose sensing. Glucose sensing could enable maintain blood 

glucose at normal levels and guide the dosage of insulin to be administered [2]. The 

conventional glucose sensor, the glucometer, is a biochemical sensor that requires an 

invasive measurement (fingerpick) to obtain blood for direct glucose measurement. 

The Clark electrode, first introduced by Leland Clark in 1962 [3], is a sensor that uses 

an enzyme electrode that converts glucose concentration to electrical current. 

Nevertheless, despite its widespread use, the need for frequent glucose monitoring 

has launched wide-reaching research into technologies that could detect blood glucose 

levels without the need to obtain blood droplets (invasive measurement). Repeated 

glucose measurement is required for proper diabetes management, and any invasive 

approach leads to large discomfort to the patients. The non-invasive measurement of 

blood glucose has thus become a Holy Grail in the management of diabetes, and 

several alternative approaches are being investigated to produce a new generation of 

glucose sensors. 

Minimally invasive approaches for glucose detection have been pursued in recent 

years. The most promising of these technologies are based on transdermal electro-

impedance spectroscopy or electro-osmosis techniques, wherein sweat is extracted 

from the skin surface, or interstitial fluid (ISF) is extracted; these fluids are then used 

to measure metabolites by enzyme electrodes [4], [5]. These techniques are the basis 
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for the Gluco Watch Biographer [6], tattoo based iontophoresis [4], and path selective 

iontophoresis [7]. However, transdermal measurements can lead to skin irritation due 

to the electrical current needed to extract sweat or ISF. Furthermore, the glucose 

concentrations in sweat and ISF do not directly represent the concentration of glucose 

in the blood, as analytes enter these fluids by diffusion from surrounding capillaries 

(leading to dilution of 10-1000 times in ISF and sweat, respectively) [8], [9]. The 

transdermal measurements of glucose concentrations suffer from low reproducibility 

because of changes in the volumes of extracted sweat or ISF, evaporation of these 

fluids prior to sampling, and other variations like skin temperature and pH. As a result 

of transdermal sensors' unreliability, readings often need to be calibrated by a 

conventional finger-prick test before each measurement, resulting in not repeatable 

glucose readings.  

Saliva [10], [11] and tears [12], [13] are also desirable targets to be sampled for indirect, 

non-invasive blood glucose quantification, as they contain readily accessible 

biomarkers, including glucose [14]. However, glucose concentrations in saliva and 

tears correlate even more poorly (diluted more than 1000 times) with blood glucose 

concentration than using ISF and sweat. Furthermore, it is also challenging to obtain 

consistent glucose measurements from saliva and tears due to irregular fluid excretion 

rates, very low glucose concentrations, contamination, and variations in pH and 

temperature. Thus, glucose measurements from saliva and tear are not reliable and 

reproducible [8], [9]. Such limitations led to the discontinuation of work on the ocular 

wearable biosensor, produced in a collaboration between Google and Novartis [12]. 

Optical methods have also been investigated for glucose sensing and offer non-

invasive operation, which provides better tolerability and safety over fluid sensing 

techniques. Generally, optical glucose sensing relies on detecting a change in the 
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tissue interrogated optical property as a function of glucose concentration. 

Spectroscopic techniques have been proposed in the near-infrared (NIR, 750 – 1300 

nm), short-wavelength infrared (SWIR, 1300 – 2500 nm), or mid-infrared (MIR, 2500 – 

10000 nm) [15]–[17] for detecting wavelength-specific changes in optical absorption 

due to glucose concentration [15],[18].  However, optical detection of glucose is 

complicated due to strong background signals from other tissue moieties. Moreover, 

due to the strong photon scattering in tissue, optical sensing interrogates bulk tissue 

measurements, diluting the glucose signal's contribution and reducing sensitivity. In 

addition, the varying optical properties of different skin types and tissues [19], [20] 

further affect the signal recorded and therefore the accuracy of the glucose 

concentration measurements. The mid-infrared region has gained wide-spread 

attention for glucose sensing [21]–[25] since the absorption signal of glucose in this 

spectral region is narrower and more pronounced than other optical wavelength bands, 

potentially leading to higher accuracy, sensitivity, and specificity in glucose detection. 

However, MIR detection suffers from low penetration (only a few micrometers) in the 

skin due to high attenuation by water, as well as expensive light sources, which has 

limited the development of glucose measurement devices. Scattering contrast has also 

been explored for glucose sensing. In principle, Raman scattering provides sharp 

glucose spectral signatures that offer good contrast over the background [26]. However, 

the signal-to-noise ratio achieved is generally very low, necessitating very long 

acquisition times prone to measurement errors [27]. Optical coherent tomography 

(OCT) has also been applied for noninvasively determining the glucose concentration 

by measuring changes in the index of refraction as a function of glucose concentration. 

Although the technology showed promise in clinical trials carried out by the company 

GlucoLight [28], OCT is limited by its sensitivity to motion, skin temperature, pH, and 
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humidity. Furthermore, the measured signal changes are relatively small and can be 

disproportionally affected by other physiological parameters [29]. These confounding 

factors have limited the application of optical techniques for accurate glucose sensing: 

despite decades of research with optical interrogation, no optical technology has so far 

been successfully applied to clinical practice.  

Recently, optoacoustic methods have been considered as an alternative to optical 

technologies for glucose sensing. Optoacoustic operates by using light to generate 

ultrasonic waves in the biological tissue. The absorption of transient light energy 

generates ultrasound by tissue absorbers due to thermoelastic expansion. By using 

ultrasound detection instead of photon detection, optoacoustic sensors can measure 

in reflection mode; in contrast to optical spectroscopy, which typically requires 

transmission measurements [30]. This principle has been put to use in mid-infrared 

(MIR) optoacoustic spectroscopy for non-invasive glucose sensing [31]–[36],  

demonstrating that almost 100% of the measured glucose values from three volunteers 

were in Zone A + B of a Clarke Error Grid (CEG) [32]. Despite the advantage of 

operation in reflectance mode, MIR optoacoustic requires Quantum Cascade Lasers 

(QCL), which are expensive and large form factor light sources not appropriate for 

point-of-care diagnostics. Moreover, due to insufficient light penetration because of the 

high attenuation of MIR radiation by water [29], the method only indirectly estimates 

glucose concentrations in the interstitial fluid (ISF) or peritoneal fluid, i.e., offering a 

similar limitation as biochemical sensors. To sum up, after all the efforts up to now, non 

of the mentioned approaches were able to produce a commercial sensor for non-

invasive glucose monitoring. 

 



5 

 

1.1 Goals and objectives 

This dissertation aims to used optoacoustic spectroscopy to detect metabolite in vivo 

and non-invasively at the short-wavelength near-infrared (SWIR) regime. This study 

aims to design a sensor to detect the glucose concentration in the skin's most 

informative region. Such a capability would help improve the lifestyle of almost 420 

million diabetic patients who suffer from a lack of non-invasive, continuous glucose 

monitoring sensor. The majority of the studies in this particular area have just 

reported in-vitro results. Comparing the approaches presented in this study and 

previous studies, our approaches made it possible to detect metabolite at higher 

sensitivity and selectivity in-vivo and in-situ. This study first involved detecting 

metabolite (i.e., glucose) from the most informative skin region where we have a higher 

concentration of that metabolite. To achieve this, an optoacoustic sensor was designed 

and developed to allow sampling of the epidermal and dermal layers. Consequently, 

we developed a layer-selective optoacoustic sensing method at the short wave near-

infrared (SWIR) regime and interrogated the accuracy of glucose concentration 

determination for measurements obtained from different skin layers. Layer selection 

was performed using a machine learning algorithm trained to identify the skin surface 

and different layers of the skin. Next study involved creating an infrared spectroscopy 

method that may overcome the boundaries of existing Raman or IR spectroscopy 

implementations and improve the sensitivity and accuracy attained in detecting solute 

concentration in aqueous solution. We hypothesized that we might be able to increase 

the sensitivity of optoacoustic spectroscopy by decreasing water contribution using 

temperature modulation of the sample being examined. This specific hypothesis relies 

on the fact that water expansion becomes zero at 4 °C. Therefore, we aimed to remove 
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the substantial contributions from water on the signal collected in the NIR-II window 

and detect these moieties with higher sensitivity at 4 °C. 

1.2 Structure of dissertation and outline 

This work is divided into five chapters. Chapter 1 is an overall introduction containing 

the importance of noninvasive sensors for diabetes and as well as the ultimate goal of 

the dissertation. Chapter 2 is a description of the principles discussed along with the 

study, such as optoacoustic spectroscopy and principles. Chapter 3 presents the 

development of a layer-selective optoacoustic sensor (LSOS) to detect glucose 

concentration in vivo and noninvasively. In this chapter, we discuss the experimental 

setup, measurements, and data analysis procedures. The results obtained from 16 

mice are then presented and discussed at the end of the chapter.  Chapter 4 presents 

the development of a cooled IR optoacoustic spectrometer (CIROAS). Next, CIROAS 

sensors application for in situ measurements to detect metabolites such as glucose, 

lipid, and protein was elaborated. Similar to chapter 3, the development of the sensor, 

experiment procedures, data analysis, and results are discussed in the same chapter. 

This chapter also demonstrates measurements from CIROAS showing improved 

metabolite concentration detection's sensitivity by five times compared to conventional 

optical and optoacoustic sensors. The general conclusions and outlook are given in 

chapter 5. 
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2 Theoretical background 

 
Figure 2.1 The energy diagram depicts the excitation and relaxation mechanism. ℎ𝑣 represents the 

photon energy, and A, F, P, and R denote absorption, fluorescence, phosphorescence, and Raman 

scattering [37]. 

Spectroscopic techniques can be applied over a wide spectral range, from X-rays to 

the terahertz region. Optical spectroscopy is a method originating from the interaction 

of light with matter. When light interacts with matter, the incident light can be absorbed, 

scattered, transmitted, and reflected. Depending on the molecule's spatial 

configuration, the absorbed photon can excite electrons to different energy levels, 

leading to other molecular states, i.e., electronic, vibrational, or rotational states (Figure 

2.1). The absorbed photon energy will then be released after a stipulated time defined 

by excitation state lifetime through different mechanisms such as energy transfer, 

luminescence, photochemistry, thermal relaxation. The timespan and proportion of the 



9 

 

reemitted light after traversing the biological vortex carries information about the 

matter's intrinsic property and is used for diagnosis and characterization.  

2.1 Optical techniques to detect glucose   

Improvements in glucose sensing can have a direct impact on diabetes healthcare. 

Optical techniques are particularly attractive because they work in real-time, apply non-

ionizing radiation, and do not require specific reagents. Different optical methods have 

been considered for achieving non-invasive glucose measurement. The main premise 

of these sensors is to illuminate light onto a tissue and detect a photon property that 

changes in response to different physiological glucose concentration. 

2.1.1 Near-infrared Spectroscopy 

Significant research attention has been given to near-infrared spectroscopy (NIRS) 

due to the readily available inexpensive detectors. NIRS, particularly in the spectral 

region of 700 – 2500 nm [15]–[17], whereby glucose presents several overtones and 

combinations of the fundamental vibration due to the hydrogen vibration (CH, NH, OH); 

also called the fingerprint region [15].  Light can probe signals from the stratum 

corneum and epidermis in this spectral region and is preferentially attenuated at 

specific wavelength bands as dictated by the absorption spectrum of the different 

molecules [17]. Despite the original promise and achieving prediction error of 35.6 

mg/dl [38], and 27.2 mg/dl [18] in-vivo (by calculating the root mean square error 

between predicted glucose values and gold standard glucose concentrations), the 

photon scatter, and the varying optical properties of different tissues imparted 

significant variations in the NIRS signals, leading to insufficient accuracy and sensitivity 

for sensing glucose molecules [19], [20]. 
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2.1.2 Mid-Infrared Spectroscopy 

Mid-infrared (MIR) spectral region is also considered for non-invasive glucose 

monitoring in the range of 4,000-1000 𝑐𝑚−1 (2500-10000 𝑛𝑚). The advantage of using 

MIR over other spectral regions like NIR is that glucose absorption is defined by 

fundamental vibrations (rather than overtones) at 3000, 1400, 1200, and 1000 𝑐𝑚−1.  

Fourier transform infrared (FTIR) spectrometer or quantum cascade lasers are mostly 

used as light sources in this spectral region. Several research groups worked on MIR 

spectroscopy for continuous monitoring in-vivo [21]–[25] and achieved a measurement 

error of less than 20%, 𝑅2 of 0.75. However, low penetration (only a few micrometer) 

in the skin, highly dependability to water content, expensive and weak light sources 

made MIR spectroscopy less interesting for non-invasive glucose measurements. 

2.1.3 Raman Spectroscopy 

Raman spectroscopy is another optical approach used in glucose detection. Raman 

spectroscopy is based on inelastic scattering of monochromatic light, in which the 

information is acquired according to the frequency shift of the light after interaction with 

the tissue, called the Raman effect [26]. Other advances have been achieved with 

variations such as surface-enhanced Raman Spectroscopy [39]. Raman Spectroscopy 

was partially successful and predicted the glucose concentration with an error (root 

mean square error) of approximately 27-36 mg/dl [40] and 𝑅2 of 0.8 [41] on average. 

However, the Raman technique has a fundamental challenge due to its weaker signal 

than the fluorescence signal, which covers the Raman scattering signal by interfering 

with the fluorescence signal [27]. Additionally, a long acquisition time is required to 

compensate for low SNR. 
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2.1.4 Fluorescence spectroscopy 

There were also other attempts to detect glucose using fluorescence techniques. In 

the notable advance, an exogenous fluorophore is introduced to the body to tag with 

glucose molecules. When excited with light, the tagged fluorophores will emit a 

fluorescence signal, with the detected fluorescence signal's intensity proportional to 

the concentration of glucose [42]. The technique achieved an average relative error 

(ARE) of about 11-13%. However, this fluorescence scheme has several challenges, 

like using different fluorophores makes the technique minimally invasive rather than 

non-invasive and can lead to toxicity issues at higher wavelength excitations. These 

probes require complete pharmacokinetic analysis to establish the safety standards as 

are necessary for human use. Further, for minimally or non-invasive measurements, 

fluorescence spectroscopy needs calibration against fingerstick measurements. The 

gradual loss of fluorophores due to photobleaching leads to a drift in the fluorescence 

signal. Lastly, the nonlinearity of the fluorescence signal over the physiological range 

of glucose concentrations poses accurate quantitation issues [29].   

2.1.5 Optical coherent tomography (OCT) 

Optical coherent tomography (OCT) was used to detect glucose noninvasively [43]. 

