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Abstract
The interest in the simulation of fluid-structure interaction (FSI) phenomena has increased signif-
icantly over the years. Despite the constant growth in available computing resources, the demand
for more robust and efficient computational methods does not cease.

This thesis proposes novel schemes for the solution of FSI problems with weakly compressible
flows. Special attention is devoted to the spatial discretization of the fluid problem by means of
the hybridizable discontinuous GALERKIN (HDG) method and to the coupling of the fluid field
with the structural one, discretized by means of the continuous GALERKIN (CG) method.

The first part of the thesis presents a weakly compressible formulation of the NAVIER–
STOKES equations for viscous flows interacting with nonlinear elastic solid bodies in a CG
framework. An analytical study reveals the beneficial effect of the introduction of a weak com-
pressibility against potential instabilities caused by the artificial added mass effect. Two classical
FSI benchmarks highlight the enhanced robustness and the improved efficiency in terms of com-
putational time of the proposed approach compared to a fully incompressible solver.

Two HDG formulations are then derived for the solution of the fluid equations, the first fea-
turing the velocity and the pressure as primal variables, while the latter solving for the density
and the momentum. The adoption of the VOIGT notation to strongly enforce the symmetry of
the stress tensor allows the use of an equal-order approximation for all the variables and im-
proves the computational efficiency of the HDG method, by reducing the stored quantities and
the size of the local problems. Optimal and superoptimal convergence rates are achieved on
weakly compressible POISEUILLE and TAYLOR–COUETTE flows, for which analytical so-
lutions are available in literature. Spatial and temporal convergence studies on a problem with
manufactured solution finally show the capability of the method to preserve the expected con-
vergence rates, even with arbitrarily deforming domains.

Next, a novel strategy to couple HDG and CG discretizations by means of NITSCHE’s method
is proposed. Its key feature is the minimal intrusiveness in terms of computer implementation
with regards to existing finite elements libraries, achieved by exploiting the definition of the
numerical flux and the trace of the solution on the mesh faces to impose the transmission con-
ditions. The proposed approach is tested for the solution of thermal and linear elastic problems
featuring multiple materials with compressible and nearly incompressible behaviors.

The final part of the thesis exploits the achievements of the previous chapters to present two
FSI formulations coupling weakly compressible flow problems solved by means of the HDG
method and nonlinear structural problems solved by means of the CG method. The first formu-
lation revisits the partitioned DIRICHLET–NEUMANN scheme in the context of hybrid HDG-
CG discretizations, while the second formulation exploits NITSCHE’s method to monolithically
solve the coupled problem. The spatial and temporal convergence properties are assessed on
a problem with manufactured solution and several benchmarks confirm the advantages of the
proposed formulations in terms of robustness and efficiency, as well as their capability to solve
problems of engineering interest.
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Zusammenfassung
Das Interesse an Simulationen von Fluid-Struktur-Interaktion (FSI) ist in den letzten Jahren stark
angestiegen. Trotz einer stetigen Zunahme der verfügbaren Rechenleistung besteht weiterhin
ein Bedarf an leistungsfähigeren numerischen Methoden zur Bearbeitung solcher komplexen
Problemstellungen.

Diese Dissertation schlägt neue Ansätze zur Lösung von FSI-Problemen für schwach-
kompressible Strömungen vor. Der besondere Fokus liegt hierbei auf der räumlichen
Diskretisierung des Fluidfeldes mittels der hybridisierten diskontinuierlichen GALERKIN
(HDG) Methode und auf der Kopplung von Fluid- und Strukturfeld. Das Strukturfeld ist hierbei
mit der kontinuierlichen GALERKIN (CG) Methode diskretisiert.

Der erste Teil dieser Arbeit präsentiert eine schwach-kompressible Formulierung der
NAVIER–STOKES Gleichungen für viskose Strömungen in Interaktion mit nichtlinear-
elastischen Festkörpern auf Basis eines CG Ansatzes. Eine analytische Studie zeigt zunächst die
Vorteile der eingeführten schwachen Kompressibilität in Bezug auf die Vorbeugung potenzieller
Instabilitäten durch den sogenannten Effekt der virtuellen Masse. Die verbesserte Robustheit
und Recheneffizienz des neuen Lösungsansatzes, in Gegenüberstellung zu einem kompressiblen
Löser, wird anhand zweier etablierten Benchmark-Probleme dargelegt.

Anschließend werden zwei HDG Formulierungen zur Lösung der Fluidgleichungen
hergeleitet. Die erste Formulierung beinhaltet hierbei die Geschwindigkeits- und Druck-
Primärvariablen und die zweite Formulierung löst nach der Dichte und nach dem Impuls. Die
Verwendung der VOIGT-Notation stellt die Symmetrie des Spannungstensors sicher und
ermöglicht Approximationen der Lösungsfelder unter Verwendung gleich hoher Polynomgrade.
Dieses Vorgehen steigert die Effizienz des HDG Ansatzes durch eine Reduktion der zu speich-
ernden Variablen und der Größe der lokalen Probleme. Optimale und superoptimale Konvergenz-
raten werden für schwach-kompressible POISEUILLE- und TAYLOR–COUETTE-Strömungen
erreicht, für welche Referenzlösungen in der Literatur existieren. Räumliche und zeitliche Kon-
vergenzstudien für eine Problemstellung mit konstruierter Lösung bestätigen die erwarteten Kon-
vergenzraten, auch für willkürlich deformierte Gebiete.

In einem nächsten Schritt wird ein auf der NITSCHE-Methode basierender Ansatz zur Kop-
plung der HDG- und CG-Diskretisierung vorgeschlagen. Hauptmerkmal ist die verringerte
Notwendigkeit zur Änderung von bestehenden Implementierungen in Bezug auf Finite-Elemente
Bibliotheken. Diese wird durch Ausnutzung der Definition des numerischen Flusses und der
Spur der Lösung auf den Netzflächen erreicht, um Übertragungsbedingungen sicherzustellen.
Das beschriebene Vorgehen wird für die Lösung von thermischen und linear-elastischen Proble-
men, für Materialien mit kompressiblen und nahe-inkompressiblen Eigenschaften, vorgestellt.

Der abschließende Teil dieser Arbeit nutzt die Ergebnisse der vorherigen Kapitel und stellt
zwei FSI Formulierungen vor. Diese behandeln schwach-kompressible Strömungen unter
Nutzung der HDG Methode und nichtlineare Strukturprobleme mittels der CG Methode.

iii



Zusammenfassung

Die erste Formulierung greift auf ein partitioniertes DIRICHLET–NEUMANN Schema im Kon-
text einer hybriden HDG-CG Diskretisierung zurück, während der zweite Ansatz die NITSCHE-
Methode zur monolithischen Lösung des gekoppelten Problems verwendet. Räumliche und
zeitliche Konvergenzeigenschaften werden anhand einer Problemstellung mit konstruierter
Lösung bewertet. Mehrere Vergleichsprobleme bestätigen die Vorteile der vorgeschlagenen For-
mulierungen hinsichtlich Robustheit und Effizienz sowie ihrer Fähigkeit tatsächliche Ingenieurs-
fragestellungen beantworten zu können.
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û Trace of displacement vector
T̂ Trace of temperature

Postprocessed variables

υ? Postprocessed velocity vector
u? Postprocessed displacement vector
T ? Postprocessed temperature

ALE variables

d ALE mesh displacement vector

xiii



List of Symbols

a ALE mesh velocity vector
c ALE convective velocity vector
ϕ ALE mapping

Derived variables

ω Vorticity tensor
ωV Vorticity vector in VOIGT notation
ε Strain rate tensor or linear strain tensor
εV Strain rate vector or linear strain vector in VOIGT notation
E GREEN–LAGRANGE strain tensor
σ CAUCHY stress tensor
σV CAUCHY stress vector in VOIGT notation
P First PIOLA–KIRCHHOFF stress tensor
F Deformation gradient tensor
J Determinant of the deformation gradient
ψ Strain energy density function

Forcing terms

b Body force vector
f Force vector
s Heat source
t Traction vector
f Thermal flux

Residuals

RC Residual of continuity equation
RM Residual of momentum equation

Material parameters

pref Reference pressure
ρref Reference density
ε Compressibility coefficient
θ Compressibility factor
m Characteristic mass
µ Dynamic viscosity or second LAMÉ parameter
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1 Introduction

Fluid-structure interaction (FSI) denotes the multiphysics coupling of fluid flows and deformable
structures. In a typical FSI scenario, a fluid exerts stresses on a solid body which undergoes a
deformation that can lead to a substantial modification of the flow itself, establishing a relation
of mutual influence.

Fluid-structure interaction phenomena occur frequently, both in nature and in the industrial
world. A classical occurrence in nature is represented by the interaction of the blood flow in the
human circulatory system, which has attracted the interest of scientists for decades [13, 14, 39,
64, 157]. In particular, the understanding of aneurysm in arteries constitutes an active area of
research [15, 44, 110, 156], as well as the comprehension of the pumping motion of the human
heart [105, 161, 165]. FSI is also omnipresent in a vast range on engineering applications. In civil
engineering, the design of dams [2, 172], lock gates [128] and storage tanks [101, 143] needs
to carefully take into account FSI phenomena involving the interaction of the solid structure
with water during a seismic event. Moreover, the underestimation of wind loading on large span
bridges can lead to disastrous failures, like the notorious collapse of the Tacoma Narrows bridge
in 1940 [99]. FSI also plays a major role in the prevention of the rupture of components suscep-
tible to fatigue, like aircraft wings [87] and turbine blades [16, 80, 170]. In the naval sector then,
FSI simulations are often performed to improve the hydrodynamic behavior of marine propellers
[113, 139, 171] against cavitation erosion and the consequent performance decay and to accu-
rately design yacht sails [47, 129, 158]. Finally, a promising application of FSI in the aerospace
industry is the manufacturing of effective and reliable parachute systems for safe landing on the
Martian soil [81].

Although the simulation of fluid-structure interaction problems has been under investigation
for decades, there is still much room for improvement in terms of development of robust, efficient
and scalable numerical methods. Some related issues are addressed in this thesis, with special
emphasis on the devising of appropriate spatial discretization and coupling techniques for the
simulation of FSI problems involving weakly compressible flows and nonlinear elastic structures
undergoing large deformations.

1.1 Background

The numerical techniques developed for the solution of fluid-structure interaction problems can
be catalogued based on many different features, for instance, with respect to the fluid compress-
ibility, the spatial discretization, the kinematical description and the solution scheme. A brief
literature review of these key aspects in the context of FSI is given in the following.
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Fluid compressibility

The characteristics of the fluid and the structure involved in FSI problems can be disparate. In
aerodynamics, the coupling may involve a light compressible fluid and a stiff structure like an air-
craft wing [49], or it may involve a light incompressible fluid and an extremely flexible structure
such as a parachute [153, 155]. In hemodynamics instead, incompressible fluids and deformable
structures with similar densities are usually coupled [133]. Among many other features, the flow
compressibility plays a crucial role on the construction of the FSI solver.

Compressibility effects primarily arise from the variation of the fluid density, which in gen-
eral depends on pressure and temperature. The MACH number, defined as the ratio of the fluid
velocity and the speed of sound, describes the influence of compressibility on a flow field. Al-
though in the real world every fluid exhibits a certain level of compressibility, it is a common
practice to consider a flow incompressible when the MACH number is smaller than 0.3, as ex-
plained in the book of ANDERSON [5]. In the incompressible regime, the speed of sound is
much larger than the fluid velocity and fast pressure waves lead to a rapid pressure equalization.
The flow is consequently defined incompressible, since no density variations due to compression
can take place. On the one hand, fluid-structure interaction problems with incompressible flows
are widely solved in both academia and industry and the works of TUREK and HRON [159],
KÜTTLER et al. [93] and BURMAN and FERNÁNDEZ [21] represent just some representative
applications. On the other hand, fluid-structure interaction scenarios featuring fully compress-
ible flows have been successfully considered for the simulation of air-blast loading of structures
by KAMBOUCHEV et al. [88], explosions in vessels by SORIA and CASADEI [147], steam
explosions in nuclear power plants by CASADEI et al. [23] and the dynamic collapse of cylin-
drical shells submerged in water by FARHAT et al. [51].

In addition, a weakly compressible behavior of the fluid flow is sometimes considered. In the
context of smoothed particle hydrodynamics techniques, linearised equations of state relating
the fluid density and pressure are commonly introduced in order to avoid the complexity of the
implicit computation of pressure in meshless methods. The results obtained with the numerical
simulation of the deformation of an elastic plate under the effect of a rapidly varying fluid flow
using a weakly compressible model have been validated by ANTOCI et al. [6] against suitable
laboratory experiments. VICCIONE et al. [163] also considered weakly compressible fluids to
simulate a two-dimensional flow impacting onto a rigid vertical wall, by means of a so-called
weakly compressible smoothed particle hydrodynamics technique. The same authors moreover
studied in [162] the influence of compressibility in terms of accuracy and efficiency on a current
generated by a three-dimensional dam break over a rectangular channel. Weakly compressible
fluids have also been considered by DE ROSIS et al. [42], who solved FSI problems by cou-
pling the lattice BOLTZMANN and the finite element methods and by MITSUME et al. [107],
who simulated a dam break problem with an elastic obstacle by coupling the moving particle
simulation and the finite element methods.

The beneficial effects of the introduction of a weak compressibility in the flow field for the
simulation of coupled problems in terms of accuracy, robustness and efficiency have been ex-
amined by LA SPINA et al. [95] in the context of finite element methods. The present work
builds upon these findings and systematically makes use of a weakly compressible model for the
simulation of fluid-structure interaction problems.
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Spatial discretization

A fundamental distinction among the techniques employed to solve fluid-structure interaction
problems is based on the spatial discretization strategies adopted. The discretization can be con-
sidered the process of transferring continuous mathematical operators into discrete counterparts,
making them suitable for numerical evaluation and implementation on digital computers.

Among many other techniques developed so far, the finite element method (FEM) is one of
the most successful spatial discretization approaches for the solution of the partial differential
equations (PDEs) underlying many physical phenomena, including fluid-structure interaction.
The classical FEM is also known as continuous GALERKIN (CG) method and its development
is usually credited to GALERKIN, although its first formulation can be attributed to RITZ. As
opposed to primitive discretization techniques, the CG method possesses useful properties like
geometric flexibility and high-order accuracy. Moreover, the standard continuous GALERKIN
method provides computationally efficient discretizations with a very limited number of degrees
of freedom (DOFs) for the solution of a wide variety of physical problems. For an overview
on CG methods, the interested reader is referred to the textbooks of STRANG and FIX [152],
HUGHES [82] and LARSON and BENGZON [100]. The theoretical foundation of the finite
element method is also outlined in the book of ZIENKIEWICZ et al. [173], while its application
for the solution of fluid and structural problems can be found in [175] and [174], respectively.

In 1973, REED and HILL [134] introduced the discontinuous GALERKIN method (DG)
for the solution of steady-state neutron transport problems. The DG method works over a trial
space of functions that are only piecewise continuous and the information among neighbour el-
ements is exchanged through the numerical fluxes, defined on their respective boundaries. An
overview of the evolution of DG methods since their introduction can be found in the article of
COCKBURN et al. [33]. The interest in DG methods has increased over the last decades in the
computational fluid dynamics community and the works of PERSSON et al. [132], KRANK et
al. [89] and FEHN et al. [52] constitute some representative applications. The distinctive prop-
erties of DG methods are the intrinsic stabilization of the convection terms in conservation laws,
the ability to construct high-order discretizations on unstructured meshes and the flexibility in
performing polynomial adaptivity, in addition to the standard mesh size adaptivity. Despite their
beneficial features, DG methods are often criticised because of their high computational cost,
given by the duplication of the DOFs at the element interfaces and the inability to apply static
condensation techniques to reduce the final problem size.

More recently, hybridizable discontinuous GALERKIN methods (HDG) have gained a lot of
attention owing to their reduced computational cost with respect to classical matrix-based DG
approaches, thanks to the reduced number of global DOFs in the associated linear systems, espe-
cially for high-degree polynomial approximations. The HDG method is a mixed method, since
it treats the solution derivatives as independent unknowns, defining the so-called mixed variable,
and it introduces a hybrid variable on the mesh skeleton, allowing the possibility to perform
a static condensation to reduce the problem size. In addition, the possibility to obtain a super-
convergent solution through an efficient element-by-element postprocessing allows to obtain an
improved approximation of the solution and to drive efficient degree adaptive procedures, as
shown by GIORGIANI et al. [68, 69] and SEVILLA and HUERTA [141].

The HDG method has been mostly developed by COCKBURN, NGUYEN and PERAIRE
who applied it persistently for the solution of a great variety of physical problems. COCKBURN
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and GOPALAKRISHNAN [28] derived new hybridization techniques for linear second order
elliptic problems in the context of DG methods, paving the way for the development of the
HDG method. The name hybridizable discontinuous GALERKIN has been first introduced by
COCKBURN et al. [36], who highlighted the efficiency features of the method, given by the
fact that the only globally coupled DOFs are those approximating the solution on the boundaries
of the elements. They moreover pointed out that, for symmetric second order elliptic problems,
the HDG method provides sparse, symmetric and positive definite matrices, making the solution
of this kind of problems particularly efficient. Given the promising features of the newly derived
method, a number of HDG strategies has been later proposed for the solution of several physical
problems. A brief overview of the relevant works regarding HDG methods for fluid and structural
problems, as well as for fluid-structure interaction problems, is given in the following.

Regarding flow problems, COCKBURN and GOPALAKRISHNAN [29] developed the first
HDG method for the STOKES problem and proposed four different hybridization strategies, dif-
fering by the choice of the globally coupled unknowns. NGUYEN et al. [120] then proposed a
velocity-pressure-gradient formulation for the STOKES equations, considering the trace of the
velocity on the faces and the mean of the pressure on the elements as global variables. They
moreover applied an augmented LAGRANGEan method to further reduce the globally coupled
unknowns to the numerical trace of the velocity only. Three different HDG formulations for
the solution of the STOKES problem have been compared by COCKBURN et al. [37], namely
velocity-pressure-gradient, velocity-pressure-stress and velocity-pressure-vorticity. The authors
concluded that the velocity-pressure-gradient formulation provides the best approximation, for
similar computational complexity. An alternative velocity-vorticity formulation of the STOKES
equations in a three-dimensional space has been studied by COCKBURN and CUI [27], who
moreover showed how to hybridize the method to avoid the construction of the divergence-free
velocity spaces and recover an approximation for the pressure. Then, COCKBURN and SHI [31]
provided sufficient conditions for the superconvergence of the velocity field and they later offered
in [32] an overview on HDG methods for STOKES flow, by discussing the existing formulations
and describing how to systematically construct superconvergent methods. Afterwards, GATICA
and SEQUEIRA [60] performed a priori and a posteriori error analysis of an augmented HDG
method for a class of nonlinear STOKES models arising in quasi-NEWTONian fluids. More re-
cently, GIACOMINI et al. [67] proposed a superconvergent HDG method for the approximation
of the CAUCHY formulation of the STOKES equation using the same degree of polynomials for
the mixed and the primal variables. Making use of the VOIGT notation to strongly enforce the
symmetry of the stress tensor, the authors remedied the suboptimal behavior of classical HDG
methods for formulations involving the symmetric part of the gradient of the primal variable and
obtained a gain in computational efficiency, given the reduced size of the local problems and the
reduced quantity of stored information.

The preliminary work on the STOKES problem opened the possibility to solve the complete
NAVIER–STOKES equations for both compressible and incompressible flows. PERAIRE et
al. [130] presented the first HDG method for the compressible EULER and NAVIER–STOKES
equations. As numerical examples, the authors considered an inviscid flow over an airfoil, a
COUETTE flow on a square domain and a laminar flow over an airfoil. Optimal convergence
rates were obtained for the conserved quantities as well as the viscous stresses and the heat
fluxes, but no superconvergence property was reported. The compressible HDG method has been
then extended by MORO et al. [112] to deal with relevant problems in aeronautics, by applying
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shock capturing strategies and including a SPALART–ALLMARAS turbulence model, suitable
for high-order computations. Later, FERNANDEZ et al. [55] presented a HDG method for im-
plicit large-eddy simulation of transitional turbulent flows. The approach proved to be high-order
accurate and highly competitive in terms of computational cost at high REYNOLDS numbers.
NGUYEN et al. [121] presented the first application of the HDG method for the solution of the
incompressible NAVIER–STOKES equations instead. The formulation considered the velocity
gradient, the pressure and the velocity in the local problems and the trace of the velocity and the
mean of the pressure on the element boundaries as globally coupled variables. In an extensive
set of two-dimensional steady and unsteady numerical examples, the authors showed optimal
convergence of the local variables and superconvergence of the exactly divergence-free postpro-
cessed velocity field. A space-time HDG method has been instead proposed by RHEBERGEN
and COCKBURN [135] to deal with deforming domains. The authors observed irregular rates
of convergence for the pressure when using the same polynomial approximation in space and
in time and they restored the optimal convergence by taking a polynomial approximation in
time one degree higher than in space. Later, GIORGIANI et al. [69] proposed an adaptive
degree technique for the solution of the incompressible NAVIER–STOKES equations, driven
by a posteriori error estimator of the velocity, based on the superconvergence features of the
HDG method. Both steady and unsteady examples in two dimensions showed the effective-
ness and the efficiency of the technique, given the local elemental nature of the error estimator.
CESMELIOGLU et al. [26] then provided an analysis of a HDG method for the steady incom-
pressible NAVIER–STOKES equations and they proved, under the assumption of a small source
term, the well posedness of the problem and the superconvergence properties of the method. To
the best of the author’s knowledge, no HDG formulation has been proposed so far for the simula-
tion of fluid flows in the weakly compressible regime and this work presents the first approaches
to tackle this kind of problems.

Regarding structural problems, SOON et al. [146] proposed the first HDG method for linear
elasticity. The formulation provided symmetric and definite positive stiffness matrices and ex-
hibited optimal convergence for the displacement and the stress and superconvergence for the
postprocessed displacement field, for polynomial degrees of approximation greater or equal than
two. Moreover, the authors showed numerical evidence of the locking-free behavior of the HDG
method and its good performance in the presence of singularities. CELIKER et al. [25] then pre-
sented a new class of HDG methods for TIMOSHENKO beams, featuring the displacement and
the bending moment at the element boundaries as globally coupled DOFs. The method provided
optimal convergence rates with respect to the displacement, the rotation, the bending moment
and the shear force. Later, a displacement gradient-velocity-pressure HDG formulation for lin-
ear elastodynamics has been introduced by NGUYEN et al. [122] for compressible and nearly
incompressible solids. The authors obtained optimal convergence for the primal and mixed vari-
ables and superconvergence for the postprocessed displacement and velocity fields. Moreover,
the HDG method produced more accurate approximations than the standard CG method for the
same number of global DOFs. Similar to what done for the STOKES problem, COCKBURN and
SHI [30] provided a systematic way of devising superconvergent HDG methods for linear elas-
ticity based on weak stress symmetry formulations. The relevant HDG formulations derived for
both fluid and structural mechanics have been summarized by NGUYEN and PERAIRE [117],
who moreover presented novel formulations for nonlinear elastostatics and elastodynamics for
the simulations of elastic bodies undergoing large deformation. FU et al. [59] then provided
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a first a priori error analysis of the HDG formulation for linear elasticity and acknowledged a
loss of superconvergence for some types of meshes and some values of the polynomial degree
of approximation. A superconvergent HDG method for linear elasticity, capable of using the
same degree of approximation for both the primal and mixed variables, has been introduced by
SEVILLA et al. [142]. Exploiting the VOIGT notation for second-order symmetric tensors, the
approach produced optimal convergence of the stress and superconvergence of the displacement
field, even for low-order polynomial approximations. More recently, TERRANA et al. [154]
simulated both thin and thick nonlinear elastic structures by means of a novel three-field HDG
formulation, featuring the material position vector, the deformation gradient and the first PIOLA-
KIRCHHOFF stress tensor as independent variables. Various shell problems showed optimal
convergence for the displacement field and an improved accuracy after the postprocessing.

The first reported work regarding the application of the HDG method in the context of fluid-
structure interaction is attributed to SHELDON et al. [144]. The authors systematically dis-
cretized all the subproblems by means of the HDG method, namely the fluid field governed
by the incompressible NAVIER–STOKES equations, the structural field governed by the equa-
tions of nonlinear elastodynamics and the mesh motion solved with a linear elastic model. The
convergence properties of the single components have been examined through the method of
manufactured solutions and the complete FSI model has been tested against the benchmark by
TUREK and HRON [159]. SHELDON et al. [145] later presented an improved formulation
in terms of computational efficiency, by abolishing the previous two-hybrid-field formulation
for the structural problem and keeping only the trace of the velocity as globally coupled vari-
able. Moreover, only linear polynomial approximations were considered for the mesh problems,
independently of the polynomial approximation of the fluid and the structure. These changes
approximately halved the number of the global DOFs for high-order FSI computations.

The coupling of HDG and CG methods can be of particular interest in the context of multi-
physics and multimaterial problems in which different regions of the computational domain fea-
ture distinct physical properties, for which specific discretizations need to be devised. The first
attempt to couple HDG and CG discretizations has been performed by PAIPURI et al. [127] in
the context of conjugate heat transfer problems. Such an approach requires the introduction of
an appropriate projection operator to enforce the transmission conditions in the HDG local prob-
lems. The consequent coupling of local and global DOFs of the HDG problem with the ones of
the CG discretization makes the implementation of this strategy in existing FEM libraries rather
intrusive. More recently, LA SPINA et al. [96] proposed a hybrid coupling of HDG and CG
discretizations based on NITSCHE’s method, exploiting the definition of the numerical flux and
the trace of the solution on the mesh faces to impose the transmission conditions between the
subdomains. Such a strategy does not affect the core structure of HDG and CG discretizations,
being therefore minimally-intrusive and suitable to be integrated in existing codes.

With regards to the spatial discretization, the contribution of this thesis consists in the deriva-
tion of two HDG formulations for the simulation of weakly compressible flows and in the devel-
opment of a novel minimally-intrusive technique for the coupling of HDG and CG discretiza-
tions. The aforementioned HDG-CG coupling can be found at LA SPINA et al. [96] in the
context of thermal and linear elastic problems, while its application for the solution of FSI prob-
lems can be found at LA SPINA et al. [97], as well as one of the two HDG formulations for the
fluid field.
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Kinematical description

An important aspect in the simulation of multiphysics problems is the choice of an appro-
priate kinematical description. Three different types of description of motion are commonly
adopted in continuum mechanics, namely the LAGRANGEan, the EULERian and the arbitrary
LAGRANGEan-EULERian (ALE) description.

With the LAGRANGEan description, the nodes of the mesh follow the associated material
particles during the motion. This approach is usually used in structural mechanics with large dis-
placements and deformations and it is particularly useful in the treatment of history-dependent
constitutive models for materials with elasto-plastic and visco-plastic behavior and it moreover
facilitates the tracking of free surfaces and interfaces between different materials. The main
drawback of this algorithm is its inability to follow large distortions of the computational do-
main without recourse to frequent remeshing operations. A further distinction can be made be-
tween the total LAGRANGEan and the updated LAGRANGEan approach. In the first case the
discrete equations are formulated with respect to the initial configuration, while in the second
case the static and kinematic variables are computed with respect to the current configuration.
LAGRANGEan algorithms are omnipresent in solid mechanics, but some notable early applica-
tions concern vehicle crash tests by AMBRÒSIO and PEREIRA [3] and metal forming opera-
tions by JUNG-HO and NOBORU [86].

With the EULERian description, the individual material particles are not directly tracked and
the quantities of interest, such as the velocity and the pressure, are described as fields within a
control volume. This approach is usually used in pure flow problems and it is particularly useful
for the simulation of turbulent flows, in which large distortions in the fluid motion occur. The
main disadvantage of this strategy is the difficulty to deal with free surfaces and interfaces be-
tween different materials or different media, as it happens in fluid-structure interaction problems.

Arbitrary LAGRANGEan-EULERian methods aim to alleviate the major drawbacks expe-
rienced by traditional LAGRANGEan and EULERian formulations when dealing with mobile
and deforming boundaries. By combining the advantages of the classical kinematical descrip-
tions, ALE algorithms consider a computational mesh which can move with a velocity inde-
pendent of the velocity of the material particles. In particular, the mesh inside the domain is
deformed attempting to deliver minimally distorted elements, while on the interface it moves
along with the materials to precisely track their relative movements. The ALE description has
been usually applied to describe fluid problems on deforming domains, as done by BRAESS
and WRIGGERS [17], SOULI and ZOLÉSIO [148] and NITHIARASU [123] for the simula-
tion of free surface flows and, among many others, by SOULI et al. [149], WALL et al. [168]
and HRON and TUREK [79] in the context of FSI problems. Moreover, the ALE descrip-
tion has been also adopted in solid mechanics by RODRIGUEZ-FERRAN et al. [136] for
hyper-elasto-plasticity, by GHOSH and KIKUCHI [66] for elastic-visco-plastic solids and by
MOVAHHEDY et al. [114] for the modelling of the orthogonal metal cutting process. A com-
prehensive overview on ALE methods for fluid dynamics, structural mechanics and coupled
problems, as well as the numerical implementation details, can be found at DONEA et al. [46].

Regarding the kinematical description of motion, in this thesis the total LAGRANGEan ap-
proach is adopted for the structural field, the EULERian description for simple fluid simulations
and the ALE method to deal with flows on deformable domains.
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1 Introduction

Solution scheme

Two different solution schemes can be adopted for the numerical solution of fluid-structure inter-
action problems, namely partitioned and monolithic schemes. Each approach comes along with
specific advantages and drawbacks that are briefly discussed in following.

Partitioned schemes solve one subproblem at a time and the interface information is exchanged
between the fluid and the structure at each single-field solution. The exchange of the interface
state is performed only once per time step in the so-called loosely-coupled staggered approaches,
while the solution of the flow and structural problems are repeated within one time step un-
til a convergence criterion is satisfied in the strongly-coupled staggered approaches. Partitioned
schemes allow the use of well-established and optimised single-field solvers and this is of partic-
ular interest when widely used commercial codes need to be included in the coupling algorithm.
However, these techniques may suffer stability and convergence issues, especially related to the
artificial added mass effect. This phenomenon has been analyzed by CAUSIN et al. [24] and
FÖRSTER et al. [58] in the context of incompressible flows and the instability has been shown
to be relaxed for compressible fluids by VAN BRUMMELEN [160], by means of an analysis
based on the particular setting of a two-dimensional panel-model problem. In a more general
setting, LA SPINA et al. [95] analytically demonstrated how the introduction of a weak com-
pressibility in the flow field alleviates the constraints of the instability condition of the artificial
added mass effect, thanks to the reduction of the maximal eigenvalue of the so-called added mass
operator.

The exchange of the information on the interface between the fluid and the structure is of-
ten based on a DIRICHLET–NEUMANN scheme, in which the fluid field is considered as the
DIRICHLET partition with prescribed interface velocities, while the structural field is consid-
ered as the NEUMANN partition loaded with interface tractions. Different variants of this ap-
proach have been used, for instance, by GERBEAU and VIDRASCU [63], by MICHLER et
al. [106] and by KÜTTLER and WALL [91, 92]. A reverse approach, namely the NEUMANN–
DIRICHLET scheme, has been instead proposed by KÜTTLER et al. [93] as a possible remedy
for the so-called incompressibility dilemma, referring to the treatment of FSI problems with fully
enclosed fluids. Despite the possibility to solve a number of academic examples, the method usu-
ally fails to solve real world problems, because the response of stiff structures to varying interface
displacements is too sensitive for any numerical approach to find the equilibrium. Alternative
methods to transfer the information among the subproblems rely on the so-called ROBIN trans-
mission conditions and have been adopted by NOBILE and VERGARA [126], by BADIA et
al. [10, 12], by GERARDO-GIORDA et al. [62] and by FERNÁNDEZ et al. [54].

Remarkable examples of loosely-coupled schemes can be found in the work of FARHAT et
al. [50], who proposed two different schemes with provable second order accuracy in time. The
astonishing computational efficiency and numerical stability of these carefully designed schemes
have been shown with regards to the simulation of the aeroelastic response of a complete F-16
configuration to a gravity excitation. Later, FARHAT et al. [51] presented two loosely-coupled
staggered schemes, namely explicit-explicit and implicit-explicit ones, for highly nonlinear com-
pressible fluid-structure interaction problems. They validated the results with the simulation of
the dynamic collapse of a cylindrical shell submerged in water and they showed that subiteration-
free integrators can be designed to achieve high numerical stability and robustness, as long as
the fluid can be justifiably modelled as a compressible medium.
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1.1 Background

As already pointed out, strongly-coupled schemes iterate the solution of the subproblems
in each time step until some convergence criterion is satisfied, usually measured in terms of
the difference between the interface displacement in two consecutive iterations. MATTHIES
and STEINDORF [102] introduced a strongly-coupled partitioned scheme based on a block-
NEWTON method, by approximating the derivatives with the iterative solvers for the subsys-
tems. Later, WALL et al. [169] proposed a strong coupling approach to treat FSI problems with
free surfaces, useful to simulate typical scenarios in offshore engineering and naval architecture.
An alternative technique for strongly-coupled FSI problems with partitioned solvers has been
presented by VIERENDEELS et al. [164], who approximated the JACOBIan from reduced or-
der models built up during the coupling iterations. A review on strongly-coupled algorithms has
been given by DEGROOTE [43], which special emphasis on the techniques required when us-
ing at least one of the solvers as a black box. Finally, the work of KÜTTLER and WALL [91]
focused on strong coupling schemes based on the DIRICHLET–NEUMANN partitioning and
discussed and compared different methods for the relaxation of the fixed-point FSI solver. Af-
ter considering several alternatives, the authors concluded that the dynamic relaxation based on
AITKEN’s method is at the same time extremely simple to implement and astonishingly efficient
in terms of computational time saved. A systematic comparison and classification of partitioned
schemes for FSI can be found in the thesis of KÜTTLER [90].

As opposed to partitioned algorithms, monolithic schemes simultaneously solve the fluid and
the structural equations within one system of nonlinear equations. On the one hand, the devel-
opment of such approaches demands more effort since it requires an ad hoc implementation,
in the sense that already existing and well-established single-field solvers cannot be directly
employed. Moreover, the adoption of efficient preconditioners is needed when solving compu-
tationally demanding problems. On the other hand, monolithic schemes often outperform par-
titioned strategies in terms of computational cost and robustness. MAYR et al. [104] proposed
a monolithic approach capable to allow an independent choice of the time integration method
for the fluid and the structure, tailored to the needs of the single field. The authors moreover
increased the performance of the strategy by adopting specific predictors for the subproblems.
More recently, SHELDON et al. [144, 145] developed monolithic schemes for the solution of
FSI problems by means of the HDG method. The development of suitable preconditioners has
been then addressed by several authors. Among them, HEIL [76] derived efficient precondition-
ers from block-triangular approximations of the JACOBIan matrix, allowing a rapid iterative
solution of the linear systems arising from the applications of NEWTON’s method. BADIA et
al. [11] then analyzed different modular and non-modular preconditioners for FSI problems
with pronounced added mass effect and acknowledged the non-modular ILUT preconditioner to
achieve great efficiency. Later, GEE et al. [61] proposed two efficient preconditioners for the
solution of the monolithic system of equations, by applying algebraic multigrid techniques. In
conclusion, a fair comparison between partitioned and monolithic FSI schemes can be found in
the works of HEIL et al. [77] and KÜTTLER et al. [94]

In the present thesis, a strongly-coupled scheme based on the DIRICHLET–NEUMANN par-
titioning is revisited for hybrid HDG-CG discretizations and its potential instabilities are re-
solved with the introduction of a weak compressibility in the flow field. Moreover, a novel
fluid-structure interaction monolithic scheme based on NITSCHE’s method is presented. Both
the partitioned and the monolithic schemes can be found in the recent work by LA SPINA et
al. [97].
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1 Introduction

1.2 Goals

The main objective of this thesis is providing robust and efficient spatial discretization techniques
for the simulation of weakly compressible fluid flows interacting with nonlinear elastic structures
undergoing large deformations.

In order to relax the potential instabilities of the artificial added mass effect, causing the failure
of FSI simulations involving fluid and structures with similar densities, a weakly compressible
model needs to be derived and tested for the flow field. On the one hand, an analytical analysis
shall firmly corroborate the beneficial effects of the introduction of a weak compressibility in
the fluid for this multiphysics problem. On the other hand, the capability of the model to provide
robust and efficient FSI algorithms and to ensure at the same time accurate solutions needs to be
assessed on widely used benchmarks.

The most appropriate spatial discretization method shall be employed for each field. While
the standard continuous GALERKIN method provides computationally efficient discretizations
with a very limited number of degrees of freedom for the solution of structural problems, an
alternative discretization method is preferable for the fluid field to tackle a number of intrinsic
issues. Among them, the CG method typically lacks stability when convective effects dominate,
requiring the use of special stabilization techniques to properly treat high REYNOLDS number
flows. Moreover, an appropriate combination of interpolation spaces for the solution variables
needs to be selected to treat the saddle-point nature of the fluid problem in the incompress-
ible limit, unless additional stabilization strategies are adopted. The hybridizable discontinu-
ous GALERKIN method, by combining robustness of discontinuous GALERKIN approaches in
convection-dominated flows with higher-order accuracy and efficient implementations, consti-
tutes a promising option for the discretization of the fluid problem. Therefore, novel HDG for-
mulations need to be derived, implemented and tested for the simulation of flows in the weakly
compressible regime.

Given the hybrid nature of the discretization strategy employed in the subdomains, a suitable
technique is required for the imposition of the coupling conditions on the interface. A method for
coupling HDG and CG discretizations, enforcing the transmission conditions in the HDG local
problems, is already available in literature. However, the resulting coupling of local and global
degrees of freedom between the two discretizations makes the implementation of this strategy
in existing finite element libraries rather intrusive and inefficient. A novel coupling strategy,
preserving the core structure of HDG and CG matrices, shall therefore be developed. This goal
can be achieved by solely relying on the CG unknown and on the HDG hybrid variable defined
on the mesh faces, to impose the transmission conditions between the subdomains on a global
level. Such a strategy needs to be derived and its convergence properties tested first on simple
physical phenomena, like thermal and linear elastic problems.

After addressing these key challenges, robust and efficient HDG-CG formulations for the
simulation of weakly compressible fluid-structure interaction problems shall be at hand. A par-
titioned DIRICHLET–NEUMANN scheme can be revisited in the context of hybrid discretiza-
tions, while a monolithic scheme can be formulated by extending the novel HDG-CG coupling
strategy to the solution of FSI problems. The spatial and temporal convergence features of the
proposed schemes shall then be investigated and compared on a problem with manufactured
solution. The application of such strategies in two- and three-dimensional benchmarks shall pro-
duce reliable solutions and exhibit enhanced robustness and efficiency properties.
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1.3 Outline

1.3 Outline
The remainder of the thesis is organized as follows. In Chapter 2, the governing equations of
weakly compressible flows and nonlinear elastic structures are first introduced in Sections 2.1
and 2.2, respectively. The interface conditions and the partitioned algorithm for the solution of
the coupled problem are then presented in Section 2.3. The added mass operator, which plays
a crucial role on the stability of the numerical scheme, is first recalled with regards to incom-
pressible flows in Section 2.4, while a novel analytical derivation of the same operator in the
context of weakly compressible flows is performed in Section 2.5. A comparison of the two op-
erators and a brief discussion follows in Section 2.6. Finally, the role of the compressibility for
FSI solvers in terms of robustness, accuracy and computational efficiency is examined on two
classical benchmarks in Section 2.7.