The changes in the scattering coefficient and concomitant variations in the 

interferogram is used to determine the glucose concentration. In-vivo measurements 

based on OCT showed an ARD of 11.5% [28]. However, OCT is known to be highly 

sensitive to motion artifacts and variations in the local environment, such as skin 

temperature, pH, and humidity. The measured scattering coefficient is relatively small, 

which is the major challenge in OCT, and the scattering coefficient can also be affected 

by the variation in other physiological compounds [29]. 
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2.1.6 Optoacoustic Spectroscopy 

A wide range of analytical approaches is under investigation to detect metabolites non-

invasively. However, as discussed in chapter 1, optoacoustic spectroscopy (OAS) has 

shown promise for non-invasive glucose monitoring [31]. In optoacoustic spectroscopy, 

nonionizing relaxation (non-radiative decay) mechanisms drive a dominant 

photothermal phenomenon following the excitation of photon propagation through 

matter. The deposited energy elevates the excited volume's temperature depending 

on the matter's intrinsic optical and thermodynamic properties along the direction of an 

illuminating light beam. The increase in the medium's temperature drives secondary 

effects provoking a thermoelastic expansion in the heated volume of matter; this 

thermoelastic expansion in the medium generates an acoustic wave due to a rise in 

the medium's mechanical pressure. The generated acoustic wave propagates through 

the medium (generated by a phenomenon called optoacoustic effect) and is then 

sensed by piezoelectric sensors or microphones directly in-contact with the sample or 

through the coupling medium. An indirect form of optoacoustic effect can also be 

employed in a way that modulated heat in the excited volume could generate an 

acoustic wave with a frequency equal to the modulation of the light source in the so-

called frequency domain optoacoustic effect. The frequency range of the modulating 

source can now be swept over the desired frequency range. When coupled with a 

source in nonionizing spectral range (e.g., IR region), optoacoustic is a non-invasive 

and volumetric modality capable of in-vivo measurement of optical absorbers at that 

the wavelength ranges used during illumination.  

Even though Alexander Graham Bell discovered the optoacoustic effect in 1881 [44], 

it was not until 1978 that the optoacoustic effect was used for biomedical 

purposes. Theodore Bowen offered the usage of high energy pulses of microwave 
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radiation for bone imaging [45]. Modulated continuous-wave or pulsed excitation can 

be used to produce optoacoustic waves. In contrast to pure optical spectroscopy 

techniques like transmission FTIR spectroscopy, optoacoustic spectroscopy does not 

require the light to cross the entire path to reach the detector. Instead, the light can 

penetrate as deep as it can in the tissue and consequently generate acoustic waves, 

which can be measured from opaque samples at depths previously not attainable by 

purely optical technics. Combining both optical absorption contrast and high ultrasound 

resolution, OAS is insensitive to photon scatter and could improve the detection 

sensitivity over conventional optical methods [30]. The increased resolution is possible 

because acoustic waves scatter much lesser in biological samples compared to light 

scattering [46]. Accordingly, acoustic waves can propagate much deeper in the tissue 

than photons and maintain their initial propagation direction, leading to high resolution 

and sensitivity at depth.   

Furthermore, explicitly speaking, optoacoustic glucose-sensing relies on detecting a 

change in the tissue interrogated optical property as a function of glucose 

concentration. Spectroscopic techniques have been proposed in the near-infrared 

(NIR, 750 – 1300 nm), short-wave infrared (SWIR, 1300 – 2500 nm), or mid-infrared 

(MIR, 2500 – 10000 nm) [15]–[17] for detecting wavelength-specific changes in the 

optical absorption due to glucose concentration [47],[18].  However, optical detection 

of glucose is complicated due to strong background signals from other tissue 

chromophores. Moreover, due to the strong photon scattering in tissue, optical sensing 

interrogates bulk tissue measurements, diluting the glucose signal contribution and 

reducing sensitivity. Besides, the varying optical properties from different skin types 

and tissues [19], [20] further affect the recorded signal and, consequently, affect the 

purely optical measurements' accuracy.  
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2.2 Governing equations of the optoacoustic effect 

2.2.1 Initial pressure elevation following the illumination with pulsed laser 

The generation of the optoacoustic signal requires stress and thermal confinement 

criteria to be satisfied [37]. In optoacoustic spectroscopy (OAS), a short nanosecond-

pulsed light source is commonly utilized to irradiate the sample, leading to broadband 

optoacoustic (OA) waves with a frequency content extending from few hundreds of 

kilohertz to tens of megahertz for acoustic detection. Following absorption of the light, 

an initial temperature rise triggers a pressure elevation that propagates as an OA wave 

and is finally detected using a single-element ultrasonic transducer or a transducer 

array. Thermal relaxation time (𝜏𝑡ℎ ) and the stress relaxation time (𝜏𝑠 ) are two critical 

factors in the generation of OA waves. Thermal relaxation time or, in other words, 

thermal diffusion (𝜏𝑡ℎ) can be defined as [37], 

 

𝜏𝑡ℎ =  
𝑑𝑐

2

𝛼𝑡ℎ
 

(2.1) 

where  𝑑𝑐  is the spatial dimension of the heated region (𝑚), and 𝛼𝑡ℎ is the thermal 

diffusivity (
𝑚2

𝑠
). The stress relaxation time of the medium (𝜏𝑆) is also given by [37], 

 

𝜏𝑆 =  
𝑑𝑐

𝑣𝑆
  

(2.2) 

in which 𝑣𝑆 is the speed of sound (
𝑚2

𝑠
) of the medium. Typically the stress and thermal 

relaxation times are satisfied while using a nanosecond pulsed laser. Following the 

laser excitation, the fractional volume expansion of the exciting medium can be written 

as [37], 
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 𝑑𝑉   

𝑉
=  −𝑘𝑝 +  𝛽𝑇 

(2.3) 

in which 𝑝  is pressure rise (Pa), 𝑘  represents the isothermal compressibility 

(~5 𝑥 10−10𝑃𝑎−1  for water or soft tissue), 𝛽  is the volume expansion coefficient 

( ~ 4 𝑥 10−4𝐾−1 ), and 𝑇  is the temperature change (k). Considering short-pulsed 

illumination of the laser in OA, which is much less than 𝜏𝑡ℎ and 𝜏𝑆, we can neglect 

fractional volume change (
𝑑𝑉   

𝑉
= 0) and write the initial pressure as [37], 

 

𝑝0 =  
𝛽𝑇

𝑘
  

(2.4) 

where the local temperature defined as, 

𝑇 =  
𝜂𝑡ℎ𝐴𝑎

𝜌𝐶𝑣
  

(2.5) 

where 𝐴𝑎  is specific optical absorption (𝐽/𝑚3), ρ denotes the density (~ 1000 𝑘𝑔/𝑚3 

for water and soft tissue), 𝐶𝑣 denotes heat specific capacity (~ 4000 𝐽/(𝑘𝑔𝐾))  and 𝜂𝑡ℎ 

is the percentage of absorbed light converted to heat. Using equations (2.4) and (2.5), 

we can rewrite the initial pressure rise as, 

𝑝0 =  𝛤𝜂𝑡ℎ𝐴𝑎  
(2.6) 

In which Γ is a dimensionless Grüneisen parameter given as,  

𝛤 =  
𝛽

𝑘𝜌𝐶𝑉
  

(2.7) 

For a single photon, 𝐴𝑎 is proportional to the local optical fluence, and equation (2.6) 

can be defined as, 
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𝑝0 =  𝛤𝜂𝑡ℎ𝜇𝑎𝐹 
(2.8) 

where F is fluence (𝐽/𝑐𝑚2) and 𝜇𝑎 is the absorption coefficient. Usually, Γ and 𝜂𝑡ℎ are 

considered to be constants, and the initial pressure elevation is mostly determined by 

the absorption coefficient (𝜇𝑎 ) and Fluence (𝐹 ). Accordingly, by knowing Γ , 𝜂𝑡ℎ , 

depending on the sample type, and  𝐹 depending on the energy of the laser pulse, and 

measuring the 𝑝0 (an acoustic wave generated in the sample with a sample dependent 

speed of sound), the problem would be to compute the absorption coefficient 𝜇𝑎.  

2.2.1. Optoacoustic wave propagation 

The propagation of OA pressure 𝑝(𝑟, 𝑡)  in an inviscid and isotropic medium can be 

described as [37],  

(𝑣𝑠
2𝛻2 − 

𝜕2

𝜕𝑡2
) 𝑝(𝑟, 𝑡) =  −

𝛽

𝑘

𝜕2𝑇(𝑟, 𝑡)

𝜕𝑡2
  

(2.9) 

in which 𝑝  and 𝑇  are the pressure and temperature rise above the initial value, 

respectively. In the case of nano-pulsed illumination and thermal confinement, we can 

neglect heat conduction and write the heat diffusion equation as [37],  

𝜌𝐶𝑣

𝜕𝑇(𝑟, 𝑡)

𝜕𝑡
= 𝐻(𝑟, 𝑡)  

(2.10) 

where 𝐻(𝑟, 𝑡) denotes the thermal energy deposited per unit volume and per unit time 

and can be further defined as [37],  

𝐻(𝑟, 𝑡) =  𝜂𝑡ℎ

𝜕𝐴𝑒(𝑟, 𝑡)

𝜕𝑡
 

(2.11) 

By placing equation (2.10) in equation (2.9), we have [37],  
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(𝛻2 − 
1

𝑣𝑠
2

𝜕2

𝜕𝑡2
) 𝑝(𝑟, 𝑡) =  −

𝛽

𝐶𝑃

𝜕𝐻(𝑟, 𝑡)

𝜕𝑡
  

(2.12) 

where 𝐶𝑃  denotes specific heat capacity at constant pressure. Considering finite 

heating pulse duration and solving equation (2.13) using Green’s function, one 

obtains[37], [48],  

𝑝(𝑟, 𝑡) =  
𝛽

𝑘𝑣𝑠2
∫ 𝑑𝑡′ ∫ 𝑑𝑟′𝐺(𝑟, 𝑡; 𝑟′, 𝑡′)

𝑣

𝜕2𝑇(𝑟′, 𝑡′)

𝜕𝑡′2

𝑡+

−∞

 

(2.13) 

here G is Green’s function and is defined as, 

𝐺(𝑟, 𝑡; 𝑟′, 𝑡′) =  
𝜕(𝑟 − 𝑟′, 𝑡 − 𝑡′)

4𝜋|𝑟 − 𝑟′|
 

(2.14) 

which is interpreted as a point source emitting a spherical wave.  Consequently,  for  

𝑡′ = 𝑡 −  
|𝑟−𝑟′|

𝑣𝑠
, equation (2.14) can be rewritten as [37], 

𝑝(𝑟, 𝑡) =  
𝛽

4𝜋𝑘𝑣𝑠
2

 ∫ 𝑑𝑟′
1

|𝑟 − 𝑟′|𝑣

𝜕2𝑇(𝑟′, 𝑡 −  
|𝑟 − 𝑟′|

𝑣𝑠
)

𝜕𝑡′2
 

(2.15) 

This is the forward solution of the optoacoustic wave equation and describes the 

pressure wave propagation as a function of temperature. As an example of a simplified 

case of the pressure rise by an absorber, the wave propagation by a spherical point-

like absorber can be described by applying a spherical absorber of radius R in equation 

(2.16) [37], 

𝑝(𝑟, 𝑡) =  
𝑟 + 𝑣𝑠𝑡

2𝑟
𝑝0(𝑟 + 𝑣𝑠𝑡) +  

𝑟 − 𝑣𝑠𝑡

2𝑟
𝑝0(−𝑟 + 𝑣𝑠𝑡) +  

𝑟 − 𝑣𝑠𝑡

2𝑟
𝑝0(𝑟 − 𝑣𝑠𝑡) 

(2.16) 
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As the pressure rise is radially symmetric, we only take the radial propagation along 

the r-direction in our computations. Figure 2.2 shows the optoacoustic signals of three 

spherical absorbers having a diameter of 10, 50, and 100 µm, respectively. As depicted, 

a smaller sphere absorbs less energy and generates shorter and weaker optoacoustic 

signals. The main lobe of the frequency spectrum of spherical absorbers is symmetric 

around their central frequency (see Figure 2.2). Accordingly, the smaller the sphere, the 

shorter is the generated pulse, which increases the generated central frequency and 

the frequency bandwidth. 

 

Figure 2.2 Simulated OA signal generated by spherical absorber with different diameters 

measured at 500 μm from a sphere and using equation (2.16). a) Time-domain signals, b) 

Frequency-domain signals [37], [49]. 

2.2.3. Sound propagation in a biological sample 

Optoacoustic spectroscopy's primary advantage over purely optical spectroscopy is 

the weak acoustic scattering compared to light scattering. The acoustic scattering is 

weaker by 2-3 orders of magnitude [50]. Accordingly, the speed of the sound is a vital 

criterion to define acoustic wave propagation. On average, 80% of all biological 

samples consist of water, and it is reasonable to assume the speed of sound in the 
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water (~ 1500 𝑚/𝑠) as an approximate speed in many biological samples. However, in 

general speed of sound is defined as [51], 

𝑣𝑠 = √
1

𝜌𝑘
 

(2.17) 

where 𝜌 is the density of the tissue, and k is the compressibility coefficient [51].  

Acoustic impedance is another criterion, which defines the amount of reflection, or 

transmission when sound propagates from one medium to another medium and can 

be defined as [52], 

𝑍 =  𝜌𝑣𝑠  
(2.18) 

Using acoustic impedance differences between two medium, the reflection (R) and 

transmission (T) coefficients can also be defined as [52], 

𝑅 = (
𝑍2 − 𝑍1

𝑍2 + 𝑍1
)

2

,     𝑇 =
4𝑍2𝑍1

(𝑍2 + 𝑍1)2
, 

(2.19) 

Equation. (2.19)shows that small differences in the impedance of two mediums lead to 

high acoustic transmission, and in contrast, large differences lead to higher acoustic 

reflection. Thus, these differences in different medium impedances are used as a 

contrast mechanism in acoustic spectroscopy and imaging. Analogously, refraction 

between layers with different acoustic impedances can be defined using Snell’s law 

[51], 

𝑠𝑖𝑛 (𝜃1)

𝑠𝑖𝑛 (𝜃2)
=  

𝑣𝑠1

𝑣𝑠2

= 𝑛, 
(2.20) 
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where 𝜃1and 𝜃2 are the angle of incidence and the angle of refraction with respect to 

the perpendicular axis of reference. 𝑛 is typically equal to 1 for most biological tissues, 

and acoustic refraction can be neglected for optoacoustic spectroscopy. 

2.2.4. Optoacoustic signal attenuation 

Optoacoustic pressure wave attenuation as a function of depth r, can be written as [53], 

𝑝(𝑟) = 𝑝0𝑒𝛼(𝑓)𝑟 
(2.21) 

where 𝛼(𝑓) = |𝛼0|𝑓𝑚, and depends on frequency dependant attenuation coefficient 

𝑓 and empirically determined exponent for the medium 𝑚. Generally, for biological 

tissue 𝑚 is equal to one (𝑚 ≈ 1 ) and the frequency dependency is a linear relation  

and can be written as [53], 

𝛼0 = 0.5 𝑑𝐵𝑀𝐻𝑧−1𝑐𝑚−1 
(2.22) 

However, in the case of water 𝑚 is equal to 2 (𝑚 ≈ 2), and the dependency is a 

quadratic relation given by [53], 

𝛼0 = 0.00217 𝑑𝐵𝑀𝐻𝑧−2𝑐𝑚−1 
(2.23) 

Accordingly, in biological samples, OA signals at a frequency of 15 MHz propagation 

through 1 cm of biological tissue are attenuated by 7.5 dB. This frequency is typically 

chosen as the central frequency of our ultrasound transducers used in this dissertation.  

 

2.3. Ultrasound Detectors 

Ultrasound detectors play an essential role in optoacoustic spectroscopy, as this is 

how optoacoustic signals are detected. In principle, any system that changes its state 
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in response to mechanical stress could be used as a detector. Based on the 

mechanism and the detection technique,  commonly transducers can be classified as; 

piezoelectric transducers, capacitive micro-machined ultrasound transducers, optical 

interferometry based transducers, and optical deflection transducers. However, as 

piezoelectric transducers are the most common detectors in optoacoustic 

spectroscopy (due to high detection sensitivity) [54] and used in this study, we only 

discuss piezoelectric transducers in this section.  

Detectors based on piezoelectricity are most commonly used due to the abundance of 

piezoelectric materials in nature and ease of manufacturing. Furthermore, these 

detectors could be formed in almost any shape, which allows them to be suitable for 

different optoacoustic spectroscopy applications. Piezoelectric transducers are 

typically built from piezoelectric quartz [55] or poly-crystalline ferroelectric ceramic 

materials like lead zirconate titanate, known as PZT [54]. The piezoelectric transducers 

are based on the piezoelectric effect, wherein the mechanical perturbations are 

converted into an electrical signal and vice-versa. Figure 2.3 shows a typical 

piezoelectric single-element detector and its main components. Typically, the 

thickness of the transducer's active elements defines the central frequency and 

bandwidth of the ultrasonic detection. The backing material used in the transducer 

suppresses the reflection and back reflection of acoustic waves within the active area, 

which deteriorates axial resolution due to interference caused by the oscillations. 
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Figure 2.3 Cross-section view of a single element transducer. The main components are; the 

piezoelectric element, the backing, and matching layers. 

Furthermore, the matching layer (i.e., matching acoustic glass, water, or gel) is 

introduced to achieve better coupling between the transducer material and the probed 

medium; this layer is used to overcome the mismatch between the detector's 

impedances and the surrounding medium. Lastly, the shape of the fabricated sensor 

defines the focusing area of the transducer. Based on the surface’s mechanical shape, 

the transducers can be classified as spherically focused, cylindrically focused, or 

unfocused. The transducer's focal zone is defined as the area of the spatial sensitivity 

field, where sensitivity is not less than -6 dB of the maximum sensitivity. 
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3  Layer-specific optoacoustic sensor for a non-invasive 

glucose detection sensitivity of the skin  

3.1 Introduction 

In this chapter, we sought to develop an optoacoustic spectroscopy (OAS) system 

capable of layer-specific detection of glucose in the skin. The development of such a 

device required us to overcome three major challenges. First, we had to develop a 

methodology that could identify skin layers using the one-dimensional optoacoustic 

signal detected by a sensor. Second, we had to create a system that can detect 

characteristic vibrations of glucose while also being insensitive to fluctuations of the 

illumination beam. Third, we had to identify the optimal spectral range for glucose 

detection by OAS.  

We developed an optoacoustic device powered by a machine-learning algorithm to 

address the challenge of layer identification. This algorithm could use the sensor’s raw 

data to selectively provide glucose concentration changes from different skin layers. 

To improve the SNR over conventional optoacoustic sensors, we developed a dual 

optical path design; one path was directed to the sample, and the second served as a 

reference to independently measure the fluctuations in light intensity fluctuations. The 

dual optical path design was used to perform sensor measurements in 16 mice over 

36 wavelengths covering the range 1450-1800nm. We present the methodology and 

results herein. 
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3.2 Method 

We developed a dual-path spectroscopic system (Figure 3.1) and evaluated its use as 

a glucose sensor. The system was built as a generalizable sensor and the studies that 

follow examined specific operational parameters that maximize sensitivity and 

eventually lead to a more portable setup.  

 

Figure 3.1 Schematic representation of LSOS; UST– ultrasound transducer; BS – beam splitter; AMP – 

Amplifier; DAQ – data acquisition card; L – lenses, PL – Polarizer, HWP – Half waveplate. The inset 

figure shows the skin's placement from the back of a mouse under the UST holder. 

3.2.1 Experimental Setup 

The optical beam was split into two, using a broadband beam splitter (BS; BSW23, 

Thorlabs) to simultaneously measure two optoacoustic signals, one from the sample 

and the other from an optoacoustic reference. The two OA signals were recorded to 

perform real-time correction of the laser emission profile of the laser source at different 

wavelengths and perform pulse-to-pulse correction to remove laser beam fluctuation 

and instability. To interrogate the optimal wavelengths to improve sensitivity during 
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glucose sensing, we employed illumination from a tunable nanosecond OPO laser 

(SpitLight Single, Innolas, Krailling Germany) controlled by a personal computer (PC).  

The reference path shins the beam onto a thin carbon layer, which is acoustically 

coupled via heavy water to a spherically focused ultrasound transducer (UST) with a 

central frequency of 15 MHz and a focal distance of 20 mm. The sample path shins 

the beam onto the sample, which was acoustically coupled to an identical UST. The 

USTs were placed inside the coupling chambers containing 400 ml of heavy water to 

keep USTs in focus. The chambers were covered with thin plastic transparent foils. 

Acquired signals from both arms were amplified using two low-noise amplifiers (AMP; 

AU-1291, Miteq Inc., USA), then digitized using a fast data acquisition card (DAQ) 

operating at 200 MS/s. In this setup, the illumination beam had a near-Gaussian profile 

with a spot size of approximately < 1 mm in diameter and was focused on the sample 

using achromatic lenses with a 10 cm focal length (N-BK7, Thorlabs). The laser 

repetition rate in all the experiments was 50 Hz, and the pulse width was ~7 ns.  

The energy per pulse spectrum of the tunable OPO laser is not constant for different 

wavelengths. Accordingly, various pulse energy levels at different wavelengths might 

lead to inaccuracies in the spectrum morphology. More importantly, to avoid saturation 

in OA signal acquisition, we need to decrease the laser pulse energy using different 

filters to prevent saturation at wavelengths with higher pulse energy. However, on the 

other hand, the sensitivity and signal to noise ratio at wavelengths with low pulse 

energy will decrease. Therefore, we used a combination of a half-wave plate (HWP) 

and a polarizer to set the laser's power at constant output energy, as in the previous 

studies [49], [56], [57]. The HWP was rotated using a motorized stage (PRM1Z8, 

Thorlabs, Germany), from 0 to 90 degrees in 5 °  steps, changing the beam's 

polarization. The polarizer then controls the output energy by allowing only parallel light 
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to pass through. This makes the amount of parallel polarization a function of HWP 

rotation. A lookup table was created by measuring the laser energy at the entire 

wavelength range used and rotational angles using a powermeter (Vega, Ophir, Israel).  

The lookup table was built at the beginning of the experiment for all measured 

wavelengths (row of the lookup table) as a function of the half-wave plate rotation angle 

(columns in the lookup table). The resolution for the wavelengths (400-720 nm, 875-

2200 nm) and rotational angles are 10 nm and 5°, respectively. The fitted lookup table 

enables us to find the rotational angle of the HWP to produce the desired power at all 

wavelengths.  In this study, pulse energy of 0.2 mJ was fixed as an output energy per 

pulse of the beam. Figure 3.2a shows that the pulse energies at five typical 

wavelengths have different values with a mean value of 0.38 and a standard deviation 

(SD) of 0.12 (Figure 3.2a). However, after performing the lookup table and setting the 

output pulse energy to 0.2 mJ, the output energy is set in our desired pulse energy 

with a mean of 0.198 mJ and a standard deviation of only 0.01.  

 

 

Figure 3.2 Pulse energy spectrum of the OPO laser at five wavelengths. a) Pulse energy without 

applying HWP and polarizer to control the pulse energy, b) pulse energy using a combination of HWP 

and polarizer, and setting the output pulse energy at 0.2 mJ at all wavelengths. 
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3.2.2 Data analysis – Algorithm 

Figure 3.3 depicts the LSOS algorithm for in vivo absorption spectra measurements. 

Above all, the raw optoacoustic signal was first acquired continuously from dual-paths: 

reference and sample paths collecting OA signal in the range 1450-1800 nm with 10 

nm step sizes (number 1 in Figure 3.3). The collected OA signals at the sample path 

were sorted into four classes corresponding to the dermis, hypodermis, muscle layers, 

and bulk skin (number 2 in Figure 3.3). Then, the OA intensities were calculated by 

estimating the area under the curve of Hilbert transformation of the acquired OA raw 

signals at different wavelengths (number 3 in Figure 3.3). However, just like previous 

studies, the OA signal intensity in the bulk skin analysis was calculated by getting the 

OA raw signals peak-to-peak value at different wavelengths. The fourth step was to 

perform pulse-to-pulse correction of the OA raw signals by dividing the OA signal 

corresponding to different skin layers with the OA raw signal at the reference arm to 

remove the laser fluctuation and noise (number 4 in Figure 3.3). As the next step, the 

output after the pulse-to-pulse correction was subtracted and then divided by the OA 

intensity at the reference wavelength of 1710 nm (number 5 in Figure 3.3). Leave one 

out cross-validation (LOOC) was finally applied to predict glucose concentration levels 

from the acquired OA intensity (number 6 in Figure 3.3). 

On the other hand, invasive measurement using a glucometer was obtained from the 

mice's tail every 4-5 minutes (number 7 in Figure 3.3). For better comparison, the 

invasive data was interpolated to find the corresponding glucometer reference value 

(invasive measurement) when OA measurement was done at different wavelengths 

(number 8 in Figure 3.3). Finally, the output from both invasive and non-invasive 

measurements was then smoothed and then compared to find the most informative 

skin layer and the wavelength to sense glucose.  
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Figure 3.3 LSOS Algorithm for in vivo measurements: 1) collecting OA signals in dual-path in the range 

1450-1800 nm, 2) skin sectioning, 3) OA Intensity calculation, 4) Pulse-to-pulse correction, 5) glucose 

signal’s contrast improvement, 6) LOOC, 7) invasive measurement every 5 minutes using a glucometer  

(to have one invasive measurement for each cycle of OA measurements from 1450-1800 nm),  8) 

interpolation to find corresponding reference value (invasive measurement) at the time OA 

measurement was done, 9) comparison of invasive and non-invasive results. 

3.2.2.1 Signal to noise improvement - Pulse-to-Pulse correction.  

The scanning was performed continuously between 1450 nm to 1800 nm with a 10 nm 

step size. One hundred measurements at each wavelength were recorded 

simultaneously at the two measurement arms (Figure 3.1). The OA intensity (OAI) for 



30 

 

skin sublayers were measured by transforming OA raw data, using Hilbert 

transformation, and integrating the area of interest under the envelope as follows [57], 

[58]; 

𝑂𝐴𝐼 =  ∫ 𝐻(𝑂𝐴)(𝑡)

𝑠𝑙

𝑑𝑡 

(3.1) 

where 𝐻(𝑂𝐴) is the Hilbert transform at assigned segments of the OA raw signal 𝑠𝑙 

(skin layer) and was performed using a signal processing toolbox in MATLAB  

9.1.0.441655 (R2016b).     

Measurements obtained from the reference arm were employed to perform real-time 

pulse-to-pulse correction to remove laser beam fluctuations (at different wavelengths) 

and improve the signal-to-noise ratio (SNR) of the optoacoustic measurements from 

the sample. SNR is defined as a linear ratio of the average to a standard deviation of 

one hundred collected OA intensities. The final corrected OA signal was the average 

of one hundred  normalized measurements at each wavelength using the following 

equation: 

𝐼𝑂𝐴 = 𝑀𝑒𝑎𝑛 (
[𝐼𝑆𝐴] 1𝑋100

[𝐼𝑅𝐴] 1𝑋100
)  

(3.2) 

where 𝐼𝑂𝐴   is the corrected signal, [𝐼𝑆𝐴] 1𝑋100  is the vector of 100 measured OA 

intensities at each wavelength in the sample path, and [𝐼𝑅𝐴] 1𝑋100 is the vector of 100 

measured intensities at each wavelength in the reference path. We repeated this 

procedure for each wavelength. One complete measurement cycle, in which all 

wavelengths from 1450 to 1800 nm were scanned in 10-nm steps, took about 3 

minutes.  
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Figure 3.4 depicts the SNR improvements in distilled water before and after pulse-to-

pulse correction. SNR improvements at water spectral signature (i.e., peaks at 1440 

and 1920 nm) were between 30 and 80. Figure 3.4 inset shows a plot of fifty 

consecutive OA intensities of distilled water at 1920 nm before and after the pulse-to-

pulse correction. The deviations of these intensities decreased significantly after point-

to-point correction, which led to higher SNR and sensitivity. 

 

 
Figure 3.4 LSOS system characterization; fifty pulses were measured at each wavelength, with the final 

OA intensity value being the mean of the fifty measurements. The figure exhibits the SNR improvement 

of water spectra in the range of 1350 - 2000 nm before (black) and after (red) performing pulse-to-pulse 

correction, and the inset figure depicts fifty measured pulses at 1920 nm before (black) and after (red) 

performing pulse-to-pulse correction. 

3.2.2.2 Data analysis – Machine Learning for layer separation 

A key feature of the method presented is the depth-dependent observation of 

biochemical parameters in tissue. Accurate separation of the skin layers with one-

dimensional signals represents a unique challenge. To allow depth-dependent 

observation of glucose throughout the skin, we developed a machine-learning 

algorithm that could accurately segment one-dimensional acoustic signals according 

to skin layers.  
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First, we sought to segment the 1D OA signal into the corresponding skin layers using 

a machine learning (ML) algorithm (Figure 3.5). Figure 3.5b shows OA raw signals as 

a function of time and depth, acquired in vivo from the skin shown in Figure 3.5a. 