Chapter 3 is devoted to the discretization of the fluid problem by means of the HDG method.
The governing equations are briefly recalled in Section 3.1 and the adopted VOIGT notation
is introduced in Section 3.2. Then, a first scheme featuring the velocity and the pressure as
primal variables is formulated in Section 3.3 for simple steady-state flows using the EULERian
description of motion. A second density-momentum formulation is derived instead in Section 3.4
for general unsteady flows with the arbitrary LAGRANGEan–EULERian description of motion
to deal with deforming domains. In Section 3.5, a weakly compressible POISEUILLE flow,
equipped with analytical solution, is employed for the assessment of the convergence properties
and for a comparison of the proposed HDG formulations. A second example considers instead
a weakly compressible TAYLOR–COUETTE flow in three dimensions, while a last example,
exercising all the terms in the fluid partial differential equations, is then presented to verify the
capability of the chosen method to preserve the expected spatial and temporal convergence rates
on both fixed and moving computational meshes.

The coupling of HDG and CG discretization is addressed in Chapter 4. First, simple thermal
problems are considered in Section 4.1. More precisely, the single HDG and CG formulations
are introduced in Sections 4.1.1 and 4.1.2, respectively, whereas an approach already existing in
literature is recalled in Section 4.1.3 and its disadvantages in terms of computer implementation
are discussed. A novel hybrid coupling of HDG and CG discretizations based on NITSCHE’s
method is proposed in Section 4.1.4 in the context of thermal problems and in Section 4.2 for
the solution of elastic problems involving compressible and nearly incompressible materials. A
comparison of the two approaches and the properties of the proposed method are presented in
Section 4.3 on an extensive set of two- and three-dimensional numerical examples.

The techniques developed and presented in Chapters 2, 3 and 4 are then employed to formulate
novel robust and efficient schemes for the solution of FSI problems in Chapter 5. The problem
statement is recalled in Section 5.1, whereas a hybrid partitioned DIRICHLET–NEUMANN
scheme is presented in Section 5.2 and a monolithic NITSCHE-based scheme is proposed in
Section 5.3. The spatial and temporal convergence properties of the proposed approaches are
analyzed in the first numerical example of Section 5.4. The remaining examples then apply the
FSI strategies for the solution of two- and three-dimensional benchmarks and highlight their
enhanced robustness and efficiency features.

Finally, the conclusions of this work are drawn in Chapter 6. In particular, a summary of
the achievements is outlined in Section 6.1, whereas an outlook for potential future research is
offered in Section 6.2.
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2 Role of compressibility for FSI
solvers

This chapter introduces the equations governing the flow of incompressible and weakly com-
pressible fluids and the motion of nonlinear elastic structures undergoing large deformations,
upon which the content of this thesis is built.

More precisely, the flow of viscous fluid substances is described by the NAVIER–STOKES
equations. Although the first appropriate description of the dynamic behavior of fluids is at-
tributed to NEWTON, the mathematical equations of inviscid flows were subsequently derived
in the 18th century by BERNOULLI and EULER. The governing equations of viscous flows
used nowadays were instead independently formulated by the French engineer NAVIER and the
British physicist and mathematician STOKES at the beginning of the 19th century. The first type
of flow considered here is treated with the incompressible version of the NAVIER–STOKES
equations, whereas the weakly compressible flow is modelled with the isentropic limit of the
fully compressible NAVIER–STOKES equations under isothermal conditions.

The deformation of the structure obeys to the laws of nonlinear elastodynamics. A large num-
ber of great scientists devoted themselves in the past centuries to the development of the mod-
ern theory of elasticity. GALILEI and HOOKE built the mathematical foundations of such the-
ory in the 17th century, whereas fundamental contributions were later brought by COULOMB,
YOUNG, POISSON, CAUCHY, LAMÉ and ST. VENANT, among many others. Here, the solid
body is assumed to have a hyperelastic behavior, hence accounting for geometrical and poten-
tially material nonlinearities.

In the second part of the chapter, the partitioned algorithm by KÜTTLER and WALL [91]
adopted for the coupling of the fluid and the structural subproblems is outlined. As anticipated
in the introduction, partitioned schemes suffer the instability of the artificial added mass effect.
While this phenomenon has been well understood in the context of incompressible flows with
the works by CAUSIN et al. [24] and FÖRSTER et al. [58], the analysis and the numerical
examples presented here highlight fundamental differences that make the adoption of the weakly
compressible assumption a favourable approach when using partitioned schemes for the solution
of FSI problems characterized by a strong coupling between the fluid and the structural field.

Sections 2.1 and 2.2 introduce the governing equations of fluid flows and nonlinear structural
problems, respectively, as well as the associated weak forms in a CG framework. The coupling
strategy of the single fields is then exposed in Section 2.3. It follows an analytical study on the
role of compressibility in fluid-structure interaction problems with respect to the artificial added
mass effect. In particular, the added mass operator for incompressible flows is first recalled in
Section 2.4, while the same operator is derived in the context of weakly compressible flows
in Section 2.5. The two operators are then compared in Section 2.6. The analytical findings
are finally numerically tested on two benchmarks in Section 2.7. The content of this chapter is
mainly based on the work of LA SPINA et al. [95].

13



2 Role of compressibility for FSI solvers

2.1 Fluid problem

In this section, the governing equations of fluid flows with incompressible and weakly compress-
ible behaviors are exposed together with the associated finite element discretization in a classical
CG framework.

Let ΩF ∈ Rnsd be an open bounded domain, with nsd denoting the number of spatial dimen-
sions, and let the boundary ∂ΩF be partitioned into a DIRICHLET portion ΓDF and a NEUMANN
portion ΓNF such that ∂ΩF = ΓDF ∪ ΓNF and ΓDF ∩ ΓNF = ∅. The flow of an incompressible
fluid within a deformable region ΩF in the time span (ti, tf ) can be described by the NAVIER–
STOKES equations with the arbitrary LAGRANGEan–EULERian description of motion

ρF
∂υF
∂t

+ ρF∇υFcF −∇ · σF (∇υF , pF) = ρFbF in ΩF × (ti, tf ),

∇ · υF = 0 in ΩF × (ti, tf ),
υF = υ0

F in ΩF × (ti),

υF = υDF on ΓDF × (ti, tf ),

σF (∇υF , pF)nF = tNF on ΓNF × (ti, tf ).

(2.1)

The variables υF and pF represent the unknown velocity and pressure fields, ρF is a constant
fluid density and bF a prescribed body force. Moreover, σF denotes the CAUCHY stress tensor
that, for NEWTONian viscous flows, is linearly related to the strain rate tensor

εF (∇υF) = ∇SυF =
1

2

(
∇υF + (∇υF)T

)
, (2.2)

by means of the relationship

σF (∇υF , pF) = 2µFεF (∇υF)− pFInsd , (2.3)

with µF being the dynamic viscosity and Insd the nsd × nsd identity tensor. The term cF is
referred to as ALE convective velocity and represents the velocity of the fluid relative to the
moving background mesh according to

cF = υF − aF . (2.4)

The mesh velocity aF is computed as the time derivative of the mesh displacement dF

aF =
ddF
dt

. (2.5)

The incompressible fluid problem (2.1) is finally completed with suitable initial and bound-
ary conditions. In particular, an initial divergence free velocity field υ0

F is imposed in the fluid
domain ΩF , whereas a given velocity υDF and an external traction tNF are prescribed on the
DIRICHLET portion ΓDF and on the NEUMANN portion ΓNF of the boundary with outward-
pointing normal vector nF , respectively.
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2.1 Fluid problem

An isothermal weakly compressible fluid flow is governed by the isentropic limit of the com-
pressible NAVIER–STOKES equations given by

∂ρFυF
∂t

+ ∇ · (ρFυF ⊗ υF)−∇ (ρFυF)aF −∇ · σF (∇υF , pF) = ρFbF ,

∂ρF
∂t

+ ∇ · (ρFυF)−∇ρF · aF = 0,

ρF = ρF (pF) .

(2.6)

The first equation is referred to as momentum equation and ensures the balance of the linear
momentum in accordance with NEWTON’s second law of motion [115], whereas the second
equation is denoted continuity equation and states the conservation of mass. The third equation
represents an equation of state relating the fluid pressure with the density, which is no longer
assumed constant. Since no temperature changes are taken into account, the energy equation is
decoupled from the other equations and its conservation is automatically ensured through the
equation of state. The linear relationship

ρF = ρrefF + εF
(
pF − prefF

)
(2.7)

is used throughout this thesis, with εF being a (small) compressibility coefficient and ρrefF denot-
ing the reference density computed at the reference pressure prefF . Alternative and more sophisti-
cated equations of state can however be adopted, possibly requiring the evaluation of additional
parameters. Equation (2.7) is not explicitly written in the following analysis in order to keep the
formulation as general as possible. Since the fluid velocity does not constitute a solenoidal field
in the weakly compressible regime, i.e. ∇ ·υF 6= 0, the CAUCHY stress in (2.6) takes the more
general form

σF (∇υF , pF) = 2µFεF (∇υF) + λF (∇ · υF) Insd − pFInsd , (2.8)

with λF being the so-called second coefficient of viscosity, whose value can be extrapolated by
means of the widely accepted STOKES hypothesis [151]

2

3
µF + λF = 0. (2.9)

The strong form of the weakly compressible flow problem with the ALE description of motion
in the primitive variables velocity and pressure is then given by

ρF (pF)
∂υF
∂t

+ ρF (pF)∇υFcF

−∇ · [2µF∇SυF + λF (∇ · υF) Insd − pFInsd ] = ρF (pF) bF in ΩF × (ti, tf ),
∂ρF (pF)

∂pF

∂pF
∂t

+
∂ρF (pF)

∂pF
∇pF · cF

+ ρF (pF)∇ · υF = 0 in ΩF × (ti, tf ),
υF = υ0

F in ΩF × (ti),
pF = p0

F in ΩF × (ti),

υF = υDF on ΓDF × (ti, tf ),

pF = pDF on ΓDF × (ti, tf ),

[2µF∇SυF + λF (∇ · υF) Insd − pFInsd ]nF = tNF on ΓNF × (ti, tf ),

(2.10)
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2 Role of compressibility for FSI solvers

where the momentum equation is rearranged by assuming the mass conservation to be exactly
fulfilled. With this algebraic manipulation, the problem (2.10) constitutes a straightforward ex-
tension of the incompressible counterpart (2.1) and only the inclusion of a relatively small num-
ber of terms is required to simulate the effect of a weak flow compressibility. Moreover, as
opposed to the incompressible model, in which the pressure appears solely under the gradient
operator and acts as a LAGRANGE multiplier of the incompressibility constraint, here the pres-
sure assumes a clear physical meaning and directly affects the fluid density through the equation
of state (2.7). This physical model allows to impose a function pDF on the DIRICHLET portion
of the boundary and requires the specification of the initial field p0

F to evolve in time.
The weak form of the weakly compressible flow problem is obtained by multiplying the gov-

erning equations by suitable weighting functions and integrating over the computational do-
main. After integration by parts of the stress term and by exploiting the boundary conditions, the
weak form of the CG approximation of problem (2.10) reads: given (υ0

F , p
0
F) in ΩF × (ti), find

(υF , pF) ∈ [Vh(ΩF)]nsd × Vh(ΩF) such that(
w, ρF (pF)

∂υF
∂t

)
ΩF

+

(
w, ρF (pF)∇υF

(
υF −

ddF
dt

))
ΩF

+ (∇w, 2µF∇SυF + λF (∇ · υF) Insd − pFInsd)ΩF
− (w, ρF (pF) bF)ΩF

+

nelF∑
e=1

(
∇w

(
υF −

ddF
dt

)
, τSUPGRM (υF , pF)

)
Ωe

F

=
〈
w, tNF

〉
ΓN
F

,

(2.11a)

(
w,
∂ρF (pF)

∂pF

∂pF
∂t

)
ΩF

+

(
w,
∂ρF (pF)

∂pF
∇pF ·

(
υF −

ddF
dt

))
ΩF

+ (w, ρF (pF)∇ · υF)ΩF
+

nelF∑
e=1

(∇w, τPSPGRM (υF , pF))Ωe
F

= 0,

(2.11b)

for all (w, w) ∈ [Vh0 (ΩF)]nsd × Vh0 (ΩF). The precise definition of the finite element spaces for
the test functions and the solution variables is given in Appendix A.

The last terms in the left hand sides provide a remedy for the deficiency of the continuous
GALERKIN approach, arising in convection-dominated flows and in the vicinity of the incom-
pressible limit. More precisely, the streamline-upwind PETROV–GALERKIN (SUPG) term in-
troduced by BROOKS and HUGHES [19] in the momentum equation stabilizes the formulation
at high REYNOLDS number flows, whereas the pressure-stabilizing PETROV–GALERKIN
(PSPG) term introduced by HUGHES et al. [83] in the continuity equation allows the use of
equal-order interpolations for velocity and pressure. The corresponding stabilization parame-
ters are denoted with τSUPG and τPSPG, while RM refers to the residual of the momentum equa-
tion. A detailed analysis on these parameters can be found in the textbooks by DONEA and
HUERTA [45] and by ZIENKIEWICZ et al. [175] or in the thesis of WALL [166]. It is worth
highlighting that the introduced stabilization terms are weighted residuals and therefore ensure
the consistency of the CG formulation.

Only the weak form of the weakly compressible flow problem is reported here, for the sake of
brevity. However, the incompressible counterpart is fully recovered by considering a vanishing
compressibility, i.e. ∂ρF(pF)/∂pF = εF = 0, and by neglecting the term λF (∇ · υF) Insd .
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2.2 Structure problem

2.2 Structure problem
Analogously to the fluid field, the structural domain is denoted with ΩS ∈ Rnsd and its bound-
ary ∂ΩS is partitioned into a DIRICHLET portion ΓDS and a NEUMANN portion ΓNS such that
∂ΩS = ΓDS ∪ ΓNS and ΓDS ∩ ΓNS = ∅. The total LAGRANGEan approach is adopted to describe
the structural motion, hence all the quantities and mathematical operators are referred to the un-
deformed configuration. However, no special notation is introduced to distinguish the operators
associated to either the material or the spatial coordinates for the sake of readability. The strong
form of a nonlinear elastodynamic problem can then be written as

ρS
d2uS
dt2

−∇ · PS (∇uS) = ρSbS in ΩS × (ti, tf ),

uS = u0
S in ΩS × (ti),

duS
dt

= u̇0
S in ΩS × (ti),

uS = uDS on ΓDS × (ti, tf ),

PS (∇uS)nS = tNS on ΓNS × (ti, tf ).

(2.12)

The first equation states the dynamic equilibrium of inertial, internal and external forces, whereas
the following ones impose the initial and the boundary conditions. The variable uS represents
the unknown displacement field, whereas ρS is a constant solid density and bS a prescribed body
force per unit undeformed volume.

The internal forces are expressed in terms of the first PIOLA–KIRCHHOFF stress tensor PS
that, for hyperelastic materials, is computed as

PS (∇uS) =
∂ψS (FS)

∂FS
, (2.13)

with FS being the deformation gradient and ψS the strain energy density function. The former is
directly related to the displacement gradient through the expression

FS = ∇uS + Insd , (2.14)

while the latter is defined as

ψS (FS) =


µSES : ES+

λS
2

[tr (ES)]2 ST. VENANT–KIRCHHOFF,

µS
2

[
tr
(
F T
S FS

)
− 2 ln (|FS |)− nsd

]
+
λS
2

[ln (|FS |)]2 Neo-HOOKE,
(2.15)

for the two popular material models adopted in this thesis.
The ST. VENANT–KIRCHHOFF is the simplest hyperelastic material model and represents

an extension of the linear elastic model to the geometrically nonlinear regime. In fact, the
GREEN–LAGRANGE strain tensor ES is computed as

ES (∇uS) =
1

2

(
F T
S FS − Insd

)
=

1

2

(
∇uS + (∇uS)T + (∇uS)T ∇uS

)
,

(2.16)
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2 Role of compressibility for FSI solvers

and stems from the infinitesimal strain tensor

εS (∇uS) =
1

2

(
∇uS + (∇uS)T

)
, (2.17)

with the inclusion of the second order terms to account for geometrical nonlinearities. The Neo-
HOOKEan model considers instead a nonlinear stress-strain relationship and is suited for the
behavior of plastic and rubber-like solids undergoing large deformations.

The LAMÉ parameters µS and λS can the be evaluated from the YOUNG modulus ES and
the POISSON ratio νS of the material through the relations

µS =
ES

2 (1 + νS)
, λS =

νSES
(1 + νS) (1− 2νS)

. (2.18)

The coefficient µS is strictly positive and coincides with the shear modulus, thus describing
material’s response to shear stress. The parameter λS is closely related to the bulk modulus

KS =
2

3
µS + λS , (2.19)

which describes the material response to a uniform hydrostatic pressure and therefore provides
a direct measure of the solid compressibility.

For convenience, fluid-structure interaction problems are solved in this thesis considering
solely compressible solids, for which the POISSON ratio is bounded in the interval 0 ≤ νS <
0.5, hence resulting in a finite value of the bulk modulus, i.e. KS < ∞. It is well-known that
low-order displacement-based CG formulations fail to provide locking-free approximations for
(nearly) incompressible materials, for which νS → 0.5. A number of possible remedies, dis-
cussed in Chapter 4, have been proposed in the literature to circumvent this issue. A novel
strategy involving a hybrid HDG-CG discretization is proposed in Section 4.2 to solve elastic
problems featuring multiple materials with compressible and nearly incompressible behaviors.

Owing to the presence of the second temporal derivative, the structural problem (2.12) requires
not only an initial displacement field u0

S , but also an initial velocity u̇0
S . Finally, the DIRICHLET

and NEUMANN boundary conditions are expressed in terms of displacements uDS imposed on
ΓDS and tractions tNS imposed on ΓNS , respectively. The outward-pointing unit normal vector to
the structural boundary is denoted with nS .

Analogously to the fluid field, the weak form of the CG approximation of the structural prob-
lem (2.12) is obtained by multiplying the governing equation by an appropriate test function,
integrating over the computational domain and performing an integration by parts of the term
under the divergence operator. It thus reads: given (u0

S , u̇
0
S) in ΩS × (ti), find uS ∈ [Vh(ΩS)]nsd

such that (
v, ρS

d2uS
dt2

)
ΩS

+ (∇v,PS (∇uS))ΩS
= (v, ρSbS)ΩS

+
〈
v, tNS

〉
ΓN
S

, (2.20)

for all v ∈ [Vh0 (ΩS)]nsd .
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2.3 Fluid-structure coupling

Figure 2.1: Degrees of freedom of the CG-CG discretization

Let the whole domain Ω be split into two non-overlapping subdomains ΩF and ΩS such that
Ω = ΩF ∪ ΩS , with interface ΓI = ΩF ∩ ΩS . The fluid subdomain is divided into nelF disjoint
elements as

ΩF =

nelF⋃
e=1

Ωe
F , Ωe

F ∩ Ωf
F = ∅ for e 6= f , (2.21)

while the structural subdomain is divided into nelS elements as

ΩS =

nelS⋃
e=1

Ωe
S , Ωe

S ∩ Ωf
S = ∅ for e 6= f . (2.22)

Figure 2.1 depicts the degrees of freedom of the discretization, for a polynomial degree of
approximation k = 1 in the whole domain. More precisely, the blue circles denote the CG DOFs
of the fluid problem corresponding to the velocity vF and the pressure pF , collected in the vector
VF =

[
vF pF

]T for simplicity, whereas the red circles refer to the CG DOFs of the structural
problem, corresponding to the displacement uS . Finally, the DOFs in cyan refer to the fluid mesh
displacement uF in the ALE framework.

It is worth mentioning that the deformation of the fluid computational mesh is evaluated as a
function of the structural displacement at the interface, by means of a unique ALE mapping ϕ.
The grid motion strategy is an artificial problem, hence not affecting the physics of the coupled
problem, and its sole purpose is to generate a proper mesh for the solution of the fluid problem.
With this regard, several techniques have been proposed in the last decades and they are not
discussed here, because of secondary importance for the purposes of this thesis. However, a
comprehensive literature survey on this topic can be found at DONEA et al. [46].

In order to couple the fluid problem, whose weak form has been derived Section 2.1, and the
structural problem, whose weak form has been presented in Section 2.2, the following kinematic
and dynamic continuity conditions have be enforced at the fluid-structure interface
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2 Role of compressibility for FSI solvers

 υF −
duS
dt

= 0 on ΓI × (ti, tf ),

tF (∇υF , pF) + tS (∇uS) = 0 on ΓI × (ti, tf ).
(2.23)

The first equality denotes the no-slip condition, prohibiting a fluid flow across the interface and
a relative tangential movement of the fluid and the structure at the same location. The second
relation enforces then the equilibrium of the fluid and the structural forces at the interface and
directly follows from NEWTON’s third law of motion [115].

The coupling of the fluid and the structural solvers is performed by means of the partitioned
DIRICHLET–NEUMANN scheme outlined by KÜTTLER and WALL [91]. In the following,
the terms K and f denote the left hand side matrices and right hand side vectors, respectively,
arising from the discretization of the associated weak forms, whereas the symbolA stands for
the assembly operator of the elemental contributions. Moreover, owing to the nonlinear nature
of the governing equations, the single-field problems are linearised and solved in terms solution
increments (indicated with δ) by means of the NEWTON–RAPHSON method until convergence.
Assuming all the quantities referred to the time step n+1 and denoting by i the coupling iteration
count, the matrix form of the coupling algorithm can be schematized as:

1. Start with a predicted interface structural displacement
[
uiS
]
.

2. Update the fluid mesh by means of the ALE mapping
[
diF
]

= ϕ
([
uiS
])

.

3. Compute the fluid solution
[
Vi
F
]

by solving the problem[
KFF

] [
δVi
F
]

=
[
fF
]

, (2.24)

with [
KFF

]
=

nelF

A
e=1

{[
KV V

]
e

}
,

[
fF
]

=

nelF

A
e=1

{[
fV
]
e

}
, (2.25)

and
[
VD
I (uiS)

]
being strongly imposed as a DIRICHLET condition on the interface.

4. Compute a new structural solution
[
ūi+1
S
]

by solving the problem[
KSS

] [
δūi+1
S
]

=
[
fS
]

+
[
fNI (Vi

F)
]

, (2.26)

with [
KSS

]
=

nelS

A
e=1

{[
Kuu

]
e

}
,

[
fS
]

=

nelS

A
e=1

{[
fu
]
e

}
, (2.27)

and
[
fNI (Vi

F)
]

denoting the NEUMANN coupling vector on the interface.

5. Check the convergence of the interface displacement residual
∥∥[ri+1

I
]∥∥ < η with[

ri+1
I
]

=
[
ūi+1
S
]
−
[
uiS
]

. (2.28)

Continue with next time step if the algorithm is converged, otherwise return to step 2 with[
ui+1
S
]

= ωi+1
[
ūi+1
S
]

+
(
1− ωi+1

) [
uiS
]

, (2.29)

where the relaxation parameter is either kept constant or updated by means of AITKEN’s
∆2 method

ωi+1 = −ωi
[
riI
]T ([

ri+1
I
]
−
[
riI
])
/
∥∥[ri+1

I
]
−
[
riI
]∥∥2 . (2.30)
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2.4 Incompressible added mass operator
The artificial added mass effect is a well-known phenomenon in the fluid-structure interaction
community. It is particular evident in the context of loosely-coupled partitioned schemes and it
imposes a lower bound on the time step size to allow stable computations. The resulting instabil-
ity is defined artificial added mass effect since the fluid forces acting on the structural interface
contain an artificial and incorrect contribution, acting as an extra mass on the structural interface
degrees of freedom. This phenomenon has been first investigated by CAUSIN et al. [24] on a
simplified model problem in the context of incompressible flows. Although the model problem
considered therein represents an extreme simplification of real world applications, it is nonethe-
less able to realistically predict the stability and the convergence properties of the FSI solver.
Later, FÖRSTER et al. [58] offered a general discrete representation of the added mass opera-
tor and derived different instability conditions for various temporal discretization schemes.

By adopting a classical DIRICHLET–NEUMANN coupling scheme and discretizing the gov-
erning equations by means of finite elements in a CG framework, the coupling force vector can
be expressed in terms of the interface acceleration as

fI = mFMv̇I, (2.31)

with mF denoting a characteristic fluid mass and v̇I being the aforementioned interface ac-
celeration. M is the artificial added mass operator, which can be interpreted as a geometrical
operator mapping a dimensionless interface acceleration onto an also dimensionless interface
force. Henceforth, the subscripts �i and �I are adopted to refer to the interior and the inter-
face degrees of freedom, respectively. By only considering the relevant features and neglecting
secondary effects, such as the motion of the fluid domain and all nonlinearities, and assuming
a regular mesh as well as a lumped mass matrix approximation, the added mass operator for
incompressible flows derived by FÖRSTER et al. [58] can be written as

Minc
lump = III + 2GI

(
GT

iGi

)−1
GT

I , (2.32)

with G denoting the discrete gradient operator and its transpose GT being the discrete diver-
gence operator. The first term in (2.32) represents the forces required to accelerate the fluid
masses adjacent to the interface, whereas the second term yields forces generated by the effect
of incompressibility.

2.5 Weakly compressible added mass operator
As opposed to fluid-structure interaction problems involving incompressible flows, which are
heavily affected by the artificial added mass effect, compressible flows are much less influenced
by this detrimental phenomenon and related instabilities have rarely been reported in literature
(for example by JAIMAN et al. [85]). Moreover, it is often claimed that no artificial added mass
effect arises even when driving a (weakly) compressible flow solver close to the incompress-
ible limit, i.e. at low MACH number. A first analysis conducted by VAN BRUMMELEN [160]
on a simple two-dimensional model problem highlighted the beneficial role of compressibil-
ity, whereas a later study by LA SPINA et al. [95] derived an expression of the discrete weakly
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2 Role of compressibility for FSI solvers

compressible added mass operator in a more general setting and supported the analytical findings
with numerical examples in both two and three dimensions. As anticipated in the introduction of
this chapter, the analysis presented here is mainly based on the publication just mentioned.

In order to derive the added mass operator for weakly compressible flows, it turns out to be
useful to rewrite the fluid governing equations by means of material time derivatives as

ρ
Dυ

Dt
−∇ · [2µ∇Sυ + λ (∇ · υ) Insd − pInsd ] = ρb,

∂ρ

∂p

Dp

Dt
+ ρ∇ · υ = 0,

(2.33)

where the subscript �F is omitted for the sake of simplicity. Equations (2.33) are equipped with
a suitable equation of state relating density and pressure changes. If the simple linear relation
(2.7) is considered, the partial derivative of the density with respect to the pressure simply stems
from the compressibility coefficient, i.e. ∂ρ/∂p = ε.

Some assumptions and simplifications can be introduced to further simplify the analysis, while
preserving the relevant features. First, external loads are omitted without loss of generality. It
is then acknowledged that the artificial added mass effect is independent of the nonlinearities
of the system, as well as of the fluid mesh movement. Moreover, viscous terms have a much
lower impact than mass terms for small time step sizes, for which the artificial added mass
manifests, and they can therefore be reasonably neglected. No structural damping is considered,
as done throughout this thesis. Finally, density variations in time are small in the vicinity of the
incompressible limit and it is therefore justified to linearise the system with respect to the fluid
density, that is subsequently updated by means of the equation of state. Given these assumptions,
the governing equations (2.33) can be rewritten as

ρ
Dυ

Dt
+ ∇p = 0,

θ
Dp

Dt
+ ∇ · υ = 0,

(2.34)

where a compressibility factor θ = ε/ρ has been introduced.
Upon the finite element discretization, the discrete system of equations reads{

Mv̇ + Gp = 0,

θMpṗ−GTv = 0,
(2.35)

with M denoting the standard fluid mass matrix, whereas Mp is a mass matrix associated to the
pressure degrees of freedom. Moreover, G and GT are the aforementioned discrete gradient and
divergence operators, respectively, while the vectors v and p represent the unknown velocity and
pressure DOFs. Finally, the over-set dots represent the material time derivatives, according to the
LAGRANGEan description adopted in (2.34). It is worth pointing out that the ongoing analysis
is performed in a CG framework, but the findings are independent of the particular discretization
technique adopted. As a matter of fact, the trends arising in the numerical examples in Section 2.7
are also observed in the FSI problems in Section 5.4, where the HDG method is instead adopted
to discretize the fluid equations.
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2.5 Weakly compressible added mass operator

For a general time discretization scheme, the velocity and the pressure at the time step n + 1
can be written as {

v = αv∆tv̇ + v̄,
p = αp∆tṗ + p̄,

(2.36)

with v̇ and ṗ denoting the time derivatives at the same time, while v̄ and p̄ refer to a linear
combination of values and time derivatives computed in the previous time steps. The time step
level is not explicitly indicated in order to not overload the notation. The parameters αv and
αp depend then on the specific time integrator adopted. More precisely, for implicit integrators
αv 6= 0 and αp 6= 0, while explicit methods exhibit αv = αp = 0.

By considering both the spatial and the temporal discretization in (2.35) and (2.36), the fully
discretized problem {

Mv̇ + αp∆tGṗ + Gp̄ = 0,

θMpṗ− αv∆tGT v̇ −GT v̄ = 0,
(2.37)

leads to the linear system [
M αp∆tG

−αv∆tGT θMp

] [
v̇
ṗ

]
=

[
−Gp̄
GT v̄

]
. (2.38)

In order to derive the discrete added mass operator for weakly compressible flows, it is conve-
nient to split the velocity degrees of freedom belonging to the interface from the remaining ones.
The system (2.38) is therefore rewritten as Mii MiI αp∆tGi

MIi MII αp∆tGI

−αv∆tGT
i −αv∆tGT

I θMp

v̇iv̇I
ṗ

 =

 −Gip̄
−GIp̄ + fI

GT v̄

 , (2.39)

with fI being the interface force vector to be passed to the structural solver. Solving the system
(2.39) in terms of the interior acceleration v̇i and the time derivative of the pressure ṗ and
replacing back their expressions in the system allows to obtain the following definition of the
coupling vector

fI =

[(
MIiM

−1
iiGi −GI

)( θ

αvαp∆t2
Mp + GT

iM
−1
iiGi

)−1 (
GT

iM
−1
iiMiI −GT

I

)
−MIiM

−1
iiMiI + MII

]
v̇I

−

[(
MIiM

−1
iiGi −GI

)( θ

αvαp∆t2
Mp + GT

iM
−1
iiGi

)−1

GT 1

αv∆t

]
v̄

+

[(
MIiM

−1
iiGi −GI

)( θ

αvαp∆t2
Mp + GT

iM
−1
iiGi

)−1

GT
iM

−1
iiGi

−MIiM
−1
iiGi + GI

]
p̄.

(2.40)
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The first contribution shows the dependency of the interface force on the interface acceleration
and the term in square brackets can therefore be interpreted as a mass. The second and the
third contributions depend on the history of velocity and pressure, respectively. Assuming a
regular mesh and employing a lumped mass matrix, the off-diagonal terms MiI and MIi vanish,
whereas the mass attributed to an internal node is twice the mass of an interface node which has
half the support of the former, i.e. Mii = 2mFIii and MII = mFIII. The lumped version of
the coupling force vector can therefore be written as

fI, lump =

[
2mFGI

(
2mFθ

αvαp∆t2
Mp + GT

iGi

)−1

GT
I +mFIII

]
v̇I

+

[
2mFGI

(
2mFθ

αvαp∆t2
Mp + GT

iGi

)−1

GT 1

αv∆t

]
v̄

−

[
GI

(
2mFθ

αvαp∆t2
Mp + GT

iGi

)−1

GT
iGi −GI

]
p̄.

(2.41)

Two limit cases are worth analysing: the incompressible limit and the time step size limit.
In the incompressible limit the flow compressibility vanishes, i.e. θ → 0 (and therefore ε →

0), corresponding to an infinite speed of sound. In such a case, the pressure mass matrix Mp

does not offer any contribution and the force vector reduces to

lim
θ→0

fI, lump =
[
mFIII + 2mFGI

(
GT

iGi

)−1
GT

I

]
v̇I. (2.42)

This expression is obtained by recalling that the flow velocity is divergence-free in all time steps
in the incompressible limit, thus

lim
θ→0

GT v̄ = 0. (2.43)

It is therefore clear that the incompressible added mass operator (2.32) is fully recovered from a
weakly compressible approach for a vanishing compressibility coefficient.

However, as long as even a small compressibility is taken into account, i.e. θ > 0 (and there-
fore ε > 0), the full definition of the force vector (2.41) needs to be considered. To derive the
expression of the added mass operator for weakly compressible flows, the vanishing time step
size limit is analyzed. In such a circumstance, the force vector simplifies to

lim
∆t→0

fI, lump = mFIIIv̇I. (2.44)

This expression is obtained by considering that

lim
∆t→0

p̄ = p = const, (2.45)

according to (2.36). Hence, the added mass operator for weakly compressible flows results in

Mwcomp
lump = III. (2.46)
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2.6 Discussion
A loosely-coupled FSI scheme has been proven by FÖRSTER et al. [58] to be unconditionally
unstable if

mF
mS

max [eig (M)] > Cinst, (2.47)

with mF and mS denoting a characteristic fluid and structural mass, respectively, and Cinst

being a constant coefficient dependent on the specific time integration method adopted. Unfortu-
nately, this coefficient turns out to be smaller for higher temporal accuracy. The inequality (2.47)
allows to establish fundamental differences regarding the robustness of fluid-structure interaction
solvers involving incompressible and weakly compressible flows.

Replacing the incompressible added mass operator (2.32) in (2.47), the instability condition
reads

mF
mS

max
[
eig
(
III + 2GI

(
GT

iGi

)−1
GT

I

)]
> Cinst. (2.48)

It is therefore clear that partitioned schemes with incompressible flows can be safely adopted
only in the case that the fluid is much lighter than the structure and if the maximal eigenvalue
of the added mass operator is not much larger than unity. However, the incompressible contri-
bution 2GI

(
GT

iGi

)−1
GT

I can be rather large and, in the case of a fluid entirely enclosed by
DIRICHLET boundaries (except of course the fluid-structure interface), its maximal eigenvalue
tends to infinity.

Replacing instead the weakly compressible added mass operator (2.46) in (2.47), the instabil-
ity condition reduces to

mF
mS

max [eig (III)] =
mF
mS

> Cinst. (2.49)

Consequently, also the weakly compressible model exhibits a mass ratio for which the scheme
gets unconditionally unstable. However, the condition (2.49) is much more permissive than the
incompressible counterpart (2.48), explaining why artificial added mass effects are rarely ob-
served in simulations involving (weakly) compressible flows. Moreover, from the analysis in
Section 2.5 it is clear that if the limit mass ratio in (2.49) is not reached by a particular problem,
then time step size reduction will eventually stabilize the partitioned scheme. It is therefore ob-
vious why potential stability issues in the weakly compressible case can frequently be handled
in the standard way, i.e. by time step size reduction. Such simple approach has been shown by
FÖRSTER et al. [58] not to work in the incompressible case.

The present analysis rigorously refers to loosely-coupled partitioned schemes, however analo-
gous considerations apply to the convergence of strongly-coupled partitioned schemes, in which
the exchange of the interface information is repeated within a time step until a convergence cri-
terion is met. In fact, although it is sometimes claimed that the added mass related instability can
be always overcome by subiterating over the single fields to converge to the solution of the cor-
responding monolithic system, VAN BRUMMELEN [160] pointed out how the artificial added
mass effect directly affects the stability and the convergence of the subiteration process. The
artificial added mass operator defines indeed an upper bound for the contraction number of the
problem and if this value is greater than one, the iterative procedure will inevitably fail. The find-
ings of the present analysis are thus confirmed in the following numerical examples by using a
strongly-coupled partitioned scheme and examining the number of coupling iterations required,
as well as the values of the relaxation parameter (when a dynamic relaxation is adopted).
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2.7 Numerical examples
The numerical examples presented here aim to experimentally investigate the influence of the
flow compressibility for FSI solvers in terms of accuracy, robustness and efficiency. The first
example is a popular two-dimensional benchmark that allows to perform a series of tests with
increasing difficulty for the coupling algorithm, by simply varying the structural density. The
performance of the weakly compressible formulation is then assessed considering both a fixed
and a dynamic relaxation of the fixed-point FSI solver. The second example is a widely used
three-dimensional benchmark that mimics hemodynamic conditions and highlights the artificial
added mass phenomenon. Special emphasis is devoted to the efficiency of the proposed formula-
tion considering different compressibility levels and time step sizes. The simulations associated
with the presented numerical examples have been performed with the parallel multiphysics re-
search code BACI [167].

2.7.1 Lid-driven cavity with flexible bottom
The first numerical example is a two-dimensional lid-driven cavity with flexible bottom. It
was introduced by WALL [166] as a modification of the well-known lid-driven cavity used in
fluid dynamics and it has been used for several numerical studies by MOK and WALL [109],
KÜTTLER et al. [91], FÖRSTER et al. [58] and MAYR et al. [104], among others. The goal
of this example is to investigate the role of compressibility for FSI solvers in a simple setting
with an increasing difficulty for the coupling algorithm. In fact, the structural configuration is set
up in such a way that its main resistance against the fluid forces stems from its density, which
can be easily varied.

The fluid domain is a unit square, while the structure on the bottom has a thickness of 0.002m
and is clamped (uDS = 0) on its left and right edges. On the top side of the cavity, an oscillatory
velocity is prescribed according to{

υDF x (x, 1, t) = 1− cos (2πt/t̄) m/s,

υDF y (x, 1, t) = 0 m/s,
(2.50)

with period t̄ = 5 s, whereas no-slip boundary conditions (υDF = 0) are applied on the left
and right sides. Two unconstrained nodes are considered at each side of the cavity, to allow free
inflow and outflow of the fluid. The geometry and the boundary conditions of the problem are
sketched in Figure 2.2.

The fluid is first assumed incompressible with density ρF = 1 kg/m3 and dynamic viscosity
µF = 0.01 kg/(m · s). Then, the weakly compressible formulation is adopted taking the same
viscosity and a reference density ρrefF = 1 kg/m3, evaluated at the reference pressure prefF = 0
N/m2. Three different compressibility coefficients are considered, i.e. εF = [0.001, 0.01, 0.1]
s2/m2. The structure is modelled as a ST. VENANT–KIRCHHOFF material with YOUNG’s
modulus ES = 250 N/m2 and POISSON’s ratio νS = 0. Three structural densities are con-
sidered, i.e. ρS = [5000, 500, 50] kg/m3, producing an increasing difficulty for the partitioned
algorithm.

The fluid mesh consists of 32× 32 linear stabilized quadrilateral elements, while the structure
is discretized with 32 linear quadrilateral elements. The computational mesh is shown in Fig-
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Figure 2.2: Geometry and boundary conditions for lid-driven cavity with flexible bottom

Figure 2.3: Computational mesh for lid-driven cavity with flexible bottom
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Figure 2.4: Solution of fluid velocity for lid-driven cavity with flexible bottom

ure 2.3, with a magnification factor of 10 on the structural thickness for a better visualization.
The time span analyzed is t ∈ (0, 15) s and the time step size is taken as ∆t = 0.1 s. It is worth
recalling that the spatial discretization is performed with the CG method for both subdomains,
whereas the first order backward differentiation formula (BDF1) is used for the evolution in time.
Two relaxation techniques are considered in this example:

1. constant relaxation,

2. dynamic relaxation by means of AITKEN’s ∆2 method.