Different colors correspond to different wavelengths (1450 – 1800 nm), whereby the 

time (and depth) dimension corresponds to the distance that the ultrasound signal 

traveled into the skin fold, i.e., depth. 

A ML algorithm based on bagged ensemble trees [59] was selected to partition the 

time-series of each OA raw signal into three shorter time-series corresponding to three 

different skin layers: (1) the dermis (including the epidermis), (2) the hypodermis, and 

(3) the muscle layers (including the fascia). The input of the ML algorithm comprised 

340-500 spectra per mouse, which were generated by a moving average with a time 

window of 0.23 µs (corresponding to a thickness of 345 µm), moved in steps of 0.01 

µs (15 µm), over the entire OA signal with an overall time window of ~1.65 µs (~ 2.5mm). 

For each step, the moving time window computes a spectrum comprising 36 different 

wavelengths (1450-1800 nm in steps of 10 nm). The intensity of each point of the 

spectrum is the average intensity of the optoacoustic signal over the 0.23 µs window 

at the corresponding wavelength. For training the machine learning algorithm, we 

selected 30 spectra, produced by the moving window. Each spectrum corresponding 

to the depth of each layer, as seen on the histology images (see Figure 3.5a & Figure 

3.8), was assigned to belong to this layer. Figure 3.5c shows a sample output of the 

trained ML algorithm for the spectra computed for one mouse. The algorithm assigns 

a “layer” score for each spectrum. When these spectra are plotted sequentially for each 

step of the moving window, along the axis termed moving window index, the change 

of layer becomes evident by the different score assigned.  

 



33 

 

 

Figure 3.5 Sectioning of the OA signal according to skin sectioning using a ML algorithm. A window of 

~130 ns in length was moved with ~10 ns step sizes along an acquired OA raw signal at all measured 

wavelengths, producing spectra using a Hilbert transformation and integral of the signal in the window. 

These spectra were sorted into three classes corresponding to the dermis, hypodermis, and muscle 

layers of the skin. a) Histology of the folded skin, b) a sample of a raw OA signal of a section of mouse 

skin. Each colored line corresponds to a different excitation wavelength. The dotted red lines delineate 

the skin layers estimated borders, c) classification of spectra corresponding to each time window 

movement into three skin layers using ML. d-f) Absorption spectra and characteristic absorption of 

collagen (C), lipid (L), and water (W) from the areas of the OA signal assigned to each skin layer by the 

ML algorithm as follows: d) the dermis (including the epidermis), e) the hypodermis, and f) the muscle 

(including fascia).   
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To further validate the ML algorithm’s output, we visually examined spectra that were 

assigned different scores. Figure 3.5d-f shows three representative spectra, each of a 

score that assigned them to the dermis, hypodermis, and muscle layers. The spectrum 

in Figure 3.5 has peaks at 1500, 1720, and 1750 nm, characteristic of collagen and 

lipids found in the dermis. Conversely, Figure 3.5e shows a 3-fold higher absorption at 

1720 and 1750 nm, compared to the spectrum in Figure 3.5d, which corresponds to 

increased lipid concentration, consistent with the composition of the hypodermis. The 

spectrum in Figure 3.5f depicts absorption peaks at 1450, 1720, and 1750 nm, 

characteristic of water and lipids, typical of the muscle layer and fascia.  

Collectively, the average calculated thicknesses for the dermis, hypodermis, and 

muscle layers in all measurements performed were approximately 200, 260, and 160 

μm, respectively. These observations regarding both the content and thickness of the 

individual skin layers agree with the histology observations of the skins measured 

(Figure 3.8a, b) and to published figures from other studies [60]–[62].   Data analysis 

– glucose signal contrast improvement  

3.2.2.3 Data analysis – glucose signal’s contrast improvement 

The optoacoustic signal is a function of both irradiated laser beam intensity and the 

acoustic resonance condition, as shown in the following equation: 

𝐼𝑂𝐴
′  ∝ 𝐹𝛼𝐼𝐵 (3.3) 

where 𝐼′
𝑂𝐴  is the OA intensity, 𝛼  is the optical absorbance, 𝐼𝐵  is the laser beam's 

intensity, and 𝐹 is the Grüneisen parameter and related to the acoustic resonance 

mode due to pressure elevation following the temperature change after illumination of 

the biological sample. As we will discuss later, OA measurement's sensitivity can be 



35 

 

influenced by the change in temperature. In the case of glucose sensing, a 1 ℃ 

difference in the temperature is comparable with the concentration change of glucose 

in the physiological range [63]. To overcome the instability caused by the change of 

acoustic resonance characteristics, we use the referenced wavelength technique (or 

dual-wavelength technique), in which equation (3.4) is used to choose the optimum 

acoustic resonance as previously suggested [63]; 

𝐼𝑂𝐴𝜆
=

𝐼′ 𝑂𝐴𝜆
− 𝐼𝑂𝐴1710𝑛𝑚

𝐼𝑂𝐴1710𝑛𝑚

 

(3.4) 

Where  𝐼′ 𝑂𝐴𝜆
 is the optoacoustic intensity in the wavelength range of 1450-1800 nm 

after pulse-to-pulse correction, and 𝐼𝑂𝐴1710𝑛𝑚
 is the OA intensity at 1710 nm. The 

technique is a two-step equation, (i) deferential step; the OA intensities are subtracted 

by the intensity of a reference wavelength (i.e., 1710 nm) to remove the influence of 

background noise due to change in the concentration of metabolites such as water, 

lipid, proteins in the skin, (ii) normalizing step: the differential signals from the first step 

is normalized to the same reference wavelength (i.e., 1710 nm) to eliminate the change 

in resonance mode due to interference such as temperature. In our case, 1710 nm 

was chosen as a reference wavelength. The wavelength has the least absorption to 

sense the glucose signal (Figure 3.6) in-vitro. Besides, 1710 nm is the wavelength 

where lipid has a featured absorption, and water shows comparable absorption to 

glucose [64]. To prove the effectiveness of 1710 nm wavelength for removing the 

background noise and acoustic resonance change in in-vivo mice experiments, all 

other measured spectral region wavelengths were also tested as the reference 

wavelength in equation (3.4). However, none of them was as effective as 1710 nm.  
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3.2.2.4 Data analysis – Leave one out cross-validation 

In this study, the Leave-one-out method was used for rescaling the recorded 

optoacoustic signal to arrive at the values relative to glucometer measurements. This 

allows a comparison of OA measurements with glucometer measurements on the 

Clarke error grid. Clarke grid is an analysis tool widely used in diabetic research to 

show the technique's performance in estimating glucose value. If the results fall within 

regions A or B, the approach is considered clinically acceptable [65]. 

The scaling was performed on OA intensities at each wavelength (N = 12-20, the 

number of OA measurements for each wavelength at ~ 50 minutes of the experiment).  

In each case, we use a subset called the training set (with the size of N-1) to calculate 

the coefficient to fit the data between OA intensities (training set) and corresponding 

glucometer values (gold standard). The fitting coefficient will then be used to scale the 

left-out sample to get its estimated glucose concentration.  We repeat the process N times, 

each time leaving out a different pair for rescaling the all OA intensities at each wavelength (with 

size N) in the mg/dl range.  

Unscaled optoacoustic signals were compared to the glucometer readings using cross-

correlation. The scales valued were compared using root means square error 

(RMSEcv). 

 

3.2.3 Comparison of glucose versus water absorption spectra 

This section aims to understand the true spectrum of glucose compared to water, which 

is the strongest absorption agent in the blood that impedes other molecules' detection. 

We expect a similar glucose spectrum in the in-vivo experimental situation, but not 

necessarily the same, as the Grüneisen parameter of glucose would not be the same 
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in different mixtures. The pure spectrum of glucose (compared to regular distilled water 

spectrum) could provide us with a window where glucose is susceptible to strong 

optical absorption by the water spectrum. 

Figure 3.6 shows a comparison of the absorption spectra of distilled water (blue 

squares) with that of glucose (green squares). The absorption spectra were recorded 

to determine the best spectral window in the SWIR region for the study. The glucose 

solution was prepared by dissolving glucose powder in heavy water (D2O) to a 

concentration of 2000 mg/dl. Heavy water was chosen as its absorption is almost 

negligible when compared to regular water. Furthermore, the high concentration of 

2000 mg/dl glucose ensures that glucose absorption exceeds heavy water absorption 

in the SWIR spectral window. The glucose signal was then calculated by subtracting 

the spectrum of heavy water from the spectrum of heavy water and glucose. The 

glucose spectrum agrees with previous measurements [57], exhibiting absorption 

maxima at ~1650 and ~1800 nm.  Figure 3.6 shows that the glucose spectrum agrees 

with previous measurements [57], exhibiting absorption maxima at ~1650. A simple 

visual inspection of the spectrum shows that the 1550 to 1700 nm spectral region offers 

an ideal window for glucose detection in the SWIR wavelengths due to the low 

absorption of water and high absorption of glucose in this spectral range. Therefore, in 

this study, the spectral region of 1450 to 1800 nm (expanded region of the ideal window) 

was employed.    
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Figure 3.6 Water spectrum versus glucose spectrum; A comparison of the OA intensities (OAI) of 

glucose that of water (blue squares). The glucose solution was prepared by dissolving glucose powder 

in heavy water. The glucose signal was calculated by subtracting the heavy water spectrum from the 

spectrum of the glucose+D2O solution. 

3.2.4 In-vivo measurements 

Animal procedures were carried out with the approval of the Government of Upper 

Bavaria. Sample sizes for animal studies were chosen based on institutional 

recommendations with guidance from the literature. Investigators were not blinded to 

animal group allocations. The workflow of the animal procedure is shown in Figure 3.7. 

Sixteen CD1 adult female mice less than 1-year-old weighing ~40 g were randomly 

divided into two groups: glucose-injected mice (n = 10 ) were injected intraperitoneally 

with glucose (20%, B.Braun, Germany), such that each animal received 2 mg per gram 

of body weight; and control mice (n=6) were intraperitoneally injected with phosphate-

buffered saline (PBS). Before acquiring optoacoustic measurements, animals were 

fasted overnight (~ 16 h), and skin hair was removed to avoid hair interference with 

optoacoustic measurements. Glucose testing and OA measurements were performed 

for 50 minutes duration. Blood sampling via tail was done by cutting the tail tip up to 1 

mm. 
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Figure 3.7 Workflow is showing different stages of the experiment with glucose injected group (N=10) 

and control group (N=6).  

Measurements were stopped earlier if the deterioration in health conditions was 

observed. Factors related to anesthesia effects such as respiration, heart rate, and 

glucose level drop were monitored closely. After completing the optoacoustic 

measurements, animals were sacrificed, and skin samples were collected for 

histological analysis (Figure 3.8). 

As shown in the work flow chart (Figure 3.7), at the beginning of each measurement 

cycle, mice in both groups were anesthetized and left for 20 min to recover from 

anesthesia-associated stress [66]. The body temperature was carefully stabilized at 34 

±0.3 𝐶𝑜 using body temperature optimizer (PhysioSuite, US) and 1 mm tail tip was cut 

to allow blood sampling every ~3-5 min and glucose testing using a standard enzymatic 

test strip glucometer (Counter Next One, Bayer, Germany). Then, OA raw signals were 

collected continuously through a folded skin on the animal’s back. Animals were 
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positioned carefully to allow the collection of OA signal from the skin tissue. The 

illumination was performed with a non-ionizing beam with controlled energy of 0.2 

mJ/pulse (0.1 mJ in each path). The OA measurements were done through 

transmission mode, and each measurement cycle took approximately 3 min (from 1450 

nm to 1800 nm in 10-nm steps).  After the blood glucose had been measured twice at 

each wavelength (between 4-10 minutes after cutting the tail tip), the animal was 

injected intraperitoneally (i.p.) with either glucose (glucose injected mice) or PBS 

(control group), and blood glucose measurement was continued for 50 min. 

 
Figure 3.8 Skin histology and changes in thickness and homogeneity of each layer. Here D stands for 

dermis layer (including epidermis), H stands for hypodermis, and M stands for muscle layer (including 

fascia). a) Histology of folded skin of three different mice represents how the thickness of skin layers 

changes in different mice. b) CD31 histology of three different mice to depict blood vessels (red arrow) 

and follicles/glands (yellow arrow) more clearly and representing the most informative (due to the 

presence of blood vessels) and the most heterogeneous (change in the structure of the layer through 

optical paths due to presence of glands) region to sense glucose directly from blood.  
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As shown in Figure 3.8, three main layers of the skin can be clearly discerned. The 

epidermis is the outermost layer of the skin, and it does not have blood vessels within 

it. Beneath the epidermis, there is the papillary layer of the dermis with collagen 

structure, a small number of fat cells (adipocytes), and an abundance of small blood 

vessels. Beneath the dermis layer, hypodermis exists, which stores fat and provides 

insulation.  Finally, there is the muscle layer and fascia, which are not skin layers but 

can be considered as the layer that covers and permeates the skin from below. This 

fibrous tissue layer does not have blood vessels and contains high water concentration.  

Despite the presence of numerous microvessels in the dermis layer of the skin, the 

dermis layer is the most heterogeneous part of the skin due to the presence of different 

follicles and glands. Therefore, the OA signal produced in this layer can vary with 

different measurements depending on the laser beam path. Obviously, the hypodermis 

layer (including the junction of dermis and hypodermis) is most homogeneous and 

vascularized of the three layers of the skin [60], [67]; the larger vessels and 

microvessels can be clearly seen in these sections.   

3.3 Results and analysis 

The driving premise of this study has been that skin layer-specific detection of blood 

vasculature can improve sensitivity for sensing glucose. In particular, we hypothesized 

that targeting the vasculature-rich layers below the epidermis would provide the 

highest glucose contrast, as the OA measurements would directly reflect the blood 

glucose concentration, and the background noise would be minimized. The OA 

measurements have a stark contrast to optical sensors, which only provide bulk 

volumetric measurements of the skin volume, or MIR spectroscopy, which only 

measures the superficial epidermal layer. Therefore, a remaining challenge was to 
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confirm this hypothesis and identify the optimal skin layer and excitation wavelength 

for glucose measurements.  

To accomplish the layer and wavelength selection, we segmented the longitudinal OA 

measurements from all sixteen mice according to skin layers using the ML algorithm, 

as described above (Figure 3.3). Then, the OA intensity changes at different 

wavelengths (spectra) for each of the assigned segments of the OA signals 

(resembling skin layers) were compared to the gold standard glucometer readings 

recorded for each mouse. The OA intensity at a specific wavelength is defined as the 

area under the absolute envelope of the OA raw signal at that wavelength (see 

methods). To improve the glucose signal contrast over the background, we employed 

the referenced wavelength technique, (i) reducing the background signal; OA intensity 

at all wavelengths was subtracted by the reference OA intensity at 1710 nm, (ii) 

removing OA interference such as a change in temperature; the subtracted OA 

intensities were then normalized to the OA intensity at a reference wavelength (see 

methods). 1710 nm was chosen as the reference wavelength because glucose has the 

least absorption at 1710 nm in the SWIR wavelength range considered (Figure 3.6). 

The mice were kept at a constant temperature of 34±0.4 ℃, and the skin was fixed to 

minimize external influences on the correlation between OA intensity and changes in 

glucose concentrations (and avoid any motion artifacts). 
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Figure 3.9 Importance of skin layers and illumination wavelength to glucose sensing. The average 

correlation coefficient between the OA intensities and test-strip measurements is indicated for the data 

pooled from all ten animals. Coefficients are shown for specific skin layers, as assigned by the ML 

algorithm, and for bulk skin, defined as everything from the epidermis to the muscle and fascia. The 

inset figure shows a comparison of normalized pure glucose spectra with normalized mean of correlation 

coefficients (CC) in the hypodermis layer, averaged for all ten mice. 

Figure 3.9 shows how skin layer-specific detection allows the delineation of various 

skin layers where glucose can be measured most accurately. The mean correlation 

coefficient between OA intensities and glucometer readings for measurements 

obtained from different skin layers over a broad range of wavelengths for ten mice that 

were injected with a glucose solution. The correlation curves versus wavelength show 

the same change in pattern for all the different layers. However, the highest correlation 

was observed for glucose signals in the hypodermis layer at a wavelength of 

approximately 1650 nm, where the correlation coefficient was 0.82 (by taking an 

average for the ten mice (see also Table 3.1)). At nearly all wavelengths where glucose 

absorbs heavily (1600-1680 nm), signals from the hypodermis correlated better with 

the test-strip reference than those obtained from the dermis, muscle, or overall bulk-

skin measurements. Figure 3.9 inset, shows the similarity of the normalized mean 

correlation coefficient values in the hypodermis layer and the normalized pure glucose 
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spectra obtained in heavy water (see Figure 3.6). The curves' overall pattern is very 

similar, in particular between 1600-1700 nm, where glucose has a distinct fingerprint 

that is not affected by water contributions (see Figure 3.6). However, there are some 

differences between the two patterns at 1450-1500 nm and 1750-1800 nm 

wavelengths, where water contribution is significant. Table 3.1 shows a comparison of 

correlation coefficients between OA intensities at 1650 nm (after normalizing with 

reference OA intensity at 1710 nm) at different skin layers and gold standard 

glucometer readings in all glucose injected and control mice groups. On average, it is 

evident that the mean of the correlation coefficient is higher for the hypodermis layer 

for ten glucose injected mice (𝑅 = 0.82) and six control mice group (𝑅 = 0.59), showing 

higher sensitivity at this layer. More importantly, the standard deviation of the 

correlation coefficients at the hypodermis layer is on average 0.38 (0.19 for glucose 

injected mice and 0.54 for control mice groups), showing more reliability of 

measurement at this layer when compared to other skin layers and bulk skin 

measurement.   
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Figure 3.10 The Clark Error Grid displays the accuracy of the glucose-sensing using OA intensities at 

1650 nm wavelength at the (a) dermis, (b) hypodermis, (c) muscle and fascia, and bulk skin (e) in 10 

mice after glucose injection. LOOC method was used to predict glucose levels from OA intensities at 

1650 nm. 

Figure 3.10 shows Clark's display of the predicted glucose level at 1650 nm (after 

normalizing with 1710 nm reference wavelength OA signal) compared to the 

glucometer readings in all glucose injected mice (see also Table 3.2). The leave-one-

out-cross-validation method was used to predict measured glucose levels from OA 

intensity at the wavelength of interest (see method). It was evident that the hypodermis 
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layer with ~85% of the predictions at A region is the most informative skin layer to 

measure glucose concentration. Table 3.3 represents the root-mean-square-error 

(RMSEcv) between predicted glucose values at 1650 nm (after referencing to 1710 

nm) and the gold standard. On average, we can see ~31 mg/dl of prediction error in all 

glucose injected (~45 mg/dl) and control mice groups (~ 8 mg/dl) in the hypodermis 

layer, which is the least prediction error among all skin layers. Similar to the 

observations in correlation-coefficients (see Table 3.1), the hypodermis layer results 

show the least standard deviation in results, not only representing the better accuracy 

but also higher reliability of results. These results suggest that the accuracy of glucose 

measurements in-vivo depends strongly on location. This may help explain the 

relatively low accuracy of previous OA and purely optical techniques that measured 

the glucose signal from bulk skin. 

The above results imply that OA measurements using 1650 nm excitation and machine 

learning to target the hypodermis layer would provide optimal correlation with changes 

in actual blood glucose concentrations. Figure 3.11 shows a comparison between 

glucometer readings and OA measurements at 1650 nm in the skin's hypodermis layer 

for all sixteen mice, ten of which were injected with a glucose solution and six of which 

were injected with a PBS as a control. The measurements were taken for ~50 minutes. 

Figure 3.11a and b show the result for three typical mice. The first two mice were 

injected with glucose at two different time points, i.e., 4, and 30 minutes after starting 

the measurement, to see if the increase of the optoacoustic signal increase correlates 

with the glucose injection time. The last mouse was injected with PBS instead of 

glucose to ensure that the OA signal increase is not due to the injection and water 

concentration increase. From Figure 3.11, it is obvious that the OA intensities in the 

hypodermis tracked well with the glucose concentrations measured invasively from 
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blood in both groups of mice. There was some deviation in the shape of the curves, 

particularly in the control mice group; however, the OA measurements in these cases 

still indicated an increase or decrease in glucose levels that corresponded with the 

changes seen in the blood measurements. Discrepancies in the measured glucose 

concentrations that change more than 40 mg/dl during the experiment in the glucose 

injected mice and the control mice are likely due to the measurements being made at 

two different locations (back and tail), which differed in their distance from the injection 

site. In addition, the test strip manufacturer indicates an error of 10-20%. In two control 

mice, glucose concentrations calculated from OA measurements did not correlate well 

with the reference measurements, but this may be due to the overall low change in the 

glucose concentration during the entire experiment in the mice (e.g., in control mice 4 

and 6 in Figure 3.11, glucose concentration changes 15 mg/dl and 30 mg/dl, 

respectively). 
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Figure 3.11 A comparison of OA measurements in the skin's hypodermis layer at 1650 nm to reference 

glucometer readings in ten mice after glucose injection (GI group) and six mice after PBS injection 

(Control group). Sixteen mice that received glucose injections or PBS were scanned for approximately 

50 minutes after injection over the same skin region. The blue square represents OA measurements, 

and the orange square represents glucometer readings.   
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Table 3.1 The correlation coefficient between OAI at 1650 nm (after referencing to 1710 nm) at different 

skin layers and glucometer measurements. The last six rows are showing the mean and standard 

deviation of results for all mice (Mean, SD), glucose injected mice group (Mean-GI, SD-GI), and control 

mice group (Mean-Control, SD-Control), respectively. The green color represents the best results (top 

10% at each category), the yellow color showing the results in the first percentile (between top 25 to 

10%), and the red color are the worst results. 

 
 

 

 

 

 

 

 

 

 

 

 

Dermis Hypodermis Muscle Bulk 

GI-1 0.94 0.84 -0.96 -0.96

GI-2 -0.09 0.94 0.96 0.97

GI-3 -0.99 0.83 0.99 0.93

GI-4 -0.90 0.97 0.80 1.00

GI-5 0.85 0.85 0.77 0.88

GI-6 -0.84 0.99 0.38 0.53

GI-7 0.97 0.96 -0.84 -0.84

GI-8 -0.40 0.48 0.72 0.87

GI-9 0.44 0.90 0.84 0.95

GI-10 -0.53 0.47 -0.92 0.08

Control-1 0.96 0.95 0.98 0.98

Control-2 0.99 0.73 -0.02 0.80

Control-3 -0.13 0.88 0.90 0.56

Control-4 -0.09 -0.03 -0.06 -0.63

Control-5 0.99 0.93 -0.97 0.38

Control-6 -0.27 -0.29 0.24 0.68

Mean 0.12 0.71 0.24 0.45

SD 0.75 0.38 0.77 0.68

Mean-GI -0.05 0.82 0.27 0.44

SD-GI 0.79 0.19 0.83 0.76

Mean-Control 0.41 0.53 0.18 0.46

SD-Control 0.63 0.54 0.72 0.57
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Table 3.2 Comparing the data located in A region of Clark grid error ( ∓20% of glucosemeter 

measurements): the predicted glucose levels are calculated after applying OA measurement at 1650 

nm (after referencing to 1710 nm and performing LOOCV) at different skin layers. The percentage of 

the data located in the A region of the Clark grid error display is shown as a bar plot, where longer bars 

show the best results, and shorter bars show the worst results.   

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Dermis (%) Hypodermis (%) Muscle (%) Bulk (%)

GI-1 100 94 94 100

GI-2 25 94 88 90

GI-3 94 81 100 90

GI-4 56 100 25 100

GI-5 84 63 28 82

GI-6 80 100 45 45

GI-7 96 84 44 44

GI-8 37 63 63 89

GI-9 29 88 75 88

GI-10 25 56 81 18

Control-1 100 100 100 100

Control-2 100 63 37 95

Control-3 60 100 100 80

Control-4 100 100 100 100

Control-5 100 94 100 75

Control-6 100 100 100 100
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Table 3.3 Comparison of RMSECV between predicted glucose measurement at 1650 nm (after 

referencing to 1710 nm and performing LOOCV) at different skin layers and glucometer measurements. 

The last six rows are showing the mean and standard deviation of results for all mice (Mean, SD), 

glucose injected mice group (Mean-GI, SD-GI), and control mice group (Mean-Control, SD-Control), 

respectively. The green color represents the best results (top 10 % at each category), the yellow color 

showing the results in the first percentile (between top 25 to10 %), and the red color are the worst results. 

 
 

 

 

 

 

 

 

 

 

 

 

Dermis (mg/dL) Hypodermis  (mg/dL) Muscle  (mg/dL) Bulk   (mg/dL)

GI-1 22 32 21 19

GI-2 97 30 26 17

GI-3 20 62 14 37

GI-4 66 36 89 5

GI-5 51 54 69 27

GI-6 57 17 108 73

GI-7 22 27 52 52

GI-8 53 46 39 28

GI-9 130 63 100 50

GI-10 114 85 50 161

Control-1 1 1 1 1

Control-2 3 16 24 13

Control-3 26 10 12 20

Control-4 4 4 4 3

Control-5 3 7 5 19

Control-6 10 12 11 7

Mean 42.44 31.37 39.07 33.37

SD 41.30 24.68 35.61 39.29

Mean-GI 63.18 45.19 56.91 46.99

SD-GI 38.99 20.78 33.67 44.59

Mean-Control 8.90 8.34 9.34 10.68

SD-Control 9.25 4.32 4.36 7.55
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3.4 Conclusion and Discussion 

The correlation of the measured optoacoustic signals to changes in blood glucose 

concentrations is confounded by the imprecise nature of bulk skin measurements. This 

study combined an optoacoustic spectrometer utilizing light in the SWIR wavelength 

region with a machine-learning algorithm to measure glucose concentrations at 

different skin depths in live mice. The resulting layer-specific optoacoustic 

spectroscopic sensor, or LSOS, showed excellent correlation with gold standard 

glucose readings from blood samples in both control mice and mice injected with 

glucose. Our results greatly improve the accuracy of previous efforts to measure 

glucose using OA or purely optical methods, providing a viable route to develop non-

invasive, optical-based devices for glucose monitoring, much needed for diabetes 

patients.  

We showed for the first time that a 1D OA signal could be segmented into the 

corresponding skin layers using a simple machine learning algorithm. Specifically, this 

algorithm employed a Hilbert transformation rather than a peak-to-peak of the signal 

to gain comprehensive information that is less affected by water, metabolites, and other 

absorbers. Spectra taken from the segmented areas of the signal corresponded to the 

expected compositions of the respective skin layers, validating the efficacy of the 

algorithm. Furthermore, taking advantage of multispectral measurement and using the 

OA intensity at 1710 nm as a reference, we have minimized the background signal and 

some interferences such as the temperature change effect, to maximize the glucose 

signal contrast above the background signal. Finally, the calculated skin-layer 

thicknesses compare qualitatively to histological results. Note that the segmentation of 

different skin-layers accurately would be challenging with purely optical methods due 

to scattering of the reflected signal.   
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Having shown that it is possible to segment the OA signal into skin layers using 

machine learning, we demonstrated in live mice that the signal from the hypodermis 

correlated accurately to variations in the blood glucose readings from the reference 

glucometer (Figure 3.9). This correlation was better than in individual layers (i.e., the 

epidermal layer) or in bulk skin, used in all previous optical and OA studies on glucose 

sensing. Besides, we determined the optimal excitation wavelength for the 

measurement of glucose to be approximately 1650 nm. This wavelength aligns with 

findings from our previous in vitro studies [56], [68], [69], with our measurements of 

glucose in heavy water (Figure 3.6), and with purely optical and simulation studies [70]. 

Both the dermis and hypodermis layers of the skin are highly vascularized; however, 

the hypodermis contains larger vessels compared to the ones present in the dermis 

layer, possibly explaining the better correlation of the hypodermis signal with changes 

in blood glucose [71]. In addition, the hypodermis is more homogeneous than the 

dermis (Figure 3.8), which contains more glands and hair follicles that may interfere 

with the reproducibility of the individual OA measurements. The hypodermis also 

includes a lower proportion of water than the dermis, which could contribute to 

background noise in OA measurements at SWIR wavelengths [61], [62].  

Our measurements indicate that LSOS enables non-invasive OA detection of glucose 

in vivo with excellent accuracy. We further found that specifically targeting the 

hypodermis improves the correlation of the OA signal with changes in blood glucose 

levels more accurately, and the use of SWIR radiation allows for deeper penetration 

than MIR, enabling direct measurements from the blood (i.e., present in hypodermis). 

LSOS uses a new two-path design to reduce the effects of inevitable fluctuations in 

laser energy during spectral measurements, enabling real-time correction of the laser 

emission profile at different wavelengths. Despite the advantages of LSOS over 
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existing optical techniques, there are still challenges to be overcome. The layer 

segmentation method is based on supervised learning a limited dataset, requiring one 

to acquire large amounts of annotated data to train the models. Furthermore, like all 

existing glucose monitoring techniques, LSOS must be calibrated before each 

experiment. 