For the first case the relaxation parameter is chosen as ω = 0.825 by a trial and error approach,
while the convergence tolerance for the coupling iterations is set as η = 10−7 for both cases.

The fluid velocity field obtained with εF = 0.01 s2/m2 and ρS = 500 kg/m3 is exemplarily
depicted in Figure 2.4 on the deformed domain at time t = 7.5 s, in which the prescribed velocity
reaches a maximum. In Figure 2.5, the vertical displacement over time of the top center point of
the membrane is plotted for the three structural densities considered. In all the configurations,
the weakly compressible model produces physical results very similar to the incompressible
counterparts, with only minimal differences.

The average number of coupling iterations (evaluated over all time steps) required to meet the
convergence criterion for constant relaxation is summarized in Table 2.1. On the one hand, for
the most challenging scenario, i.e. ρS = 50 kg/m3, neither the weakly compressible formula-
tion nor the incompressible formulation is able to converge, as also reported by KÜTTLER et
al. [91]. On the other hand, for the intermediate structural density, the average number of cou-
pling iterations drastically drops from 12.2 with the incompressible formulation to 2.7 with the
weakly compressible formulation with εF = 0.1 s2/m2, saving about 78% of iterations. No
appreciable differences are observed instead when the fluid-structure coupling is very weak.
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(a) ρS = 5000 kg/m3

(b) ρS = 500 kg/m3

(c) ρS = 50 kg/m3

Figure 2.5: Plot of structural displacement for lid-driven cavity with flexible bottom
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As opposed to the first case, the coupling algorithm is always able to convergence when the
relaxation parameter is dynamically updated via AITKEN’s ∆2 method. The average number
of coupling iterations and the average relaxation parameter computed over all time steps are
reported in Table 2.2. A general trend can be observed: the weakly compressible formulation
accelerates the convergence of the iterative scheme that resolves the fluid-structure coupling and
the higher the compressibility, the more iterations can be saved. Moreover, the advantages are
more accentuated in the most challenging cases. In fact, by comparing the data associated to the
incompressible and the most compressible case, the saving of coupling iterations is about 33%
and 48% for ρS = 5000 kg/m3 and ρS = 50 kg/m3, respectively. The reduction of coupling iter-
ations comes along with a systematic increase of the relaxation parameter. Comparing again the
incompressible formulation and the weakly compressible one with εF = 0.1 s2/m2, the average
relaxation parameter increases by 71% for ρS = 50 kg/m3, by 35% for ρS = 500 kg/m3 and by
just 5% for ρS = 5000 kg/m3. Figure 2.6 then shows the evolution of the mean relaxation pa-
rameter, evaluated over the coupling iterations within each time step in order to homogeneously
compare the results. From the plots it can be observed that the relaxation parameter exhibits at
the same time a higher value and a minor oscillating behavior when decreasing the strength of
the FSI coupling. In the limit case, when εF = 0.1 s2/m2 and ρS = 5000 kg/m3, the relaxation
parameter remains constant and equal to ω = 1 during the entire simulation (Figure 2.6(a)).
Given the improved robustness and efficiency features of AITKEN’s ∆2 method, this relaxation
strategy will be henceforth applied for the solution of FSI problems with partitioned schemes.

ρS = 5000 kg/m3 ρS = 500 kg/m3 ρS = 50 kg/m3

ω iavg ω iavg ω iavg

Incompressible 0.825 2.2 0.825 12.2 0.825 –
εF = 0.001 s2/m2 0.825 2.2 0.825 9.3 0.825 –
εF = 0.01 s2/m2 0.825 2.3 0.825 3.7 0.825 –
εF = 0.1 s2/m2 0.825 2.4 0.825 2.7 0.825 –

Table 2.1: Relaxation parameter and coupling iterations for lid-driven cavity with flexible bottom
via constant relaxation

ρS = 5000 kg/m3 ρS = 500 kg/m3 ρS = 50 kg/m3

ωavg iavg ωavg iavg ωavg iavg

Incompressible 0.95 1.5 0.67 2.9 0.30 7.7

εF = 0.001 s2/m2 0.96 1.5 0.69 3.0 0.31 7.6

εF = 0.01 s2/m2 0.97 1.3 0.78 2.9 0.35 6.5

εF = 0.1 s2/m2 1.00 1.0 0.91 1.9 0.51 4.0

Table 2.2: Relaxation parameter and coupling iterations for lid-driven cavity with flexible bottom
via dynamic relaxation
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2.7 Numerical examples

(a) ρS = 5000 kg/m3

(b) ρS = 500 kg/m3

(c) ρS = 50 kg/m3

Figure 2.6: Plot of relaxation parameter for lid-driven cavity with flexible bottom
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2 Role of compressibility for FSI solvers

2.7.2 Pressure wave in flexible tube

The second numerical example simulates a three-dimensional pressure wave in a flexible tube.
It was originally proposed by NOBILE [125] and FORMAGGIA et al. [57] and it has been
later used by GERBEAU and VIDRASCU [63], by FERNÁNDEZ and MOUBACHIR [53] and
by MAYR et al. [104], among others. This fluid-structure interaction problem arises from the
modelling of blood flow in large arteries and constitutes a classical benchmark in hemodynamics.
The main feature is represented by the similar fluid and structural densities, i.e. ρF/ρS ≈ 1,
producing therefore a challenging scenario with respect to the artificial added mass effect, as
explained in Section 2.6.

The fluid domain is constituted by a straight cylinder of radius 0.5 cm and length 5 cm and
it is surrounded by a solid tube with a thickness of 0.1 cm. The fluid, initially at rest, is loaded
with the surface traction 

tNF x (0, y, z, t) = 1.3332 · 104 g/(cm · s2),

tNF y (0, y, z, t) = 0 g/(cm · s2),

tNF z (0, y, z, t) = 0 g/(cm · s2),

(2.51)

for the duration of 3 · 10−3 s, imposed as a NEUMANN boundary condition at the inlet. The
structure is clamped at both ends (uDS = 0). The geometry and the boundary conditions of the
problem are depicted in Figure 2.7.

tF = tNF

5 cm

0.1 cm

1.0 cm

0.1 cm

x

y

0.5 cm
0.

6
cm

z

y

Figure 2.7: Geometry and boundary conditions for pressure wave in flexible tube

To compare the accuracy and the performance of the weakly compressible formulation against
the incompressible one, the fluid is first considered incompressible with density ρF = 1 g/cm3

and dynamic viscosity µF = 0.03 g/(cm · s) and the weakly compressible model is then em-
ployed with the same viscosity and a reference density ρrefF = 1 cm/m3, evaluated at the ref-
erence pressure prefF = 0 g/(cm · s2). Three different orders of magnitude are considered for
the compressibility coefficient, i.e. εF = [10−7, 10−6, 10−5] s2/cm2. These parameters are in the
range where the solution starts to globally alter the physical behavior compared to the incom-
pressible formulation for this particular example. The constitutive behavior of the structure is
described by a ST. VENANT–KIRCHHOFF material with YOUNG’s modulus ES = 3 · 106

g/(cm · s2), POISSON’s ratio νS = 0.3 and density ρS = 1.2 g/cm3.
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2.7 Numerical examples

Figure 2.8: Computational mesh for pressure wave in flexible tube

The fluid domain is discretized with 2480 linear stabilized hexahedral elements, while the
structural mesh consists of 1600 linear hexahedral elements, with 2 elements over the thickness.
The computational mesh adopted for this example is depicted in Figure 2.8. The fluid and struc-
tural meshes are denoted in blue and red, respectively, whereas the interface is shown in black.
The time interval analyzed is t ∈ (0, 0.015) s and, in order to investigate the role the time step
size on the efficiency of the coupling scheme, the time span is divided into a progressively in-
creasing number of steps, i.e. ∆t = 0.015/ [10, 30, . . . , 150] s. The time integration is performed
with BDF1 and the convergence tolerance considered for the coupling iterations is η = 10−7.
Given the enhanced efficiency of dynamic relaxation techniques observed in the previous exam-
ple, AITKEN’s ∆2 method is adopted here to accelerate the fixed-point FSI solver.

As a consequence of the boundary conditions, a pressure wave travels along the axis of the
tube. In Figure 2.9 the pressure field is shown for the different compressibility levels considered
at two time instants corresponding to 1/3 and 2/3 of the total time span, i.e. t = 0.005 s and
t = 0.010 s. The deformation of the fluid domain is magnified by a factor of 10 for a better vi-
sualization. Moreover, the temporal evolution of the fluid pressure at the center of the tube (with
coordinates (2.5, 0, 0) cm) and of the structural radial displacement at the point (2.5, 0.6, 0) cm is
depicted in Figure 2.10. The data associated to Figures 2.9 and 2.10 refer to the solution obtained
with the smallest time step size considered, i.e. ∆t = 10−4 s. As expected, the weakly compress-
ible formulation slightly changes the dynamics of the problem and this change is proportional
to the compressibility considered. For this setting, it is clear that the flow compressibility in-
duces a decrease in the pressure wave speed and, as a consequence, the peaks of the curves in
Figure 2.10 progressively shift to the right. The results obtained with εF = 10−7 s2/cm2 and
εF = 10−6 s2/cm2 still accurately reproduce the global physical behavior of the system with
engineering accuracy, whereas the mismatch with the incompressible reference becomes exces-
sive for larger compressibility coefficients. It also worth pointing out that an acceptably accurate
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2 Role of compressibility for FSI solvers

(a) Incompressible at t = 0.005 s (b) Incompressible at t = 0.010 s

(c) εF = 10−7 s2/cm2 at t = 0.005 s (d) εF = 10−7 s2/cm2 at t = 0.010 s

(e) εF = 10−6 s2/cm2 at t = 0.005 s (f) εF = 10−6 s2/cm2 at t = 0.010 s

(g) εF = 10−5 s2/cm2 at t = 0.005 s (h) εF = 10−5 s2/cm2 at t = 0.010 s

Figure 2.9: Solution of fluid pressure for pressure wave in flexible tube
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2.7 Numerical examples

(a) Fluid pressure (b) Structural displacement

Figure 2.10: Plot of fluid pressure and structural displacement for pressure wave in flexible tube

solution is obtained when at least 100 steps are considered for the discretization of the time span
considered here.

The average value of the relaxation parameter and the average number of coupling iterations
required to meet the convergence tolerance are reported in Table 2.3, for the various compress-
ibility levels and time step sizes considered. As observed in the previous example, the relaxation
parameter increases and at the same time the number of coupling iterations decreases, when in-
creasing the flow compressibility. Additionally, these changes are more accentuated for smaller
time step sizes. For instance, comparing the incompressible and the most compressible case, the
average relaxation parameter increases by a factor of 2.4 for the largest time step size and by a
factor of 8.0 for the smallest time step size considered. Analogously, up to 72% of coupling iter-
ations are saved when dividing the time span in 10 steps, while the saving reaches a maximum of
96% when considering 150 steps. Moreover, while in the incompressible case the average num-
ber of coupling iterations does not decrease when decreasing the time step size, by adopting the
weakly compressible formulation the coupling iterations systematically decrease for sufficiently
small time step sizes, as expected from the findings discussed in Section 2.6.

The remarkable speedup offered by the weakly compressible formulation can be deduced from
Table 2.4, in which the CPU time tcpu spent is reported for all the compressibility coefficients and
the time step sizes considered as ratio of the CPU time spent by the incompressible FSI solver
tinccpu. One the one hand, the computational time required to solve the problem is approximately
the same in the incompressible and weakly compressible case when just a few time steps are
considered. On the other hand, the computational time saved increases dramatically for small
time step sizes. For instance, with ∆t = 10−4 s, the weakly compressible model requires only
26%, 19% and 17% of the computational time spent by the incompressible model, for εF =
10−7 s2/cm2, εF = 10−6 s2/cm2 and εF = 10−5 s2/cm2, respectively. The data in Table 2.4
therefore highlight how the increase of the computational cost of the fluid solver due to the weak
compressibility has only a marginal effect compared to the decrease of the computational time
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2 Role of compressibility for FSI solvers

induced by the reduction of the number of coupling iterations. The evolution over the time steps
of the mean relaxation parameter, the maximum number of coupling iterations and the CPU time
spent with ∆t = 10−4 s is detailed in Figure 2.11.

Overall, the value of the compressibility coefficient plays an important role in the accuracy
and efficiency of the FSI problem. It can qualitatively be stated that εF has to be sufficiently large
to accurately reproduce the physical behavior of the system but, at the same time, it should be
chosen as small as possible to benefit from the advantages of the weakly compressible formula-
tion. The numerical experiments presented here suggest that a good trade-off between accuracy
and speedup can be achieved when the maximum relative variation in the fluid density is between
10−3 and 10−2.

∆t = tf/10 s ∆t = tf/30 s ∆t = tf/50 s ∆t = tf/70 s

ωavg iavg ωavg iavg ωavg iavg ωavg iavg

Incompressible 0.37 14.3 0.16 24.2 0.13 25.8 0.11 26.1

εF = 10−7 s2/cm2 0.51 10.1 0.29 14.9 0.29 12.0 0.33 9.1

εF = 10−6 s2/cm2 0.61 8.2 0.57 6.6 0.63 4.4 0.66 3.3

εF = 10−5 s2/cm2 0.87 4.0 0.83 3.1 0.82 2.4 0.83 2.0

∆t = tf/90 s ∆t = tf/110 s ∆t = tf/130 s ∆t = tf/150 s

ωavg iavg ωavg iavg ωavg iavg ωavg iavg

Incompressible 0.11 25.4 0.11 26.5 0.11 27.3 0.11 27.8

εF = 10−7 s2/cm2 0.37 7.1 0.40 5.6 0.44 4.3 0.46 3.4

εF = 10−6 s2/cm2 0.68 2.8 0.69 2.3 0.69 2.0 0.71 1.7

εF = 10−5 s2/cm2 0.84 1.7 0.85 1.3 0.86 1.0 0.88 1.0

Table 2.3: Relaxation parameter and coupling iterations for pressure wave in flexible tube

∆t = tf/10 s ∆t = tf/30 s ∆t = tf/50 s ∆t = tf/70 s

tcpu/t
inc
cpu tcpu/t

inc
cpu tcpu/t

inc
cpu tcpu/t

inc
cpu

Incompressible 100% 100% 100% 100%

εF = 10−7 s2/cm2 116% 79% 57% 44%

εF = 10−6 s2/cm2 87% 43% 30% 26%

εF = 10−5 s2/cm2 59% 26% 22% 20%

∆t = tf/90 s ∆t = tf/110 s ∆t = tf/130 s ∆t = tf/150 s

tcpu/t
inc
cpu tcpu/t

inc
cpu tcpu/t

inc
cpu tcpu/t

inc
cpu

Incompressible 100% 100% 100% 100%

εF = 10−7 s2/cm2 39% 34% 29% 26%

εF = 10−6 s2/cm2 24% 22% 20% 19%

εF = 10−5 s2/cm2 19% 19% 16% 17%

Table 2.4: CPU time for pressure wave in flexible tube
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2.7 Numerical examples

(a) Relaxation parameter

(b) Coupling iterations

(c) CPU time

Figure 2.11: Plot of relaxation parameter, coupling iterations and CPU time for pressure wave in
flexible tube
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3 HDG formulations for weakly
compressible flows

This chapter is devoted to the discretization of the equations governing the behavior of weakly
compressible flows by means of the HDG method. The derivation of suitable spatial discretiza-
tion strategies for the solution of fluid problems constitutes a fundamental ingredient towards the
design of robust and efficient coupled algorithms for the simulation of fluid-structure interaction
problems, that is the objective of this thesis.

As already anticipated in the introduction, a variety of HDG formulations have been pro-
posed in literature for solving flow problems in both the incompressible and the compressible
regime. For the incompressible regime, the velocity and pressure fields constitute the preferred
choice as primal unknowns in the interior of the elements. The trace of the velocity on the
mesh skeleton and the mean value of the pressure over either the interior or the boundary of
the elements are usually selected as global variables. Alternative options, featuring different
combinations of vorticity, velocity, pressure and harmonic velocity potentials have been investi-
gated by COCKBURN and GOPALAKRISHNAN [29]. To obtain a first-order problem, several
choices have been adopted for the definition of the mixed variable. The velocity gradient has been
adopted, among others, by NGUYEN et al. [120, 121], RHEBERGEN and COCKBURN [135],
GIORGIANI et al. [69] and SHELDON et al. [144, 145], whereas alternative formulations in-
volving either the vorticity or the stress tensor have been analyzed by COCKBURN et al. [37].
For the fully compressible regime instead, the conserved quantities (namely, density, momentum
and energy) are commonly taken as primal variables, their trace representation as hybrid vari-
ables and their gradient as mixed variables, as done for instance by PERAIRE et al. [130] and
FERNANDEZ et al. [55]. The aforementioned formulations have been mainly developed for the
solution of pure flow problems on fixed domains and a few applications dealing with deforming
domains can be found in the works of RHEBERGEN and COCKBURN [135] and SHELDON et
al. [144, 145]. Here, two original and computationally efficient HDG formulations are presented
for the simulation of weakly compressible flows. Such formulations feature a scaled strain rate
tensor in VOIGT notation as mixed variable following GIACOMINI et al. [67] and consider
either the velocity and the pressure or the density and the momentum as primal variables and the
corresponding trace representation as hybrid variables, whereas the postprocessing is performed
in terms of the flow velocity in both cases. The second formulation is moreover designed to deal
with deforming meshes, to be easily embedded in FSI solvers.

After recalling the governing equations for weakly compressible flows in fixed and moving
domains in Section 3.1 and introducing the VOIGT notation in Section 3.2, the two HDG formu-
lations are proposed. In particular, the velocity-pressure formulation is presented in Section 3.3
and the density-momentum formulation is presented in Section 3.4. Finally, the convergence
properties are experimentally assessed in Section 3.5. The content of this chapter is partially
based on the work of LA SPINA et al. [97].
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3 HDG formulations for weakly compressible flows

3.1 Problem statement
Let Ω ∈ Rnsd be an open bounded domain, with nsd denoting the number of spatial dimensions,
and let the boundary ∂Ω be partitioned into a DIRICHLET portion ΓD and a NEUMANN portion
ΓN such that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. The flow of a weakly compressible fluid within
a fixed region Ω in the time span (ti, tf ) is described by the equations

∂ρ

∂t
+ ∇ · (ρυ) = 0 in Ω× (ti, tf ),

∂ρυ

∂t
+ ∇ · (ρυ ⊗ υ)−∇ · σ (∇υ, p) = ρb in Ω× (ti, tf ),

ρ = ρ (p) in Ω× (ti, tf ),

(3.1)

equipped with suitable initial and boundary conditions, whose expression depends on the spe-
cific formulation adopted. As opposed to the previous chapter where multiple physics were taken
into account, no subscript is used here to refer to the fluid quantities. It is worth recalling that the
unknown quantities υ, p, ρ, ρυ refer to velocity, pressure, density and momentum, respectively,
whereas σ denotes the CAUCHY stress tensor and b an applied body force. The first two equa-
tions in (3.1) express the conservation of the mass and the momentum, respectively, while the
third equation defines a dependence between fluid pressure and density ensuring the conservation
of energy. The linear relationship (2.7) is adopted and recalled here for completeness

ρ = ρref + ε
(
p− pref

)
, (3.2)

with ρref denoting the reference density evaluated at the reference pressure pref and ε being a
(small) constant isothermal compressibility coefficient.

In order to derive the arbitrary LAGRANGEan–EULERian description of the flow, the ALE
convective velocity, defined as the velocity of the fluid relative to the moving background mesh
(whose velocity is indicated here with a), is introduced

c = υ − a. (3.3)

Using the ALE time derivative (i.e. the time derivative with respect to the reference configura-
tion), the governing equations of the fluid problem under analysis on a deforming domain Ω(t)
can be written as

∂ρ

∂t
+ ρ∇ · a+ ∇ · (ρc) = 0 in Ω (t)× (ti, tf ),

∂ρυ

∂t
+ ρυ∇ · a+ ∇ · (ρυ ⊗ c)−∇ · σ (∇υ, p) = ρb in Ω (t)× (ti, tf ),

ρ = ρ (p) in Ω (t)× (ti, tf ).

(3.4)

It is worth highlighting that no specific notation is adopted here to distinguish the quantities
associated to the EULERian and the ALE description of motion to not overload the notation. It
is therefore implicitly assumed that the mathematical operators in (3.1) are computed on a fixed
computational mesh, whereas the counterparts in (3.4) are computed with respect to a potentially
deforming mesh.
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3.2 VOIGT notation

3.2 VOIGT notation

The VOIGT notation is a well-known strategy in mathematics and its main idea consists in
replacing symmetric tensors with equivalent vectors of reduced size. This is achieved by rear-
ranging the diagonal and off-diagonal components of a nsd × nsd tensor into a vector of size
msd × 1, with msd = nsd(nsd + 1)/2 denoting the number of non-redundant components.

According to the arrangement adopted by FISH and BELYTSCHKO [56], the VOIGT opera-
tor V in two and three dimensions can be defined as

V
([
σxx σxy
σxy σyy

])
=
[
σxx σyy σxy

]T in 2D,

V

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 =
[
σxx σyy σzz σxy σxz σyz

]T in 3D.
(3.5)

An inverse operator V−1 that, given a msd × 1 vector in VOIGT notation, returns the associated
full nsd × nsd symmetric tensor can analogously be defined as

V−1
([
σxx σyy σxy

]T)
=

[
σxx σxy
σxy σyy

]
in 2D,

V−1
([
σxx σyy σzz σxy σxz σyz

]T)
=

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 in 3D.
(3.6)

This operator allows, for instance, to perform the pull-back operation to transform the CAUCHY
stress into the first PIOLA–KIRCHHOFF stress. Its role will be exploited in Section 5.2 in the
context of fluid-structure interaction problems solved by means of the partitioned DIRICHLET–
NEUMANN coupling, but its definition is reported here for consistency.

For a NEWTONian fluid, the CAUCHY stress in equation (3.4) is related to the strain rate
tensor

ε (∇υ) = ∇Sυ =
1

2

(
∇υ + (∇υ)T

)
, (3.7)

according to the stress-strain rate relationship

σ (∇υ, p) = 2µε (∇υ) + λ tr (ε (∇υ)) Insd − pInsd , (3.8)

with µ and λ denoting the fluid dynamic viscosity and the second coefficient of viscosity, re-
spectively. The stored vectors in VOIGT notation reduce to

σV =

{[
σxx σyy σxy

]T in 2D,[
σxx σyy σzz σxy σxz σyz

]T in 3D,
(3.9)

and

εV =

{[
εxx εyy 2εxy

]T in 2D,[
εxx εyy εzz 2εxy 2εxz 2εyz

]T in 3D,
(3.10)
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3 HDG formulations for weakly compressible flows

with 2εxy, 2εxz and 2εyz denoting the off-diagonal terms of the strain rate tensor according to
the engineering notation. The strain rate vector can therefore be computed as

εV = ∇Sυ, (3.11)

with ∇S being a msd×nsd operator, accounting for the symmetric part of the gradient and whose
definition is

∇S =



[
∂/∂x 0 ∂/∂y

0 ∂/∂y ∂/∂x

]T
in 2D,∂/∂x 0 0 ∂/∂y ∂/∂z 0

0 ∂/∂y 0 ∂/∂x 0 ∂/∂z
0 0 ∂/∂z 0 ∂/∂x ∂/∂y

T in 3D.

(3.12)

As opposed to the strain rate tensor, the so-called vorticity tensor corresponds to the skew-
symmetric part of the velocity gradient according to

ω (∇υ) = ∇Wυ =
1

2

(
∇υ − (∇υ)T

)
. (3.13)

The associated quantity in VOIGT notation can be computed as

ωV = ∇Wυ, (3.14)

with ∇W being a qsd × nsd operator defined as

∇W =


[
−∂/∂y ∂/∂x

]
in 2D, 0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x
−∂/∂y ∂/∂x 0

 in 3D,
(3.15)

with qsd = msd − nsd denoting the number of redundant tensor components. The constitutive
law (3.8) can then be expressed in matrix form as

σV = DεV − Ep, (3.16)

with D denoting the msd × msd material matrix

D =



2µ+ λ λ 0
λ 2µ+ λ 0
0 0 µ

 in 2D,


2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 in 3D,

(3.17)
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and E representing the equivalent form of the identity matrix, rewritten in VOIGT notation as a
msd × 1 vector as

E =

{[
1 1 0

]T in 2D,[
1 1 1 0 0 0

]T in 3D.
(3.18)

Moreover, the normal projection of the stress can be computed by premultiplying σV by NT

with N being the msd × nsd matrix

N =



[
nx 0 ny
0 ny nx

]T
in 2D,nx 0 0 ny nz 0

0 ny 0 nx 0 nz
0 0 nz 0 nx ny

T in 3D,

(3.19)

whereas the tangential projection of the velocity, for instance, can be retrieved by premultiplying
υ by the qsd × nsd matrix T with

T =


[
−ny nx

]
in 2D, 0 −nz ny

nz 0 −nx
−ny nx 0

 in 3D.
(3.20)

Given the main concepts of the VOIGT notation and the associated definition of the differen-
tial operators and the geometrical projections, the governing equations of the fluid problem (3.4)
can be rewritten, together with the initial and the boundary conditions, as

∂ρ

∂t
+ ρ∇ · a+ ∇ · (ρc) = 0 in Ω (t)× (ti, tf ),

∂ρυ

∂t
+ ρυ∇ · a+ ∇ · (ρυ ⊗ c)−∇T

SσV (∇Sυ, p) = ρb in Ω (t)× (ti, tf ),

ρ = ρ (p) in Ω (t)× (ti, tf ),

(υ, p)− (υ0, p0) = 0 or (ρ,ρυ)− (ρ0,ρυ0) = 0 in Ω (t)× (ti),

(υ, p)−
(
υD, pD

)
= 0 or (ρ,ρυ)−

(
ρD,ρυD

)
= 0 on ΓD (t)× (ti, tf ),

NTσV (∇Sυ, p) = tN on ΓN (t)× (ti, tf ).

(3.21)

The pairs (υ0, p0) and (ρ0,ρυ0) define the initial conditions for the fluid unknowns, while the
quantities (υD, pD) and (ρD,ρυD) and tN denote the DIRICHLET and the NEUMANN bound-
ary data applied on ΓD and ΓN , respectively. The exact expression of these conditions depends
on the formulation adopted. In the following sections, two HDG formulations are presented in
detail for the solution of flow problems, the first featuring the velocity and the pressure and the
second featuring the density and the momentum field as primal unknowns.
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3 HDG formulations for weakly compressible flows

3.3 Velocity-pressure formulation

Figure 3.1: Degrees of freedom of the HDG discretization for velocity-pressure formulation

The first HDG formulation proposed for the solution of weakly compressible flows features
the fluid velocity and pressure as primal independent variables. On the one hand, it can be con-
sidered the HDG counterpart of the CG formulation presented in Chapter 2 in the context of
fluid-structure interaction problems. On the other hand, it consists of the extension of the work
of GIACOMINI et al. [67] to accommodate a weak compressibility. To the best of the author’s
knowledge, no such formulation has been proposed in the literature so far. For the sake of sim-
plicity, the velocity-pressure formulation is presented and its numerical properties analyzed only
with respect to steady-state and non-convective flows on fixed domains, such that the only source
of nonlinearity stems from the compressibility of the fluid.

The broken computational domain is defined by partitioning the fluid domain Ω in nel disjoint
subdomains Ωe such that

Ω =
nel⋃
e=1

Ωe, Ωe ∩ Ωf = ∅ for e 6= f . (3.22)

The internal interface is then constituted by the union of the internal element boundaries as

Γ =

[
nel⋃
e=1

∂Ωe

]
\ ∂Ω. (3.23)

Henceforth, with the term mesh skeleton is indicated instead the union of the internal interface
just defined and the NEUMANN portion of the boundary, i.e. Σ = Γ ∪ ΓN .

The degrees of freedom of a typical HDG discretization are sketched in Figure 3.1 for a
polynomial degree of approximation k = 2. The local DOFs, constituted by the so-called mixed
and primal variables, are depicted with the circles, whereas the global DOFs, constituted by the
hybrid variables defined on the mesh skeleton, are denoted with the squares.
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3.3 Velocity-pressure formulation

The second-order problem (3.21) can be rewritten as a system of first-order equations over the
broken computational domain as

L+ D1/2∇Sυ = 0 in Ωe,

∇T
S

(
D1/2L+ Ep

)
= ρ (p) b in Ωe,

∇ · (ρ (p)υ) = 0 in Ωe,

υ = υD on ∂Ωe ∩ ΓD,

p = pD on ∂Ωe ∩ ΓD,

υ = υ̂ on ∂Ωe \ ΓD,

p = p̂ on ∂Ωe \ ΓD,

−NT
(
D1/2L+ Ep

)
= tN on ∂Ωe ∩ ΓN ,

Jυ ⊗ nK = 0 on Γ,
JpnK = 0 on Γ,

r
NT

(
D1/2L+ Ep

)∧z
= 0 on Γ,

r
ρ (p)υ · n
∧z

= 0 on Γ.

(3.24)

The variable L is the mixed variable and physically represents the strain rate vector in VOIGT
notation as in (3.11), scaled by the quantity −D1/2, with D being the material matrix defined in
(3.17). This scaling allows to retrieve the symmetry of the STOKES problem in the incompress-
ible formulation presented by GIACOMINI et al. [67] and it is kept here for consistency. The
same consideration holds, for instance, in the context of linear elastic problems, as demonstrated
in the antecedent work by SEVILLA et al. [142]. The variables υ and p in (3.24) define the
solution of the velocity and the pressure within the elements Ωe and are in the following referred
to as primal variables. Finally, the quantities υ̂ and p̂ represent the trace of the velocity and the
pressure on the mesh skeleton Σ and are referred to as hybrid variables. It is worth highlighting
that, owing to the specific choice of the unknowns, the fluid density does not constitute an inde-
pendent variable, but it is computed as a function of the pressure level according to the equation
of state (3.2).

The first set of equations in problem (3.24) represents the local problems that allow to compute
the elemental variables in terms of the unknown traces. The last equations constitute the trans-
mission conditions and define the global problem to effectively compute the hybrid variables.
More precisely, the conditions enforce the continuity of the primal variables and the equilibrium
of the normal fluxes across the internal interface Γ. Given the discontinuous nature of the HDG
approximation, the jump operator J�K sums values from two adjacent elements Ωe and Ωf and
reads

J�K = �e +�f , (3.25)

according to the definition introduced by MONTLAUR et al. [111]. On the one hand, the conti-
nuity of the solution is automatically satisfied due to the boundary conditions υ = υ̂ and p = p̂
imposed in the local problems together with the unique definition of the hybrid variables υ̂ and
p̂ on each face of the mesh skeleton. On the other hand, the equilibrium of the flux across the
internal interface is taken into account by introducing the following definition of the numerical
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3 HDG formulations for weakly compressible flows

normal fluxes

NT
(
D1/2L+ Ep

)∧
=

{
NT

(
D1/2L+ EpD

)
+ τυ

(
υ − υD

)
on ∂Ωe ∩ ΓD,

NT
(
D1/2L+ Ep̂

)
+ τυ (υ − υ̂) on ∂Ωe \ ΓD,

(3.26a)

ρ (p)υ · n
∧

=

{
ρ
(
pD
)
υD · n+ τp

(
p− pD

)
on ∂Ωe ∩ ΓD,

ρ (p̂) υ̂ · n+ τp (p− p̂) on ∂Ωe \ ΓD.
(3.26b)

The terms τυ and τp are stabilization parameters for the momentum and the continuity equa-
tion, respectively. The crucial role played by the stabilization with respect to the stability, the
accuracy and the convergence properties of HDG methods has been investigated for instance
by COCKBURN et al. [35–37] and NGUYEN et al. [118, 119, 121]. Dimensional analysis
provides a practical choice for the stabilization parameters

τυ = Cυ
µ

l
, τp = Cp

1

|υ|
, (3.27)

with l being a representative length scale of the problem under analysis and Cυ and Cp being
suitable positive scaling factors.

Exploiting the definition of the numerical normal fluxes (3.26) and after integration by parts,
the weak form the HDG local problems reads: given (υD, pD) on ΓD and (υ̂, p̂) on Σ, find
(L,υ, p) ∈ [Wh(Ωe)]msd × [Wh(Ωe)]nsd ×Wh(Ωe) for e = 1, . . . ,nel such that

− (W ,L)Ωe +
(
∇T

SD
1/2W ,υ

)
Ωe =〈

NTD1/2W ,υD
〉
∂Ωe∩ΓD +

〈
NTD1/2W , υ̂

〉
∂Ωe\ΓD ,

(3.28a)(
w,∇T

S

(
D1/2L+ Ep

))
Ωe + 〈w, τυυ〉∂Ωe − (w, ρ (p) b)Ωe =〈

w, τυυ
D
〉
∂Ωe∩ΓD + 〈w, τυυ̂〉∂Ωe\ΓD ,

(3.28b)

− (∇w, ρ (p)υ)Ωe + 〈w, τpp〉∂Ωe =

−
〈
w, ρ

(
pD
)
υD · n− τppD

〉
∂Ωe∩ΓD − 〈w, ρ (p̂) υ̂ · n− τpp̂〉∂Ωe\ΓD ,

(3.28c)

for all (W ,w, w) ∈ [Wh(Ωe)]msd × [Wh(Ωe)]nsd × Wh(Ωe). It is worth noting that the local
boundary conditions, imposing either the DIRICHLET data on ∂Ωe ∩ ΓD or the trace of the
solution on ∂Ωe \ ΓD, are applied in a weak sense in each equation in (3.28). Moreover, the pa-
rameters τυ and τp defined in (3.27) ensure dimensional consistency. It is also worth anticipating
that the local problems (3.28) are used to substitute the respective variables in the global problem
(3.29) to obtain a final system involving only the traces of the solution.

The HDG global problem is obtained by replacing the definitions (3.26) in the transmission
conditions (3.24) across the mesh skeleton and by embedding the NEUMANN boundary condi-
tion. Hence, its weak form reads: find (υ̂, p̂) ∈ [Ŵh(Σ)]nsd × Ŵh(Σ) such that

−
nel∑
e=1

〈
ŵ,NT

(
D1/2L+ Ep̂

)
+ τυ (υ − υ̂)

〉
∂Ωe\ΓD =

nel∑
e=1

〈
ŵ, tN

〉
∂Ωe∩ΓN , (3.29a)

nel∑
e=1

〈ŵ, τp (p− p̂)〉∂Ωe\ΓD = 0, (3.29b)
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3.3 Velocity-pressure formulation

for all (ŵ, ŵ) ∈ [Ŵh(Σ)]nsd×Ŵh(Σ). It is worth noting that the term ρ(p̂)υ̂ ·n does not appear
in the global problem, since its value is uniquely defined across adjacent elements, owing to the
unique definition of the hybrid variables on each face of the mesh skeleton.

The linear system associated with the discretization of the local problems (3.28) by means of a
isoparametric formulation with equal interpolation for the local variables possesses the following
structure KLL KLv 0

KvL Kvv Kvp

0 Kpv Kpp


e

δLδv
δp


e

=

fLfv
fp


e

−

KLv̂ 0
Kvv̂ 0
Kpv̂ Kpp̂


e

[
δv̂
δp̂

]
e

, (3.30)

for e = 1, . . . ,nel. Owing to the dimensions of the local unknowns, i.e. the mixed variable
and the primal variables, the solution of this system implies for each element the inversion of
a matrix of size (msd + nsd + 1)nen, with nen denoting the number of element nodes in Ωe,
function of the polynomial degree of approximation k. It is worth highlighting that the adop-
tion of the VOIGT notation allows to reduce the size of the systems (3.30), since only the msd
non-redundant components of the (scaled) strain rate tensor are stored, instead of nsd × nsd, as
done in most HDG formulations published in literature. This strategy therefore produces a gain
in computational efficiency, owing to a reduced size of the local problems and the quantity of
stored information. However, the elemental nature of the problems (3.30) allows to easily solve
them in parallel, whereas most of the computational time is spent for the solution of the global
problem presented below, when direct solvers are used. Moreover, the adoption of the VOIGT
notation ensures the optimal convergence of order k + 1 of the mixed variable, as opposed to
the suboptimal behavior exhibited by classical HDG formulations involving the symmetric part
of the gradient of the primal variable. Such a detrimental loss of convergence has been experi-
enced by the same author before the implementation of the strong imposition of the symmetry
of the stress tensor, which followed the publication of the works by SEVILLA et al. [142] and
GIACOMINI et al. [67].

Analogously to what has been done for the local problems, the discretization of the global
problem (3.29) produces a system of the form

nel∑
e=1


[
Kv̂L Kv̂v 0
0 0 Kp̂p

]
e

δLδv
δp


e

+

[
Kv̂v̂ Kv̂p̂

0 Kp̂p̂

]
e

[
δv̂
δp̂

]
e

 =
nel∑
e=1

[
fv̂
fp̂

]
e

. (3.31)

The expressions of the matrices and vectors just presented are detailed in Appendix C. As usual
in HDG methods, the final global system is obtained by replacing the solution of the local prob-
lems (3.30) in the global problem (3.31) and, for this velocity-pressure formulation (denoted by
the subscript �V-P), it reads [

KV-P

] [
δV̂
]

=
[
fV-P

]
, (3.32)

with [
KV-P

]
=

nel

A
e=1

{[
KV̂ V̂

]
e
−
[
KV̂ L KV̂ V

]
e

[
KLL KLV

KV L KV V

]−1

e

[
KLV̂

KV V̂

]
e

}
, (3.33)

and [
fV-P

]
=

nel

A
e=1

{[
fV̂
]
e
−
[
KV̂ L KV̂ V

]
e

[
KLL KLV

KV L KV V

]−1

e

[
fL
fV

]
e

}
, (3.34)
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3 HDG formulations for weakly compressible flows

where the fluid velocity and pressure DOFs have been grouped in the variable V =
[
v p

]T for
the sake of brevity.

It is worth highlighting that the problem under analysis features a nonlinear behavior, owing to
the weak flow compressibility. As a consequence, the matrices K stem from the linearization of
the problem with respect to the unknown variables, whereas the vectors f represent the residuals
(scaled by a factor −1) of the weak forms in (3.28) and (3.29). Thus, in the philosophy of the
NEWTON–RAPHSON method, the system (3.32) is assembled and solved in a succession of
iterations until a convergence criterion is fulfilled, expressed either in terms of the norm of the
residuals or in terms of the norm of the solution increments.

As shown in the numerical examples in Section 3.5, this velocity-pressure formulation suc-
ceeds to provide optimal convergence of order k + 1 for the scaled strain rate, the velocity and
the pressure field. However, a key feature of the HDG method is to exploit the accuracy of the
mixed variable to construct an enhanced approximation of the solution, converging in a superop-
timal fashion, i.e. converging with order k+ 2. More precisely, a postprocessed velocity field υ?

is sought in the richer space [Wh
? (Ωe)]nsd , whose definition is given in Appendix A. The weak

form of the postprocessing procedure thus reads: given (L,υ) in Ωe, υD on ΓD and υ̂ on Σ, find
υ? ∈ [Wh

? (Ωe)]nsd for e = 1, . . . ,nel such that

−
(
∇Sw

?,D1/2∇Sυ
?
)

Ωe = (∇Sw
?,L)Ωe , (3.35a)

(uT,υ
?)Ωe = (uT,υ)Ωe , (3.35b)

(uR,∇Wυ
?)Ωe =

〈
uR,Tυ

D
〉
∂Ωe∩ΓD (3.35c)

+ 〈uR,Tυ̂〉∂Ωe\ΓD ,

for all (w?,uT,uR) ∈ [Wh
? (Ωe)]nsd × [Uh(Ωe)]nsd × [Uh(Ωe)]qsd . The first equation in (3.35)

directly follows from the definition of the mixed variable in (3.24) and represents a least-squares
fit to the accurate variable L. The last two equations are introduced to remove the underdeter-
mination of the problem by constraining the rigid motions, consisting of nsd translations and
qsd rotations. From a physical point of view, the first condition enforces the average value of the
postprocessed velocity υ? to equal the average value of the velocity field υ already computed.
Then, the left hand side of the second condition represents the mean vorticity in the interior of
element Ωe, whereas its right hand side denotes the circulation of the flow around the element
boundary ∂Ωe. It is worth pointing out that the postprocessing problem in (3.35) is formally
identical to the one proposed by GIACOMINI et al. [67] for incompressible flows. However,
the material matrix D defined in (3.17) includes the second coefficient of viscosity λ, whose role
cannot be neglected for the computation of the CAUCHY stress in (3.8), since the velocity field
is not divergence-free in the (weakly) compressible regime.

It is worth emphasizing that the postprocessing procedure (3.35), introduced here for steady-
state problems, can also be adopted for unsteady flows without modifications. In that case, the
postprocessing problem does not have to be solved at all time levels, but only at the time steps
where a more accurate solution is desired. Although not addressed in this thesis, it is then worth
reminding that the mismatch between the primal and the postprocessed solution can provide a re-
liable and inexpensive error estimator that can be further exploited to drive efficient degree adap-
tive procedures, as shown by GIORGIANI et al. [68, 69] and SEVILLA and HUERTA [141].
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3.4 Density-momentum formulation

3.4 Density-momentum formulation

Figure 3.2: Degrees of freedom of the HDG discretization for density-momentum formulation

The second HDG formulation presented for the solution of weakly compressible flows con-
siders the fluid density and momentum as primal independent variables. As opposed to the first
strategy in Section 3.3, the formulation presented here deals with unsteady flows and tackles
all the nonlinearities, represented by the convection and the weak compressibility. Moreover,
potentially deforming domains are considered by means of the ALE description of motion.

The time-varying computational domain Ω(t) under analysis is partitioned in nel disjoint
elements Ωe(t) such that

Ω (t) =
nel⋃
e=1

Ωe (t) , Ωe (t) ∩ Ωf (t) = ∅ for e 6= f , (3.36)

while the deforming internal interface is given by

Γ (t) =

[
nel⋃
e=1

∂Ωe (t)

]
\ ∂Ω (t) . (3.37)

Figure 3.2 depicts the degrees of freedom of this HDG formulation for a degree k = 2. The
local DOFs represented by the blue circles are constituted here by the scaled strain rate tensor, the
density and the momentum in the interior of the elements, whereas the global DOFs denoted with
the blue squares stem from the trace of the density and the momentum on the mesh skeleton. The
small circles in cyan refer to the displacement of the ALE mesh. The displacement is imposed
by means of user-defined functions in the numerical examples of this chapter. In the context of
fluid-structure interaction, instead, the deformation of the fluid mesh is determined by a suitable
mapping as a function of the interface structural displacement, as done in Chapters 2 and 5.
It is worth pointing out that a lower polynomial degree k can be adopted for the geometrical
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3 HDG formulations for weakly compressible flows

representation of the ALE mesh compared to the degree of approximation of the HDG unknowns,
as long as the same set of quadrature points is selected for the integration of the terms presented
in the following.

The strong form of the density-momentum formulation of the complete weakly compressible
flow problem (3.21) is

L+ D1/2∇Sυ = 0 in Ωe (t)× (ti, tf ),
∂ρ

∂t
+ ρ∇ · a+ ∇ · (ρc) = 0 in Ωe (t)× (ti, tf ),

∂ρυ

∂t
+ ρυ∇ · a+ ∇ · (ρυ ⊗ c)

+∇T
S

(
D1/2L+ Ep (ρ)

)
= ρb in Ωe (t)× (ti, tf ),

ρ = ρ0 in Ωe (t)× (ti),
ρυ = ρυ0 in Ωe (t)× (ti),

ρ = ρD on ∂Ωe (t) ∩ ΓD (t)× (ti, tf ),

ρυ = ρυD on ∂Ωe (t) ∩ ΓD (t)× (ti, tf ),

ρ = ρ̂ on ∂Ωe (t) \ ΓD (t)× (ti, tf ),

ρυ = ρ̂υ on ∂Ωe (t) \ ΓD (t)× (ti, tf ),

−NT
(
D1/2L+ Ep (ρ)

)
= tN on ∂Ωe (t) ∩ ΓN (t)× (ti, tf ),

JρnK = 0 on Γ (t)× (ti, tf ),
Jρυ ⊗ nK = 0 on Γ (t)× (ti, tf ),
Jρc · n
∧

K = 0 on Γ (t)× (ti, tf ),
r

(ρυ ⊗ c)n
∧z

= 0 on Γ (t)× (ti, tf ),
r
NT

(
D1/2L+ Ep (ρ)

)∧z
= 0 on Γ (t)× (ti, tf ).

(3.38)

The mixed variable L preserves the definition in Section 3.3 and stems from the VOIGT repre-
sentation of the scaled strain rate tensor. The primal variables are the density ρ and the momen-
tum ρυ, whereas ρ̂ and ρ̂υ are the corresponding trace variables defined on the mesh skeleton
Σ(t) = Γ(t) ∪ ΓN(t).

The initial and the DIRICHLET boundary conditions are imposed in the local problems and
they are consistently expressed in terms of the density and the momentum field. In this formula-
tion, the velocity and the pressure are not independent variables. The former is computed as the
ratio of the momentum and the density, whereas the latter is evaluated from the equation of state
(3.2). Moreover, the velocity of the computational mesh a, which is independent of the veloc-
ity of the material particles, is computed as the time derivative of the mesh displacement d. As
usual in HDG methods, the NEUMANN boundary condition and the transmission conditions are
imposed in the global problem and they stem from the last equations in (3.38). The continuity
of the primal variables is automatically fulfilled, due to the local boundary conditions and the
unique definition of the hybrid variables on each face. Moreover, it is worth highlighting that
no continuity of the mesh velocity needs to be enforced, since its approximation is continuous
by construction over the whole computational domain, as shown in Figure 3.2. The numerical
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3.4 Density-momentum formulation

normal fluxes of the terms under the divergence operator are defined as

ρc · n
∧

={(
ρυD − ρDa

)
· n+ τρ

(
ρ− ρD

)
on ∂Ωe (t) ∩ ΓD (t),

(ρ̂υ − ρ̂a) · n+ τρ (ρ− ρ̂) on ∂Ωe (t) \ ΓD (t),

(3.39a)

(ρυ ⊗ c)n
∧

=
[
ρυD ⊗

(
ρυD

ρD
− a

)]
n+ τ cρυ

(
ρυ − ρυD

)
on ∂Ωe (t) ∩ ΓD (t),[

ρ̂υ ⊗
(
ρ̂υ

ρ̂
− a

)]
n+ τ cρυ (ρυ − ρ̂υ) on ∂Ωe (t) \ ΓD (t),

(3.39b)

NT
(
D1/2L+ Ep (ρ)

)∧
={

NT
(
D1/2L+ Ep

(
ρD
))

+ τ dρυ
(
ρυ − ρυD

)
on ∂Ωe (t) ∩ ΓD (t),

NT
(
D1/2L+ Ep (ρ̂)

)
+ τ dρυ (ρυ − ρ̂υ) on ∂Ωe (t) \ ΓD (t).

(3.39c)

The stabilization parameters τρ, τ cρυ and τ dρυ account for the compressibility, the convection and
the diffusion, respectively, and their magnitude can be estimated through the relations

τρ = Cρ
1

ε |υ|
, τ cρυ = Cc

ρυ |υ| , τ dρυ = Cd
ρυ

µ

ρrefl
, (3.40)

with l being a representative length scale and Cρ, Cc
ρυ and Cd

ρυ denoting suitable positive scaling
factors. Without loss of generality, a unique parameter τρυ = τ cρυ + τ dρυ is henceforth considered
for the stabilization of the momentum equation.

Special attention is devoted to the imposition of appropriate boundary conditions. More pre-
cisely, four types of physical boundary conditions are considered in the numerical examples in
Section 3.5 for pure flow problems and in Section 5.4 for fluid-structure interaction problems,
namely:

• Inflow condition: the momentum profile, corresponding to the mass flow rate per unit
volume, is imposed via the DIRICHLET boundary condition ρυ = ρυD.

• Outflow condition: the density evaluated at the given pressure level pD is imposed via
the DIRICHLET boundary condition ρ = ρD = ρ(pD), whereas the momentum is ex-
trapolated. Alternatively, a stress-free condition can be considered via the homogeneous
NEUMANN boundary condition σn = tN = 0.

• No-slip condition: each momentum component is forced to be zero via the homogeneous
DIRICHLET boundary condition ρυ = ρυD = 0. In case of a boundary moving at a
given speed υD, as it happens in FSI problems, only the density needs to be computed by
considering the DIRICHLET boundary condition ρυ = ρυD.

• Free-slip condition: only the normal component of the momentum is forced to be zero
via the DIRICHLET boundary condition ρυ · n = ρυD · n = 0, while the tangential
component remains unconstrained.
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3 HDG formulations for weakly compressible flows

Rigorously, the DIRICHLET portion of the boundary ΓD should be split into two partitions ΓDρ
and ΓDρυ, given the possibility to impose boundary conditions on either the density or the momen-
tum in distinct regions. However, a unique definition of such boundary is adopted throughout this
thesis for the sake of readability.

Following the same rationale of Section 3.3 and expliciting all the unknowns involved, the
weak form of the HDG local problems reads: given (ρ0,ρυ0) in Ωe(t) × (ti), (ρD,ρυD) on
ΓD(t) and (ρ̂, ρ̂υ) on Σ(t), find (L, ρ,ρυ) ∈ [Wh(Ωe)]msd ×Wh(Ωe(t)) × [Wh(Ωe(t))]nsd for
e = 1, . . . ,nel such that

− (W ,L)Ωe(t) +

(
∇T

SD
1/2W ,

ρυ

ρ

)
Ωe(t)

=〈
NTD1/2W ,

ρυD

ρD

〉
∂Ωe(t)∩ΓD(t)

+

〈
NTD1/2W ,

ρ̂υ

ρ̂

〉
∂Ωe(t)\ΓD(t)

,
(3.41a)

(
w,
∂ρ

∂t

)
Ωe(t)

+

(
w, ρ∇ · dd

dt

)
Ωe(t)

−
(
∇w,ρυ − ρdd

dt

)
Ωe(t)

+ 〈w, τρρ〉∂Ωe(t) =

−
〈
w,

(
ρυD − ρD dd

dt

)
· n− τρρD

〉
∂Ωe(t)∩ΓD(t)

−
〈
w,

(
ρ̂υ − ρ̂dd

dt

)
· n− τρρ̂

〉
∂Ωe(t)\ΓD(t)

,

(3.41b)

(
w,

∂ρυ

∂t

)
Ωe(t)

+

(
w,ρυ∇ · dd

dt

)
Ωe(t)

−
(
∇w,ρυ ⊗

(
ρυ

ρ
− dd

dt

))
Ωe(t)

+
(
w,∇T

S

(
D1/2L+ Ep (ρ)

))
Ωe(t)

+ 〈w, τρυρυ〉∂Ωe(t) − (w, ρb)Ωe(t) =

−
〈
w,

[
ρυD ⊗

(
ρυD

ρD
− dd

dt

)]
n− τρυρυD

〉
∂Ωe(t)∩ΓD(t)

−
〈
w,

[
ρ̂υ ⊗

(
ρ̂υ

ρ̂
− dd

dt

)]
n− τρυρ̂υ

〉
∂Ωe(t)\ΓD(t)

,

(3.41c)

for all (W , w,w) ∈ [Wh(Ωe(t))]msd ×Wh(Ωe(t))× [Wh(Ωe(t))]nsd .
The weak form of the HDG global problem reads: find (ρ̂, ρ̂υ) ∈ Ŵh(Σ(t))× [Ŵh(Σ(t))]nsd

such that

nel∑
e=1

〈ŵ, τρ (ρ− ρ̂)〉∂Ωe(t)\ΓD(t) = 0, (3.42a)

−
nel∑
e=1

〈
ŵ,NT

(
D1/2L+ Ep (ρ̂)

)
+ τρυ (ρυ − ρ̂υ)

〉
∂Ωe(t)\ΓD(t)

=

nel∑
e=1

〈
ŵ, tN

〉
∂Ωe(t)∩ΓN (t)

,

(3.42b)

for all (ŵ, ŵ) ∈ Ŵh(Σ(t))× [Ŵh(Σ(t))]nsd .
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3.4 Density-momentum formulation

After linearization and discretization of the local problems by means of a isoparametric for-
mulation, the increments of the local variables can be computed as function of the increments of
the global variables within each NEWTON iteration through the solution of the linear systemKLL KLρ KLw

0 Kρρ Kρw

KwL Kwρ Kww


e

δLδρ
δw


e

=

fLfρ
fw


e

−

KLρ̂ KLŵ

Kρρ̂ Kρŵ

Kwρ̂ Kwŵ


e

[
δρ̂
δŵ

]
e

, (3.43)

for e = 1, . . . ,nel, with w denoting the discrete momentum and ŵ its trace representation. The
discretization of the global problem leads to the matrix problem

nel∑
e=1


[

0 Kρ̂ρ 0
KŵL 0 Kŵw

]
e

δLδρ
δw


e

+

[
Kρ̂ρ̂ 0
Kŵρ̂ Kŵŵ

]
e

[
δρ̂
δŵ

]
e

 =
nel∑
e=1

[
fρ̂
fŵ

]
e

. (3.44)

It is worth noting that the discretized problems (3.43) and (3.44) feature the same size of their
counterparts in the velocity-pressure formulation presented in Section 3.3 and they differ in the
physical meaning of the chosen unknowns and in the definition of the matrices and vectors,
detailed in Appendix C. The global system of this density-momentum formulation (denoted by
the subscript �D-M) resulting from the replacement of the local problems (3.43) in the global
problem (3.44) can then be written as[

KD-M

] [
δÛ
]

=
[
fD-M

]
, (3.45)

with [
KD-M

]
=

nel

A
e=1

{[
KÛÛ

]
e
−
[
KÛL KÛU

]
e

[
KLL KLU

KUL KUU

]−1

e

[
KLÛ

KUÛ

]
e

}
, (3.46)

and [
fD-M

]
=

nel

A
e=1

{[
fÛ
]
e
−
[
KÛL KÛU

]
e

[
KLL KLU

KUL KUU

]−1

e

[
fL
fU

]
e

}
, (3.47)

where the fluid density and momentum DOFs have been grouped in the variable U =
[
ρ w

]T
for the sake of brevity.

The same postprocessing procedure of Section 3.3, with the right hand side velocity substi-
tuted by the ratio of the momentum and the density, allows to compute a superconvergent veloc-
ity field υ?. Its weak form reads: given (L, ρ,ρυ) in Ωe(t), (ρD,ρυD) on ΓD(t) and (ρ̂, ρ̂υ) on
Σ(t), find υ? ∈ [Wh

? (Ωe(t))]nsd for e = 1, . . . ,nel such that

−
(
∇Sw

?,D1/2∇Sυ
?
)

Ωe(t)
= (∇Sw

?,L)Ωe(t) , (3.48a)

(uT,υ
?)Ωe(t) =

(
uT,

ρυ

ρ

)
Ωe(t)

, (3.48b)

(uR,∇Wυ
?)Ωe(t) =

〈
uR,T

ρυD

ρD

〉
∂Ωe(t)∩ΓD(t)

(3.48c)

+

〈
uR,T

ρ̂υ

ρ̂

〉
∂Ωe(t)\ΓD(t)

,

for all (w?,uT,uR) ∈ [Wh
? (Ωe(t))]nsd × [Uh(Ωe(t))]nsd × [Uh(Ωe(t))]qsd .
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3 HDG formulations for weakly compressible flows

3.5 Numerical examples
The numerical studies aim to assess the convergence properties of the proposed HDG formu-
lations for weakly compressible flow problems. The first and the second numerical examples
consider weakly compressible POISEUILLE and TAYLOR–COUETTE flows, respectively, for
which analytical solutions are available in literature, offering the possibility to assess the con-
vergence properties of the proposed formulations on physically meaningful settings. The last
example is a purely artificial problem, whose solution is obtained through the method of man-
ufactured solutions. Spatial and temporal convergence studies are carried out on both fixed and
moving meshes, in order to verify the capability of the chosen method to solve fluid prob-
lems on deformable domains, which is crucial in the context of multiphysics problems. The
HDG velocity-pressure formulation has been solely implemented in MATLAB, whereas the HDG
density-momentum formulation has been implemented not only in MATLAB, but also in the re-
search code BACI [167], to deal with larger problems in both two and three dimensions.

3.5.1 Weakly compressible POISEUILLE flow
The first numerical example considers a steady-state isothermal POISEUILLE flow of a weakly
compressible NEWTONian fluid in a straight channel. This configuration is simulated by ne-
glecting the time derivatives and the convective terms in the governing equations. HOUSIADAS
and GEORGIOU [78] derived an analytical solution by representing the primary flow variables
as asymptotic expansions of the compressibility coefficient, which is assumed to be a small pa-
rameter, and perturbing them with respect to that coefficient. The solution is then found up to
the first order in ε. The authors considered also a pressure-dependent viscosity, but this feature is
neglected here because unimportant in this context. The goal of this example is to investigate the
convergence properties of the HDG formulations for weakly compressible flows and to assess
their robustness with respect to the compressibility level on a simple and physically meaningful
setting.

The analytical solution in terms of velocity and pressure reads

υx (x, y) =
3

2
U

[
1−

( y
R

)2
]

− 9

2

µLU2

ρrefR2

(
1− x

L

)[
1−

( y
R

)2
]
ε,

υy (x, y) = 0,

p (x, y) = pref + 3
µLU

R2

(
1− x

L

)
− 3

2

µ2U2

ρrefR2

{
3

(
L

R

)2 (
1− x

L

)2

−
[
1−

( y
R

)2
]}

ε,

(3.49)

with L and R denoting the length and the half-height of the channel, respectively, and U repre-
senting the mean velocity at the outflow. No body force is present in this pressure-driven flow,
while a (small) residual of orderO (ε2) is added in the right hand side of the continuity equation

RC (x, y) =
27µ2U3

4ρrefR8

(
R2 − y2

){
6R2 (L− x)− µU

ρref
[
9 (L− x)2 −R2 + y2

]
ε

}
ε2. (3.50)
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3.5 Numerical examples

(a) First level of refinement (b) Second level of refinement (c) Third level of refinement

Figure 3.3: Computational mesh for weakly compressible POISEUILLE flow

(a) Velocity (b) Pressure

(c) Density (d) Momentum

Figure 3.4: Plot of velocity, pressure, density and momentum for weakly compressible
POISEUILLE flow
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3 HDG formulations for weakly compressible flows

Clearly, the classical incompressible POISEUILLE flow in a channel is fully recovered when
the compressibility coefficient vanishes

υincx (x, y) =
3

2
U

[
1−

( y
R

)2
]

,

υincy (x, y) = 0,

pinc (x, y) = pref + 3
µLU

R2

(
1− x

L

)
.

(3.51)

In the incompressible limit, the axial velocity assumes a simple parabolic profile in y-direction
and it remains constant and equal to 1.5U along the x-axis. The pressure field varies linearly
along the channel at reaches its reference value at the exit.

The computational domain is the rectangle Ω = (0, L)× (−R,R) with L = 10 m and R = 1
m. The analytical solution is derived by HOUSIADAS and GEORGIOU [78] applying no-slip
and no-penetration boundary conditions along the walls at y = ±R, considering a zero pressure
value at the exit corners and enforcing a unit dimensionless mass flow rate at the outflow. In the
following experiments however, solely DIRICHLET boundary conditions, corresponding to the
restriction of the analytical solution (3.49) to the domain boundary, are imposed on ΓD = ∂Ω.

The mean velocity at the channel exit is considered as U = 1 m/s, whereas the fluid viscosity
is taken as µ = 1 kg/(m · s) and the reference density as ρref = 1 kg/m3, evaluated at the
reference pressure pref = 0 N/m2. A dimensionless compressibility coefficient can be defined
as

ε∗ = 3
µLU

ρrefR2
ε. (3.52)

To investigate the role of the compressibility level on the convergence of the HDG formula-
tions, three different orders of magnitude are considered for the dimensionless compressibility
coefficient, i.e. ε∗ = [0.01, 0.1, 1].

The evolution of the analytical primal variables along the horizontal axis is plotted in Fig-
ure 3.4 for the compressibility levels analyzed. The x-component of the velocity (Figure 3.4(a))
varies linearly and reaches by construction the value 1.5 m/s at the outflow, corresponding to
the mean velocity U = 1 m/s. Regarding the pressure (Figure 3.4(b)), it decreases quadratically
along the axis down to its reference value pref = 0 N/m2 at the exit corners. Moreover, the
average pressure drop required to drive the flow decreases with the compressibility. In fact, the
fluid pressure approaches the value of 30 N/m2 at the inflow as ε∗ → 0, while it drops to about
15 N/m2 for ε∗ = 1. The density is then equal to its reference value ρref = 1 kg/m3 at the exit
corners and its variation along the channel obviously increases with the flow compressibility
(Figure 3.4(c)). Finally, the axial momentum (Figure 3.4(d)) is nearly constant for sufficiently
small compressibility coefficients. Clearly, the solution (3.49) has a physical meaning if the mass
flow rate at the inflow is positive, hence ε∗ = 1 constitutes an upper limit of validity for the so-
lution itself in terms of the compressibility coefficient. Although this last case lacks physical
meaningfulness, the performance of the HDG formulations is investigated for this extreme case
too.

The meshes used for the spatial convergence studies are obtained by splitting a regular 2r×2r

Cartesian grid, with r denoting the level of mesh refinement, into a total of 2 · 22r triangles,
giving element sizes of h = L/2r. Figure 3.3 displays the first three meshes, contracted in the
x-direction for compactness.
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3.5 Numerical examples

(a) Velocity with ε∗ = 0.01 (b) Velocity with ε∗ = 0.1 (c) Velocity with ε∗ = 1

(d) Pressure with ε∗ = 0.01 (e) Pressure with ε∗ = 0.1 (f) Pressure with ε∗ = 1

Figure 3.5: Solution of velocity and pressure for weakly compressible POISEUILLE flow via
velocity-pressure formulation

(a) Velocity with ε∗ = 0.1 (b) Postprocessed velocity with ε∗ = 0.1

Figure 3.6: Solution of velocity and postprocessed velocity for weakly compressible
POISEUILLE flow via velocity-pressure formulation
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3 HDG formulations for weakly compressible flows

(a) Scaled strain rate (b) Velocity

(c) Pressure (d) Postprocessed velocity

Figure 3.7: Spatial convergence study for weakly compressible POISEUILLE flow via
velocity-pressure formulation with ε∗ = 0.01

Two formulations are considered in the following:

1. HDG velocity-pressure formulation according to Section 3.3,

2. HDG density-momentum formulation according to Section 3.4.

The stabilization parameters adopted for the velocity-pressure formulation are computed ac-
cording to (3.27), choosing l = R as representative length scale and |υ| = U as characteristic
velocity and considering Cυ = 10 and Cp = 10 as scaling factors, obtaining therefore τυ = 10
and τp = 10. The polynomial degrees of approximation used in the spatial convergence studies
are k = [1, 2], whereas the levels of mesh refinement considered are r = [2, 3, . . . , 6]. It is worth
noting that the analytical solution in terms of velocity and pressure (3.49) belongs to the space of
cubic polynomials P3 (Ω), hence the analytical solution is fully recovered up to machine preci-
sion for any k ≥ 3. The solution of the velocity and the pressure obtained with r = 5 and k = 2
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3.5 Numerical examples

(a) Scaled strain rate (b) Velocity

(c) Pressure (d) Postprocessed velocity

Figure 3.8: Spatial convergence study for weakly compressible POISEUILLE flow via
velocity-pressure formulation with ε∗ = 0.1

is displayed in Figure 3.5 for the various dimensionless compressibility coefficients considered.
The velocity field is almost indistinguishable from the classical incompressible POISEUILLE
flow when ε∗ = 0.01, whereas a variation in the magnitude along the horizontal axis is appre-
ciable for ε∗ ≥ 0.1. In the limit case of ε∗ = 1, the velocity field is completely unphysical and
its value along the horizontal axis ranges from 0 m/s at the inflow to 1.5 m/s at the outflow.
Regarding the pressure field, the variation along the channel is almost linear for ε∗ = 0.01 and
the quadratic behavior can be appreciated for higher dimensionless compressibility coefficients.
The improvement of the approximation of the velocity field given by the local HDG postprocess-
ing (3.35) is exemplarily shown in Figure 3.6 for the intermediate dimensionless compressibility
coefficients (ε∗ = 0.1) for a relatively coarse solution, i.e. r = 3 and k = 1. It can be observed
how the discontinuities across the element boundaries, more evident close to the horizontal axis
in Figure 3.6(a), are smoother with the quadratic representation of the postprocessed velocity in
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3 HDG formulations for weakly compressible flows

(a) Scaled strain rate (b) Velocity

(c) Pressure (d) Postprocessed velocity

Figure 3.9: Spatial convergence study for weakly compressible POISEUILLE flow via
velocity-pressure formulation with ε∗ = 1

Figure 3.6(b). The convergence of the absolute error measured in the L2 norm as a function of
the characteristic element size h is reported in Figures 3.7, 3.8 and 3.9 for ε∗ = 0.01, 0.1 and 1,
respectively. Optimal convergence rates with order k + 1 are obtained for the primal variables
υ and p for all the compressibility levels. The mixed variable L also convergences in an opti-
mal fashion, thanks to the adoption of the VOIGT notation. As a matter of fact, a suboptimal
behavior is observed for the mixed variable when its symmetry is satisfied only in a weak sense.
Moreover, the optimal convergence of the mixed and the primal variables allows to construct a
velocity field υ? superconverging with order k + 2, through the inexpensive local postprocess-
ing in (3.35). It is worth noting that the velocity and the pressure errors decrease by orders of
magnitude for k ≥ 2 and k ≥ 1, respectively, when approaching the incompressible limit, since
υinc ∈ P2 (Ω) and pinc ∈ P1 (Ω).
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3.5 Numerical examples

(a) Density with ε∗ = 0.01 (b) Density with ε∗ = 0.1 (c) Density with ε∗ = 1

(d) Momentum with ε∗ = 0.01 (e) Momentum with ε∗ = 0.1 (f) Momentum with ε∗ = 1

Figure 3.10: Solution of density and momentum for weakly compressible POISEUILLE flow via
density-momentum formulation

(a) Velocity with ε∗ = 0.1 (b) Postprocessed velocity with ε∗ = 0.1

Figure 3.11: Solution of velocity and postprocessed velocity for weakly compressible
POISEUILLE flow via density-momentum formulation
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(a) Scaled strain rate (b) Density

(c) Momentum (d) Postprocessed velocity

Figure 3.12: Spatial convergence study for weakly compressible POISEUILLE flow via
density-momentum formulation with ε∗ = 0.01

The stabilization parameters adopted for the density-momentum formulation are computed
according to (3.40), considering Cρ = 10/3 and Cd

ρυ = 1 as scaling factors. It is worth high-
lighting that no stabilization of the convective part is needed, since no convection is taken into
account in a POISEUILLE flow. This choice returns the stabilization parameters τρ = 100/ε∗

and τρυ = 1 for the density and the momentum, respectively. Variable ranges of polynomial de-
grees for the different compressibility coefficients are considered, in order to clearly visualize the
convergence rates in the asymptotic regime by avoiding the errors to reach the machine precision
for excessively coarse meshes. In fact, the solution belongs to the space of quadratic polynomials
P2 (Ω) in the incompressible limit when ε∗ → 0 (equation (3.51)). On the contrary, the pressure
in (3.49) belongs to P2 (Ω) for every ε∗ > 0 and so does the density, according to the equation
of state (3.2). The velocity in (3.49) belongs to P3 (Ω) instead, hence the momentum belongs to
P5 (Ω), since it is computed as the product of the density and the velocity. As a consequence,
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(a) Scaled strain rate (b) Density

(c) Momentum (d) Postprocessed velocity

Figure 3.13: Spatial convergence study for weakly compressible POISEUILLE flow via
density-momentum formulation with ε∗ = 0.1

the analytical solution is fully recovered up to machine precision for any k ≥ 5, regardless of the
compressibility coefficient. Therefore, the polynomial degrees of approximation used in the spa-
tial convergence studies are k = [1, 2] for ε∗ = 0.01, k = [1, 2, 3] for ε∗ = 0.1 and k = [1, 2, 3, 4]
for ε∗ = 1. The first five levels of mesh refinement are considered, i.e. r = [1, 2, . . . , 5]. The
solution of the density and the momentum obtained with r = 5 and k = 2 is displayed in
Figure 3.10 for the various dimensionless compressibility coefficients considered. The density
variation with respect to the reference value is about 1% for ε∗ = 0.01, 10% for ε∗ = 0.1 and
50% for ε∗ = 1, in which the maximum value of the density reaches 1.5 kg/m3. The momen-
tum field is almost indistinguishable from the velocity field in Figure 3.5 for ε∗ = 0.01, since
the density is nearly constant. Similarly to what observed for the velocity-pressure formulation,
the momentum field lacks physical meaningfulness for ε∗ = 1. The velocity, obtained as the
ratio of the momentum and the density, and the postprocessed velocity constructed by means
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3 HDG formulations for weakly compressible flows

(a) Scaled strain rate (b) Density

(c) Momentum (d) Postprocessed velocity

Figure 3.14: Spatial convergence study for weakly compressible POISEUILLE flow via
density-momentum formulation with ε∗ = 1

of the local postprocessing (3.48) are compared in Figure 3.11 with the same settings adopted
for the velocity-pressure formulation. The improvement of the solution is more remarkable than
in the velocity-pressure formulation and the postprocessed velocity in Figure 3.11(b) computed
on a coarse mesh is almost indistinguishable from the accurate velocity field in Figure 3.5(b).
The convergence plots are shown in Figures 3.12, 3.13 and 3.14 for ε∗ = 0.01, 0.1 and 1, re-
spectively. As expected, the primal variables ρ and ρυ and the mixed variable L convergence
optimally with order k + 1, whereas the postprocessed velocity υ? converges in a superoptimal
fashion with order k + 2. Analogously to the velocity-pressure formulation, the density and the
momentum errors decrease by several orders of magnitude as ε∗ → 0 for k ≥ 0 and k ≥ 2,
respectively, since ρinc ≡ ρref ∈ P0 (Ω) and ρυinc ≡ ρrefυinc ∈ P2 (Ω). Overall, both HDG
formulations provide high-order accurate solutions and robust results with respect to the flow
compressibility.

64
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3.5.2 Weakly compressible TAYLOR–COUETTE flow
The second numerical example considers a weakly compressible TAYLOR–COUETTE flow. Its
analytical solution has been derived by ROJAS FREDINI and LIMACHE [137] and adopted by
the same authors to compare different smoothed particle hydrodynamics techniques. The goal of
this example is to assess the convergence properties of the HDG density-momentum formulation
in a three-dimensional setting.

The analytical solution in terms of velocity and pressure in cylindrical coordinates reads

υr (r, θ, z) = 0,

υθ (r, θ, z) = C1
1

r
+ C2r,

υz (r, θ, z) = 0,

p (r, θ, z) = pref +
ρref

ε

{
eε/2[C

2
1(1/r21−1/r2)+4C1C2 ln(r/r1)+C2

2(r2−r21)] − 1
}

,

(3.53)

where the coefficients C1 and C2 are given by

C1 = −(ω2 − ω1) r2
2r

2
1

r2
2 − r2

1

, C2 =
ω2r

2
2 − ω1r

2
1

r2
2 − r2

1

. (3.54)

The parameters r1 and r2 denote the inner and outer radius of the rotating coaxial cylinders, re-
spectively, whereas ω1 and ω2 refer to the corresponding angular velocities. No body force nor ar-
tificial residuals are added, since the provided solution exactly satisfies the governing equations.
Moreover, as opposed to the previous example, both the weak compressibility and the convec-
tion are included in this flow configuration. The classical incompressible TAYLOR–COUETTE
flow is recovered by taking the limit of (3.53) as the compressibility coefficient approaches zero

υincr (r, θ, z) = 0,

υincθ (r, θ, z) = C1
1

r
+ C2r,

υincz (r, θ, z) = 0,

pinc (r, θ, z) = pref +
ρref

2

[
C2

1

(
1

r2
1

− 1

r2

)
+ 4C1C2 ln

(
r

r1

)
+ C2

2

(
r2 − r2

1

)]
.

(3.55)

Interestingly, the compressibility level does not change the velocity field but it only affects the
pressure profile. Moreover, the solutions (3.53) and (3.55) are not influenced by the viscosity.

The computational domain Ω is represented by a hollow cylinder with height H = 4, inner
radius r1 = 1 and outer radius r2 = 2. The inner wall is considered fixed with ω1 = 0, while
the outer wall rotates with angular velocity ω2 = 1/2. For the general case ω1 6= ω2 considered
here, the tangential velocity varies along the radial distance in a nonlinear fashion, whereas in
the co-rotating case ω1 = ω2 the variation is linear and the flow assumes a rigid-like motion.
DIRICHLET boundary conditions, corresponding to the analytical solution (3.53), are imposed
on ΓD = ∂Ω. More precisely, the Cartesian components of the given solution are imposed and
their values are computed through standard coordinate system transformations.

In the following simulations, the viscosity is µ = 1 and the reference density ρref = 1,
evaluated at the reference pressure pref = 0, with a compressibility coefficient ε = 0.1.
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(a) First level of refinement (b) Second level of refinement (c) Third level of refinement

Figure 3.15: Computational mesh for weakly compressible TAYLOR–COUETTE flow

Figure 3.16: Solution of velocity for weakly compressible TAYLOR–COUETTE flow

Structured meshes are considered for the convergence study, by splitting the volume into a
total number of 23r+3 geometrically linear hexahedral elements, with r referring to the level of
mesh refinement, obtaining a characteristic element size of h = (r2 − r1)/2r. The first three
levels of mesh refinement are shown in Figure 3.15. The polynomial degrees of approximation
are k = [1, 2], whereas the mesh levels are r = [1, 2, . . . , 5] for k = 1 and r = [1, 2, . . . , 4] for
k = 2, for a maximum number of global DOFs close to 13000000. The stabilization parameters
are considered constant and equal to τρ = 100 and τρυ = 10.

Figure 3.16 displays the velocity field computed with r = 3 and k = 1. Its magnitude ranges
from 0 on the inner wall to 1 on the outer wall, whereas the weak compressibility induces a
maximum density variation of about 2%. Finally, Figure 3.17 shows the optimal convergence
of the fluid unknowns in the L2 norm, confirming the capability of the proposed formulation to
accurately solve also three-dimensional problems.
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(a) Scaled strain rate

(b) Density

(c) Momentum

Figure 3.17: Spatial convergence study for weakly compressible TAYLOR–COUETTE flow

67



3 HDG formulations for weakly compressible flows

3.5.3 Fluid problem with manufactured solution
This numerical example considers a two-dimensional weakly compressible flow with analytical
solution. The solution is generated through the method of manufactured solutions and it is built
in such a way that all the terms included in the fluid partial differential equations (3.38) are
exercised, including the time-dependent terms. Moreover, this solution tackles all nonlinearities,
i.e. the convection and the weak compressibility. The main goal of this example is to assess the
spatial and temporal convergence properties of the HDG density-momentum formulation in a
general setting and to make sure that the deformation of the fluid mesh, according to the ALE
representation of the motion, does not deteriorate the convergence rates of the fluid unknowns.

The analytical solution in terms of velocity and pressure reads

υx (x, y, t) = sin (πx) sin (πy) sin (πt)

− π

8ρref
[4 sin (πx) sin (πy) cos (πt)

+ (sin (2πx) + 2πx cos (2πy)) sin2 (πt)
]
ε,

υy (x, y, t) = cos (πx) cos (πy) sin (πt)

+
π

8ρref
[4 cos (πx) cos (πy) cos (πt)

− (sin (2πy) + 2πy cos (2πx)) sin2 (πt)
]
ε,

p (x, y, t) = π cos (πx) sin (πy) sin (πt) .

(3.56)

It is obtained by adding to the divergence-free velocity field in
υincx (x, y, t) = sin (πx) sin (πy) sin (πt) ,

υincy (x, y, t) = cos (πx) cos (πy) sin (πt) ,

pinc (x, y, t) = π cos (πx) sin (πy) sin (πt) ,

(3.57)

specific O (ε) terms, such that the residual of the continuity equation in (3.38) is of order O (ε2)

RC (x, y, t) =

{
π3

8ρref
sin(πx) sin(πy) sin(πt)

·
[
4 sin(πx) sin(πy) cos(πt) + (sin(2πx) + 2πx cos(2πy)) sin2(πt)

]
+

π3

8ρref
cos(πx) cos(πy) sin(πt)

·
[
4 cos(πx) cos(πy) cos(πt)− (sin(2πy) + 2πy cos(2πx)) sin2(πt)

]
+
π2

ρref
(
pref − π cos(πx) sin(πy) sin(πt)

)
·
[
cos(πx) sin(πy) cos(πt) +

(
cos2(πx) + cos2(πy)− 1

)
sin2(πt)

]}
ε2.

(3.58)

Of course, if ε = 0, the incompressible solution (3.57) is recovered and the residual (3.58)
vanishes. In order to cancel out any imbalance, a proper body force is then added in the right
hand side of the momentum equation in (3.38). The computation of this term is technical and the
symbolic toolbox of MATLAB is used for this purpose.
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3.5 Numerical examples

(a) Fixed mesh (b) Moving mesh at t = 0.5

Figure 3.18: Computational mesh for fluid problem with manufactured solution

The domain is the unit square Ω = (0, 1) × (0, 1) and the initial conditions in Ω × (0) and
the boundary conditions imposed on ΓD = ∂Ω are computed from the analytical solution (3.56).
In particular, the density is evaluated from the equation of state (3.2) using the expression of
the pressure in (3.56), while the momentum field is obtained as the product of the density just
derived and the velocity field in (3.56).

The reference density is taken as ρref = 1, evaluated at the reference pressure pref = 0,
whereas the viscosity is chosen as µ = 0.1. The variation in the compressibility level is unim-
portant for the present numerical experiment and therefore a unique compressibility coefficient
ε = 0.1 is considered in the convergence studies.