In conclusion, we show that LSOS enables the first-time skin-layer-based, non-

invasive analysis of blood glucose content. This approach provides improved 

sensitivity to changes in glucose concentrations over other optical techniques. In a 

sense, our combination of LSOS and machine learning allowed us to "isolate" the 

glucose signal in two ways. Firstly, by focusing on the hypodermis, we could reduce 

errors due to the heterogeneity, i.e., by the presence of abundant water and fat in the 

dermis. Secondly, using the SWIR spectral range, allowed for deeper light penetration 

and specific spectral region for glucose sensing avoiding interference from other 

chromophores like lipids, proteins, collagen, etc. Our results suggest that in-vivo 

glucose measurements are likely to be more accurate if we focus on glucose signal in 

the hypodermis layer rather than bulk skin.  
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4 Short wavelength optoacoustic spectroscopy based on 

water muting 

Content in this chapter is based on (at parts verbatim) the following journal paper:  
 

Prakash, J.*, Seyedebrahimi, M. M.*, Ghazaryan, A.*, Malekzadeh-Najafabadi, J., Gujrati, V., & 

Ntziachristos, V. (2020). Short-wavelength optoacoustic spectroscopy based on water 

muting. Proceedings of the National Academy of Sciences, 117(8), 4007-4014. 

4.1 Literature and theoretical background 

Estimating changes in the concentration of glucose, proteins, lipids, and collagen is 

essential in biomedical examination and diagnostics or therapeutics [72]–[78] and can 

prompt separating healthy from ailing tissues [79]–[82]. Since many biomolecules 

show absorption of light in the ultraviolet (UV), visible, and infrared (IR) spectral regions, 

consequently, can be distinguished by optical spectroscopy [83], [84] (OS). Yet, 

regardless of OS's wide use, sensing of various chromophores accompanies different 

drawbacks that rely upon the wavelength and frequency utilized. UV wavelengths 

cause photodamage in organic samples, while visible and near-infrared wavelengths 

generally provide low sensitivity for lipids, sugars, and proteins [85], [86]. For example, 

longer wavelengths, i.e., those in the short-wave IR (900-1800 nm), can detect 

endogenous particles like proteins, lipids, and sugars with higher contrast, yet the 

efficacy of the procedure is restricted by the absorption of water [83]–[86]. 

One way to avoid water absorption is to label target biomolecules with fluorescent dyes 

to increase detection sensitivity [87]. Raman spectroscopy is also considered to detect 

nonpolar molecule’s symmetric vibrations and is not influenced by water absorption. 

Even though Raman spectroscopy can be performed at the UV, visible, and IR 
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frequencies, the UV and visible ranges are heavily impacted by background auto-

fluorescence in tissues [76], [88]. Even weak fluorescence is much stronger than the 

generated Raman signal [88], which is why ultrasensitive trace detection is typically 

performed based on fluorescence (requires 10-16 cm2/molecule) rather than Raman 

spectroscopy (requires 10-30 - 10-25 cm2/molecule) [88], [89]. Therefore, longer 

wavelengths are preferred for Raman sensing. Nevertheless, Raman scattering by 

biological samples generally leads to low signal-to-noise ratios (SNRs) for detailed 

studies, reflecting the fact that usually only 1 in 1010 photons undergo a Stokes or anti-

Stokes shift [81], [88], [89]. The Raman signal can be strengthened by increasing light 

intensity, but this leads to photo-damage. Alternatively, significant detection 

improvement can be achieved by bringing molecules close to metallic nanostructures 

in so-called surface-enhanced Raman spectroscopy [89].  

 

Optoacoustic spectroscopy has also been considered for sensing biologically 

important chromophores in an aqueous medium, including hemoglobin, melanin, or 

contrast agents such as gold nanoparticles and organic dyes [90]–[94] and in analytical 

chemistry and nanomedicine applications [95], [96]. Synonymous to optical techniques, 

optoacoustic detecting is restricted by water absorption at longer wavelengths. Water 

contributes negligibly to optoacoustic measurements in the visible range (450-650 nm) 

and near-infrared range (650-900 nm) [85]. However, it contributes immensely to 

measurements at wavelengths longer than 900 nm, restricting the efficacy of the 

method for distinguishing proteins, lipids, collagen, and sugars [85], [97], [98]. 

Measurements of the optical absorption spectrum of glucose and lipids have been 

recently performed [85], [99] with low sensitivity because of the heavy absorption by 

water. 



58 

 

4.2 Introduction 

In this work, we investigated the reliance of optoacoustic signals on the examined 

mediums temperature and presented cooled IR optoacoustic spectroscopy (CIROAS) 

to mute water contribution while performing optoacoustic spectroscopy. We show that 

estimations of proteins, lipids, and glucose in the short-frequency infrared (SWIR) 

spectral range, performed at 4 °C, lead to improvements over ordinary optoacoustic or 

IR spectroscopy. CIROAS can empower another spectroscopic methodology with 

remarkable potential suggesting a straightforward method to improve the sensitivity of 

detecting different metabolites in biological samples. 

We hypothesize that we can improve the sensitivity of optoacoustic spectroscopy by 

limiting the OA signal generated by water by adjusting the temperature of the sample 

being analyzed. Our hypothesis relies on the fact that water’s thermal expansion 

coefficient becomes zero at 4 °C [100]. Optoacoustic signals reliance on temperature 

has been experimentally demonstrated in the NIR regime (700-900 nm) [51], [93], [101], 

[102]. 

 

To examine our theory's legitimacy, we developed the first Cooled IR Optoacoustic 

Spectroscopy (CIROAS) and applied it to record optoacoustic spectra of lipids, bovine 

serum albumin (BSA), and glucose in aqueous solutions at various temperatures. For 

the first time, we muted water contribution at the NIR-II wavelengths (900-1900 nm), 

where sugars, lipids, and proteins emanate strong optoacoustic signals, compared to 

the NIR region where the generated OA signals through these chromophores are much 

weaker. Accordingly, we planned to eliminate the high contribution from water on the 

OA signals acquired in the NIR-II window and sense these moieties with higher efficacy. 
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Experiments were performed over several wavelengths in the NIR-II region and 

contrasted the detection sensitivity achieved using CIROAS with regular optoacoustic 

NIR-II spectroscopy at room temperature. The principles used in CIROAS 

concentrated on how solute concentration influences (a) the muting point of an 

aqueous solution (the temperature at which water signal is muted) and (b) the rate of 

change of optoacoustic signal with temperature. We further used the rate of change of 

the OA signal as a function of temperature to define the solute concentration 

quantitatively. Lastly, we elaborated on how CIROAS may considerably stretch out the 

capabilities of optoacoustic spectroscopy to detect biological molecules in cells and 

tissues. 

4.3 Method  

4.3.1 Theory 

As briefly explained in chapter 1, the generation of optoacoustic signals requires 

pressure and thermal confinement criteria to be fulfilled [93], [103], [104]. Thermal and 

stress confinement conditions can be fulfilled by having the pulse width of light 

excitation shorter than heat and stress relaxation times, respectively [103]. When these 

rules are fulfilled, the fractional volume expansion (dV/V) created by the pulsed laser 

is defined as [103], 

 𝑑𝑉

𝑉
= −𝜅𝑝 + 𝛽𝑇 

(4.1) 

where 𝜅 is the isothermal compressibility, 𝛽 is the thermal expansion coefficient, and 

𝑝 and 𝑇 represent the changes in measured pressure and temperature, respectively.   
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When light pulses used have pulse width in nanosecond range, the heating is rapid, 

and we can neglect fractional expansion (i.e.  
𝑑𝑉

𝑉
= 0).  Accordingly, the pressure 

elevation after laser excitation can be written as [33], 

𝑝 =
𝛽∆𝑇

𝜅
=

𝛽

𝜅𝜌𝐶𝑣
𝐻 = 𝛤𝐻 

(4.2) 

where ∆𝑝 is local pressure rise, 𝜌 is the mass density, 𝐶𝑣 is the specific heat capacity, 

and 𝐻  represents absorbed energy density after excitation. The light to sound 

conversion is heavily influenced by the dimensionless Grueneisen parameter (Γ) and 

can be rewritten as below [33], 

𝛤 =
𝛽

𝜅𝜌𝐶𝑣
=

𝛽𝑣2

𝐶𝑝
= 𝑔(𝑇)  

(4.3) 

where 𝑣 is the speed of sound, 𝐶𝑝 is the specific heat capacity at constant pressure, 

and 𝑇  represents the temperature of the medium being probed. Accordingly, the 

pressure elevation in the medium or optoacoustic signal is a function of temperature 

(∆𝑝 = 𝑔(𝑇)𝐻). The thermal expansion coefficient 𝛽 is related to the temperature of the 

medium through the following equation [101], 

𝛽 =  𝛽1 + 𝛽2𝑇   
(4.4) 

where  𝛽1 and 𝛽2 are the first two coefficients in a Taylor expansion of 𝛽. Therefore, 

the pressure elevation (optoacoustic signal) can be rewritten as follow, 

∆𝑝 =
(𝛽1 + 𝛽2𝑇)𝑣𝑠

2

𝐶𝑝
𝐻 

(4.5) 

On the other hand, we know that the thermal expansion for the water at 4 °C is zero 

(𝛽𝑤𝑎𝑡𝑒𝑟 = 0) [100], [105],  resulting in a muted optoacoustic signal at this temperature. 
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As we reduce the temperature further, we can see that the polarization of the 

optoacoustic signal changes from positive polarization (i.e., positive peak followed by 

negative peak) at the higher temperature to negative polarization (i.e., negative peak 

followed by positive peak). 

 

This theory's underlying premise is that presence of any solute such as glucose, lipid, 

and proteins in the water will change the thermal expansion coefficient of the aqueous 

medium and alter the temperature dependency of the optoacoustic signal muting point 

when compared to water. The thermal expansion of the aqueous can be written as, 

𝛽𝑎𝑞𝑢𝑒𝑜𝑢𝑠 = 𝛽𝑤𝑎𝑡𝑒𝑟 + ∆𝛽 
(4.6) 

and the generated optoacoustic signal can be written as, 

∆𝑝 = 𝛽𝑎𝑞𝑢𝑒𝑜𝑢𝑠

𝑣𝑠
2

𝐶𝑝
𝐻 = (𝛽𝑤𝑎𝑡𝑒𝑟 + ∆𝛽)

𝑣𝑠
2

𝐶𝑝
𝐻 

(4.7) 

Assuming the first two coefficients of Taylor series expansion coefficients in the 

equation (4.4) are similar in water and aqueous solution, then the variation in muting 

point (𝑇𝑚𝑢𝑡𝑒) could be potentially used to measure the concentration of the solutes 

more accurately. We use long known Despretz equation, in which shift in the muting 

temperature of a solute vs. the muting temperature of water (i.e., 4 °C) as a function of 

solute concentration is given by the Despretz law, i.e., Δ𝑇 = 𝐾𝑐 , where K is the 

Despretz constant and c is the solute concentration [102], [106]. Rewriting equation 

(4.6) at the muting point, we get,  

𝛽𝑎𝑞𝑢𝑒𝑜𝑢𝑠 = 𝛽1 + 𝛽2𝑇 = 𝛽1 + 𝛽2(𝑇𝑚𝑢𝑡𝑒 + 𝛥𝑇) = 𝛽𝑤𝑎𝑡𝑒𝑟 + 𝛽2(𝛥𝑇)   
(4.8) 

Therefore at 4 °C, the optoacoustic signal of the aqueous can be written as, 
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∆𝑝 = 𝛽𝑎𝑞𝑢𝑒𝑜𝑢𝑠

𝑣𝑠
2

𝐶𝑝
𝐻 = 𝛽2𝛥𝑇

𝑣𝑠
2

𝐶𝑝
𝐻 

(4.9) 

and then using the Despretz equation, we can rewrite equation (4.9) as, 

∆𝑝 =  𝛽2𝐾𝑐
𝑣𝑠

2

𝐶𝑝
𝐻 

(4.10) 

Equation (4.10) indicates that the optoacoustic pressure detected at water muting 

temperature is proportional to the solute concentration and therefore can be used for 

quantitative spectroscopy purposes. We were particularly interested herein in 

identifying the use of equation (4.10) in the SWIR spectral region. Quantifying the 

changes in the optoacoustic signal intensity at SWIR excitation wavelengths at which 

the target solute strongly absorbs, under water muting conditions, could allow an 

accurate determination of target concentration with higher sensitivity than in the NIR.  

4.3.2  Cooled IR Optoacoustic Spectroscopy 

 

We developed a Cooled IR Optoacoustic Spectroscopy (CIROAS, Figure 4.1) and 

evaluated its use to detect metabolites such as glucose, lipid, and BSA. The system 

was built as a generalizable sensor and the studies that follow examined specific 

operational parameters that maximize sensitivity and eventually lead to a more 

portable setup. A tunable nanosecond SpitLight Single OPO laser (Innolas, Krailling, 

Germany) was employed to excite the sample in the entire NIR-II regime. The laser's 

output power was set to 0.5 mJ across the whole spectral region of 900 – 1900 nm, 

and scanning was performed with 10 nm step size. A cylindrically focused ultrasound 

transducer (UST) with a central frequency of 7.5 MHz (V319, Olympus Panametrics-

NDT, Tokyo, Japan) adjusted in its focus to detect optoacoustic signal from the medium. 

The acquired optoacoustic signal was then amplified using a low-noise amplifier, AMP 
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(AU-1291, Miteq Inc., USA), and digitized using a data acquisition card (DAQ) with a 

sampling rate of  200 MS/s. A power meter was used to register the intensity of the 

light in the medium simultaneously. The measured intensities in the power meter were 

used to correct the laser intensity fluctuation during the scanning. The trigger signal 

from a photodiode (PD) was used to synchronize the signal acquisition in DAQ. The 

aqueous solution was located in a chamber, where the temperature was controlled 

accurately using Peltier elements and thermocouples (Figure 4.1). Six temperature 

sensors (thermocouple-based) were placed inside the chamber in a closed-loop 

configuration to measure the entire chamber's average temperature. Four Peltier 

elements were employed to control the temperature in the medium and maintaining 

the desired temperature. A mechanical stirrer was used continuously to mix the 

chamber's solution to ensure a medium homogeneous temperature while acquiring all 

the optoacoustic measurements reported here.  

 
Figure 4.1 a) Schematic representation of the experimental setup for CIROAS.  UST – ultrasound 

transducer; PD – photodiode; AMP – amplifier; TS – temperature sensor; PM – power meter; ST – 

stirrer; PE – Peltier Element; PC/ DAQ – personal computer with data acquisition card b) Data 

processing and analysis steps. OAS raw data (RD, left) was transformed by Hilbert transformation (HT, 

middle), and the area of interest (AI, right – in blue) under curves was taken as the intensity of the OAS 

signal (IOA). 
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4.3.3 Data collection and processing  

Data acquisition and processing were performed in MATLAB (Mathworks, Natick, MA). 