Uniform meshes of triangular elements are considered for the domain by splitting a regular
2r × 2r Cartesian grid into a total of 2 · 22r triangles, giving element sizes of h = 1/2r. The time
span under analysis is t ∈ (0, 0.5) instead. The stabilization parameters for the density and the
momentum are considered constant on all faces and equal to τρ = 100 and τρυ = 1, respectively.
In order to validated the HDG formulation in the ALE form, two scenarios are considered:

1. the problem is solved on a fixed mesh,

2. the problem is solved on a moving mesh, whose displacement is prescribed according to
dx (x, y, t) =

1

4
sin (2πx) [1− cos (2πy)] [1− cos (2πt)] d̄,

dy (x, y, t) =
1

4
[1− cos (2πx)] sin (2πy) [1− cos (2πt)] d̄,

(3.59)

with d̄ = 1/8. The third level of refinement of the fixed and the moving mesh at t = 0.5 is shown
in Figure 3.18.
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(a) Density (k = 1) on fixed mesh (b) Density (k = 1) on moving mesh

(c) Momentum (k = 1) on fixed mesh (d) Momentum (k = 1) on moving mesh

(e) Density (k = 3) on fixed mesh (f) Density (k = 3) on moving mesh

(g) Momentum (k = 3) on fixed mesh (h) Momentum (k = 3) on moving mesh

Figure 3.19: Solution of density and momentum for fluid problem with manufactured solution
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The polynomial degrees considered for both the approximation of the fluid unknowns and
the mesh displacement are k = [1, 3, 5], whereas the integration in time is performed with the
fourth order backward differentiation formula (BDF4). The level of mesh refinement considered
is r = [1, 2, . . . , 6] for k = 1, r = [1, 2, . . . , 5] for k = 3 and r = [1, 2, . . . , 4] for k = 5.
This choice guarantees the achievement of the asymptotic regime in the spatial convergence.
In order to keep the temporal error sufficiently small compared to the one associated to the
spatial discretization, the time step sizes considered are ∆t = [2−5, 2−7, 2−9] for k = [1, 3, 5],
respectively. The approximations of the density and the momentum fields obtained with k = 1
(top) and k = 3 (bottom) on the third level of mesh refinement for the fixed mesh (left) and
the moving mesh (right) are shown in Figure 3.19. For the compressibility level considered, the
maximum variation of the density from the reference value is about ±30%. On the one hand,
the improvement of the approximation of the solution when increasing the polynomial degree is
clearly observed by comparing the solutions obtained with k = 1 and k = 3. On the other hand,
no differences can be captured by comparing the plots on the left with the plots on the right for
a sufficiently accurate solution, confirming the correct implementation of the ALE framework.
The convergence of the error at the final simulation time in the L2 norm as a function of the
characteristic element size h for the mixed and the primal variables is reported in Figure 3.20
for the first case (left) and the second case (right). As expected, the errors in the second case are
systematically larger than the corresponding ones in the first case, since they are evaluated on
distorted meshes. In particular, the errors differs by about 0.5, 1 and 2 orders of magnitude for
the finest meshes used for k equal to 1, 3 and 5, respectively. However, the optimal convergence
rate of k+ 1 is nicely preserved in both cases. The capability of the method to retain the optimal
convergence on moving meshes is a crucial feature in order to accurately solve fluid-structure
interaction problems.

The temporal convergence studies are performed by discretizing the time span in a progres-
sively increasing number of intervals. The time step sizes ∆t = [1/4, 1/8, . . . , 1/256] are there-
fore considered and the backward differentiation formulas are adopted, with the order BDFo
ranging from 1 to 4. It is worth pointing out that, since no adaptive time stepping procedure has
been implemented, the BDF schemes with BDFo > 2 are initialized by providing the analytical
solution at the times t = −n∆t with n = [1, 2, . . . ,BDFo− 1]. Of course this is not possible
for general problems, since analytical solutions are usually not available. The spatial discretiza-
tion error is kept negligible compared to the temporal one, by choosing sufficiently fine meshes
(r = [3, 4, 5, 6] for BDFo = [1, 2, 3, 4], respectively) with a polynomial degree of approximation
k = 5. The L2 error of the mixed and the primal variables is shown in Figure 3.21 for the fixed
mesh (left) and the moving mesh (right). Despite some differences in the error evolution, the
theoretical convergence rates are observed for the two cases considered.

In conclusion, the proposed HDG density-momentum formulation accurately simulates fluid
flows on arbitrary deforming domains with high-order accuracy and it will be henceforth em-
ployed for the solution of fluid-structure interaction problems with weakly compressible fluids.
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3 HDG formulations for weakly compressible flows

(a) Scaled strain rate on fixed mesh (b) Scaled strain rate on moving mesh

(c) Density on fixed mesh (d) Density on moving mesh

(e) Momentum on fixed mesh (f) Momentum on moving mesh

Figure 3.20: Spatial convergence study for fluid problem with manufactured solution
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3.5 Numerical examples

(a) Scaled strain rate on fixed mesh (b) Scaled strain rate on moving mesh

(c) Density on fixed mesh (d) Density on moving mesh

(e) Momentum on fixed mesh (f) Momentum on moving mesh

Figure 3.21: Temporal convergence study for fluid problem with manufactured solution
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4 Coupling of HDG and CG
discretizations

This chapter addresses the coupling of HDG and CG discretizations. Given the hybrid nature of
the discretization, non-trivial strategies need to be devised. The design of efficient techniques for
the coupling of HDG and CG methods constitutes a fundamental step towards the development
of robust and efficient formulations for the simulation of fluid-structure interaction problems,
which is the ultimate goal of this thesis. Given the complex nature of the equations governing
weakly compressible fluid flows interacting with nonlinear elastic structures, the development
of coupling strategies in the context of steady, linear and single-physics problems has been con-
sidered a fundamental checkpoint. On the one hand, POISSON’s equation constitutes a classical
prototype of linear elliptic PDEs and, owing to its computationally inexpensive nature, serves as
a benchmark for the test of many numerical methods. On the other hand, the equations of linear
elasticity allow to solve many problems of engineering interest. Moreover, the CG discretiza-
tion of such equations simply stems from the linearised version of the equations adopted for the
solid field in Chapter 2, whereas their HDG discretization presents several similarities with the
formulation adopted for the simulation of weakly compressible flows in Chapter 3.

As already anticipated in the introduction, the CG method provides computationally efficient
discretizations for moderate accuracy requirements, whereas the HDG method provides a flex-
ible framework to construct high-order discretizations capable of efficiently exploiting parallel
computing architectures and to devise adaptive strategies for nonuniform polynomial degree
approximations. The coupling of such strategies is of special interest in the context of elastic
problems featuring multiple materials with compressible and nearly incompressible behaviors,
for which low-order displacement-based CG formulations fail to provide locking-free approxi-
mations. To remedy this issue, several approaches have been proposed such as mixed formula-
tions by ARNOLD et al. [8], STENBERG [150] and ARNOLD and WINTHER [7], equilib-
rium formulations by DE ALMEIDA and MAUNDER [41] and the use of the nonconforming
CROUZEIX–RAVIART element by CROUZEIX and RAVIART [40]. Moreover, the adoption
of DG strategies has proven to be effective for the solution of (nearly) incompressible elastic-
ity by HANSBO and LARSON [75], COCKBURN et al. [34] and BRAMWELL et al. [18],
among others. Here, reliable solutions are obtained by adopting a HDG approximation in the
nearly incompressible region, restricting the CG solver in the compressible part and coupling
the two discretizations by means of NITSCHE’s method.

The coupling of HDG and CG discretizations is performed in Section 4.1 for the solution of
steady thermal problems with two distinct strategies. The proposed NITSCHE-based coupling
is used for the solution of elasticity problems involving compressible and nearly incompressible
materials in Section 4.2. The convergence properties and the advantages of the proposed coupling
are assessed in the numerical examples in Section 4.3. The content of this chapter is mainly based
on the work of LA SPINA et al. [96].
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4 Coupling of HDG and CG discretizations

4.1 HDG-CG coupling for thermal problems
The coupling of HDG and CG discretizations is first presented in the context of thermal prob-
lems. The steady-state distribution of the temperature field T in a homogeneous medium Ω,
characterized by a thermal conductivity κ and subjected to the heat source s, is described by the
POISSON equation 

−∇ · (κ∇T ) = s in Ω,

T = TD on ΓD,

κ∇T · n = fN on ΓN .

(4.1)

The terms TD and fN denote the temperature and the thermal flux enforced on the DIRICHLET
portion ΓD and on the NEUMANN portion ΓN of the domain boundary ∂Ω, respectively.
POISSON’s equation is a second-order scalar elliptic partial differential equation and constitutes
one of the most important equations in mathematics and engineering. Depending on the physical
attributes of the variables involved, it can also be applied in other fields such as fluid dynamics,
electromagnetism and astronomy. Both the HDG and CG approximation of the heat equation is
presented in the following, together with two alternative HDG-CG coupling strategies.

4.1.1 HDG approximation
The HDG computational domain ΩHDG is assumed to be partitioned in nelHDG disjoint subdomains
Ωe
HDG such that

ΩHDG =

nelHDG⋃
e=1

Ωe
HDG, Ωe

HDG ∩ Ωf
HDG = ∅ for e 6= f . (4.2)

Moreover, the union of the internal element boundaries constitutes the internal interface, i.e.

ΓHDG =

nelHDG⋃
e=1

∂Ωe
HDG

 \ ∂ΩHDG, (4.3)

and the union of the internal interface with the boundary faces belonging to ΓNHDG constitutes the
mesh skeleton, on which the hybrid variable is defined.

The strong form of the HDG problem is obtained by rewriting (4.1) over the broken computa-
tional domain as 

qHDG +
√
κ∇THDG = 0 in Ωe

HDG,

∇ ·
(√

κqHDG
)

= s in Ωe
HDG,

THDG = TD on ∂Ωe
HDG ∩ ΓDHDG,

THDG = T̂HDG on ∂Ωe
HDG \ ΓDHDG,

−
√
κqHDG · nHDG = fN on ∂Ωe

HDG ∩ ΓNHDG,
JTHDGnHDGK = 0 on ΓHDG,

r√
κqHDG · nHDG

∧z
= 0 on ΓHDG.

(4.4)

The variable qHDG denotes the mixed variable, that allows to reduce the second-order problem
to a system of first-order equations, whereas T̂HDG is the hybrid variable, representing the trace
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4.1 HDG-CG coupling for thermal problems

of the solution on the mesh skeleton. The last two equations in (4.4) are the transmission con-
ditions, ensuring the continuity of the solution and the equilibrium of the normal flux across the
interface ΓHDG. As already pointed out for the HDG formulations for weakly compressible flows
in Chapter 3, the continuity of the solution is fulfilled in a weak sense by the uniqueness of the
hybrid variable along the interface between two adjacent elements. An appropriate definition of
the trace of the numerical normal flux is needed to handle the second condition. For pure HDG
problems, it is considered

√
κqHDG · nHDG

∧

=


√
κqHDG · nHDG + τT

(
THDG − TD

)
on ∂Ωe

HDG ∩ ΓDHDG,
√
κqHDG · nHDG + τT

(
THDG − T̂HDG

)
on ∂Ωe

HDG \ ΓDHDG,
(4.5)

with τT being a stabilization parameter, playing a crucial role on the stability and the conver-
gence of the method. According to COCKBURN et al. [36], the optimal convergence of the
HDG method for the POISSON equation is ensured by computing the stabilization parameter
according to

τT = CT
κ

l
, (4.6)

with CT being a positive constant scaling factor and l denoting a representative length scale.
The weak form of the HDG approximation is then obtained by performing a single integra-

tion by parts on the mixed variable equation and a double integration by parts on the primal
variable equation and exploiting the definition (4.5), as explained in the tutorial by SEVILLA
and HUERTA [140]. The resulting local problem provides the expression of (qHDG, THDG) as a
function of the unknown hybrid variable T̂HDG and its weak form reads: given TD on ΓDHDG and
T̂HDG on ΓHDG ∪ ΓNHDG, find (qHDG, THDG) ∈ [Wh(Ωe

HDG)]nsd ×Wh(Ωe
HDG) for e = 1, . . . ,nelHDG such

that

− (w, qHDG)Ωe
HDG

+
(
∇ ·

(√
κw
)
, THDG

)
Ωe
HDG

=〈√
κw · nHDG, T

D
〉
∂Ωe

HDG∩ΓD
HDG

+
〈√

κw · nHDG, T̂HDG

〉
∂Ωe

HDG\ΓD
HDG

,
(4.7a)

(
w,∇ ·

(√
κqHDG

))
Ωe
HDG

+ 〈w, τTTHDG〉∂Ωe
HDG

= (w, s)Ωe
HDG

+
〈
w, τTT

D
〉
∂Ωe

HDG∩ΓD
HDG

+
〈
w, τT T̂HDG

〉
∂Ωe

HDG\ΓD
HDG

,
(4.7b)

for all (w, w) ∈ [Wh(Ωe
HDG)]nsd ×Wh(Ωe

HDG). The weak form of the global problem returns the
solution of the hybrid variable and reads: find T̂HDG ∈ Ŵh(ΓHDG ∪ ΓNHDG) such that

−
nelHDG∑
e=1

〈
ŵ,
√
κqHDG · nHDG + τT

(
THDG − T̂HDG

)〉
∂Ωe

HDG\ΓD
HDG

=

nelHDG∑
e=1

〈
ŵ, fN

〉
∂Ωe

HDG∩ΓN
HDG

, (4.8)

for all ŵ ∈ Ŵh(ΓHDG ∪ ΓNHDG).
The discretization of the weak form of the local problem in (4.7) by means of a isoparametric

formulation for the mixed, primal and hybrid variables produces a linear system of the form[
K11 K12

KT
12 K22

]
e

[
qHDG
THDG

]
e

=

[
f1
f2

]
e

−
[
K13

K23

]
e

[
T̂HDG

]
e

, (4.9)
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4 Coupling of HDG and CG discretizations

for e = 1, . . . ,nelHDG. The subscripts �1, �2 and �3 refer to the unknowns qHDG, THDG and T̂HDG,
respectively. The expressions of the matrices and vectors are detailed in Appendix C. Analo-
gously, the resulting system for the global problem is given by

nelHDG∑
e=1

{[
KT

13 KT
23

]
e

[
qHDG
THDG

]
e

+
[
K33

]
e

[
T̂HDG

]
e

}
=

nelHDG∑
e=1

[
f3
]
e

. (4.10)

Replacing the solution of the local problem (4.9) in the global problem (4.10), the linear system
which is actually solved in the computation can be written as[

KHDG

] [
T̂HDG

]
=
[
fHDG

]
, (4.11)

with [
KHDG

]
=

nelHDG

A
e=1

{[
K33

]
e
−
[
KT

13 KT
23

]
e

[
K11 K12

KT
12 K22

]−1

e

[
K13

K23

]
e

}
, (4.12a)

[
fHDG

]
=

nelHDG

A
e=1

{[
f3
]
e
−
[
KT

13 KT
23

]
e

[
K11 K12

KT
12 K22

]−1

e

[
f1
f2

]
e

}
. (4.12b)

It is worth highlighting that the HDG stiffness matrix KHDG preserves the symmetry of the orig-
inal POISSON problem (4.1), as shown for instance by SEVILLA and HUERTA [140].

4.1.2 CG approximation
The CG computational domain ΩCG is considered partitioned in nelCG elements with

ΩCG =

nelCG⋃
e=1

Ωe
CG, Ωe

CG ∩ Ωf
CG = ∅ for e 6= f . (4.13)

The strong form of the governing equations in the CG framework can simply be written by
referring to the appropriate unknown temperature field TCG as

−∇ · (κ∇TCG) = s in ΩCG,

TCG = TD on ΓDCG,

κ∇TCG · nCG = fN on ΓNCG.

(4.14)

The weak form of the CG approximation is thus obtained by multiplying the governing equa-
tion in (4.14) with a suitable test function and integrating by parts the term under the divergence
operator. It then reads: find TCG ∈ Vh(ΩCG) such that

(∇v, κ∇TCG)ΩCG
= (v, s)ΩCG

+
〈
v, fN

〉
ΓN
CG

, (4.15)

for all v ∈ Vh0 (ΩCG). Standard finite element discretization gives rise to the symmetric problem[
KCG

] [
TCG

]
=
[
fCG
]

, (4.16)

with [
KCG

]
=

nelCG

A
e=1

{[
K44

]
e

}
,

[
fCG
]

=

nelCG

A
e=1

{[
f4
]
e

}
, (4.17)

with the subscript �4 referring to the unknown TCG.
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4.1 HDG-CG coupling for thermal problems

4.1.3 Local-global coupling

Figure 4.1: Degrees of freedom of the HDG-CG discretization for local-global coupling

Let the computational domain Ω be split into two non-overlapping subdomains ΩHDG and ΩCG

such that Ω = ΩHDG ∪ ΩCG, with interface ΓI = ΩHDG ∩ ΩCG. Each subdomain is then sub-
divided into a set of disjoints elements, as in (4.2) and (4.13). Only matching meshes (with a
potential nonuniform degree of approximation) are considered in this thesis and nelI denotes in
the following the number of elements adjacent to the interface, belonging either to the HDG
or the CG subdomain. The boundary of the whole domain is split into a DIRICHLET portion
ΓD = ΓDHDG ∪ ΓDCG and a NEUMANN portion ΓN = ΓNHDG ∪ ΓNCG.

The degrees of freedom of the coupled problem are displayed in Figure 4.1, in which the HDG
and CG unknowns are depicted in blue and red, respectively. Moreover, the HDG local DOFs
are represented with circles, whereas the HDG global DOFs are denoted with squares. It is worth
noting that the HDG global DOFs are suppressed on the interface, given the local nature of the
HDG-CG coupling discussed in the following.

The strong form of the coupling strategy is obtained by merging the HDG strong form (4.4)
and the CG strong form (4.14) and considering the additional coupling conditions at the interface{

THDG = TCG on ΓI ,
√
κqHDG · nHDG

∧

= κ∇TCG · nCG on ΓI .
(4.18)

The first condition ensures the continuity of the temperature field, while the second enforces the
equilibrium of the normal fluxes across the interface. It is worth reminding that the unit normal
vector takes opposite directions on the interface ΓI , i.e. nHDG = −nCG.

The key point of the presented coupling strategy is the imposition of the first coupling con-
dition as a DIRICHLET boundary condition on the HDG local problem and the enforcement of
the second coupling condition as a NEUMANN boundary condition of the CG problem. A novel
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4 Coupling of HDG and CG discretizations

definition of the numerical normal flux is therefore introduced, namely

√
κqHDG · nHDG

∧

=


√
κqHDG · nHDG + τT

(
THDG − TD

)
on ∂Ωe

HDG ∩ ΓDHDG,
√
κqHDG · nHDG + τT

(
THDG − T̂HDG

)
on ∂Ωe

HDG \ ΓDHDG \ ΓI ,
√
κqHDG · nHDG + τT (THDG − TCG) on ∂Ωe

HDG ∩ ΓI .

(4.19)

From a practical point of view, the HDG hybrid variable T̂HDG is replaced by the CG unknown
TCG at the interface.

The HDG local problems (4.7) are modified according to the new definition (4.19) and they
read: given TD on ΓDHDG, T̂HDG on ΓHDG∪ΓNHDG and TCG on ΓI , find (qHDG, THDG) ∈ [Wh(Ωe

HDG)]nsd×
Wh(Ωe

HDG) for e = 1, . . . ,nelHDG such that

− (w, qHDG)Ωe
HDG

+
(
∇ ·

(√
κw
)
, THDG

)
Ωe
HDG

=〈√
κw · nHDG, T

D
〉
∂Ωe

HDG∩ΓD
HDG

+
〈√

κw · nHDG, T̂HDG

〉
∂Ωe

HDG\ΓD
HDG\ΓI

+
〈√

κw · nHDG, TCG
〉
∂Ωe

HDG∩ΓI ,

(4.20a)

(
w,∇ ·

(√
κqHDG

))
Ωe
HDG

+ 〈w, τTTHDG〉∂Ωe
HDG

= (w, s)Ωe
HDG

+
〈
w, τTT

D
〉
∂Ωe

HDG∩ΓD
HDG

+
〈
w, τT T̂HDG

〉
∂Ωe

HDG\ΓD
HDG\ΓI

+ 〈w, τTTCG〉∂Ωe
HDG∩ΓI ,

(4.20b)

for all (w, w) ∈ [Wh(Ωe
HDG)]nsd ×Wh(Ωe

HDG). It is clear that, while standard local problems are
performed for the interior HDG elements, a special treatment of the interface elements is needed
to include the coupling conditions. Although this necessity does not represent a critical issue
for the simple MATLAB implementations exploited in this chapter, it may constitute a severe
limitation for large and structured codes like BACI, in which independent and difficult to access
libraries are adopted for the single discretizations.

The HDG global problem remains substantially unchanged, with the only difference that the
global DOFs are removed not only on the DIRICHLET portion of the boundary, but also on the
interface. The definition of the numerical normal flux is added as an external thermal flux acting
on the CG side of the interface. The resulting global problem thus reads: find (T̂HDG, TCG) ∈
Ŵh(ΓHDG ∪ ΓNHDG)× Vh(ΩCG) such that

−
nelHDG∑
e=1

〈
ŵ,
√
κqHDG · nHDG + τT

(
THDG − T̂HDG

)〉
∂Ωe

HDG\ΓD
HDG\ΓI

=

nelHDG∑
e=1

〈
ŵ, fN

〉
∂Ωe

HDG∩ΓN
HDG

,

(4.21a)

(∇v, κ∇TCG)ΩCG
−
〈
v,
√
κqHDG · (−nCG) + τT (THDG − TCG)

〉
ΓI = (v, s)ΩCG

+
〈
v, fN

〉
ΓN
CG

,
(4.21b)

for all (ŵ, v) ∈ Ŵh(ΓHDG ∪ ΓNHDG)× Vh0 (ΩCG).
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4.1 HDG-CG coupling for thermal problems

The discretization of the weak forms (4.20) and (4.21) leads to a linear system of the form[
K̄HDG K̄I

K̄T
I K̄CG

] [
T̂HDG

TCG

]
=

[
f̄HDG
f̄CG

]
, (4.22)

with

[
K̄HDG

]
=

nelHDG

A
e=1

{[
K̄33

]
e
−
[
K̄T

13 K̄T
23

]
e

[
K11 K12

KT
12 K22

]−1

e

[
K̄13

K̄23

]
e

}
, (4.23a)

[
K̄I

]
=

nelI

A
e=1

{
−
[
K̄T

13 K̄T
23

]
e

[
K11 K12

KT
12 K22

]−1

e

[
K̄14

K̄24

]
e

}
, (4.23b)

[
K̄CG

]
=

nelCG

A
e=1

{[
K̄44

]
e
−
[
K̄T

14 K̄T
24

]
e

[
K11 K12

KT
12 K22

]−1

e

[
K̄14

K̄24

]
e

}
, (4.23c)

and

[
f̄HDG

]
=

nelHDG

A
e=1

{[
f3
]
e
−
[
K̄T

13 K̄T
23

]
e

[
K11 K12

KT
12 K22

]−1

e

[
f1
f2

]
e

}
, (4.24a)

[
f̄CG
]

=

nelCG

A
e=1

{[
f4
]
e
−
[
K̄T

14 K̄T
24

]
e

[
K11 K12

KT
12 K22

]−1

e

[
f1
f2

]
e

}
. (4.24b)

The barred terms refer to a modified version of the corresponding terms in the single subprob-
lems introduced in Sections 4.1.1 and 4.1.2 and their expression is also reported in Appendix C.
The invasive nature of this coupling is especially evident from the complicated pattern of the
matrices in (4.23) and the right hand side vectors in (4.24). In particular, the matrices arising
from the discretization of the local problems (with indices 1 and 2) spread outside the HDG
block of the linear system and their communication is required for the computation of K̄CG and
f̄CG, as well as for the off-diagonal block K̄I.

Overall, this coupling strategy, first introduced by PAIPURI et al. [127] to solve conjugate
heat transfer problems, slightly reduces the number of the globally coupled degrees of freedom
and it does not need additional parameters to enforce the transmission conditions. Moreover, this
strategy possesses optimal convergence properties and superconvergent rates can be obtained for
the HDG solution through classical postprocessing techniques. However, the implementation of
this formulation is rather invasive, especially with respect to monolithic frameworks, and the
required communication of the local HDG matrices in the CG subproblem and on the interface
might compromise the efficiency of parallel implementations.

Nevertheless, a staggered version of this coupling strategy, preserving the core structure of the
single solvers and exchanging the coupling information solely through the right hand side vec-
tors, hence circumventing the major drawbacks of this approach, will be successfully exploited
in Section 5.2 for the solution of fluid-structure interaction problems by means of the popular
DIRICHLET–NEUMANN partitioning.
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4.1.4 NITSCHE-based coupling

Figure 4.2: Degrees of freedom of the HDG-CG discretization for NITSCHE-based coupling

An alternative strategy for the coupling of HDG and CG discretizations is presented in this
section with the purpose of keeping the implementation changes to a minimum in existing single-
field codes. The main idea is to rely solely on the global variables, i.e. the trace of the temperature
T̂HDG in the HDG subdomain and the temperature field TCG in the CG subdomain, to enforce the
transmission conditions. Contrary to the previous strategy, the coupling here takes place only on
a global level, not requiring any change in the HDG local problems.

The definition of the computational domain and its splitting introduced in Section 4.1.3 is con-
sidered here. A sketch of the degrees of freedom is offered in Figure 4.2. It is worth noting that,
as opposed to the local-global coupling, the HDG global DOFs are preserved on the interface,
since they are essential for the exchange of information among the fields. Of course, this results
in a slightly increased number of total DOFs. However, this choice provides a much more flexible
framework for the coupled discretization, allowing an easy treatment of nonuniform polynomial
approximations as well as nonconforming meshes at the interface, although the latter feature is
not explored in this thesis. Moreover, the preservation of the trace on the interface allows for a
straightforward adoption of the HDG discretization in a coupled problem, without the need of
rearranging the degrees of freedom.

The strong form of the NITSCHE-based coupling consists of the strong form of the HDG and
CG subproblems (4.4) and (4.14), together with the following modified version of the coupling
conditions {

T̂HDG = TCG on ΓI ,
√
κqHDG · nHDG

∧

= κ∇TCG · nCG

∧
on ΓI .

(4.25)
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The HDG numerical flux is the same as the single-field formulation and it is recalled here for
completeness

√
κqHDG · nHDG

∧

=


√
κqHDG · nHDG + τT

(
THDG − TD

)
on ∂Ωe

HDG ∩ ΓDHDG,
√
κqHDG · nHDG + τT

(
THDG − T̂HDG

)
on ∂Ωe

HDG \ ΓDHDG,
(4.26)

whereas the trace of the CG numerical normal flux on the interface is defined as

κ∇TCG · nCG

∧
= κ∇TCG · nCG −

γ

h

(
TCG − T̂HDG

)
on ΓI . (4.27)

where h denotes a characteristic element size of the mesh discretization on ΓI and γ is a suf-
ficiently large positive parameter, commonly used to enforce coercivity of the discrete bilinear
form in CG discretizations with NITSCHE’s imposition of essential boundary conditions. From
a practical point of view, the definition (4.27) allows the imposition of the flux equilibrium via a
NEUMANN boundary condition in the HDG global problem and it ensures the continuity of the
solution via a weak DIRICHLET boundary condition in the CG problem.

The weak form of the HDG local problems remains unchanged and with the inclusion of
the trace at the interface it now reads: given TD on ΓDHDG and T̂HDG on ΓHDG ∪ ΓNHDG ∪ ΓI , find
(qHDG, THDG) ∈ [Wh(Ωe

HDG)]nsd ×Wh(Ωe
HDG) for e = 1, . . . ,nelHDG such that

− (w, qHDG)Ωe
HDG

+
(
∇ ·

(√
κw
)
, THDG

)
Ωe
HDG

=〈√
κw · nHDG, T

D
〉
∂Ωe

HDG∩ΓD
HDG

+
〈√

κw · nHDG, T̂HDG

〉
∂Ωe

HDG\ΓD
HDG

,
(4.28a)

(
w,∇ ·

(√
κqHDG

))
Ωe
HDG

+ 〈w, τTTHDG〉∂Ωe
HDG

= (w, s)Ωe
HDG

+
〈
w, τTT

D
〉
∂Ωe

HDG∩ΓD
HDG

+
〈
w, τT T̂HDG

〉
∂Ωe

HDG\ΓD
HDG

,
(4.28b)

for all (w, w) ∈ [Wh(Ωe
HDG)]nsd ×Wh(Ωe

HDG).
Exploiting the definition of the CG numerical normal flux in (4.27), the weak form of the

global problem reads: find (T̂HDG, TCG) ∈ Ŵh(ΓHDG ∪ ΓNHDG ∪ ΓI)× Vh(ΩCG) such that

−
nelHDG∑
e=1

{〈
ŵ,
√
κqHDG · nHDG + τT

(
THDG − T̂HDG

)〉
∂Ωe

HDG\ΓD
HDG

−
〈
ŵ, κ∇TCG · (−nHDG)− γ

h

(
TCG − T̂HDG

)〉
∂Ωe

HDG∩ΓI

}
=

nelHDG∑
e=1

〈
ŵ, fN

〉
∂Ωe

HDG∩ΓN
HDG

,

(4.29a)

(∇v, κ∇TCG)ΩCG
−
〈
v, κ∇TCG · nCG −

γ

h

(
TCG − T̂HDG

)〉
ΓI

−
〈
κ∇v · nCG, TCG − T̂HDG

〉
ΓI

= (v, s)ΩCG
+
〈
v, fN

〉
ΓN
CG

,
(4.29b)

for all (ŵ, v) ∈ Ŵh(ΓHDG ∪ ΓNHDG ∪ ΓI) × Vh0 (ΩCG). It is worth noting that the symmetry of the
POISSON problem is preserved for both the HDG and the CG discretization, as well as for the
overall coupled problem.
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An alternative approach for the weak imposition of boundary conditions, not requiring the
introduction of the penalty term to guarantee the stability of the numerical method, has been
presented by BURMAN [20] and relies on a non-symmetric formulation of the discrete equation.
On the one hand, such an approach would avoid the evaluation of the additional parameter γ,
which is strongly problem-dependent and not known a priori, which might negatively effect the
condition number of the resulting linear system when an excessively large value is adopted.
On the other hand, however, the convergence rate of the error in the L2 norm is proven to be
suboptimal by half an order in h.

The linear system arising from the discretization of the coupled problem has the form[
K̃HDG K̃I

K̃T
I K̃CG

] [
T̂HDG

TCG

]
=

[
f̃HDG
f̃CG

]
. (4.30)

Even though the structure of the block matrix in (4.30) is formally similar to the one presented
in Section 4.1.3, its construction is extremely different. In fact, the matrices and the vectors
involved in the NITSCHE-based coupling are

[
K̃HDG

]
=

nelHDG

A
e=1

{[
K̃33

]
e
−
[
KT

13 KT
23

]
e

[
K11 K12

KT
12 K22

]−1

e

[
K13

K23

]
e

}
∼=
[
KHDG

]
, (4.31a)

[
K̃I

]
=

nelI

A
e=1

{[
K̃34

]
e

}
, (4.31b)

[
K̃CG

]
=

nelCG

A
e=1

{[
K̃44

]
e

}
∼=
[
KCG

]
, (4.31c)

and

[
f̃HDG

]
=

nelHDG

A
e=1

{[
f3
]
e
−
[
KT

13 KT
23

]
e

[
K11 K12

KT
12 K22

]−1

e

[
f1
f2

]
e

}
≡
[
fHDG

]
, (4.32a)

[
f̃CG
]

=

nelCG

A
e=1

{[
f4
]
e

}
≡
[
fCG
]

. (4.32b)

It can be observed that no changes are required for the computation of the right hand side vec-
tors in (4.32) compared to the ones of the single discretizations in (4.12) and (4.17). Regarding
the left hand side, both K̃HDG and K̃CG feature the usual structure of the matrices of the HDG
and CG global problems, respectively, and only a small number of terms arising from the defi-
nition (4.27) have to be included in K̃33 and K̃44. The off-diagonal block K̃I is responsible for
the coupling and it simply stems from the discretization of 〈ŵ, κ∇TCG · (−nHDG)− γh−1TCG〉
along the interface ΓI . It is worth highlighting that the computation of this block is extremely
simple and it can be performed by looping over the elements adjacent to the interface and, as
opposed to the local coupling strategy in Section 4.1.3, no information related to the local solvers
needs to be transferred. As a consequence, the proposed NITSCHE-based coupling is not only
minimally-intrusive and suitable to be integrated in existing finite element libraries, but, owing
to the reduced amount of data to communicate, it also better preserves the speedup of parallel
implementations.
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4.2 HDG-CG coupling for elastic problems

In this section, the NITSCHE-based coupling of HDG and CG discretizations is exploited for
the solution of structural problems featuring multiple materials with compressible and nearly
incompressible behaviors. In static conditions, the displacement field u of an elastic structure Ω
subjected to a volume force f is obtained by the solution of the following problem

−∇ · σ (∇u) = f in Ω,

u = uD on ΓD,

σ (∇u)n = tN on ΓN ,

(4.33)

with uD and tN denoting an imposed displacement and traction applied on ΓD and ΓN , respec-
tively. Then, σ is the CAUCHY stress which, in the linear elastic regime, is related to the linear
strain tensor

ε (∇u) =
1

2

(
∇u+ (∇u)T

)
, (4.34)

according to HOOKE’s law

σ (∇u) = 2µε (∇u) + λ tr (ε (∇u)) Insd . (4.35)

The LAMÉ parameters µ and λ can be expressed by the more commonly used YOUNG’s mod-
ulus E and POISSON’s ratio ν through the following relations

µ =
E

2 (1 + ν)
, λ =

νE

(1 + ν) (1− 2ν)
. (4.36)

Henceforth, the material is assumed to be homogeneous and isotropic in the whole domain Ω.
Thus, the above mentioned material coefficients depend neither on the spatial coordinates nor on
the direction of the main strains.

Owing to the symmetry of the stress and strain tensors, only their msd non-redundant compo-
nents are considered, analogously to what has been done in Chapter 3 for the stress and strain
rate tensors for weakly compressible flows. Thus, the stored vectors in VOIGT notation are

σV =

{[
σxx σyy σxy

]T in 2D,[
σxx σyy σzz σxy σxz σyz

]T in 3D,
(4.37)

and

εV =

{[
εxx εyy 2εxy

]T in 2D,[
εxx εyy εzz 2εxy 2εxz 2εyz

]T in 3D,
(4.38)

with 2εxy, 2εxz and 2εyz denoting the off-diagonal terms of the strain tensor according to the
engineering definition. The constitutive law (4.35) can therefore be expressed in matrix form as

σV = DεV, (4.39)
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with D being the elasticity tensor

D =



2µ+ λ λ 0
λ 2µ+ λ 0
0 0 µ

 in 2D,


2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 in 3D.

(4.40)

It is worth noting that the definition of D is formally identical to the one in (3.17), but with a
different physical interpretation of the variables involved. In fact, while in flow problems µ and
λ denote the viscosity and the second coefficient of viscosity of the fluid, in elasticity problems
µ and λ refer to the aforementioned LAMÉ parameters and they describe the material resistance
to simple shear and to a change in volume caused by a change in pressure, respectively. As a
matter of fact, in the incompressible limit ν → 0.5 and consequently λ → ∞, according to
(4.36). Given these considerations, the linear elastic problem (4.33) can be rewritten as

−∇T
SσV (∇Su) = f in Ω,

u = uD on ΓD,

NTσV (∇Su) = tN on ΓN ,

(4.41)

with the symbols ∇S and N denoting the symmetric part of the gradient and the normal operator
in VOIGT notation, already defined (3.12) and (3.19).

The strong form of the HDG approximation of problem (4.41) follows the formulation recently
proposed by SEVILLA et al. [142] and reads

QHDG + D
1/2
HDG∇SuHDG = 0 in Ωe

HDG,

∇T
SD

1/2
HDGQHDG = f in Ωe

HDG,

uHDG = uD on ∂Ωe
HDG ∩ ΓDHDG,

uHDG = ûHDG on ∂Ωe
HDG \ ΓDHDG,

−NT
HDGD

1/2
HDGQHDG = tN on ∂Ωe

HDG ∩ ΓNHDG,
JuHDG ⊗ nHDGK = 0 on ΓHDG,

s
NT

HDGD
1/2
HDGQHDG

∧{
= 0 on ΓHDG.

(4.42)

QHDG is the mixed variable representing the strain tensor in VOIGT notation scaled via the matrix
−D1/2

HDG, whereas ûHDG is the hybrid variable representing the trace of the primal solution uHDG
on the mesh skeleton. As explained for all HDG formulations throughout this thesis, the first
equations in (4.42) represent the local DIRICHLET problems defined in each element Ωe

HDG,
with e = 1, . . . ,nelHDG, while the last two equations define the transmission conditions imposing
the continuity of the displacement field and the equilibrium of tractions across the interface ΓHDG.

86



4.2 HDG-CG coupling for elastic problems

The strong form of the CG approximation of problem (4.41) follows a classical displacement-
based formulation, discussed for instance by FISH and BELYTSCHKO [56], and reads

−∇T
SDCG∇SuCG = f in ΩCG,

uCG = uD on ΓDCG,

NT
CGDCG∇SuCG = tN on ΓNCG.

(4.43)

On the one hand, CG methods provide computationally efficient discretizations for the solution
of elasticity problems. On the other hand, however, it is commonly acknowledged that low-order
displacement-based formulations fail to provide locking-free approximations when materials
with nearly incompressible behaviors are involved, as discussed for instance by BABUŠKA and
SURI [9]. To remedy this issue, several strategies have been proposed in literature, as briefly
discussed in the introduction of this chapter.

The approach proposed in this thesis consists in the adoption of a hybrid HDG-CG discretiza-
tion. In particular, the computationally cheap CG method is restricted to the compressible re-
gion, whereas the locking-free HDG method is employed in the nearly incompressible region.
Therefore, let the domain Ω be split into two non-overlapping subdomains ΩHDG and ΩCG such
that Ω = ΩHDG ∪ ΩCG, with interface ΓI = ΩHDG ∩ ΩCG. The efficient and minimally-intrusive
NITSCHE-based coupling presented in Section 4.1.4 is exploited to enforce the transmission
conditions {

ûHDG = uCG on ΓI ,

NT
HDGD

1/2
HDGQHDG

∧

= NT
CGDCG∇SuCG
∧

on ΓI .
(4.44)

A standard definition for the trace of the numerical normal fluxes is considered in the HDG
subdomain according to

NT
HDGD

1/2
HDGQHDG

∧

=

{
NT

HDGD
1/2
HDGQHDG + τu

(
uHDG − uD

)
on ∂Ωe

HDG ∩ ΓDHDG,

NT
HDGD

1/2
HDGQHDG + τu (uHDG − ûHDG) on ∂Ωe

HDG \ ΓDHDG.
(4.45)

An appropriate value for stabilization parameter τu to ensure the stability and the optimal con-
vergence can be estimated as

τu = Cu
E

l
, (4.46)

with Cu being a positive scaling factor and l denoting a representative length scale. The trace of
the CG normal stress along the interface is selected as

NT
CGDCG∇SuCG
∧

= NT
CGDCG∇SuCG −

γ

h
(uCG − ûHDG) on ΓI , (4.47)

with h and γ denoting the characteristic element size and the NITSCHE penalty parameter,
whose crucial role has been discussed in Section 4.1.4.

The HDG local problems are not affected by the hybrid coupling and they allow to compute
the primal variable uHDG as a function of only the hybrid variable ûHDG. Their weak form thus
reads: given uD on ΓDHDG and ûHDG on ΓHDG ∪ ΓNHDG ∪ ΓI , find (QHDG,uHDG) ∈ [Wh(Ωe

HDG)]msd ×
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[Wh(Ωe
HDG)]nsd for e = 1, . . . ,nelHDG such that

− (W ,QHDG)Ωe
HDG

+
(
∇T

SD
1/2
HDGW ,uHDG

)
Ωe
HDG

=〈
NT

HDGD
1/2
HDGW ,uD

〉
∂Ωe

HDG∩ΓD
HDG

+
〈
NT

HDGD
1/2
HDGW , ûHDG

〉
∂Ωe

HDG\ΓD
HDG

,
(4.48a)

(
w,∇T

SD
1/2
HDGQHDG

)
Ωe
HDG

+ 〈w, τuuHDG〉∂Ωe
HDG

= (w,f)Ωe
HDG

+
〈
w, τuu

D
〉
∂Ωe

HDG∩ΓD
HDG

+ 〈w, τuûHDG〉∂Ωe
HDG\ΓD

HDG
,

(4.48b)

for all (W ,w) ∈ [Wh(Ωe
HDG)]msd × [Wh(Ωe

HDG)]nsd .
In the philosophy of the proposed HDG-CG coupling strategy, the transmission conditions

(4.44) are solely exploited in the global problem. In particular, owning to the definition (4.47),
the traction equilibrium is enforced in the HDG subproblem as a NEUMANN-type boundary
condition, whereas the continuity of the displacement is weakly imposed in the CG subproblem
as a DIRICHLET-type boundary conditions, by means of NITSCHE’s method. Consequently,
the weak form of the global problem reads: find (ûHDG,uCG) ∈ [Ŵh(ΓHDG ∪ ΓNHDG ∪ ΓI)]nsd ×
[Vh(ΩCG)]nsd such that

−
nelHDG∑
e=1

{〈
ŵ,NT

HDGD
1/2
HDGQHDG + τu (uHDG − ûHDG)

〉
∂Ωe

HDG\ΓD
HDG

−
〈
ŵ,
(
−NT

HDG

)
DCG∇SuCG −

γ

h
(uCG − ûHDG)

〉
∂Ωe

HDG∩ΓI

}
=

nelHDG∑
e=1

〈
ŵ, tN

〉
∂Ωe

HDG∩ΓN
HDG

,

(4.49a)

(∇Sv,DCG∇SuCG)ΩCG
−
〈
v,NT

CGDCG∇SuCG −
γ

h
(uCG − ûHDG)

〉
ΓI

−
〈
NT

CGDCG∇Sv,uCG − ûHDG
〉

ΓI = (v,f)ΩCG
+
〈
v, tN

〉
ΓN
CG

,
(4.49b)

for all (ŵ,v) ∈ [Ŵh(ΓHDG ∪ ΓNHDG ∪ ΓI)]nsd × [Vh0 (ΩCG)]nsd .
In the HDG subdomain, a displacement field u?HDG superconverging with order k + 2 can be

obtained through an inexpensive element-by-element postprocessing procedure. The postpro-
cessing reads: given (QHDG,uHDG) in Ωe

HDG, uD on ΓDHDG and ûHDG on ΓHDG ∪ ΓNHDG ∪ ΓI , find
u?HDG ∈ [Wh

? (Ωe
HDG)]nsd for e = 1, . . . ,nelHDG such that

−
(
∇Sw

?,D
1/2
HDG∇Su

?
HDG

)
Ωe
HDG

= (∇Sw
?,QHDG)Ωe

HDG
, (4.50a)

(uT,u
?
HDG)Ωe

HDG
= (uT,uHDG)Ωe

HDG
, (4.50b)

(uR,∇Wu
?
HDG)Ωe

HDG
=
〈
uR,THDGu

D
〉
∂Ωe

HDG∩ΓD
HDG

(4.50c)

+ 〈uR,THDGûHDG〉∂Ωe
HDG\ΓD

HDG
,

for all (w?,uT,uR) ∈ [Wh
? (Ωe

HDG)]nsd × [Uh(Ωe
HDG)]nsd × [Uh(Ωe

HDG)]qsd . The symbols ∇W and T
denote the skew-symmetric part of the gradient and the tangent operator in VOIGT notation and
they have been already defined in (3.15) and (3.20). The first equation in (4.50) is a least-squares
fit to the mixed variable QHDG, while the last two equations remove the underdetermination of
the problem by constraining the rigid motions, i.e. nsd translations and qsd rotations.
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4.3 Numerical examples
The numerical examples presented in this section investigate the effectiveness of the proposed
strategy to couple HDG and CG discretizations in the context of thermal and elastic problems.
The proposed technique is compared against the other coupling strategy available in literature
and the influence of the NITSCHE parameter on the error is analyzed in the first two-dimensional
numerical example. The following example instead assesses the optimal convergence of the
HDG-CG coupling in a three-dimensional setting. The optimal global convergence of the stress
and the superconvergence of the displacement field, together with a locking-free approximation,
are then shown on two- and three-dimensional structural problems featuring multiple materi-
als with compressible and nearly incompressible behaviors. The HDG-CG coupling techniques
presented in this section have been implemented and tested in the MATLAB environment.

4.3.1 Two-dimensional thermal problem
The first numerical example considers a two-dimensional thermal problem, whose physical be-
havior is described by POISSON’s equation (4.1). The main purpose is to assess the optimal
convergence of the coupling strategies presented in Sections 4.1.3 and 4.1.4 and to analyze the
influence of NITSCHE’s parameter on the accuracy of the proposed hybrid HDG-CG coupling.

The analytical expression of the temperature field reads

T (x, y) = cos
(π

2

√
x2 + y2

)
, (4.51)

whereas the source term is given by

s (x, y) =
π

2

[
1√

x2 + y2
sin
(π

2

√
x2 + y2

)
+
π

2
cos
(π

2

√
x2 + y2

)]
. (4.52)

The computational domain Ω = (−1, 1) × (−1, 1) is decomposed into two non-overlapping
subdomains, namely ΩHDG = (−1, 0) × (−1, 1) and ΩCG = (0, 1) × (−1, 1). The interface
is therefore identified by ΓI = {(x, y) ∈ R2 : x = 0}. DIRICHLET boundary conditions,
corresponding to the restriction of the analytical solution to the domain boundary, are imposed
on ΓD = ∂Ω. A unique thermal conductivity κ = 1 is considered in the whole domain.

The domain Ω is discretized using uniform meshes of triangular elements and five levels of
refinement are considered for the convergence studies, i.e. r = [1, 2, . . . , 5]. In Figure 4.3, the
first three levels of mesh refinement are shown. The HDG subdomain is represented in blue
and the CG one in red, whereas the black line denotes the interface. The two aforementioned
coupling strategies are considered:

1. HDG-CG local-global coupling strategy according to Section 4.1.3,

2. HDG-CG NITSCHE-based coupling strategy according to Section 4.1.4.

In the following spatial convergence studies, the polynomial degree of approximation ranges
from k = 1 to k = 5. For the stabilization of the HDG subproblem, a scaling factor CT = 10
is considered. Given the thermal conductivity κ = 1 and the representative length scale l = 1,
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(a) First level of refinement (b) Second level of refinement (c) Third level of refinement

Figure 4.3: Computational mesh for two-dimensional thermal problem

Figure 4.4: Solution of temperature for two-dimensional thermal problem

the stabilization parameter is considered equal to τT = 10, according to equation (4.6). The
NITSCHE parameter for the second case is instead taken as γ = 100.

The temperature field obtained with the NITSCHE-based coupling with r = 5 and k = 5
is exemplarily shown in Figure 4.4. The solution is obtained with a level of accuracy close to
machine precision and no numerical oscillations are observed on the interface ΓI .

The convergence of the error of the temperature measured in the L2 norm as a function of the
characteristic element size h is presented in Figure 4.5 for the first case. Optimal convergence
of order k + 1 is achieved in both the HDG subdomain (Figure 4.5(a)) and the CG subdomain
(Figure 4.5(b)).

The convergence results obtained with the proposed NITSCHE-based coupling are presented
in Figure 4.6, instead. Analogously to the first case, optimal convergence rates are obtained in
both subdomains. It is worth point out that, given the higher number of DOFs in the HDG sub-
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(a) HDG subdomain (b) CG subdomain

Figure 4.5: Spatial convergence study for two-dimensional thermal problem via local-global
coupling

(a) HDG subdomain (b) CG subdomain

Figure 4.6: Spatial convergence study for two-dimensional thermal problem via NITSCHE-
based coupling

domain compared to the CG subdomain, the L2 error in ΩHDG is systematically smaller than
the corresponding one in ΩCG, for a given level of mesh refinement r and polynomial degree k.
Moreover, for high mesh refinements, the NITSCHE-based coupling produces slightly smaller
errors compared to the local-global coupling. These differences are however minimal and the
two coupling strategies can be considered to provide nearly identical accuracy. As explained in
Section 4.1.4, the main advantage of the NITSCHE-based coupling is its minimally-intrusive na-
ture, which makes this approach extremely easy to implement in existing HDG and CG libraries.
Given the different treatment of the HDG global DOFs at the interface provided by the two cou-
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Figure 4.7: Plot of error as function of NITSCHE’s parameter for two-dimensional thermal prob-
lem

pling strategies, a different size of the final linear system is expected. However, this difference
is negligible for sufficiently fine meshes and high polynomial degrees. In fact, the number of
global unknowns resulting from the NITSCHE-based coupling is about 33% larger than the cor-
responding one obtained with the local-global coupling for r = 1 and k = 1, but this difference
reduces to less than 1% for r = 5 and k = 5.

This computationally inexpensive two-dimensional scalar problem constitutes a good bench-
mark for the analysis of the influence of NITSCHE’s parameter on the accuracy of the proposed
hybrid HDG-CG coupling. Figure 4.7 displays the evolution of the error, measured in the L2

norm, of the primal variable T on the whole domain Ω as a function of NITSCHE’s parameter
γ using the third level of mesh refinement (r = 3) and the same polynomial degrees adopted
in the convergence studies, i.e. k = [1, 2, . . . , 5]. In particular, the range γ ∈ (10−1, 103) is
subdivided into 256 equally spaced intervals in the logarithmic scale. It is well-known from lit-
erature that there exists a lower bound for γ below which the method is unstable, as observed
by HANSBO [73] in the context general interface problems arising in computational mechanics.
The spikes in Figure 4.7 clearly show the range in which NITSCHE’s method provides unreliable
results, due to an insufficient stabilization introduced by the numerical scheme. On the one hand,
any value of γ above this lower bound could be chosen to ensure stability, since NITSCHE’s
method is consistent. On the other hand, however, very large values of γ may excessively in-
crease the condition number of the resulting linear system, leading to ill-conditioned problems.
An estimation of a lower bound of NITSCHE’s parameter can be obtained by solving an auxil-
iary generalized eigenvalue problem, as suggested by GRIEBEL and SCHWEITZER [70]. It is
worth noting that the value of γ ensuring stable results varies by about one order of magnitude
in the range of polynomial degrees considered here. It is then clear that the value γ = 100, used
for the convergence study in Figure 4.6, represents therefore a valid choice since it guaranties
stability without compromising the condition number of the linear system.
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4.3.2 Three-dimensional thermal problem

(a) First level of refinement (b) Second level of refinement (c) Third level of refinement

Figure 4.8: Computational mesh for three-dimensional thermal problem

The second numerical example consists of a three-dimensional thermal problem and the main
goal is to assess the convergence properties of the proposed NITSCHE-based HDG-CG coupling
in a three-dimensional setting.

The analytical solution is

T (x, y, z) = sin (πx) sin (πy) sin (πz) , (4.53)

and it is obtained by applying the following source in the right hand side of equation (4.1)

s (x, y, z) = 3π2 sin (πx) sin (πy) sin (πz) . (4.54)

The computational domain is the unit cube Ω = (0, 1)× (0, 1)× (0, 1) and it is decomposed
into two non-overlapping subdomains, namely ΩHDG = (0, 0.5) × (0, 1) × (0, 1) and ΩCG =
(0.5, 1) × (0, 1) × (0, 1). The resulting HDG-CG interface is represented by the plane ΓI =
{(x, y, z) ∈ R3 : x = 0.5}. Homogeneous DIRICHLET boundary conditions are applied on the
whole boundary ΓD = ∂Ω. The thermal conductivity is considered κ = 1 in both subdomains.

Uniform meshes of tetrahedral elements are considered for the domain by splitting a regular
2r × 2r × 2r Cartesian grid into a total of 6 · 23r tetrahedra, giving element sizes of h = 1/2r.
Five levels of mesh refinement are considered, i.e. r = [1, 2, . . . , 5], whereas only linear elements
(k = 1) are taken into account. The first three levels of mesh refinement are shown in Figure 4.8,
in which the HDG subdomain is represented in blue and the CG one in red. The interface plane
is instead denoted in black. The stabilization parameter considered is τT = 1 and the NITSCHE
parameter for the coupling is taken as γ = 100.

Figure 4.9 depicts the solution of the temperature field obtained on the finest mesh, i.e. r = 5.
The temperature has a zero value on the boundary and it reaches the maximum value of 1 in the
center of the domain. From the cut in ΩCG, the high regularity of the solution and the absence
of any irregularity on the interface can be observed. The convergence of the temperature error
in the L2 norm is then shown in Figure 4.10 with respect to the HDG subdomain (left) and the
CG subdomain (right). Although the error in ΩHDG is always smaller than the corresponding one
in ΩCG, given the higher total number of DOFs in the HDG discretization, optimal convergence
rates with order k+1 are achieved in both subdomains, confirming the capability of the proposed
hybrid coupling to accurately solve also three-dimensional problems.
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4 Coupling of HDG and CG discretizations

Figure 4.9: Solution of temperature for three-dimensional thermal problem

(a) HDG subdomain (b) CG subdomain

Figure 4.10: Spatial convergence study for three-dimensional thermal problem
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4.3.3 Two-dimensional elastic problem
This numerical experiment considers a two-dimensional elastic problem, involving compress-
ible and nearly incompressible solids. It is inspired by the work of LAMICHHANE [98], who
proposed a mortar finite element method for the coupling of inhomogeneous materials. This ex-
ample serves as a benchmark for assessing the convergence properties of the NITSCHE-based
coupling in the context of multimaterial elastic problems and for highlighting the benefits of
adopting a nonuniform polynomial degrees of approximation.

The analytical solution in terms of displacement reads

ux (x, y) =− 2 (1 + ν)

E
[1− cos (2πx)] sin (2πy)

+
(1 + ν) (1− 2ν)

(1 + ν) (1− 2ν) + νE
xy sin (πx) sin (πy) ,

uy (x, y) = +
2 (1 + ν)

E
sin (2πx) [1− cos (2πy)]

+
(1 + ν) (1− 2ν)

(1 + ν) (1− 2ν) + νE
xy sin (πx) sin (πy) ,

(4.55)

and the following forcing term is added in the right hand side of the governing equation in (4.33)

fx (x, y) = −4π2 [1− 2 cos (2πx)] sin (2πy)

− E

2 [(1 + ν) (1− 2ν) + νE]

{[
1− π2 (3− 4ν)xy

]
sin (πx) sin (πy)

+π [2 (1− 2ν)x+ y] sin (πx) cos (πy)

+π [x+ 4 (1− ν) y] cos (πx) sin (πy)

+π2xy cos (πx) cos (πy)
}

,
fy (x, y) = +4π2 sin (2πx) [1− 2 cos (2πy)]

− E

2 [(1 + ν) (1− 2ν) + νE]

{[
1− π2 (3− 4ν)xy

]
sin (πx) sin (πy)

+π [4 (1− ν)x+ y] sin (πx) cos (πy)

+π [x+ 2 (1− 2ν) y] cos (πx) sin (πy)

+π2xy cos (πx) cos (πy)
}

.

(4.56)

The computational domain Ω = (−1, 1) × (−1, 1) is decomposed into two non-overlapping
subdomains, namely Ωninc = (−1, 0)×(0, 1)∪(0, 1)×(−1, 0) and Ωcomp = (−1, 0)×(−1, 0)∪
(0, 1) × (0, 1), featuring nearly incompressible and compressible behaviors, respectively. The
interface coincides with the Cartesian axes, i.e. ΓI = {(x, y) ∈ R2 : x = 0 or y = 0}. Homoge-
neous DIRICHLET boundary conditions are applied on the boundary ΓD = ∂Ω.

A nearly incompressible and soft material is considered in Ωninc with YOUNG’s modulus
Eninc = 25 and POISSON’s ratio νninc = 0.49999, whereas a compressible and stiff material is
considered in Ωcomp with YOUNG’s modulus Ecomp = 250 and POISSON’s ratio νcomp = 0.3.

For the convergence studies, the same triangular pattern of the two-dimensional thermal prob-
lem in Section 4.3.1 is used for meshing the computational domain and seven levels of refinement
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are adopted to observe the convergence rates in the asymptotic regime, i.e. r = [1, 2, . . . , 7]. The
meshes corresponding to the first three levels of refinement are shown in Figure 4.11, where the
nearly incompressible and the compressible subdomains are drawn in blue and red, respectively,
whereas the interface is denoted in black. In order to show the enhanced features of the hybrid
coupling, four strategies are considered in the following:

1. HDG method with degree k in Ω,

2. CG method with degree k in Ω,

3. HDG method with degree k in Ωninc and CG method with degree k in Ωcomp,

4. HDG method with degree k in Ωninc and CG method with degree k + 1 in Ωcomp with
HDG local postprocess.

The polynomial degree of approximation considered is k = [1, 2, 3] and the coupling for the last
two cases is performed via the NITSCHE-based coupling presented in Section 4.2. A unique
stabilization parameter τu = 2.5 · 102, estimated according to equation (4.46) with scaling factor
Cu = 1, representative length scale l = 1 and YOUNG’s modulus E = max (Eninc, Ecomp),
is chosen whenever the HDG method is adopted. NITSCHE’s parameter is set to γ = 2.5 · 103

for the third case and it is amplified by a factor of 10 for the fourth case, where a nonuniform
approximation is employed. It is worth recalling that, although some a priori estimates of the
lower bound of NITSCHE’s parameter may be derived as explained in Section 4.3.1, the value
of γ is problem-dependent and is affected both by the equation under analysis and the material
parameters considered.

Figure 4.12 depicts the displacement magnitude on the second level of mesh refinement
(r = 2) with k = 1. The discontinuity of the material parameters is responsible for the dis-
placement field in Ωcomp to be one order of magnitude smaller than the one in Ωninc. Thus,
the displacement values are magnified by a factor of 5, to appreciate the displacement in the
CG subdomain as well. Figure 4.12 clearly shows that the solution in the HDG subdomain is
approximated by means of polynomial functions discontinuous across the elements, whereas
the displacement field in the CG subdomain is continuous by construction. Moreover, an im-
proved solution is obtained in case 4 (Figure 4.12(b)) compared to case 3 (Figure 4.12(a)).
In fact, the CG solution gains accuracy by using polynomial functions of one degree higher,
whereas the HDG displacement improves through the inexpensive postprocessing in (4.50). The
VON MISES stress obtained with the same polynomial degree of approximation (k = 1) on the
fifth level of mesh refinement (r = 5) is shown in Figure 4.13. It is computed in two dimensions
as

σVM =
√
σ2
xx + σ2

yy − σxxσyy + 3σ2
xy. (4.57)

The stress field is approximated with linear elements in the HDG subdomain, given the indepen-
dent interpolation of the (scaled) symmetric part of the displacement gradient by means of the
mixed variable QHDG. In the CG subdomain, instead, the computed stress is only elementwise
constant, leading to the rather coarse representation of σVM in Figure 4.13(a). Analogously to
the displacement field, an improved approximation is achieved for the stress field by employing
polynomial functions of one degree higher in the CG subdomain (Figure 4.13(b)).
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(a) First level of refinement (b) Second level of refinement (c) Third level of refinement

Figure 4.11: Computational mesh for two-dimensional elastic problem

(a) HDGk-CGk (b) HDGk-CGk+1 with postprocess

Figure 4.12: Solution of displacement for two-dimensional elastic problem

(a) HDGk-CGk (b) HDGk-CGk+1

Figure 4.13: Solution of VON MISES stress for two-dimensional elastic problem
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(a) HDGk (b) CGk

(c) HDGk-CGk (d) HDGk-CGk+1 with postprocess

Figure 4.14: Spatial convergence study of displacement for two-dimensional elastic problem

The convergence of the error of the displacement on the whole domain Ω measured in the
L2 norm as a function of the characteristic element size h is presented in Figure 4.14 for the
four cases considered. The CGk approximation suffers from classical locking phenomena due to
the presence of a nearly incompressible material in Ωninc, preventing convergence for k = 1,
whereas suboptimal rates of order k are obtained for higher polynomial degrees. On the contrary,
both the HDGk and the hybrid HDGk-CGk method exhibit optimal convergence of order k + 1
without locking effects. It is worth noting that the HDGk-CGk coupling produces almost identical
accuracy compared to the HDGk case in terms of displacement, but at a significantly reduced
computational cost, given the smaller number of total DOFs. In fact, for the finest level of mesh
refinement considered (r = 7), the number of global unknowns is [195584, 293376, 391168] via
HDGk and only [115202, 214018, 345602] via HDGk-CGk for k = [1, 2, 3], respectively. Finally,
considering a nonuniform degree of approximation via HDGk-CGk+1 and exploiting the HDG
postprocessing strategy, superconvergence with order k + 2 is achieved.
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(a) HDGk (b) CGk

(c) HDGk-CGk (d) HDGk-CGk+1

Figure 4.15: Spatial convergence study of stress for two-dimensional elastic problem

The convergence results of the stress field are then reported in Figure 4.15. The computation of
the stress as a postprocessing of the displacement field leads to unreliable results, due to locking
effects, when the CGk approximation is adopted in the whole domain Ω. On the contrary, a
direct approximation of the stress tensor is provided by mixed formulations. The HDGk method,
in particular, exploits the definition of the mixed variable QHDG to obtain optimal convergence
of the stress with order k + 1. Then, when the HDGk-CGk method is adopted, only suboptimal
convergence of order k is obtained in the whole domain Ω, given the suboptimal convergence of
the stress in Ωcomp. Finally, optimal convergence of the stress with order k + 1 can be globally
recovered, by adopting the hybrid HDGk-CGk+1 coupling.
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4 Coupling of HDG and CG discretizations

4.3.4 Bimaterial COOK’s membrane problem

This numerical example considers the classical bending-dominated problem of COOK’s mem-
brane. The problem is named after the author, who first reported it at COOK et al. [38]. After
its introduction, this example has been used by several authors, especially to test the quality of
finite element formulations in the presence of (nearly) incompressible solids. Here, a revisited
setting is considered to take into account two materials with different mechanical properties, as
proposed by LAMICHHANE [98]. The main objective is to show the locking-free behavior of
the proposed NITSCHE-based coupling of HDG and CG discretizations, as the POISSON ratio
tends to the incompressible limit, i.e. ν → 0.5.

The domain of the tapered plate is defined as Ω = hull {(0, 0), (48, 44), (48, 60), (0, 44)},
with hull {�} denoting the convex hull operator. A compressible material occupies the region
Ωcomp = hull {(12, 20.25), (36, 38.75), (36, 50.25), (12, 38.75)}, whereas a nearly incompress-
ible material is considered in the remaining space, i.e. Ωninc = Ω \ Ωcomp. The plate is clamped
on the left edge via homogeneous DIRICHLET boundary conditions (uD = 0) and it is sub-
jected to the shear load {

tNx (48, y) = 0,

tNy (48, y) = 6.25,
(4.58)

applied on the right edge as a NEUMANN boundary condition. The geometry and the boundary
conditions of the problem are sketched in Figure 4.16.

u
=
u
D

t = tN
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24

18.5

11.5
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y

Figure 4.16: Geometry and boundary conditions for bimaterial COOK’s membrane problem

The material in Ωcomp is characterized by YOUNG’s modulus Ecomp = 250 and POISSON’s
ratio νcomp = 0.35, whereas for the nearly incompressible material in Ωninc YOUNG’s modulus
is Eninc = 80 and POISSON’s ratio spans the values νninc = [0.49, 0.4999, 0.499999].
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(a) First level of refinement (b) Second level of refinement (c) Third level of refinement

Figure 4.17: Computational mesh for bimaterial COOK’s membrane problem

Uniform meshes of triangular elements are considered by subdividing the whole domain Ω
into a total of 2 · 22r+2 triangles, with r = [1, 2, . . . , 5]. The first three levels of mesh refinement
are shown in Figure 4.17, in which the blue, the red and the black lines denote the subdomains
Ωninc and Ωcomp and the interface ΓI = Ωninc∩Ωcomp, respectively. As in the previous example,
four strategies are considered:

1. HDG method with degree k in Ω,

2. CG method with degree k in Ω,

3. HDG method with degree k in Ωninc and CG method with degree k in Ωcomp,

4. HDG method with degree k in Ωninc and CG method with degree k + 1 in Ωcomp.

A constant stabilization parameter τu = 10 is considered on all HDG faces and the NITSCHE
parameter γ = 104 is adopted for the hybrid HDG-CG coupling.

All the displacement and stress components obtained via the different strategies on the fifth
level of mesh refinement with νninc = 0.4999 are compared in Figure 4.18. CGk provides unreli-
able results due to locking effects while similar values are obtained with the other approaches. In
particular, a slightly more accurate stress approximation is achieved by the HDGk-CGk+1 cou-
pling compared to the HDGk-CGk one, due to the increased accuracy in the CG subdomain. The
evolution of the vertical displacement of the top right corner is then plotted in Figure 4.19 as a
function of the number of elements in Ω, for the various POISSON ratios. The closer the coeffi-
cient is to 0.5, the more severe is the underestimation of the displacement obtained via CGk. By
contrast, the other approaches are locking-free and lead to a tip vertical displacement of about
21, without loss of accuracy in the incompressible limit. In particular, a faster convergence is
observed for the nonuniform HDGk-CGk+1 coupling, compared to the uniform counterpart.
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4 Coupling of HDG and CG discretizations

(a) ux via HDGk (b) ux via CGk (c) ux via HDGk-CGk (d) ux via HDGk-CGk+1

(e) uy via HDGk (f) uy via CGk (g) uy via HDGk-CGk (h) uy via HDGk-CGk+1

(i) σxx via HDGk (j) σxx via CGk (k) σxx via HDGk-CGk (l) σxx via HDGk-CGk+1

(m) σyy via HDGk (n) σyy via CGk (o) σyy via HDGk-CGk (p) σyy via HDGk-CGk+1

(q) σxy via HDGk (r) σxy via CGk (s) σxy via HDGk-CGk (t) σxy via HDGk-CGk+1

Figure 4.18: Solution of displacement and stress for bimaterial COOK’s membrane problem
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(a) νninc = 0.49

(b) νninc = 0.4999

(c) νninc = 0.499999

Figure 4.19: Plot of displacement for bimaterial COOK’s membrane problem
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4.3.5 Three-dimensional laminated composite beam

This numerical example considers a three-dimensional laminated composite beam to show the
capability of the proposed HDG-CG coupling to treat problems of interest for engineering ap-
plications. Laminated composite beams are widely used in industry because of the possibility to
assemble different materials in order to build new structures, exhibiting superior properties in
terms of strength or stiffness to weight ratio and high resistance to external agents.

The domain of the beam is the parallelepiped Ω = (−1, 1)×(−1, 1)×(1, 10) and it is obtained
by stacking layers of alternating material properties. Two layers of a nearly incompressible ma-
terial occupy the region Ωninc = (−1, 1)× (−1,−0.5)× (0, 10) ∪ (−1, 1)× (0, 0.5)× (0, 10),
whereas other two layers of a compressible isotropic material are in considered in Ωcomp =
(−1, 1) × (−0.5, 0) × (0, 10) ∪ (−1, 1) × (0.5, 1) × (0, 10). The interface is thus defined as
ΓI = {(x, y, z) ∈ R3 : y = −0.5 or y = 0 or y = 0.5}. The beam is fixed at z = 0 by means of
homogeneous DIRICHLET boundary conditions (uD = 0) and it is subjected to the uniformly
distributed load 

tNx (x, 1, z) = 0,

tNy (x, 1, z) = −2.167 · 10−3,

tNz (x, 1, z) = 0,

(4.59)

on the top surface of the beam via NEUMANN boundary conditions. The geometry and the
boundary conditions of the problem are depicted in Figure 4.20.
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Figure 4.20: Geometry and boundary conditions for three-dimensional laminated composite
beam

Analogously to the previous numerical examples, the nearly incompressible material is softer
than the compressible one and the main resistance to bending comes from the compressible
and stiffer material. In particular, YOUNG’s modulus and POISSON’s ratio are Eninc = 1 and
νninc = 0.49999 in Ωninc and Ecomp = 10 and νcomp = 0.3 in Ωcomp.

Three different mesh configurations are considered, whereas only elements of degree k = 1
are employed. The reference solution is computed using the HDG method on the mesh in Fig-
ure 4.21(c) featuring 414720 tetrahedral elements, for a total of 7568640 global DOFs, represent-
ing the displacement on the faces. As opposed to the strategy based on a nonuniform polynomial
approximation adopted in Sections 4.3.3 and 4.3.4, here an improved solution is achieved by
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(a) Coarse mesh

(b) Fine mesh

(c) Reference mesh

Figure 4.21: Computational mesh for three-dimensional laminated composite beam
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ndof
∣∣1− uy/urefy

∣∣ ∣∣1− Vy/V ref
y

∣∣ |1−Mx/M
ref
x |

HDG coarse 288000 0% 0% 0%

CG coarse 9963 75% 0% 78%

HDG-CG coarse 159282 8% 2% 7%

HDG-CG fine 172566 4% 2% 2%

Table 4.1: Number of DOFs and error for three-dimensional laminated composite beam

increasing the number of DOFs in the subdomain Ωcomp. More precisely, the coarse mesh in
Figure 4.21(a) counts 7680 elements both in Ωninc and Ωcomp, whereas the fine mesh in Fig-
ure 4.21(b) features 7680 and 30720 tetrahedra in the two subdomains. The nearly incompress-
ible material is represented in blue and the compressible material in red, while the interface
planes are displayed in black. Five simulations are considered in total, by applying:

1. HDG method in Ω on the coarse mesh,

2. CG method in Ω on the coarse mesh,

3. HDG method in Ωninc and CG method in Ωcomp on the coarse mesh,

4. HDG method in Ωninc and CG method in Ωcomp on the fine mesh,

5. HDG method on the reference mesh.

The stabilization parameter in every HDG discretization is taken as τu = 10 and the NITSCHE
parameter γ = 100 is used for the hybrid HDG-CG coupling.

The relative error of the vertical displacement at the beam free end (point (0, 0, 10)) and of
the shear and the bending moment at midspan (z = 5) is reported in Table 4.1 for the different
strategies considered, together with the associated number of global DOFs in the resulting linear
system. The displacement is directly obtained from the solution of the problem, while the shear
and the bending moment are computed in postprocessing through the following formulas

Vy (z) = −
∫
x

∫
y

σzy (x, y, z) dxdy, (4.60)

and
Mx (z) = −

∫
x

∫
y

σzz (x, y, z) (y − ȳ) dxdy. (4.61)

The y-coordinate of the neutral axis is evaluated as

ȳ =
Ecomp − Eninc

2 (Ecomp + Eninc)
h̄, (4.62)

with h̄ = 0.5 being the thickness of a single layer of the beam. On the one hand, the HDG
method on the coarse mesh produces the same results of the reference solution, but at a high
computational cost (ndof = 288000). On the other hand, the CG method applied on the whole
domain produces completely unreliable results due to locking effects, except for the shear that
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(a) x-displacement via HDG-CG on coarse mesh (b) x-displacement via HDG-CG on fine mesh

(c) y-displacement via HDG-CG on coarse mesh (d) y-displacement via HDG-CG on fine mesh

(e) z-displacement via HDG-CG on coarse mesh (f) z-displacement via HDG-CG on fine mesh

Figure 4.22: Solution of displacement for three-dimensional laminated composite beam
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(a) zx-stress via HDG-CG on coarse mesh (b) zx-stress via HDG-CG on fine mesh

(c) zy-stress via HDG-CG on coarse mesh (d) zy-stress via HDG-CG on fine mesh

(e) zz-stress via HDG-CG on coarse mesh (f) zz-stress via HDG-CG on fine mesh

Figure 4.23: Solution of stress for three-dimensional laminated composite beam
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is correctly resolved. By employing the computationally cheap CG method in the compressible
region Ωcomp and restricting the more demanding HDG method in the nearly incompressible
region Ωninc, a physically reliable solution can be obtained at a reasonable computational cost.

Figure 4.22 shows the displacement components obtained with the hybrid formulation on the
coarse mesh (left) and on the fine mesh (right). Although the results are qualitatively comparable
in both cases, a slight improvement in the vertical displacement is achieved by adopting a finer
mesh in the compressible region, as revealed in Table 4.1. In Figure 4.23 the approximation of
the stress field is shown at the midspan section. Clearly, the compressible region is subjected to
higher stress levels compared to the nearly incompressible region, since Ecomp > Eninc. The el-
ementwise constant interpolation of the stress in the CG subdomain produces a rather tessellated
representation on the coarse mesh, leading to a 7% error in the bending moment. The improved
approximation on the fine mesh in the compressible region reduces the error to just 2%, at a
small additional computational cost. The same level of accuracy is observed for the shear force.
Finally, in Figure 4.24 the evolution of the vertical displacement, the shear and the bending
moment along the beam axis is plotted. As anticipated in Table 4.1, the CG method severely
underestimates the displacement and produces an unreliable bending moment, while preserving
an accurate representation of the shear. On the contrary, the pure HDG method accurately re-
produce the reference results. Similarly, the HDG-CG coupling strategies produce satisfactory
results with improved accuracy when refining the compressible subdomain. It is worth noting
the presence of small oscillations in the shear force and the bending moment near to the clamped
face at z = 0, whenever a CG approach is adopted (cases 2, 3 and 4). These oscillations are
not surprising and they are solely attributed to the strong imposition of DIRICHLET boundary
conditions adopted in the CG framework.
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(a) Displacement

(b) Shear force

(c) Bending moment

Figure 4.24: Plot of displacement, shear force and bending moment for three-dimensional lami-
nated composite beam
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This final chapter presents novel robust and efficient schemes for the solution of fluid-structure
interaction problems. The strategies proposed here exploit the findings of the previous chap-
ters and build upon the algorithms presented therein. More precisely, a weak compressibility
is considered in the fluid field, owing to the enhanced efficiency and robustness against the
potential instability issues discussed in Chapter 2. The HDG method derived in Chapter 3 is
then employed for the discretization of the fluid equations. In particular, the density-momentum
formulation with the ALE description of motion is chosen owing to its ability to deal with de-
forming domains with high-order accuracy and to its flexibility in solving weakly compressible
flow problems, as well as flows in the fully compressible regime with minimal changes. For the
coupling of the HDG and the CG discretizations, the techniques presented in Chapter 4, gen-
eralized for the solution of more complex unsteady and nonlinear multiphysics problems, are
adopted. More precisely, a partitioned DIRICHLET–NEUMANN scheme is formulated for the
solution of FSI problems by applying the HDG-CG local-global coupling in a staggered fashion,
hence circumventing the intrusive nature of this coupling by preserving the core structure of the
single-field matrices. Finally, a minimally-intrusive monolithic FSI solver is constructed by em-
ploying the HDG-CG NITSCHE-based coupling to impose the coupling conditions in the global
problem.

As already discussed in the introduction, a number of formulations have been proposed in
literature for the solution of fluid-structure interaction problems through either partitioned or
monolithic schemes. The procedure outlined by KÜTTLER and WALL [91] in the context
of standard FEM constitutes the most representative example of strongly-coupled partitioned
scheme, whereas notable monolithic schemes can be found in the works of MAYR et al. [104],
HEIL [76], GEE et al. [61] and finally in the works of SHELDON et al. [144, 145] in the con-
text of HDG methods. In this thesis, several key aspects remain unaddressed in the context of
FSI, especially with regards to the development of efficient preconditioners for the resulting sys-
tem of linear equations and to the employment of advanced time integration strategies tailored
to the needs of the single fields. Indeed, the focus is on the spatial discretization and the novelty
stems from the aforementioned advanced hybrid discretization techniques developed to simulate
weakly compressible fluid flows interacting with nonlinear elastic structures undergoing large
deformations.

After recalling in Section 5.1 the strong form of the fluid and the structural subproblems,
in Sections 5.2 and 5.3 the partitioned DIRICHLET–NEUMANN coupling and the monolithic
NITSCHE-based coupling for the solution of FSI problems are presented, respectively. Spatial
and temporal convergence studies are presented in Section 5.4, together with two- and three-
dimensional fluid-structure interaction benchmarks highlighting the advantages of the proposed
approaches, as well as their capability to solve problems actual engineering interest. The content
of this chapter is mainly based on the work of LA SPINA et al. [97].
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5.1 Problem statement
The strong forms of the fluid and the structural single-field problems are briefly recalled here.
Clearly, the subscripts �F and �S refer to the fluid and the structural quantities, respectively.
The HDG density-momentum formulation of the fluid problem reads

LF + D
1/2
F ∇SυF = 0 in Ωe

F × (ti, tf ),
∂ρF
∂t

+ ρF∇ · aF + ∇ · (ρcF) = 0 in Ωe
F × (ti, tf ),

∂ρυF
∂t

+ ρυF∇ · aF + ∇ · (ρυF ⊗ cF)

+∇T
S

(
D

1/2
F LF + EpF (ρF)

)
= ρFbF in Ωe

F × (ti, tf ),

ρF = ρ0
F in Ωe

F × (ti),
ρυF = ρυ0

F in Ωe
F × (ti),

ρF = ρDF on ∂Ωe
F ∩ ΓDF × (ti, tf ),

ρυF = ρυDF on ∂Ωe
F ∩ ΓDF × (ti, tf ),

ρF = ρ̂F on ∂Ωe
F \ ΓDF × (ti, tf ),

ρυF = ρ̂υF on ∂Ωe
F \ ΓDF × (ti, tf ),

−NT
F

(
D

1/2
F LF + EpF (ρF)

)
= tNF on ∂Ωe

F ∩ ΓNF × (ti, tf ),

JρFnFK = 0 on ΓF × (ti, tf ),
JρυF ⊗ nFK = 0 on ΓF × (ti, tf ),
JρcF · nF
∧

K = 0 on ΓF × (ti, tf ),
r

(ρυF ⊗ cF)nF
∧z

= 0 on ΓF × (ti, tf ),
s
NT
F

(
D

1/2
F LF + EpF (ρF)

)∧{
= 0 on ΓF × (ti, tf ),

(5.1)

with ΩF denoting the fluid domain, deforming in time according to the ALE description of
motion. This time dependency is however not explicitly indicated here for the sake of readability.
The CG displacement-based formulation of the structural problem reads

ρS
d2uS
dt2

−∇ · PS (∇uS) = ρSbS in ΩS × (ti, tf ),

uS = u0
S in ΩS × (ti),

duS
dt

= u̇0
S in ΩS × (ti),

uS = uDS on ΓDS × (ti, tf ),

PS (∇uS)nS = tNS on ΓNS × (ti, tf ),

(5.2)

with ΩS denoting the undeformed structural domain, in the spirit of the total LAGRANGEan
approach. The physical meaning of the variables in (5.1) and (5.2) has been extensively discussed
in Chapters 2 and 3 and is not repeated here to avoid redundancy. The coupling conditions to
close the FSI problem depend on the specific scheme adopted and are exposed in the following.
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5.2 Partitioned DIRICHLET–NEUMANN coupling

Figure 5.1: Degrees of freedom of the HDG-CG discretization for partitioned DIRICHLET–
NEUMANN coupling

In this section, the HDG-CG formulation for fluid-structure interaction via the partitioned
DIRICHLET–NEUMANN coupling is presented. This approach formally follows the method-
ology exposed by KÜTTLER and WALL [91] and adopted for instance in Chapter 2 in the
context of standard finite element methods. However, several considerations are needed to deal
with the hybrid discretization.