Obtained raw OA signal intensities were normalized per laser energy as registered by 

the power meter. The strength of the optoacoustic signal (IOA) was estimated by 

computing the Hilbert transform of the recorded acoustic signal and integrating the 

area under the curve (Figure 4.1b) as previously suggested [98] and explained in 

chapter 3.  For each wavelength, 40 optoacoustic measurements were recorded and 

averaged to increase SNR.  

4.3.4  Experimental Measurements. 

To investigate the advantages of cooled infrared optoacoustic spectroscopy (CIROAS), 

we examined different measurement of an aqueous solution at various temperatures 

from 1.4 to 25.8 °C using illumination at 1440 nm. In these examinations, the raw 

optoacoustic signal and muting temperatures were recorded. Next, we test the 

capability of CIROAS, for instance, to detect glucose in the NIR-II regime as an 

application. We tried to investigate whether glucose detection could be improved over 

traditional SWIR spectroscopy by cooling the medium's temperature. Hence, we set 

up a supply of D(+) glucose (C6H12O6, Merck, Darmstadt, Germany) and add it to 

distilled water in the test chamber in 5 titrations range of 0 to 452 mg/dl. The test 

chamber contained 14 ml of distilled water. At every titration stage, 1 ml of the solution 

was first dispensed into the chamber, and then 1 ml of concentrated glucose was 

added to the reservoir aqueous solution from the stock solution. As a second 

application, we also performed CIROAS measurements in bovine serum albumin 

(BSA), having various glucose concentrations in serum solution at 160, 120, 80, and 

30 mg/dl. BSA was prepared by filtering with a 0.4-micron filter. The measurements 



65 

 

using CIROAS are then compared to glucometer (Contour Next One, Basel, 

Switzerland) readings. We also measured lipid solution as a third application, prepared 

by mixing intralipid (20% emulsion, I141-100ML; Sigma) in distilled water [14]. Finally, 

we performed CIROAS measurements to investigate sensing of physically relevant 

protein concentration by preparing 50 g/L of BSA solution.  

4.4.  Results  

Figure 4.2 shows the optoacoustic response, particularly the water's muting property, 

as a function of temperature at the SWIR spectral region using CIROAS. We aim to 

confirm the hypothesis that the muting point measurement increases the detection and 

offers a more accurate estimation of metabolites concentration in an aqueous medium. 

Figure 4.2a shows a decrease in optoacoustic signal following the excitation at 1440 

nm by decreasing the temperature from the initial temperature at 25.8 °C. The 

optoacoustic signal becomes zero at 4 °C. As shown in Figure 4.2b, a further decrease 

in the temperature increases the optoacoustic signal amplitude again, but changes the 

polarization of the optoacoustic signal from positive polarization (i.e., positive peak 

followed by negative peak) to negative polarization (i.e., negative peak followed by 

positive peak).  Figure 4.2d shows the change in the optoacoustic signal amplitude as 

a function of temperature in the whole measured spectral window. It is evident that the 

amplitude of the signal decreases until zero at 4 °C, indicating an optoacoustically 

muted point, and again the amplitude increases by further reducing of the temperature. 

These measurements report on the change of polarity of the optoacoustic signal for 

temperatures below 4 °C and the muting of the optoacoustic response at 4 °C for water 

in the SWIR.  
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Figure 4.2 Optoacoustic signal of pure water at different temperatures after illumination in the SWIR 

range. (a) Raw optoacoustic signal of water at different temperatures after exposition at 1440 nm. (b) 

The temporal raw optoacoustic signal at 1.8 °C. (c) The temporal raw optoacoustic signal at 21 °C. (d) 

Optoacoustic spectra of water at different temperatures after illumination in the SWIR range. (e) 

Comparison of the signal obtained from pure water to varying temperatures after exposure at 1440 nm 

using optical and optoacoustic measurements. 

Figure 4.2e delineates optical and optoacoustic signal recorded from distilled water at 

the temperature range of 1.4-25.8 °C following the excitation at 1440 nm. Beer-

Lambert law was applied to the optical signal to calculate the absorption curve from 

the measured attenuated transmitted signals. The change in water absorption as a 

function of temperature, measured with the pure SWIR optical spectroscopy, showed 

only a minor incline of 0.001/°C. In contrast, the optoacoustic signal versus 

temperature showed a slope of at least 0.02/°C, indicating significant dependency of 
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optoacoustic signal to temperature change. This affirms the potential advantage of 

utilizing optoacoustic spectroscopy over conventional optical spectroscopy at low 

temperature to decrease and even mute water contribution in the optoacoustic signal. 

This is important, as weaker absorption signal from other molecules are drowned in 

stronger water absorption signal at the SWIR wavelengths. Accordingly, we investigate 

the potential to boost the detection's sensitivity at lower temperatures in optoacoustic 

spectroscopy at SWIR spectral regime.  

As an example application, we used CIROAS to detect glucose in the water (Figure 

4.3). Conventional spectroscopies are relatively insensitive to detect the glucose 

spectrum, for instance, the absorption of glucose is around 1000 times smaller than 

that of water [63]; this is why different spectroscopy techniques are looking for the 

change of the acquired signal rather than measuring the glucose spectrum itself. 

Furthermore, sharing the same chemical bound (e.g., O-H bound) between glucose 

and water molecules leads to relatively the same optical fingerprints. It makes 

differentiation of the glucose spectrum even more complicated.  Figure 4.3a exhibits 

an optoacoustic signal measured following the illumination at 1580 nm from an 

aqueous glucose solution with 452.2 mg/dl as a function of temperature ranging from 

0.6 to 18.5 °C. Looking closely at optoacoustic signal change at 4°C (Figure 4.3a inset), 

we can see that the muting point is shifted to a lower temperature than 4 °C, the muting 

point of pure water. Figure 4.3b depicts the raw optoacoustic signal of pure water and 

the aqueous solution of glucose (452.2 mg/dl) at 1580 nm and 4°C. It is evident that 

the glucose signal shows a detectable optoacoustic signal with normal polarity (positive 

peak followed by a negative peak). In contrast, we can see that the optoacoustic signal 

is almost zero for water at this wavelength, revealing that the signal from aqueous 

glucose solution is only valid due to the presence of glucose molecules. 
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We also compared the spectrum of the pure water and aqueous solution of glucose 

with 452.2 mg/dl in the spectral range between 900 and 1900 nm. Figure 4.3c shows 

an almost zero optoacoustic signal for pure water, which yields a strong signal for 

glucose solution at 4 °C. Furthermore, comparing the optoacoustic signal from the 

same aqueous solution of glucose (452.2 mg/dl at 4 °C) with room temperature at 18 °C 

reveals differences in two spectra (Figure 4.3d). Figure 4.3d makes it evident that the 

water spectrum's morphology at 18 °C is very similar to the glucose spectrum at the 

same temperature due to the substantial contribution of water absorption, which 

shadows the glucose spectrum. However, by decreasing the glucose aqueous 

solution’s temperature to 4 °C, we can see that the spectrum is different, particularly 

at 1550-1700 nm. Figure 4.3e shows the spectrum of the aqueous solution of glucose 

at different temperatures. It is obvious that there is an appreciable amount of signal at 

4 °C. Figure 4.3e also shows that the amount of optoacoustic signal decreases until 

3.1 °C and again increases by further lowering the temperature (i.e., at 1.5 °C). Finally, 

Figure 4.3f compares the pure spectrum of glucose at different temperatures after 

subtracting by the water spectrum. All spectra are processed by removing the water 

spectrum at 18 °C. Note that as the water spectrum gives minimum optoacoustic 

contribution at the muting point (4 °C), the subtraction of all aqueous glucose solutions 

was performed by subtracting the normalized optoacoustic signal of aqueous at 

different temperature with the normalized spectrum of water at 18 °C.  Figure 4.3f 

shows that the sensitivity to detect glucose increases by a factor of five-fold at 4 °C, 

specifically at wavelengths between 1500-1700 nm.  
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Figure 4.3 Optoacoustic signal of an aqueous solution of glucose (452.2 mg/dl) at different temperatures 

after illumination in the SWIR range.  a) The raw optoacoustic signal at temperatures between 0.6 and 

18.5 °C after illumination at 1580 nm. b) Superposition of the optoacoustic signals of pure water (red 

line) and the aqueous glucose (blue line) solution at 4 °C.  c) Optoacoustic spectra of pure water at 4 °C 

(dotted blue line) and the aqueous glucose solution(dashed black line) at 4 °C. d) Normalized 

optoacoustic spectra of pure water (solid red), the aqueous solution of glucose at 18 °C (dotted cyan), 

and the aqueous solution of glucose at 4 °C (dash black). e) Optoacoustic spectra of the aqueous 

glucose solution at different temperatures after illumination in the SWIR range. f) The absolute 

normalized difference in OA signal was recorded from aqueous glucose and water solutions at 4 °C, 

10 °C, and 18 °C. 

To test the reproducibility of CIROAS, we repeated the measurement from an aqueous 

solution of glucose (Figure 4.4). The normalized optoacoustic signal of the water at 25 

°C, aqueous glucose solution with a concentration of 400 mg/dl at 4 °C, and saturated 

glucose concentration at 25 °C are shown in Figure 4.4a. The saturated glucose 

solution was prepared by adding glucose to heated water until glucose could not 

dissolve anymore in the solution. It can be discerned that there is a clear difference in 

the spectral region ranging from 1550 to 1700 nm. The result is similar to our 

observation in the previous experiment for glucose (see Figure 4.4c & d). There are 
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some differences in the spectra's morphology between water and aqueous glucose 

solution in Figure 4.3.c-d and Figure 4.4.a, possibly due to differences in water 

spectrum measured at 18 °C (Figure 4.3.c-d) and 25 °C (Figure 4.4). 

Interestingly, we can also see that the normalized optoacoustic spectrum of saturated 

glucose is higher than its normal concentration at the physiological range at 400 mg/dl 

(Figure 4.4a) due to the nonlinearity effect. To study the nonlinearity effect as a function 

of glucose concentration, we measured optoacoustic signal at different wavelengths in 

an aqueous glucose solution with different concentrations (Figure 4.4b).  Figure 4.4b 

shows the nonlinear behavior of the OA signal as a function of concentration. The 

nonlinearity effect increases exponentially at higher concentrations and is found to be 

wavelength dependent. As suggested before (Ref. [107]), the nonlinearity phenomena 

may further explain the differences in spectral morphology of saturated and 

physiological levels (i.e., 400 mg/dl) of glucose signal in Figure 4.4a.   

 
Figure 4.4 Optoacoustic signal of an aqueous solution of distilled water and saturated glucose at 25 °C 

and 400 mg/dl aqueous solution of glucose at 4 °C in the SWIR range. (a) Repeat optoacoustic spectra 

of pure water at 25 °C (solid red line), the aqueous solution of glucose (dashed black line) at 4 °C, and 

saturated glucose solution (dotted blue line). (b) OA measurements as a function of varying glucose 

concentration in water at different wavelengths to demonstrate non-linear behavior. 

We also investigated how changing the glucose concentration alters the muting point 

and the OA signal dependence on temperature. This is similar to how solute 

concentration varies the boiling or the freezing points compared to the pure solvent's 
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temperature. The experiment was perfumed with glucose solutions in distilled water 

with a concentration between 50 to 600 mg/dl. Figure 4.5 shows the optoacoustic 

signal from glucose concentration ranging from 149.6 to 452.2 mg/dl and exhibits a 

temperature dependence of the OA signal intensity at 1580 nm for pure water and 

aqueous glucose solutions. Overall, the range examined covers physiological and 

hyperglycemic levels reported in the brain and blood [74], [108], [109]. Linear fits to 

data show monotonic increases with temperature. The fitted lines intersect with the 

temperature axis at 4 °C for pure water, 3.7 °C for water containing glucose at 149.6 

mg/dl, and 3.1 °C for water containing glucose at 452.2 mg/dl. The fitted lines 

corresponding slopes were 0.0582, 0.0538, and 0.0527 (change in OA signal/°C). 

These results indicate that both the temperature intercept and OA signal-temperature 

slope varied proportionally with glucose concentration. This dependence can be 

therefore employed for quantifying the concentration of biomolecules in solutions.  

 

 
Figure 4.5 Temperature dependence of optoacoustic signal measured from water as a function of solute 

concentration. a) Temperature dependence of the optoacoustic signal intensity of pure water (black 

squares) and aqueous solutions of glucose at 149.6 mg/dl (red circles) or 452.2 mg/dl (blue triangles). 

Linear fitting of monotonically increasing signals is shown. (Inset) The muting point of each solution, 

defined as the intersection with the temperature axis. b) Variation in muting point (T*) with glucose 

concentration (Cgl). c) Variation in muting point (T*) with glucose concentration (Cgl) in serum solution. 
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We further studied the minimum detectable concentration of glucose at the muting 

point (Figure 4.6). The limit of detection (LOD) using CIROAS for glucose+H2O was 

reliably observed at 50 mg/dl, and for glucose in serum was observed at 45 mg/dl. The 

precise controlling of the temperature with the current setup of CIROAS was not 

possible, and the temperature had ~0.4 °C fluctuation at the muting point. The smaller 

amount of concentration can also be detected by modifying the temperature regulation 

part of the CIROAS in the future. The sensitivity of the CIROAS was also investigated 

by adding a small amount of glucose concentration at a glucose level higher than the 

LOD of the device (i.e., 136 mg/dl). We found that adding 8 mg/dl of glucose at 136 

mg/dl concentration of glucose+H2O solution can be reliably detected (Figure 4.6).  

This means that CIROAS can reliably confirm the minimum of 50 mg/dl of glucose 

concentration (LOD) and 8 mg/dl change in glucose concentration (sensitivity). A 

comparison of the CIROAS glucose concentration measurements to glucometer 

measurements are summarized in Table-1. The comparison reveals that CIROAS 

outperformed the commercial glucometer device since it better predicted the known 

glucose concentration in the solution measured. 

 
Figure 4.6 Variation in muting point with glucose concentration in water solution (for estimating the 

minimum distinguishable concentration). 
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Table 4.1 Indicates the actual concentration and the recovered values from CIROAS measurements 

and glucometer values. 

Actual Concentration CIROAS Measurement Glucometer 

30 mg/dl  39 mg/dl  14 mg/dl 

45 mg/dl  42 mg/dl  40 mg/dl 

80 mg/dl  79 mg/dl  77 mg/dl 

120 mg/dl  123 mg/dl  124 mg/dl 

160 mg/dl  157 mg/dl  185 mg/dl 

200 mg/dl  202 mg/dl  235 mg/dl 

 

We further examined CIROAS of lipid and protein detection compared to 

measurements at room temperature. Figure 4.7a shows measured OA spectra from 

890 nm to 1000 nm for an aqueous solution of lipid at different temperatures. This 

spectral window was selected as lipid shows a distinct absorption peak at 930 nm, and 

water shows an absorption peak at 970 nm. We found that the 930 nm peak becomes 

visible at lower temperatures, but it is not prominent as we increase the temperature. 

We also observed that the OA signal continues to decrease as the temperature 

reduces below 4 °C. This signal decrease might be due to interference and OA signal 

cancellation between lipid (positive peak preceding negative peak below 4°C) and 

water (negative peak preceding the positive peak below 4 °C). Note that similar 

behavior was not observed while probing glucose solution. This may be because 

glucose is readily soluble in water than lipid molecules causing interference of the OA 

signals from lipid and water. Figure 4.7b indicates the normalized OA measurements 

(i.e. 
𝑥

max (𝑥)
, where 𝑥 is the acquired OA spectrum) from lipid solution at 19 °C and 4 °C, 

showing the lipid solution's spectral difference at the two temperatures. It is evident 

that the real spectrum of lipid becomes more visible at lower wavelengths, where we 

cannot discern the same at higher temperatures. Figure 4.7c shows the ratio of the 

measured OA signal at 930 nm to that of 970 nm as a function of temperature for the 

measurements shown in Figure 4.7a. The curve shows that the relative signal obtained 

primarily due to lipid contributions at 930 nm becomes 4x stronger at lower 



74 

 

temperatures than the signal obtained at 970 nm, attributed mainly to water absorption. 

This observation suggests a 4x lipid detection sensitivity improvement at lower 

temperatures.  

Figure 4.7d indicates the measured OA spectra from 1000-1210 nm for an aqueous 

solution of BSA at different temperatures. BSA does not exhibit characteristic peaks in 

the measured wavelength range, but between 1000 and 1100 nm BSA shows a roughly 

constant absorption, whereas water decreases in absorption with increasing 

wavelength. Therefore, at lower temperatures, we clearly see a decrease in OA signal 

intensity and a flattening of the spectrum in the 1000 nm - 1100 nm range, reflecting 

the water muting effects. Figure 4.7e plots the normalized BSA solution measurements 

at 19 °C and 4 °C, showcasing the two temperatures' spectral differences. At 4 degree, 

the BSA solution shows a reduced signal compared to 18 degrees due to the reduction 

of water absorption contribution to the OA signal.  

An analysis similar to the one performed in Figure 4.7c shows that the gradient of the 

optoacoustic signals obtained between 1000 nm and 1100 nm from the BSA solution 

decreases with reducing temperature. The gradient used in Figure 4.7f is calculated 

using 
𝑦1100−𝑦1000

100
, where 𝑦1100 is the OA signal from BSA solution at 1100 nm, 𝑦1000 is 

the OA signal from the BSA solution at 1000 nm. We used a ratio of spectral peaks for 

the lipid measurement (Figure 4.7c) since the lipids have a distinct peak at 930 nm, 

whereby water at 970 nm. However, we used the gradient calculation in Figure 4.7f 

since the BSA spectrum does not have such distinct peaks in its spectrum. The 

gradient measure tends to be closer to 0 at lower temperatures, indicating that BSA 

spectral signature dominates at lower temperatures, but water contributions begin to 



75 

 

appear with increasing temperature. The BSA detection sensitivity is 5 times greater 

at lower temperatures compared to higher temperatures.  

 

Figure 4.7 Optoacoustic signal of an aqueous solution of lipid (10%) and BSA (50 g/L) at different 

temperatures after illumination in the SWIR range. (A) Optoacoustic spectra of lipids in aqueous solution 

at different temperatures after illumination in the wavelength range of 890 to 1000 nm. (B) Comparison 

of normalized OA spectra of lipid solution at 19 °C (dotted orange line) and 4 °C (solid blue line). (C) 

The optoacoustic signal ratio from the lipid solution at 930 nm (lipid peak) signaled at 970 nm (water 

peak) at different temperatures. (D) Optoacoustic spectra of BSA in aqueous solution at different 

temperatures after illumination in the wavelength range of 1000 to 1210 nm. (E) Comparison of 

normalized OA spectra of BSA solution at 19 °C (dotted orange line) and 4 °C (solid blue line). (F) The 

gradient in the measured optoacoustic signal from the BSA solution between 1000 and 1100 nm at 

different temperatures. 

We also examined the muting points for lipid and protein. In contrast to the glucose 

measurements, whereby the muting point was the same at all wavelengths, Figure 

4.8a and b show that the muting point of lipid solution was higher at 930 nm (i.e., about 

8 °C) compared to 970 nm (where muting point was at 2.5 °C). Moreover, Figure 4.8c 

shows the BSA solution's muting point at 1070 nm, found to be at 1.8 °C. However, 

the OA signal at higher wavelengths did not mute at all, as shown in Figure 4.5d. We 
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currently investigate the variation of thermal expansion coefficient as a function of 

temperature for biomolecules such as glucose, lipids, and proteins to gain better 

insights into these muting point variations along the equations (4.8-(4.10). Finally, LoD 

and sensitivity measurements were also performed for the lipid solution. We found the 

LoD for lipid to be 2% of intralipid solution, using the current CIROAS setup, while the 

sensitivity of lipid detection, i.e., the minimum change that could be observed in our 

setup, was 1% of intralipid solution. Lipid LoD and sensitivity were determined as the 

minimum change of the OA signal ratio at 930 nm to the OA signal at 975 nm that could 

be reliably obtained using the CIROAS setup (Figure 4.9). 

 

 
Figure 4.8 Variation of OA signal as a function of temperature for lipid and BSA solutions. (a) OA 

measurements as a function of temperature from lipid solution at 930 nm wavelength, (b) OA 

measurements as a function of temperature from lipid solution at 975 nm, (c) OA measurements as a 

function of temperature from BSA solution with 1070 nm illumination. 
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Figure 4.9 Ratio of OA signal of Lipid to that of water. a) Ratio of OA signal at 930 nm vs. OA signal at 

975 nm for lipid solution at different concentrations (for estimating limit of detection), b) Ratio of OA 

signal at 930 nm vs. OA signal at 975 nm for lipid solution at different concentrations (for estimating 

minimum distinguishable concentration). 

4.5. Conclusion and Discussion 

We exploited the dependence of optoacoustic signals on temperature for improving 

the sensitivity of infrared spectroscopy. Compared to measurements at room 

temperature, CIROAS at 4 °C yielded on an average, a 5-fold sensitivity improvement 

in the SWIR over measurements at room temperature. These improvements can be 

observed as more pronounced spectral differences in the glucose spectrum (e.g., 

Figure 4.3f) or as relative changes for lipids and BSA, i.e., with respect to the ratio 
𝑂𝐴930

𝑂𝐴975
 

in case of lipid and the per wavelength normalized difference 
𝑂𝐴1100−𝑂𝐴1000

100
 in the case 

of BSA. We explored the muting point's modifications as a function of solute 

concentration and measured the OA signal as a function of temperature for a 

carbohydrate, a protein, and a lipid solution. Previously, the optoacoustic signal's 

temperature-dependence has been utilized for determining the temperature of a 

sample; for example, during thermal therapy using focused ultrasound [110], [111], or 

while ablating tissue with a laser fiber [112], [113]. This dependency has also been 



78 

 

used to discriminate nonlinear optoacoustic emission of gold nanospheres dissolved 

in water from the linear optical absorption of the water solvent in the NIR-I region [114]. 

However, the effects of muting water responses at about the 4 degrees Celsius 

temperature has not been previously explored. We show a new spectroscopic 

approach by exploiting this muting property and demonstrating benefits in utilizing 

optoacoustic readings over conventional optical readings, common in IR spectroscopy.  

Our demonstration and analysis focused on the IR wavelengths, particularly in the 

SWIR range, and addressed the long-standing problem of strong light absorption by 

water in this spectral region, which challenges the detection sensitivity. Moreover, it 

has been particularly challenging to detect metabolites such as glucose since both 

water and glucose molecules have the O-H group, giving rise to a similar spectrum 

with a strong absorption peak at 1440 nm. As per Figure 4.2, we can conclude that the 

generated OA signal from the water below 4 °C changes its polarity i.e., negative peak 

will be followed by the positive peak (because of thermal expansion coefficient 

becoming negative). Conversely, the OA signal generated from glucose retains a 

positive peak sequence followed by a negative peak at temperatures below 4 °C. As a 

result, there would be an interaction of these two OA signals generated due to water 

and glucose molecules, resulting in the shifting of the muting point to 3 °C (below 4 °C). 

By lowering the temperature and muting water contributions, we enable more sensitive 

spectroscopic detection of glucose and possibly other biomolecules, as elaborated in 

Figure 4.3, Figure 4.5, Figure 4.7. 

 

We provide evidence that the “muting point” can be observed at all SWIR wavelengths 

and represents an essential CIROAS feature that allows up to 5-fold improved 
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sensitivity in biomolecule detection compared to room-temperature spectroscopy. For 

the glucose solution, the exact muting point and the slope of the optoacoustic signal's 

thermal dependence were shown to depend on glucose concentration. This trend could 

be modeled by assuming a thermal expansion coefficient β that depends on solute 

concentration analogously to other colligative water properties, such as boiling point 

freezing point and vapor pressure [115], [116]. We show that the dependence of muting 

point on the solute concentration can be employed to quantify the concentration of 

biologically relevant solutes, i.e., CIROAS measurements at different temperatures can 

quantify the concentration of solutes in aqueous solutions. The results further show 

that besides glucose, CIROAS improves the sensitivity of the detection of protein and 

lipid, which opens up the possibility of improving the detection of many other 

biomolecules, such as lactose, sucrose, galactose, cathepsin, integrin, and myosin. 

Optoacoustic measurements in the SWIR spectral range are unaffected by other 

abundant, but weakly absorbing chromophores such as hemoglobin and melanin, 

making CIROAS an attractive method for metabolites' measurements in solution.  
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5 Future and outlook 

During this work, we designed, built, and characterized two spectroscopic systems 

based on the optoacoustic effect in SWIR. The main goal was to push the boundaries 

of sensitivity and selectivity with a reasonable depth of penetration. This particular 

ability is vital for studying biological samples in an experimental animal model.  

The LSOS, presented in chapter 3, has made it possible for the first time, to detect 

glucose from the most informative layer of the skin at hypodermis. The correlation of 

the assessed optoacoustic signals to blood sugar levels changes is always challenged 

by the imprecise dynamics of bulk skin measurements. Initially, we merged an 

optoacoustic spectrometer employing light in the SWIR region with a machine-learning 

algorithm to evaluate glucose levels at different skin depths in live mice. The LSOS 

showed an outstanding correlation of the optoacoustic signal with gold standard 

glucose readings obtained from blood samples in all control mice and mice injected 

with glucose. Our results significantly strengthen the accuracy of preceding initiatives 

to assess glucose through the OA or purely optical approaches, giving a practical path 

to produce a non-invasive, optical-based product for glucose monitoring, which is much 

needed for people with diabetes.  We discovered that exclusively focusing on the 

hypodermis enhances the correlation of the OA signal with changes in blood glucose 

levels more accurately. The application of SWIR radiation allows for much deeper 

penetration than MIR, allowing direct measurements from the blood in the hypodermis 

region. LSOS relies on two path designs to minimize the consequences of unavoidable 

fluctuations in the laser beam energy throughout spectral specifications. It allows real-

time modification of the laser beam emission profile at various wavelengths. 
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Regardless of the benefits of LSOS over conventional optical approaches, there are 

still difficulties to be overcome. The layer segmentation technique is based on 

supervised learning of a small dataset, thus requiring annotated labeling for training 

the models. In the future, we aim to obtain more measurements to be enough to 

perform unsupervised learning methods to cluster the skin layers. Additionally, like all 

pre-existing glucose monitoring approach, LSOS need to be calibrated before each 

experiment. As a next step, as we validate glucose from the skin's hypodermis layer, 

we hypothesize to build a calibration-free device. This is possible as we target the 

glucose from the depth in the skin, which does not rely on optical skin property.  

We have also developed another technique, which we call cooled IR OA spectroscopy 

(CIROAS).  In a preliminary device, we performed it in situ to exploit the dependence 

of optoacoustic signals on temperature for improving the sensitivity of infrared 

spectroscopy. Compared to measurements at room temperature, CIROAS at 4°C 

yielded on an average, a 5-fold sensitivity improvement in the SWIR wavelength range, 

over measurements at room temperature. The effects of muting water responses at 

about 4 °C has not been previously explored. Accordingly, we show, therefore a new 

spectroscopic approach and demonstrate its benefits in utilizing optoacoustic readings 

over conventional optical readings, common in IR spectroscopy. Furthermore, our 

approach provides a solution to the long-standing problem of strong light absorption 

by water in this SWIR region that shadowed other metabolites detection sensitivity. It 

has been particularly challenging to detect metabolites such as glucose, since both 

water and glucose molecules have the O-H group, giving rise to a similar spectrum. 

We also observed that the muting point shifts in different solutions. This is due to the 

interaction between solute polarization (typically with positive OA peak following by 
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negative peak) and water’s (negative OA peak following by positive OA peak) at the 

muting point. 

CIROAS involves changing the temperature, which alters the speed of sound [117], 

[118], thereby changing the optoacoustic sources calculated position. However, the 

change in position should not pose a problem for the quantitation of solutes in a 

homogeneous solution. Nevertheless, accurate determination of sound speed may be 

useful, especially since it can allow an estimation of sample temperature [119] during 

solute quantification or spectral analysis or in imaging applications [120]. CIROAS 

appears to be superior to alternative optical spectroscopic methods that use heavy 

water to overcome the effects of strong water absorption [79]. Besides being 

impractical and cost-ineffective, heavy water is not compatible with measuring 

biological samples that consist of >80% of water.  

Broad implementation of CIROAS will require hardware that allows the variation of the 

sample's temperature, using a Peltier element or other means. Such implementations 

are widely available, and they do not represent a technological barrier. Therefore, 

CIROAS can enable a new spectroscopic approach with high dissemination potential 

offering a straightforward way to improve the sensitivity of the detection of various 

molecules in biological samples. The method can be employed for conventional 

laboratory measurements or for analyzing biological fluids, such as blood 

measurements. Miniaturization of components is also technically straightforward, 

which implies applications in conventional spectroscopy or as part of micro-fluidic and 

lab on a chip measurement setup. In the future, imaging implementations using two- 

or three-dimensional optoacoustic scans can also be contemplated. So far, we 

employed CIROAS in situ applications, but our ultimate goal is to combine the LSOS 

system and boost glucose detection sensitivity in vivo.  
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