Figure 5.1 depicts the degrees of freedom of the HDG-CG discretization, for a polynomial
degree of approximation k = 2 for both the fluid (left) and the structure (right). The HDG local
DOFs are denoted with blue circles and include the fluid scaled strain rate tensor in VOIGT no-
tation, the density and the momentum. The HDG global DOFs are indicated with blue squares
and denote the trace of the fluid density and momentum. It is worth highlighting that, in the spirit
of the local-global coupling presented in Section 4.1.3, the global DOFs at the interface are sup-
pressed on the interface. More precisely, the DOFs associated to the trace of the momentum are
eliminated, whereas those associated to the trace of the density (here indicated in transparency)
need to be computed, according to the no-slip condition for moving boundaries discussed in Sec-
tion 3.4. The circles in cyan refer to the displacement of the fluid mesh in the ALE framework
and those in red denote the CG DOFs, i.e. the structural displacement.

The coupling conditions imposed at the fluid-structure interface can be written as
ρυF
ρ̂F
− duS

dt
= 0 on ΓI × (ti, tf ),[

PF (LF , pF (ρF))
∧

− PS (∇uS)
]
nS = 0 on ΓI × (ti, tf ).

(5.3)

The first condition prohibits a flow across the interface and a relative tangential movement of the
fluid and the structure at the interface, whereas the second condition enforces the equilibrium of
the fluid and the structural forces at the interface.
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This partitioned scheme builds a DIRICHLET-to-NEUMANN map by taking the structural
solution at the interface as a DIRICHLET boundary condition for the fluid problem and impos-
ing the fluid normal flux as a NEUMANN boundary condition for the structural problem. The
traction equilibrium in (5.3) is therefore consistently expressed in terms of the first PIOLA–
KIRCHHOFF stress tensor. The fluid CAUCHY stress is transformed by means of the pull-back
operation

PF (LF , pF (ρF)) = |FF |σF (LF , pF (ρF))F−TF , (5.4)

with FF denoting the deformation gradient, computed as a function of the displacement of the
fluid mesh as

FF = ∇dF + Insd . (5.5)

The trace of the numerical normal fluxes in (5.1) are defined as in the pure fluid problem
(3.39), but replacing the trace of the fluid momentum at the interface with the product of the
trace of the fluid density and the time derivative of the structural displacement as

ρcF · nF
∧

=
(
ρυDF − ρDFaF

)
· nF + τρ

(
ρF − ρDF

)
on ∂Ωe

F ∩ ΓDF ,

(ρ̂υF − ρ̂FaF) · nF + τρ (ρF − ρ̂F) on ∂Ωe
F \ ΓDF \ ΓI ,

ρ̂F

(
duS
dt
− aF

)
· nF + τρ (ρF − ρ̂F) on ∂Ωe

F ∩ ΓI ,

(5.6a)

(ρυF ⊗ cF)nF
∧

=

[
ρυDF ⊗

(
ρυDF
ρDF
− aF

)]
nF + τ cρυ

(
ρυF − ρυDF

)
on ∂Ωe

F ∩ ΓDF ,[
ρ̂υF ⊗

(
ρ̂υF
ρ̂F
− aF

)]
nF + τ cρυ (ρυF − ρ̂υF) on ∂Ωe

F \ ΓDF \ ΓI ,[
ρ̂F
duS
dt
⊗
(
duS
dt
− aF

)]
nF + τ cρυ

(
ρυF − ρ̂F

duS
dt

)
on ∂Ωe

F ∩ ΓI ,

(5.6b)

NT
F

(
D

1/2
F LF + EpF (ρF)

)∧
=

NT
F

(
D

1/2
F LF + EpF

(
ρDF
))

+ τ dρυ
(
ρυF − ρυDF

)
on ∂Ωe

F ∩ ΓDF ,

NT
F

(
D

1/2
F LF + EpF (ρ̂F)

)
+ τ dρυ (ρυF − ρ̂υF) on ∂Ωe

F \ ΓDF \ ΓI ,

NT
F

(
D

1/2
F LF + EpF (ρ̂F)

)
+ τ dρυ

(
ρυF − ρ̂F

duS
dt

)
on ∂Ωe

F ∩ ΓI .

(5.6c)

By combining the definition of the stress in (5.6) with the transformation (5.4), the actual ex-
pression of the flux in (5.3) takes the form

PF (LF , pF (ρF))nS
∧

=

|FF |V−1
(
D

1/2
F LF + EpF (ρ̂F)

)
F−TF (−nS) + τρυ

(
ρυF − ρ̂F

duS
dt

)
on ΓI ,

(5.7)

with V−1 denoting the inverse VOIGT operator defined in (3.6).

114



5.2 Partitioned DIRICHLET–NEUMANN coupling

The fluid HDG local problems provide the expression of (LF , ρF ,ρυF) as a function of the
hybrid variables (ρ̂F , ρ̂υF) and the CG solution uS at the interface. They are obtained as in the
pure fluid problem (3.41), with the novel definition of the numerical fluxes in (5.6) Their weak
form hence reads: given (ρ0

F ,ρυ
0
F) in Ωe

F × (ti), (ρDF ,ρυ
D
F ) on ΓDF , ρ̂F on ΓF ∪ ΓNF ∪ ΓI , ρ̂υF

on ΓF ∪ ΓNF , u0
S on ΓI × (ti) and uS on ΓI , find (LF , ρF ,ρυF) ∈ [Wh(Ωe

F)]msd ×Wh(Ωe
F) ×

[Wh(Ωe
F)]nsd for e = 1, . . . ,nelF such that

− (W ,LF)Ωe
F

+

(
∇T

SD
1/2
F W ,

ρυF
ρF

)
Ωe

F

=〈
NT
FD

1/2
F W ,

ρυDF
ρDF

〉
∂Ωe

F∩ΓD
F

+

〈
NT
FD

1/2
F W ,

ρ̂υF
ρ̂F

〉
∂Ωe

F\Γ
D
F \ΓI

+

〈
NT
FD

1/2
F W ,

duS
dt

〉
∂Ωe

F∩ΓI

,

(5.8a)

(
w,
∂ρF
∂t

)
Ωe

F

+

(
w, ρF∇ ·

ddF
dt

)
Ωe

F

−
(
∇w,ρυF − ρF

ddF
dt

)
Ωe

F

+ 〈w, τρρF〉∂Ωe
F

=

−
〈
w,

(
ρυDF − ρDF

ddF
dt

)
· nF − τρρDF

〉
∂Ωe

F∩ΓD
F

−
〈
w,

(
ρ̂υF − ρ̂F

ddF
dt

)
· nF − τρρ̂F

〉
∂Ωe

F\Γ
D
F \ΓI

−
〈
w, ρ̂F

(
duS
dt
− ddF

dt

)
· nF − τρρ̂F

〉
∂Ωe

F∩ΓI

,

(5.8b)

(
w,

∂ρυF
∂t

)
Ωe

F

+

(
w,ρυF∇ ·

ddF
dt

)
Ωe

F

−
(
∇w,ρυF ⊗

(
ρυF
ρF
− ddF

dt

))
Ωe

F

+
(
w,∇T

S

(
D

1/2
F LF + EpF (ρF)

))
Ωe

F

+ 〈w, τρυρυF〉∂Ωe
F
− (w, ρFbF)Ωe

F
=

−
〈
w,

[
ρυDF ⊗

(
ρυDF
ρDF
− ddF

dt

)]
nF − τρυρυDF

〉
∂Ωe

F∩ΓD
F

−
〈
w,

[
ρ̂υF ⊗

(
ρ̂υF
ρ̂F
− ddF

dt

)]
nF − τρυρ̂υF

〉
∂Ωe

F\Γ
D
F \ΓI

−
〈
w,

[
ρ̂F
duS
dt
⊗
(
duS
dt
− ddF

dt

)]
nF − τρυρ̂F

duS
dt

〉
∂Ωe

F∩ΓI

,

(5.8c)

for all (W , w,w) ∈ [Wh(Ωe
F)]msd × Wh(Ωe

F) × [Wh(Ωe
F)]nsd . It is worth highlighting that,

owing to the partitioned nature of this FSI scheme, no linearization of equations (5.8) with re-
spect to the structural displacement needs to be performed for the computation of the structural
stiffness matrix, hence circumventing the intrusiveness of the local-global coupling presented in
Section 4.1.3.
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The fluid HDG global problem remains substantially unchanged from the one in (3.42), with
the only difference that the global DOFs associated to the trace of the momentum are removed
not only of the DIRICHLET portion of the boundary, but also on the interface. The resulting
weak form therefore reads: find (ρ̂F , ρ̂υF) ∈ Ŵh(ΓF ∪ ΓNF ∪ ΓI) × [Ŵh(ΓF ∪ ΓNF )]nsd such
that

nelF∑
e=1

〈ŵ, τρ (ρF − ρ̂F)〉∂Ωe
F\Γ

D
F

= 0, (5.9a)

−
nelF∑
e=1

〈
ŵ,NT

F

(
D

1/2
F LF + EpF (ρ̂F)

)
+ τρυ (ρυF − ρ̂υF)

〉
∂Ωe

F\Γ
D
F \ΓI

=

nelF∑
e=1

〈
ŵ, tNF

〉
∂Ωe

F∩ΓN
F

,

(5.9b)

for all (ŵ, ŵ) ∈ Ŵh(ΓF ∪ ΓNF ∪ ΓI)× [Ŵh(ΓF ∪ ΓNF )]nsd .
The structural CG problem stems from equation (2.20) with the inclusion of the fluid traction

at the interface as a NEUMANN-type boundary condition. The resulting weak form then reads:
given PF(LF , pF(ρF))nS
∧

on ΓI and (u0
S , u̇

0
S) in ΩS × (ti), find uS ∈ [Vh(ΩS)]nsd such that(

v, ρS
d2uS
dt2

)
ΩS

+ (∇v,PS (∇uS))ΩS
= (v, ρSbS)ΩS

+
〈
v, tNS

〉
ΓN
S

+

〈
v, |FF |V−1

(
D

1/2
F LF + EpF (ρ̂F)

)
F−TF (−nS) + τρυ

(
ρυF − ρ̂F

duS
dt

)〉
ΓI

,
(5.10)

for all v ∈ [Vh0 (ΩS)]nsd . As highlighted for the local problems (5.8), no linearization of the
structural equation (5.10) with respect to either the global or the local fluid variables has to be
performed.

Remark. The strategy presented in this section to couple the fluid and the structure could also
be implemented in a monolithic fashion, by simultaneously solving the problems (5.8), (5.9) and
(5.10) in a large system of equations. An analogous method to couple HDG and CG discretiza-
tion was introduced by PAIPURI et al. [127] to solve conjugate heat transfer problems and it
has been adopted in Section 4.1.3 in the context of steady thermal problems. However, despite
some attractive features, this monolithic coupling of local and global degrees of freedom of the
HDG problem with the ones of the CG discretization would require the communication of the
local solvers for the computation of the stiffness matrix and the residual vector of the structural
problem, making the implementation of this strategy in existing HDG and CG libraries rather
intrusive.

The DIRICHLET–NEUMANN scheme presented in this section can more conveniently be
expressed in matrix form. All the quantities are assumed to refer to the time step n+ 1, whereas
i denotes the coupling iteration index of the related unknown vectors. Moreover, the barred terms
in the following refer to a modified version of the corresponding single-field matrices or vectors
and their definition is given in Appendix C. The solver coupling at each time step can therefore
be schematized as:
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1. Start with a predicted interface structural displacement
[
uiS
]
.

2. Update the fluid mesh by means of the ALE mapping
[
diF
]

= ϕ
([
uiS
])

.

3. Compute the fluid global solution
[
Ûi
F

]
by solving the global problem[

K̄FF
] [
δÛi
F

]
=
[
f̄F
]

+
[
f̄DI (uiS)

]
, (5.11)

with

[
K̄FF

]
=

nelF

A
e=1

{[
K̄ÛÛ

]
e
−
[
K̄ÛL K̄ÛU

]
e

[
KLL KLU

KUL KUU

]−1

e

[
K̄LÛ

K̄UÛ

]
e

}
, (5.12a)

[
f̄F
]

=

nelF

A
e=1

{[
f̄Û
]
e
−
[
K̄ÛL K̄ÛU

]
e

[
KLL KLU

KUL KUU

]−1

e

[
f̄L
f̄U

]
e

}
, (5.12b)

[
f̄DI
]

=

nelI

A
e=1

{
−
[
K̄ÛL K̄ÛU

]
e

[
KLL KLU

KUL KUU

]−1

e

[
f̄DL
f̄DU

]
e

}
, (5.12c)

and
[
f̄DI (uiS)

]
denoting the DIRICHLET coupling vector on the interface.

4. Compute the fluid local solution
[
LiF Ui

F
]T
e

by solving the local problems[
KLL KLU

KUL KUU

]
e

[
δLiF
δUi
F

]
e

=

[
f̄L
f̄U

]
e

+

[
f̄DL
f̄DU

]
e

−
[
K̄LÛ

K̄UÛ

]
e

[
δÛi
F

]
e

, (5.13)

for e = 1, . . . ,nelF .

5. Repeat steps 3 and 4 until convergence of the fluid problem.

6. Compute a new structural solution
[
ūi+1
S
]

by solving the problem[
K̄SS

] [
δūi+1
S
]

=
[
f̄S
]

+
[
f̄NI (LiF ,U

i
F , Û

i
F ,u

i
S)
]

, (5.14)

with

[
K̄SS

]
=

nelS

A
e=1

{[
Kuu

]
e

}
,
[
f̄S
]

=

nelS

A
e=1

{[
fu
]
e

}
,
[
f̄NI
]

=

nelI

A
e=1

{[
f̄Nu
]
e

}
, (5.15)

and
[
f̄NI (LiF ,U

i
F , Û

i
F ,u

i
S)
]

denoting the NEUMANN coupling vector on the interface.

7. Check the convergence of the interface displacement residual
∥∥[ri+1

I
]∥∥ < η with[

ri+1
I
]

=
[
ūi+1
S
]
−
[
uiS
]

. (5.16)

Continue with next time step if the algorithm is converged, otherwise return to step 2 with[
ui+1
S
]

= ωi+1
[
ūi+1
S
]

+
(
1− ωi+1

) [
uiS
]

, (5.17)

where the relaxation parameter is updated by means of AITKEN’s ∆2 method

ωi+1 = −ωi
[
riI
]T ([

ri+1
I
]
−
[
riI
])
/
∥∥[ri+1

I
]
−
[
riI
]∥∥2 . (5.18)
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5.3 Monolithic NITSCHE-based coupling

Figure 5.2: Degrees of freedom of the HDG-CG discretization for monolithic NITSCHE-based
coupling

In this section, the HDG-CG formulation for FSI via the monolithic NITSCHE-based coupling
is presented. This approach follows the methodology exposed in Sections 4.1.4 and 4.2 in the
context of thermal and linear elastic problems, respectively, but extended to deal with the more
complex unsteady, nonlinear and multiphysics nature of fluid-structure interaction.

The degrees of freedom of the hybrid HDG-CG discretization are shown in Figure 5.2 for
a polynomial degree k = 2. The DOFs depicted therein refer to the same fluid and struc-
tural unknowns exposed in Section 5.2. However, owing to the global coupling provided by
the NITSCHE-based approach, the HDG global DOFs are kept on the interface. As discussed
in Section 4.1.4, this slightly increases the total DOFs count, but on the other hand it allows to
enforce the coupling conditions in a much less invasive way. Moreover, it eases the treatment of
potential nonuniform polynomial approximations as well as non-matching grids at the interface.

The coupling conditions needed to close the FSI problem defined by the single-field equations
(5.1) and (5.2) read

ρ̂υF
ρ̂F
− duS

dt
= 0 on ΓI × (ti, tf ),[

σF (LF , pF (ρF))
∧

− σS (∇uS)
∧]

nF = 0 on ΓI × (ti, tf ),
(5.19)

From a practical point of view, this scheme builds a NEUMANN-to-DIRICHLET map by
imposing the traction equilibrium in (5.19) as a NEUMANN boundary condition in the fluid
global problem and enforcing the velocity compatibility in (5.19) in the structural problem via
the well-known NITSCHE method for the weak imposition of essential boundary conditions.
The equilibrium of the normal fluxes has to be expressed in terms of the CAUCHY measure
of the stress for consistency. The structural first PIOLA–KIRCHHOFF stress is transformed by
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means of the push-forward operation

σS (∇uS) = |FS |−1PS (∇uS)F T
S , (5.20)

with FS being the structural deformation gradient, computed with respect to the reference con-
figuration as

FS = ∇uS + Insd . (5.21)

The trace of the fluid normal fluxes remain unchanged from the single-field problem in (3.39).
With the notation adopted for FSI problems, such fluxes can be written as

ρcF · nF
∧

={(
ρυDF − ρDFaF

)
· nF + τρ

(
ρF − ρDF

)
on ∂Ωe

F ∩ ΓDF ,

(ρ̂υF − ρ̂FaF) · nF + τρ (ρF − ρ̂F) on ∂Ωe
F \ ΓDF ,

(5.22a)

(ρυF ⊗ cF)nF
∧

=
[
ρυDF ⊗

(
ρυDF
ρDF
− aF

)]
nF + τ cρυ

(
ρυF − ρυDF

)
on ∂Ωe

F ∩ ΓDF ,[
ρ̂υF ⊗

(
ρ̂υF
ρ̂F
− aF

)]
nF + τ cρυ (ρυF − ρ̂υF) on ∂Ωe

F \ ΓDF ,

(5.22b)

NT
F

(
D

1/2
F LF + EpF (ρF)

)∧
=NT

F

(
D

1/2
F LF + EpF

(
ρDF
))

+ τ dρυ
(
ρυF − ρυDF

)
on ∂Ωe

F ∩ ΓDF ,

NT
F

(
D

1/2
F LF + EpF (ρ̂F)

)
+ τ dρυ (ρυF − ρ̂υF) on ∂Ωe

F \ ΓDF .

(5.22c)

The trace of the structural normal stress along the interface is instead defined as

PS (∇uS)nS
∧

= PS (∇uS)nS −
γ

h

(
duS
dt
− ρ̂υF

ρ̂F

)
on ΓI , (5.23)

with γ being the NITSCHE penalty parameter and h denoting a characteristic element size on
the interface. It is worth reminding that the trace of the normal fluid stress in (5.22) is already
written in terms of CAUCHY stress and consistently defined on the deformed domain. On the
contrary, the trace of the structural normal stress in (5.23) has to be transformed according to
(5.20). Hence, the actual expression of the flux in (5.19) can be written as

−σS (∇uS)nF
∧

= |FS |−1PS (∇uS)F T
S (−nF)− γ

h

(
duS
dt
− ρ̂υF

ρ̂F

)
on ΓI . (5.24)

A similar definition of the trace of the CG normal stress has been adopted in Section 4.2 in
the context of linear elastic problems. However, some differences are worth highlighting. First,
while in (4.47) the NITSCHE method penalizes the jump of the displacements among the HDG
and the CG subdomains, here the penalization involves the structural velocity (computed as the
time derivative of the structural displacement) and the fluid velocity (computed as the ratio of
the traces of the fluid momentum and density). Secondly, the VOIGT notation is adopted in
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linear elasticity owing to the symmetry of the CAUCHY stress, whereas the non-symmetric
nature of the first PIOLA–KIRCHHOFF stress tensor requires the computation of all its nsd ×
nsd components. Moreover, while in the single-physics problem in Section 4.2 the same stress
measure is naturally chosen in the subdomains, here the adoption of a hybrid description of
motion, i.e. the ALE description in the fluid field and the total LAGRANGEan description in
the structural field, requires the aforementioned stress transformation for a consistent imposition
of the coupling conditions. Then, no ambiguity in the definition of the characteristic element
size arises in the case of linear elasticity, since the governing equations are written with respect
to the undeformed configuration. In fluid-structure interaction involving fluid flows interacting
with nonlinear elastic structures undergoing large deformations, the parameter h could refer to
the size of either the deformed fluid elements or the undeformed structural elements on the
interface. In the numerical examples presented in Section 5.4, the characteristic element size is
computed with respect to the undeformed structural configuration.

Owing to the global nature of the NITSCHE-based coupling, the fluid HDG local problems are
the same as in (3.41). With the new notation their weak form reads: given (ρ0

F ,ρυ
0
F) in Ωe

F×(ti),
(ρDF ,ρυ

D
F ) on ΓDF and (ρ̂F , ρ̂υF) on ΓF ∪ ΓNF ∪ ΓI , find (LF , ρF ,ρυF) ∈ [Wh(Ωe

F)]msd ×
Wh(Ωe

F)× [Wh(Ωe
F)]nsd for e = 1, . . . ,nelF such that

− (W ,LF)Ωe
F

+

(
∇T

SD
1/2
F W ,

ρυF
ρF

)
Ωe

F

=〈
NT
FD

1/2
F W ,

ρυDF
ρDF

〉
∂Ωe

F∩ΓD
F

+

〈
NT
FD

1/2
F W ,

ρ̂υF
ρ̂F

〉
∂Ωe

F\Γ
D
F

,
(5.25a)

(
w,
∂ρF
∂t

)
Ωe

F

+

(
w, ρF∇ ·

ddF
dt

)
Ωe

F

−
(
∇w,ρυF − ρF

ddF
dt

)
Ωe

F

+ 〈w, τρρF〉∂Ωe
F

=

−
〈
w,

(
ρυDF − ρDF

ddF
dt

)
· nF − τρρDF

〉
∂Ωe

F∩ΓD
F

−
〈
w,

(
ρ̂υF − ρ̂F

ddF
dt

)
· nF − τρρ̂F

〉
∂Ωe

F\Γ
D
F

,

(5.25b)

(
w,

∂ρυF
∂t

)
Ωe

F

+

(
w,ρυF∇ ·

ddF
dt

)
Ωe

F

−
(
∇w,ρυF ⊗

(
ρυF
ρF
− ddF

dt

))
Ωe

F

+
(
w,∇T

S

(
D

1/2
F LF + EpF (ρF)

))
Ωe

F

+ 〈w, τρυρυF〉∂Ωe
F
− (w, ρFbF)Ωe

F
=

−
〈
w,

[
ρυDF ⊗

(
ρυDF
ρDF
− ddF

dt

)]
nF − τρυρυDF

〉
∂Ωe

F∩ΓD
F

−
〈
w,

[
ρ̂υF ⊗

(
ρ̂υF
ρ̂F
− ddF

dt

)]
nF − τρυρ̂υF

〉
∂Ωe

F\Γ
D
F

,

(5.25c)

for all (W , w,w) ∈ [Wh(Ωe
F)]msd ×Wh(Ωe

F)× [Wh(Ωe
F)]nsd .
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5.3 Monolithic NITSCHE-based coupling

Exploiting the definition of the normal flux (5.23) and its transformed counterpart (5.24),
the fluid-structure global problem reads: given (u0

S , u̇
0
S) in ΩS × (ti), find (ρ̂F , ρ̂υF ,uS) ∈

Ŵh(ΓF ∪ ΓNF ∪ ΓI)× [Ŵh(ΓF ∪ ΓNF ∪ ΓI)]nsd × [Vh(ΩS)]nsd such that

nelF∑
e=1

〈ŵ, τρ (ρF − ρ̂F)〉∂Ωe
F\Γ

D
F

= 0, (5.26a)

−
nelF∑
e=1

{〈
ŵ,NT

F

(
D

1/2
F LF + EpF (ρ̂F)

)
+ τρυ (ρυF − ρ̂υF)

〉
∂Ωe

F\Γ
D
F

−
〈
ŵ, |FS |−1PS (∇uS)F T

S (−nF)− γ

h

(
duS
dt
− ρ̂υF

ρ̂F

)〉
∂Ωe

F∩ΓI

}
=

nelF∑
e=1

〈
ŵ, tNF

〉
∂Ωe

F∩ΓN
F

,

(5.26b)

(
v, ρS

d2uS
dt2

)
ΩS

+ (∇v,PS (∇uS))ΩS

−
〈
v,PS (∇uS)nS −

γ

h

(
duS
dt
− ρ̂υF

ρ̂F

)〉
ΓI

−
〈
∂PS (∇uS)

∂∇uS
∇vnS ,

duS
dt
− ρ̂υF

ρ̂F

〉
ΓI

= (v, ρSbS)ΩS
+
〈
v, tNS

〉
ΓN
S

,

(5.26c)

for all (ŵ, ŵ,v) ∈ Ŵh(ΓF ∪ ΓNF ∪ ΓI)× [Ŵh(ΓF ∪ ΓNF ∪ ΓI)]nsd× [Vh0 (ΩS)]nsd . In the spirit of
the HDG-CG NITSCHE-based coupling introduced in Section 4.1.4, all the coupling informa-
tion is exchanged solely in the global problem (5.26). It is worth highlighting that, owing to the
nonlinear nature of the structural stress (contrarily to the linear elastic problems in Section 4.2),
the evaluation of the directional derivatives of the first PIOLA–KIRCHHOFF stress tensor with
respect to the structural displacement are needed here for the computation of the last term in the
left hand side of the structural subproblem in (5.26). Considering the obvious non-symmetric
nature of the overall FSI problem, the non-symmetric variant of NITSCHE’s method discussed
by BURMAN [20] could be adopted in this context to avoid the introduction of the penalty pa-
rameter γ. However, despite this attractive advantage, this variant has not been chosen because
of the suboptimal convergence behavior experienced by the same author in the framework of
simpler linear and scalar PDEs.

Remark. The strategy presented in this section to couple the fluid and the structure could in
theory be implemented in a partitioned fashion, by alternating the solution of pure fluid and
structural problems and exchanging the interface information among the fields. This method
can be referred to as partitioned NEUMANN–DIRICHLET coupling and it has been proposed
for instance by KÜTTLER et al. [93] as a possible remedy for the so-called incompressibility
dilemma, referring to the treatment of FSI problems with fully enclosed fluids. However, as stated
by the same authors, despite the possibility to solve a number of academic examples, the method
usually fails to solve real world problems, because the response of stiff structures to varying
interface displacements is too sensitive for any numerical approach to find the equilibrium.
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5 HDG-CG formulations for FSI

After linearization of problems (5.25) and (5.26), discretized by means of a isoparametric
formulation, and by performing a static condensation of the local DOFs, the global linear system
that is solved in each NEWTON iteration to advance from the time step n to n+ 1 reads[

K̃FF K̃FS
K̃SF K̃SS

] [
δÛF
δuS

]
=

[
f̃F
f̃S

]
, (5.27)

with the left hand side matrices computed as

[
K̃FF

]
=

nelF

A
e=1

{[
K̃ÛÛ

]
e
−
[
KÛL KÛU

]
e

[
KLL KLU

KUL KUU

]−1

e

[
KLÛ

KUÛ

]
e

}
, (5.28a)

[
K̃FS

]
=

nelI

A
e=1

{[
K̃Ûu

]
e

}
, (5.28b)

[
K̃SF

]
=

nelI

A
e=1

{[
K̃uÛ

]
e

}
, (5.28c)

[
K̃SS

]
=

nelS

A
e=1

{[
K̃uu

]
e

}
, (5.28d)

and the right hand side vectors computed as

[
f̃F
]

=

nelF

A
e=1

{[
f̃Û
]
e
−
[
KÛL KÛU

]
e

[
KLL KLU

KUL KUU

]−1

e

[
fL
fU

]
e

}
, (5.29a)

[
f̃S
]

=

nelS

A
e=1

{[
f̃u
]
e

}
. (5.29b)

The tilted terms refer to a modified version of the corresponding single-field matrices and vec-
tors. It can be noted that the proposed scheme requires only the inclusion of a small number of
terms arising from the definitions (5.23) and (5.24) in the fluid matrix K̃ÛÛ and in the struc-
tural matrix K̃uu, as well as in the corresponding residual vectors f̃Û and f̃u. Hence, the matrices
K̃FF and K̃SS feature the usual structure of the fluid and structural global problem, respectively,
whereas the blocks K̃FS and K̃SF are responsible for the coupling and solely involve the fluid
hybrid variables and the structural unknown at the interface.

In the spirit of the NITSCHE-based coupling of HDG and CG discretizations, the fluid HDG
local problems remain unchanged and they require, at each NEWTON iteration, the solution of
the linear systems [

KLL KLU

KUL KUU

]
e

[
δLF
δUF

]
e

=

[
fL
fU

]
e

−
[
KLÛ

KUÛ

]
e

[
δÛF

]
e

, (5.30)

for e = 1, . . . ,nelF . The expressions of all the matrices and vectors presented here are detailed in
Appendix C.
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5.4 Numerical examples

5.4 Numerical examples
The numerical studies aim to assess the performance of the proposed HDG-CG formulations
for the solution of weakly compressible fluid-structure interaction problems. The first exam-
ple verifies the optimal convergence of both the partitioned DIRICHLET–NEUMANN cou-
pling and the monolithic NITSCHE-based coupling using the method of manufactured solu-
tions. The following examples highlight the enhanced robustness and efficiency of the proposed
approaches by means of two- and three-dimensional simulations. On the one hand, the parti-
tioned DIRICHLET–NEUMANN scheme has been implemented in the C++ in-house research
code BACI [167], by extending the capability of the fixed-point solver described in Chapter 2 to
deal with hybrid HDG-CG discretizations. On the other hand, the monolithic NITSCHE-based
coupling has been implemented in MATLAB, by merging the HDG fluid solver used in Chapter 3
with the CG structural solver used in Chapter 4, extended to the nonlinear regime.

5.4.1 FSI problem with manufactured solution
The first numerical example considers a two-dimensional fluid-structure interaction problem
with manufactured solution. The generation of manufactured solutions for single-physics prob-
lems is a rather straightforward task and it simply consists in selecting a suitable continuous so-
lution and adding an appropriate source term to cancel out any imbalance in the PDEs, caused by
the arbitrary choice of the solution itself. Interestingly, this choice is often problem-independent
and it is not affected by the structure of the code used. On the contrary, the derivation of man-
ufactured solutions for the verification of FSI codes can be a quite complex task and a rigor-
ous procedure to generate a class of non-trivial solutions has been developed by ÉTIENNE et
al. [48]. Its main features are the rich structure of solution, ensuring that all terms of the dif-
ferential equations are exercised, and the absence of artificial tractions on the fluid-structure
interface, that would otherwise require substantial modifications for most codes. The problem
considered consists of an unsteady incompressible flow interacting with a flexible structure and
this flow configuration is simulated here by choosing a sufficiently small compressibility coef-
ficient. The goal of this example is then to assess the convergence properties of the proposed
HDG-CG formulations for fluid-structure interaction.

The parameters adopted to generate the solution according to [48] are

δ (t) = δ0 sin [2π (t0 + t)] ,
f (x, t) = 1 + sin (2πx) [1− cos (2πx)] δ (t) ,

Q (ξ, t) = ξ
[
8− 7 (δ (t) /δ0)2] ,

q = 1,
a (x, y, t) = − (y − 1) [1 + 10/3 cos (2πx) δ (t)] ,
b (x, y, t) = 1,

(5.31)

with δ0 = 1/20 and t0 = 1/4. The function f(x, t) describes the shape of the deformed fluid-
structure interface and its temporal variation is defined by δ(t). Q(ξ, t) and q are user-supplied
data characterizing the flow field. In particular, q ≤ 1 produces a non-zero velocity profile along
the bottom boundary, while q > 1 would generate a no-slip condition. Finally, a(x, y, t) and
b(x, y, t) determine the structural solution.
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5 HDG-CG formulations for FSI

(a) Undeformed mesh

(b) Deformed mesh at t = 0 (c) Deformed mesh at t = 0.125

Figure 5.3: Computational mesh for FSI problem with manufactured solution
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5.4 Numerical examples

(a) t = 0 (b) t = 0.125

Figure 5.4: Solution of fluid velocity for FSI problem with manufactured solution

More specifically, the structural displacement with respect to the undeformed configuration
ΩS is given by {

uSx (x, y, t) = a (x, y, t) ,
uSy (x, y, t) = b (x, y, t) (f (x, t)− 1) .

(5.32)

An appropriate body force, satisfying the structural PDEs, is then added to the right hand side of
the governing equations. It is computed with standard techniques, as already done in Sections 3.5
and 4.3 for single-physics problems. The fluid velocity is evaluated with respect to the deformed
configuration ΩF as

υFx (x, y, t) = (q + 1) yq (R ([f (x, t) , t])−R (y, t))

−qyq−1 (S ([f (x, t) , t])− S (y, t)),

υF y (x, y, t) = yq (f (x, t)− y)Q [f (x, t) , t]
∂f (x, t)

∂x
+
∂f (x, t)

∂t
,

(5.33)

with R(ξ, t) and S(ξ, t) representing two auxiliary functions, computed as
R (ξ, t) =

∫ ξ

0

Q (χ, t) dχ,

S (ξ, t) =

∫ ξ

0

Q (χ, t)χdχ.
(5.34)

It is worth pointing out that the fluid velocity and the time derivative of the structural displace-
ment exactly match on the interface, by construction. The parameters chosen induce a sufficiently
complex flow, characterized by two pronounced vortices circulating in opposite directions. The
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5 HDG-CG formulations for FSI

flow field is shown in Figure 5.4 on the initial (left) and final (right) deformed configuration. The
interface tractions on ΓI are evaluated through the push-forward operation

t (x, t) =
(
|FS |−1PS (∇uS)F T

S n
)∣∣
y=f(x,t)

, (5.35)

with the deformation gradient FS and the first PIOLA–KIRCHHOFF stress tensor PS(∇uS)
computed from the given displacement field (5.32) according to equations (2.14) and (2.13), re-
spectively. Then, n refers to the unit normal vector to the interface and its Cartesian components
can be directly evaluated from the definition of the deformed interface f(x, t) as

nx (x, t) = −

[
1 +

(
∂f (x, t)

∂x

)2
]−1/2

∂f (x, t)

∂x
,

ny (x, t) = +

[
1 +

(
∂f (x, t)

∂x

)2
]−1/2

.

(5.36)

The fluid pressure is given by

pF (x, t) = − Atynx −Btxnx +Btyny − Ctxny
Anynx −Bnxnx +Bnyny − Cnxny

, (5.37)

with A(x, t), B(x, t) and C(x, t) being the independent components of the symmetric part of the
velocity gradient at the interface

A (x, t) =
∂υFx
∂x

∣∣∣∣
y=f(x,t)

,

B (x, t) =
1

2

(
∂υFx
∂y

+
∂υF y
∂x

)∣∣∣∣
y=f(x,t)

,

C (x, t) =
∂υF y
∂y

∣∣∣∣
y=f(x,t)

.

(5.38)

The price paid to avoid fictitious interface tractions is the inclusion of the following spatially
varying viscosity

µF (x, t) =
txny − tynx

2 (Anynx −Bnxnx +Bnyny − Cnxny)
. (5.39)

This term can be easily handled by computing the fluid viscosity at the quadrature points and its
implementation, if not already provided, does not represent a critical issue. As a last ingredient, a
body force balancing the fluid momentum equation is calculated. The computation of this term is
extremely complex and the symbolic math toolbox of MATLAB is therefore used for this purpose.

The computational domain Ω is composed by the union of the fluid subdomain ΩF = (0, 1)×
(0, 1) and the structural subdomain ΩS = (0, 1)× (1, 1.25), such that the interface (in the unde-
formed configuration) is identified as ΓI = {(x, y) ∈ R2 : y = 1}. The initial conditions and the
DIRICHLET boundary conditions are computed from the analytical solution and are imposed
on Ω× (0) and ΓD = ∂Ω, respectively.

126



5.4 Numerical examples

(a) Fluid velocity with k = 1 (b) Structural displacement with k = 1

(c) Fluid velocity with k = 2 (d) Structural displacement with k = 2

(e) Fluid velocity with k = 3 (f) Structural displacement with k = 3

Figure 5.5: Solution of fluid velocity and structural displacement for FSI problem with manu-
factured solution
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(a) Fluid scaled strain rate (b) Fluid density

(c) Fluid momentum (d) Structural displacement

Figure 5.6: Spatial convergence study for FSI problem with manufactured solution via
partitioned DIRICHLET–NEUMANN coupling

The fluid reference density is ρrefF = 1, computed at the reference pressure prefF = 0. To mimic
an incompressible flow, the compressibility coefficient is chosen extremely small, i.e. εF = 10−6.
The structure is modelled as a ST. VENANT–KIRCHHOFF material with YOUNG’s modulus
ES = 1, POISSON’s ratio νS = 0.49 and density ρS = 1.

The meshes used for the convergence studies are obtained by splitting a Cartesian grid into a
total number of triangles equal to 2 · 22r+2 and 2 · 22r for the fluid and the structural subdomain
respectively, producing the same element sizes of h = 1/2r+1. In Figure 5.3, the fourth level
of mesh refinement (r = 4) is displayed with respect to the undeformed (top), initial deformed
(bottom-left) and final deformed (bottom-right) configuration. The fluid domain is plotted in
blue, the structural domain in red and the interface is highlighted in black. The time interval
analyzed is then t ∈ (0, 1/8). The two HDG-CG formulations for FSI are considered in the
following:
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5.4 Numerical examples

(a) Fluid scaled strain rate (b) Fluid density

(c) Fluid momentum (d) Structural displacement

Figure 5.7: Spatial convergence study for FSI problem with manufactured solution via
monolithic NITSCHE-based coupling

1. partitioned DIRICHLET–NEUMANN coupling according to Section 5.2,

2. monolithic NITSCHE-based coupling according to Section 5.3.

The stabilization parameters for the fluid subproblem are taken as τρ = 1/εF and τρυ = 10. The
convergence tolerance for the first case is set to η = 10−7 whereas the NITSCHE parameter for
the second case is γ = 105.

For the spatial convergence studies, the degrees of approximation considered are k = [1, 2, 3]
and the temporal integration is performed with BDF2 with a constant time step size of ∆t =
2−12. The level of mesh refinement sufficient to reach the asymptotic regime is r = [1, 2, . . . , 6]
for k = 1, r = [1, 2, . . . , 5] for k = 2 and r = [1, 2, . . . , 4] for k = 3. The approximation
of the magnitude of the fluid velocity and the structural displacement obtained via the mono-
lithic NITSCHE-based coupling on the second level of mesh refinement (r = 2) at t = 1/8
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(a) Fluid scaled strain rate (b) Fluid density

(c) Fluid momentum (d) Structural displacement

Figure 5.8: Temporal convergence study for FSI problem with manufactured solution via
partitioned DIRICHLET–NEUMANN coupling

is exemplarily shown in Figure 5.5 for k = 1 (top), k = 2 (middle) and k = 3 (bottom).
The improvement of the approximation brought by k-refinement can be clearly observed on
this rather coarse mesh, especially with regards to the shape of the fluid-structure interface, de-
noted in black. The convergence of the error of the fluid and the structural variables in the L2

norm as a function of the characteristic element size h is shown in Figures 5.6 and 5.7 for the
partitioned DIRICHLET–NEUMANN coupling and the monolithic NITSCHE-based coupling,
respectively. Not surprisingly, the two formulations produce nearly identical results. In addition,
the optimal convergence of order k + 1 of the single-fields variables observed in Section 3.5 for
fluid problems and in Section 4.3 for structural problems is nicely preserved for the coupled FSI
problem too. A small degradation of almost half order is only observed in the convergence rate
of the fluid density error for k = 3, but at a level close to machine precision.
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(a) Fluid scaled strain rate (b) Fluid density

(c) Fluid momentum (d) Structural displacement

Figure 5.9: Temporal convergence study for FSI problem with manufactured solution via
monolithic NITSCHE-based coupling

For the temporal convergence studies, the time step sizes are ∆t = [1/16, 1/32, 1/64, 1/128]
and the backward differentiation formulas are considered, with BDFo = [1, 2]. The error associ-
ated with the spatial discretization is kept sufficiently small by adopting the polynomial degree
k = 3 on the mesh levels r = 3 and r = 4 for BDF1 and BDF2, respectively. The convergence
of the L2 error as a function of the time step size ∆t is shown in Figures 5.8 and 5.9 for the
two coupling strategies. The theoretical convergence rates of order BDFo are achieved for all the
fluid and structural unknowns with both coupling schemes.

In conclusion, both HDG-CG formulations accurately solve fluid-structure interaction prob-
lems with high-order accuracy and no loss of accuracy is observed for the fluid mixed and primal
variables and for the structural displacement. However, no superconvergence of the postpro-
cessed fluid velocity is achieved in this numerical example and further investigation would be
required to understand the causes.
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5.4.2 FSI benchmark
The second numerical experiment considers a complex two-dimensional fluid-structure interac-
tion problem with large deformations. It was introduced by TUREK and HRON [159] and later
used by several authors to test a great variety of FSI codes. The objective of this example is to
show whether the developed HDG-CG formulations can deliver a meaningful coupled system
response on a widely accepted benchmark.

The computational domain is the rectangle Ω = (0, 2.5) × (0, 0.41) m in which a flexible
structure ΩS = (0.25, 0.6) × (0.19, 0.21) m is fully attached to a rigid circular block ΩC with
radius 0.05m and centred at point (0.2, 0.2)m. The fluid region is identified by ΩF = Ω\ΩS\ΩC .
It is worth highlighting that, as stated by TUREK and HRON [159], the setting is intentionally
non-symmetric to prevent the dependence of the onset of any possible oscillation on the precision
of the computation. A smoothly increasing parabolic profile is imposed on the inflow as

ρυDF x (0, y, t) =


3

2

y (0.41− y)

(0.41/2)2

1− cos (πt/t̄)

2
ρrefF UF kg/(m

2 · s) if t ≤ t̄,

3

2

y (0.41− y)

(0.41/2)2 ρrefF UF kg/(m
2 · s) if t > t̄,

ρυDF y (0, y, t) = 0 kg/(m2 · s),

(5.40)

with t̄ = 2 s and UF = 1 m/s, resulting in a REYNOLDS number of about 100 when the
flow has completely developed. No-slip boundary conditions (ρυDF = 0) are applied on the top
and bottom, whereas the fluid density is imposed equal to its reference value (ρDF = ρrefF ) at
the outflow. The structure is considered clamped (uDS = 0) on the left edge. In addition, both
the fluid and the structure are at rest at the beginning of the simulation. The geometry and the
boundary conditions are depicted in Figure 5.10.

The fluid viscosity is µF = 1 kg/(m · s), the reference density ρrefF = 103 kg/m3 evaluated
at the reference pressure prefF = 0 N/m2. To mimic an incompressible flow, the compressibil-
ity coefficient is taken as εF = 10−5 s2/m2. The structure is modelled as a ST. VENANT–
KIRCHHOFF material with YOUNG’s modulus ES = 1.4 · 106 N/m2, POISSON’s ratio
νS = 0.4 and density ρS = 104 kg/m3.

The fluid and the structural domains count 4189 and 1120 triangular elements, respectively.
The fluid mesh is refined on the circular block and on the interface to match the structural nodes
and the degree of approximation is k = 2 for both fields. The fluid mesh is constructed through
the MATLAB code by PERSSON and STRANG [131], by providing a suitable mesh density
function. The resulting computational mesh is shown in Figure 5.11, together with a close-up
on the region around the structure for a better visualization. The evolution in time in the span
t ∈ (0, 15) s is performed with the BDF2 method with a time step size ∆t = 0.002 s. The two
HDG-CG formulations are considered, i.e.:

1. partitioned DIRICHLET–NEUMANN coupling,

2. monolithic NITSCHE-based coupling.

The stabilization parameters in the fluid HDG discretization are taken as τρ = 100/εF and
τρυ = 10. The convergence tolerance for the coupling iterations of the partitioned scheme in
case 1 is then set as η = 10−9, while the NITSCHE parameter for case 2 is γ = 105.
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ρυF = ρυDF

ρF = ρDF

ρυF = ρυDF

ρ
υ
F

=
ρ
υ
D F

2.5 m

0.41 m
0.05 m 0.35 m

0.02 m

0.2 m

0.2 m

x

y

Figure 5.10: Geometry and boundary conditions for FSI benchmark

(a) Whole domain

(b) Region around the structure

Figure 5.11: Computational mesh for FSI benchmark
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Figures 5.12 and 5.13 show snapshots at different time instants for the fluid velocity magni-
tude and pressure, respectively. The flow exhibits a complex behavior and induces a significant
structural deformation. The evolution of the tip structural displacement and of the lift and drag
forces exerted by the fluid on the structure and on the circular block are shown in Figure 5.14.
It is worth pointing out that the displacement is directly obtained from the solution of the struc-
tural subproblem, while the lift and the drag forces are computed in postprocessing through the
following formula [

fD
fL

]
=

∫
∂ΩF∩(∂ΩS∪∂ΩC)

NT
F

(
D

1/2
F LF + EpF (ρ̂F)

)
dΓ. (5.41)

An excellent agreement of the two HDG-CG coupling strategies is obtained in terms of both x-
displacement (Figure 5.14(a)) and y-displacement (Figure 5.14(b)). No comparison is provided
for the lift and drag forces, since their computation has been solely implemented in the MATLAB
code for the monolithic NITSCHE-based coupling. However, given the practically indistinguish-
able displacement response in the two cases, no differences are expected with respect to these
quantities too.

A detailed view of the displacement and the drag and lift forces over a time window of 1 s for
the fully developed flow is offered in Figures 5.15 and 5.16, respectively. The computed values
are compared to the results obtained by TUREK and HRON [159] and SHELDON et al. [144].
On the one hand, TUREK and HRON adopted a monolithic CG method with a multigrid solver
on different spatial and temporal discretization levels. On the other hand, SHELDON et al.
employed a monolithic approach for the solution of the whole problem by means of the HDG
method with a polynomial degree k = 2. Even though both the proposed HDG-CG coupling
strategies provide overall meaningful results, some non-negligible differences can be noted in
terms of the horizontal displacement and drag force with respect to the reference values reported
by TUREK and HRON. In particular, the amplitude of the x-displacement and the amplitude of
the computed drag force are overestimated by about 4% and 6%, respectively. The mismatch with
the widely accepted results provided by TUREK and HRON might be attributed to an insufficient
spatial resolution of the computational mesh adopted here. A summary of mean (M), amplitude
(A) and frequency (F) of the compared quantities is offered in Table 5.1. These numbers are
explicitly reported by TUREK and HRON [159], while the others are extrapolated from the
plots in SHELDON et al. [144]. It is worth noting how the values presented here lie in between
the ones provided by TUREK and HRON and the ones obtained by SHELDON et al. for all the
compared quantities.

uSx [mm] uSy [mm] fL [N ] fD [N ]

M A F M A F M A F M A F

DIRIC–NEUM −15.1 12.9 3.8 1.2 82.2 1.9 – – – – – –
NITSCHE −15.1 12.9 3.8 1.2 82.2 1.9 1 239 1.9 215 78 3.8

SHELDON −15.6 13.3 3.8 1.2 83.9 1.9 2 247 1.9 218 82 3.8

TUREK −14.6 12.4 3.8 1.2 80.6 2.0 1 234 2.0 209 74 3.8

Table 5.1: Results comparison for FSI benchmark
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(a) t = 14.6 s

(b) t = 14.7 s

(c) t = 14.8 s

(d) t = 14.9 s

Figure 5.12: Solution of fluid velocity for FSI benchmark
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(a) t = 14.6 s

(b) t = 14.7 s

(c) t = 14.8 s

(d) t = 14.9 s

Figure 5.13: Solution of fluid pressure for FSI benchmark
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(a) x-displacement

(b) y-displacement

(c) Lift

(d) Drag

Figure 5.14: Plot of displacement, lift and drag for FSI benchmark
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(a) x-displacement

(b) y-displacement

Figure 5.15: Plot of displacement in detail for FSI benchmark
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(a) Lift

(b) Drag

Figure 5.16: Plot of lift and drag in detail for FSI benchmark
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5.4.3 Two-dimensional channel with flexible wall

This numerical experiment considers a convergent fluid channel containing a flexible wall struc-
ture attached to its bottom. It was introduced by MOK [108] as a challenging test for the stability
of FSI algorithms, due to the strong coupling between the fluid and structure given by their sim-
ilar densities, i.e. ρF/ρS ≈ 1. A similar setting has been later used by MOK and WALL [109]
and by ROSSI and OÑATE [138], among others. The main goal of this example is to compare
the proposed weakly compressible HDG-CG formulations for fluid-structure interaction on a
challenging two-dimensional setting.

The fluid domain ΩF consists of a convergent channel with a total length of 1.75m and with a
height of 0.5m at the inflow and 0.2m at the outflow. A parabolic momentum profile is imposed
at the inflow according to


ρυDF x (0, y, t) =

4y (1− y)
1− cos (πt/t̄)

2
ρrefF ῡF kg/(m

2 · s) if t ≤ t̄,

4y (1− y) ρrefF ῡF kg/(m
2 · s) if t > t̄,

ρυDF y (0, y, t) = 0 kg/(m2 · s),

(5.42)

with t̄ = 10 s and ῡF = 0.06067 m/s, resulting in a REYNOLDS number of about 100 when
the flow is completely formed. No-slip (ρυDF = 0) and free-slip (ρυDF y = 0) boundary conditions
are considered on the bottom and on the top sides of the channel, respectively, whereas the fluid
density is imposed equal to its reference value (ρDF = ρrefF ) at the outflow. The structural domain
ΩS is then constituted by a thin wall with thickness 0.005 m and height 0.25 m. It is located on
the bottom of the channel at a distance of 0.5 m from the inflow and it is considered fixed at the
base (uDS = 0). Both the fluid and the structure are then considered at rest at the beginning of
the simulation. A sketch of the geometry and the boundary conditions is given in Figure 5.17.

The weakly compressible fluid is characterized by a viscosity of µF = 0.145 kg/(m · s)
and a reference density of ρrefF = 956 kg/m3, evaluated at the reference pressure prefF =
0 N/m2. Three different orders of magnitude are considered for the compressibility coeffi-
cient, i.e. εF = [0.001, 0.01, 0.1] s2/m2. The constitutive behavior of the structure is described
by a ST. VENANT–KIRCHHOFF material with YOUNG’s modulus ES = 2.3 · 106 N/m2,
POISSON’s ratio νS = 0.45 and density ρS = 1500 kg/m3.

The fluid domain is discretized with 772 triangular elements, whereas the structural mesh is
obtained by splitting a Cartesian grid into a total number of 200 triangles. A boundary layer
mesh is constructed near the structure, such that the fluid and the structural nodes match at the
interface. A polynomial degree of approximation k = 2 is considered in the whole domain. The
computational mesh adopted in the following simulations is shown in Figure 5.18 with respect to
the initial configuration. The interval analyzed is t ∈ (0, 25) s and the BDF2 method is applied
for the temporal integration. In order to assess the stability of the coupling strategies with respect
to artificial added mass effect in the limit of vanishing time step size, three time step sizes are
adopted, i.e. ∆t = [0.1, 0.01, 0.001] s.
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Figure 5.17: Geometry and boundary conditions for two-dimensional channel with flexible wall

Figure 5.18: Computational mesh for two-dimensional channel with flexible wall

Three formulations are considered:

1. incompressible CG-CG partitioned DIRICHLET–NEUMANN coupling,

2. weakly compressible HDG-CG partitioned DIRICHLET–NEUMANN coupling,

3. weakly compressible HDG-CG monolithic NITSCHE-based coupling.

The stabilization parameters in the fluid HDG discretization are taken as τρ = 10/εF and
τρυ = 1. The convergence tolerance for the coupling iterations of the partitioned scheme in
cases 1 and 2 is then set as η = 10−9, while the NITSCHE parameter for case 3 is γ = 100.
It is worth reminding that the monolithic NITSCHE-based coupling is implemented in an inde-
pendent MATLAB code, whereas the partitioned DIRICHLET–NEUMANN coupling approaches
share a large number of libraries in the BACI platform. Therefore, the partitioned and the mono-
lithic schemes are compared only on a qualitative level, while a comparison in terms of robust-
ness can be fairly established between the incompressible CG-CG and the weakly compressible
HDG-CG partitioned approaches.
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(a) t = 5 s

(b) t = 10 s

(c) t = 15 s

(d) t = 20 s

(e) t = 25 s

Figure 5.19: Solution of fluid density for two-dimensional channel with flexible wall
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(a) t = 5 s

(b) t = 10 s

(c) t = 15 s

(d) t = 20 s

(e) t = 25 s

Figure 5.20: Solution of fluid momentum for two-dimensional channel with flexible wall

143



5 HDG-CG formulations for FSI

(a) Partitioned DIRICHLET–NEUMANN coupling (b) Monolithic NITSCHE-based coupling

Figure 5.21: Plot of structural displacement for two-dimensional channel with flexible wall

The snapshots in Figures 5.19 and 5.20 depict the temporal evolution of the fluid density and
momentum field, respectively, obtained for case 3 with εF = 0.1 s2/m2 and ∆t = 0.1 s. For
largest compressibility level considered, the fluid density variation from its reference value is
always below 1%. The momentum field highlights instead a strongly unsteady behavior charac-
terized by the formation of a primary and a secondary vortex circulating in opposite directions in
the wake of the wall during the 10 s of start-up and for approximately additional 5 s, after which
a steady flow is gradually established. In Figure 5.21 the horizontal displacement of the top-
center of the structure is plotted for all the considered cases. The structural displacement closely
matches the one obtained by considering the flow fully incompressible and the two coupling
strategies provide nearly identical results. Table 5.2 reports the average value of the relaxation
parameter and the average number of coupling iterations over the entire simulation. On the one
hand, the incompressible solver requires a relatively small ωavg and a large iavg for ∆t = 0.1 s
and it fails to converge for smaller ∆t. On the other hand, the weakly compressible HDG-CG
partitioned DIRICHLET–NEUMANN coupling is always able to converge with an increase of
ωavg and a decrease of iavg when increasing εF and decreasing ∆t. Similarly, the monolithic
NITSCHE-based coupling never fails, regardless of the time step size.

∆t = 0.1 s ∆t = 0.01 s ∆t = 0.001 s

ωavg iavg ωavg iavg ωavg iavg

Incompressible 0.17 27.5 – – – –
εF = 0.001 s2/m2 0.19 22.5 0.20 34.0 0.45 16.1

εF = 0.01 s2/m2 0.20 22.5 0.29 22.6 0.64 8.2

εF = 0.1 s2/m2 0.23 18.4 0.47 11.4 0.86 4.6

Table 5.2: Relaxation parameter and coupling iterations for two-dimensional channel with flexi-
ble wall
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5.4.4 Three-dimensional channel with flexible wall

This numerical example considers a three-dimensional elastic wall embedded in a channel flow.
It was first introduced by GERSTENBERGER and WALL [65] in the context of fixed-grid fluid-
structure interaction problems and it was later used by MAYR [103] to discuss the properties
of an adaptive time-stepping procedure for monolithic FSI solvers. More recently, this example
was used by NITZLER et al. [124] to investigate the effects of an uncertainty in the model input
on the final response of the coupled system. The goal of this problem is to show the enhanced
robustness of the weakly compressible HDG-CG formulation on a three-dimensional setting.

The overall computational domain is given by Ω = (0, 3)× (−0.25, 0.25)× (−0.5, 0.5). The
structural domain is ΩS = (0.5, 0.55) × (−0.25, 0.15) × (−0.3, 0.3) and the fluid occupies the
remaining region ΩF = Ω \ ΩS . The inflow momentum is given by

ρυDF x (0, y, z, t) =


(
1− 16y2

) (
1− 4z2

) 1− cos (πt/t̄)

2
ρrefF ῡF if t ≤ t̄,(

1− 16y2
) (

1− 4z2
)
ρrefF ῡF if t > t̄,

ρυDF y (0, y, z, t) = 0,

ρυDF z (0, y, z, t) = 0,

(5.43)

with t̄ = 5 and ῡF = 0.1. No-slip boundary conditions (ρυDF = 0) are applied on the top and the
bottom, as well as on the lateral walls, whereas the fluid density is imposed equal to its reference
value (ρDF = ρrefF ) at the outflow. The structure is then considered clamped (uDS = 0) on the
bottom face. A sketch of the geometry and the boundary conditions is given in Figure 5.22.
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Figure 5.22: Geometry and boundary conditions for three-dimensional channel with flexible wall
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(a) Fluid mesh

(b) Structural mesh

Figure 5.23: Computational mesh for three-dimensional channel with flexible wall
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Figure 5.24: Solution of fluid velocity and pressure and structural displacement for three-
dimensional channel with flexible wall

The fluid viscosity is µF = 0.01 and the reference density ρrefF = 1, computed at the reference
pressure prefF = 0. Three orders of magnitude are considered for the compressibility coefficient,
i.e. εF = [0.001, 0.01, 0.1]. The structure is then modelled as a Neo-HOOKEan material with
YOUNG’s modulus ES = 500, POISSON’s ratio νS = 0 and density ρS = 1.

The fluid domain contains 25664 hexahedral elements, whereas the structural mesh is subdi-
vided into 4 × 32 × 12 hexahedrons, for a total number of 1536 elements. The fluid mesh is
refined on the interface and it matches the structural one and the polynomial degree of approxi-
mation is k = 1 for both fields. Figure 5.23 depicts the fluid mesh on top and structural mesh on
bottom. The time interval is t ∈ (0, 10) and the integration in time is performed with the BDF2
method. Three different time step sizes are then considered, i.e. ∆t = [0.1, 0.01, 0.001]. Two
formulations are compared:

1. incompressible CG-CG partitioned DIRICHLET–NEUMANN coupling,

2. weakly compressible HDG-CG partitioned DIRICHLET–NEUMANN coupling.

It is worth pointing out that the monolithic NITSCHE-based coupling presented in Section 5.3
is implemented in an independent MATLAB code limited to two-dimensional geometries and
it cannot therefore be applied for the example under analysis. The stabilization parameters are
τρ = 1/εF and τρυ = 1 for the HDG subdomain and the tolerance for the coupling iterations is
taken as η = 10−7 for both cases.

The solution at t = 10 obtained via the weakly compressible formulation with εF = 0.01
and ∆t = 0.1 is exemplarily shown in Figure 5.24. The vertical and bottom planes illustrate
the magnitude of the fluid velocity and pressure, respectively, whereas the structure is coloured
according to its displacement magnitude. The x-component of the displacement of the struc-
ture center-top point (with coordinates (0.525, 0.15, 0)) is shown in Figure 5.25. The displace-
ment at the steady-state condition differs from the incompressible and weakly compressible case
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Figure 5.25: Plot of structural displacement for three-dimensional channel with flexible wall

by about 6%. The HDG stabilization parameters are observed to have a non-negligible influ-
ence on this gap and their role on the overall quality of the solution of the coupled problem
would need further investigation. Finally, Table 5.3 summarizes the average relaxation param-
eter and the average number of coupling iterations required to meet the convergence criterion.
Like the previous numerical example in Section 5.4.3, the incompressible partitioned scheme
is able to convergence in a relatively large number of coupling iterations for a large time step
size (∆t = 0.1). However, the incompressible solver fails before reaching the final time of
the simulation for smaller time step sizes. On the contrary, the weakly compressible HDG-CG
partitioned DIRICHLET–NEUMANN coupling is way more robust and exhibits an enhanced
behavior when increasing the compressibility coefficient and decreasing the time step size. In
the extreme case, for εF = 0.1 and ∆t = 0.001, no relaxation is needed at all since ω = 1 in all
steps and almost no coupling iterations are needed to satisfy the convergence criterion.

∆t = 0.1 ∆t = 0.01 ∆t = 0.001

ωavg iavg ωavg iavg ωavg iavg

Incompressible 0.33 10.9 – – – –
εF = 0.001 0.37 10.1 0.43 7.7 0.54 2.2

εF = 0.01 0.39 8.7 0.57 4.2 0.74 0.8

εF = 0.1 0.44 6.2 0.78 2.4 1.00 0.4

Table 5.3: Relaxation parameter and coupling iterations for three-dimensional channel with flex-
ible wall
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5.4.5 Micropump

The last numerical example simulates the functioning of a valveless micropump. Micropumps
are devices operating at the micrometer level and are able to effectively control small fluid vol-
umes. The interest in the design and development of reliable and efficient micropumps has in-
creased over the last decades because of the potential applications in the industrial and biomed-
ical field. Among many other applications, micropumps can be adopted for the smart drug de-
livery for the treatment of diabetes, cancer and ocular pathologies in forms of ultra-thin patches,
implantable systems or intelligent pills. A comprehensive overview on micropump technologies
can be found in the review articles by NGUYEN et al. [116], IVERSON and GARIMELLA [84]
and AMIROUCHE et al. [4]. The specific setting adopted here, is taken from the model devel-
oped by HANCOCK et al. [71, 72] of Veryst Engineering and set up in the simulation software
COMSOL Multiphysics. The goal of this example is to show the capability of the HDG-CG
coupling for FSI to solve problems of actual engineering interest.

The fluid domain ΩF consists of a horizontal channel that is 600 µm long and 100 µm high.
At the center of the top side of the channel, a vertical chamber with dimensions 80× 100 µm is
attached. A thickness of 10 µm is considered in order to compute the fluid volume pumped over
time by the micropump mechanism. However, since no edge effects due to out-of-plane walls are
included in the model, this is equivalent to model a thin section of a much thicker channel. The
action of an oscillatory piston is simulated by imposing a time-periodic parabolic momentum
profile at the inflow on the top of the chamber according to

ρυDF x
(
x, 2·10−4, t

)
= 0 kg/(m2 · s),

ρυDF y
(
x, 2·10−4, t

)
=

3

2

(x+ 4·10−5) (x− 4·10−5)

(4·10−5)2 sin (2πt/t̄) ρrefF UF kg/(m
2 · s),

(5.44)

with t̄ = 1 s and UF = 0.16 m/s, resulting in a REYNOLDS number of 16. The fluid density
is imposed equal to its reference value (ρDF = ρrefF ) on the left and the right sides of the chan-
nel, denoted in the following with ΓLeft

F and ΓRight
F , respectively, whereas no-slip (ρυDF = 0)

boundary conditions are considered on the remaining fluid walls. The structural domain ΩS is
then constituted by two bendable microflaps 70 µm long and 4 µm wide, attached to the channel
bottom (uDS = 0) with a tilt angle of 45◦ and whose center points are located 150 µm far from
the outflow sides. Both the fluid and the structures are considered at rest at the beginning of the
simulation. A sketch of the geometry and the boundary conditions is given in Figure 5.26.

The fluid parameters represent water, characterized by a viscosity of µF = 0.001 kg/(m · s)
and a reference density of ρrefF = 1000 kg/m3, evaluated at the reference pressure prefF =
0 N/m2. A compressibility coefficient εF = 0.01 s2/m2 in considered to keep the density
variation below 0.1%. The structure is made of polydimethylsiloxane (PDMS), a biocompatible
polymer widely used for the fabrication of microfluidic devices. Its constitutive behavior can be
described by a ST. VENANT–KIRCHHOFF model with YOUNG’s modulus ES = 3.6 · 105

N/m2, POISSON’s ratio νS = 0.499 and density ρS = 970 kg/m3.
The computational domain counts about 4000 triangular elements in the fluid region and

nearly 300 triangular elements in the structural domain. The fluid mesh is refined on the fluid-
structure interface and on the corners at the intersection between the horizontal channel and
the vertical chamber to properly resolve the flow features in these areas. A polynomial degree
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Figure 5.26: Geometry and boundary conditions for micropump

Figure 5.27: Computational mesh for micropump

k = 3 is considered in the whole domain. This degree allows to achieve an accurate flow so-
lution without further mesh refinement and it moreover avoids potential locking effects in the
nearly incompressible structures. The computational mesh is shown in Figure 5.27 with respect
to the initial configuration. A total duration of 2 s is analyzed, i.e. t ∈ (0, 2) s, corresponding to
two full cycles of the pumping mechanism. The second order BDF2 method is applied for the
temporal integration and a time step size ∆t = 0.01 s is adopted, to capture the abrupt changes
in the flow driven by the interaction with the flexible flaps. The stabilization parameters for the
HDG fluid discretization are taken as τρ = 100/εF and τρυ = 100. The previous numerical ex-
amples of this chapter have systematically demonstrated how the two proposed formulations for
fluid-structure interaction provide identical physical results. Hence, solely the computationally
efficient monolithic HDG-CG formulation is here adopted for the simulation of the micropump
functioning and the results are compared with those obtained by the creators of the model in
COMSOL.
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(a) t = 0.25 s

(b) t = 0.50 s

(c) t = 0.75 s

Figure 5.28: Solution of fluid velocity for micropump
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(a) t = 0.25 s

(b) t = 0.50 s

(c) t = 0.75 s

Figure 5.29: Solution of fluid pressure for micropump
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Figure 5.30: Plot of net volume pumped for micropump

Figures 5.28 and 5.29 exemplarily display the fluid velocity and pressure field, respectively,
at times t = [0.25, 0.50, 0.75] s, corresponding to [1/4, 2/4, 3/4] of one period of the pumping
mechanism. During the downstroke (Figures 5.28(a) and 5.29(a)), the left flap bends backward
narrowing the channel and therefore significantly reducing the volume of fluid pumped out of
the left boundary, while, on the contrary, the right flap bends forward widening the channel and
easing the flow out of the right boundary. At half-cycle (Figures 5.28(b) and 5.29(b)) negligible
pressure gradients instead arrest the flow and the structures return approximately to their origi-
nal configuration. Finally, during the upstroke (Figures 5.28(c) and 5.29(c)), the left flap bends
towards to bottom of the channel and the right flap bends towards the top of the channel pushing
therefore most of the flow from left to right. As a consequence of the interaction between the
fluid and the flexible cilia, a sustained flow is pumped in a consistent direction without the need
of complex actuation mechanisms required in valve-based systems. The net volume pumped
from left to right as a function of time can be computed by integrating the normal component of
the velocity on the outflows and integrating the resulting flow rates in time. The contributions are
then summed considering negative and positive signs for the left and right outflows, respectively,
according to the formula

Vpump (t) = −
∫ t

0

(∫
ΓLeft
F

υF (τ) · nFdΓ

)
dτ +

∫ t

0

(∫
ΓRight
F

υF (τ) · nFdΓ

)
dτ . (5.45)

Figure 5.30 plots the computed net volume pumped that exhibits a consistent increase over time.
The HDG-CG formulation for FSI produces accurate physical results that are indistinguishable
from the ones provided by Veryst Engineering with COMSOL, confirming the capability of the
proposed method to accurately solve problems of engineering interest.
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6 Conclusion

Here, the achievements of this thesis are briefly summarized and an outlook on possible future
research is then offered.

6.1 Achievements

In this thesis, novel robust and efficient schemes for the solution of fluid structure interaction
problems have been proposed. The key features are the introduction of a weak compressibility
in the flow field to alleviate potential instabilities related to the artificial added mass effect and
the coupling of the fluid problem, discretized by means of the HDG method, with the structural
one, discretized by means of the CG method.

The first part of the thesis has investigated the role of the fluid compressibility on the stability
and the performance of FSI solvers in a classical CG framework. The stability is known to be
heavily affected by the artificial added mass phenomenon, whose detrimental effect is closely
related to the added mass operator. Through a rigorous analytical study, a discrete expression
of this operator has been derived, by extending the analysis by FÖRSTER et al. [58] to the
weakly compressible regime. Fundamental differences have thus been revealed between the in-
compressible and the weakly compressible regime. More precisely, it has been demonstrated that
the instability condition is much more permissive in the weakly compressible model, explaining
why artificial added mass effects have been rarely reported in literature for this case, and that, as
opposed to incompressible solvers, time step reduction progressively stabilizes the partitioned
FSI scheme. Numerical examples on two- and three-dimensional benchmarks confirmed the an-
alytical findings. By means of a strongly-coupled partitioned scheme with either constant or
dynamic relaxation, the most significant reduction of the coupling iterations and the consequent
computational time has been obtained in the most challenging cases, when mF/mS ≈ 1, and in
the time step size limit, when ∆t→ 0.

Two novel HDG formulations have been presented in the third chapter for the solution of
weakly compressible flow problems. The first formulation features the velocity and the pres-
sure and their trace representation as primal and hybrid variables, respectively, whereas the sec-
ond one considers the conserved quantities, i.e. density and momentum. Both strategies adopt
a scaled strain rate tensor as mixed variable to obtain a system of first-order equations. The
adoption of the VOIGT notation to strongly enforce the symmetry of this tensor introduced by
GIACOMINI et al. [67] and SEVILLA et al. [142] allows the use of an equal-order approxi-
mation for all the variables, hence simplifying the mathematical formulation and its computer
implementation, and improves the efficiency of the HDG methods, by reducing the stored quan-
tities and the size of the local problems. The convergence properties of the two formulations
have been first assessed in a two-dimensional weakly compressible POISEUILLE flow, equipped
with an analytical solution. This study has demonstrated the optimal convergence with order
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k + 1 of the mixed and the primal variables and the superconvergence with order k + 2 for the
postprocessed velocity field, as well as the robustness with respect to the compressibility level.
While the velocity-pressure formulation has been restricted to steady and non-convective flows,
the density-momentum counterpart has been formulated for unsteady and convective flows on
deforming domains, to be then embedded in FSI codes. The convergence features of the lat-
ter formulation have been confirmed in a three-dimensional weakly compressible TAYLOR–
COUETTE flow and in a problem with manufactured solution on a moving mesh.

The coupling of HDG and CG discretizations has been the focus of the fourth chapter of
this thesis. The local-global coupling proposed by PAIPURI et al. [127] and the newly devel-
oped NITSCHE-based coupling have been first formulated and compared for the solution of the
simple POISSON equation. Although both approaches have been demonstrated to provide the
same level of accuracy with practically indistinguishable results, the discrete version of the as-
sociated weak forms has highlighted important differences. More precisely, the exploitation of
the numerical flux and the trace of the solution on the mesh faces allows the NITSCHE-based
coupling to enforce the transmission conditions solely in the global problem, hence preserving
the core structure of the HDG and CG matrices. As a consequence, the proposed strategy leads
to a minimally-intrusive coupling, suitable to be integrated in existing finite element libraries,
and provides a flexible framework for the treatment of nonconforming meshes and nonuniform
polynomial approximations. The latter aspect has been addressed in this thesis. The efficient
NITSCHE-based coupling has been formulated for the solution of linear elastic problems fea-
turing multiple materials with compressible and nearly incompressible behaviors. The adoption
of the computationally efficient CG method on the compressible portion of the domain and the
discretization of the nearly incompressible region by means of the HDG method has been shown
to provide reliable and locking-free results with a relatively small number of globally coupled
degrees of freedom, in both two and three dimensions. The numerical examples have demon-
strated the possibility to obtain global optimal convergence of the stress with order k + 1 and
superconvergence of the displacement field with order k+ 2, if the polynomial degree in the CG
discretization is chosen one degree higher than in the HDG one.

The first HDG-CG formulations for the solution of fluid-structure interaction problems have
been presented in the last part of the thesis. Such formulations exploit the findings and the
achievements of the previous chapters and build upon the algorithms developed therein. In partic-
ular, the partitioned DIRICHLET–NEUMANN scheme outlined by KÜTTLER and WALL [91]
and adopted in the first part of the thesis in the context of standard FEM has been revisited to
deal with the hybrid HDG-CG discretization. The local-global coupling analyzed in the previous
chapter has been adopted in a staggered fashion, hence circumventing the intrusive nature of this
approach. Moreover, a monolithic NITSCHE-based scheme has been proposed by exploiting
the HDG-CG NITSCHE-based coupling to solely impose the coupling conditions in the global
problem. The rigorous procedure proposed by ÉTIENNE et al. [48] has been used to derive a
manufactured solution for the full FSI problem on a two-dimensional setting. The theoretical
convergence rates have been verified on this artificial problem with respect to both the spatial
and the temporal convergence. An extensive set of two- and three-dimensional problems have
highlighted the high-order accuracy of the hybrid formulations and their enhanced robustness
and efficiency compared to incompressible solvers, as well as their capability to solve problems
of engineering interest.
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6.2 Future work

Several aspects not addressed in this thesis could constitute the basis for future research. First,
the NITSCHE-based strategy developed for the coupling of HDG and CG discretizations could
be employed for handling non-matching meshes at the interface. Several works indeed show
NITSCHE-related methodologies for the imposition of the interface conditions in fluid-structure
interaction problems with nonconforming meshes, as in HANSBO and HERMANSSON [74],
BURMAN and FERNÁNDEZ [22] and AGER et al. [1], among others. The extension of the
proposed strategy to deal with non-matching meshes should be a straightforward task and it
should mostly involve code development, rather than mathematical derivation. A successful im-
plementation would allow a flexible and independent mesh generation for the fluid and the struc-
tural domains.

A second important aspect worth exploring is the adoption of the penalty-free non-symmetric
NITSCHE method introduced by BURMAN [20] for the weak imposition of boundary condi-
tions in convection-diffusion problems. On the one hand, this variant gets rid of the penalty
parameter γ, whose evaluation is strongly problem-dependent and which might negatively affect
the condition number of the resulting linear system. This feature would be of special interest for
embedding the HDG-CG formulation in commercial finite element codes, in which the presence
of user-provided parameters is undesired. On other hand, this penalty-free version of NITSCHE’s
method destroys the potential symmetry of the problem and it has been proven to be suboptimal
by half an order. Therefore, the proposed NITSCHE-based coupling remains very competitive
for the solution of the thermal and linear elastic problems considered in Chapter 4, owing to
the symmetry of the underlying formulations which allows the use of efficient and specialized
solvers for symmetric matrices. However, different considerations hold for the fluid-structure
interaction problems considered in Chapter 5. For this class of problems the resulting linear sys-
tem is in fact non-symmetric anyway because of the flow convection and compressibility and
because of the large structural displacement and the flexibility offered by the absence of the
penalty parameter could pay off the expected partial loss of accuracy.

Another topic worth investigating concerns the loss of the superconvergence of the postpro-
cessed fluid velocity, experienced in the FSI problem with manufactured solution presented in
Chapter 5. In fact, although the proposed NITSCHE-based coupling preserves the postprocessing
procedure described in Chapter 3 for pure flow problems, the procedure fails to provide an im-
proved approximation of the solution in the aforementioned numerical example. At the moment
it is not clear whether this loss of superconvergence is ascribable to the deformation of the fluid
domain according to the ALE description of motion or to the interaction with the structural field
(or to a combination of both), although the postprocessing procedure is formally independent of
these features.

A strategy that could provide a more accurate solution for a given computational effort or
a faster computation for a given level of accuracy would be the implementation of a degree
adaptivity procedure for the HDG discretization, as the one first proposed by GIORGIANI et
al. [68, 69]. Such a technique uses the mismatch between the solution and the postprocessed
counterpart as an a posteriori error estimator to drive an efficient local modification of the poly-
nomial degree of approximation in the elements and the faces to obtain a uniform error distribu-
tion below a desired tolerance. A degree adaptivity would be particularly relevant in the context
of fluid-structure interaction problems, for which much finer meshes are usually constructed near
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the structural interface to capture the relevant flow features. However, without a superconvergent
solution this technique would fail in its objective and new estimators would need to be devel-
oped. The previously discussed superconvergence loss would alternatively need to be addressed
before this strategy can be successfully employed.

Finally, an optimized implementation of the HDG-CG formulations for FSI could be devel-
oped, which would enable a fair comparison in terms of computational efficiency between the
proposed schemes and the ones based on standard finite element discretizations. This compar-
ison could be useful to understand under which circumstances and at which point high-order
HDG methods can outperform classical CG methods.
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A Finite element spaces

In this appendix, the discrete finite element spaces adopted in all the formulations are defined.
The computational domain is denoted with Ω, while each finite element is indicated with Ωe.
Then, ∂Ω and Γ represent the boundary of the domain and the internal interface, respectively,
Σ refers to the mesh skeleton, whereas each element edge/face is identified with Σf . Moreover,
Pp denotes the space of polynomial functions of complete degree at most p, whereas Ll and
Hh indicate the LEBESGUE and SOBOLEV spaces of order l and h, respectively. The finite
element spaces associated to the HDG and CG discretizations are presented in the following.

A.1 HDG spaces
Each component of the mixed and the primal variables is sought in the space

Wh(Ω) =
{
w ∈ L2 (Ω) : w|Ωe ∈ Pk (Ωe)∀Ωe ⊂ Ω

}
,

whereas the hybrid variables belong to the space

Ŵh(Σ) =
{
ŵ ∈ L2 (Σ) : ŵ|Σf ∈ Pk

(
Σf
)
∀Σf ⊂ Σ ⊆ Γ ∪ ∂Ω

}
.

The postprocessed variables are then sought in the richer space

Wh
? (Ω) =

{
w? ∈ L2 (Ω) : w?|Ωe ∈ Pk+1 (Ωe)∀Ωe ⊂ Ω

}
,

while the following space is used to remove the underdetermination of the postprocessing

Uh(Ω) = {u ∈ L2 (Ω) : u|Ωe ∈ P0 (Ωe)∀Ωe ⊂ Ω} .

Owing to the weak imposition of all boundary conditions, no distinction is made between the
spaces of trial and test functions.

A.2 CG spaces
Each component of the solution variables is sought in the space

Vh(Ω) =
{
v ∈ H1 (Ω) : v|Ωe ∈ Pk (Ωe)∀Ωe ⊂ Ω, v|ΓD = vD

}
,

with vD denoting the boundary data imposed on the DIRICHLET portion of the boundary ΓD.
The test functions belong instead to space

Vh0 (Ω) =
{
v ∈ H1 (Ω) : v|Ωe ∈ Pk (Ωe)∀Ωe ⊂ Ω, v|ΓD = 0

}
.

Clearly, the two spaces coincide for the homogeneous boundary condition vD = 0.
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B Temporal discretization

While special effort has been devoted to the development of innovative spatial discretization
strategies, the temporal discretization is performed in this thesis by means of standard and well-
established techniques. More precisely, the BDF schemes are chosen for the approximation of
the time derivatives appearing in all the formulations presented. Such implicit schemes belong
to the family of linear multistep methods and they use information from previous time steps to
compute a finite difference of the target function, with potential high-order accuracy. On the
one hand, BDF solvers are relatively easy to implement, possess good stability properties and
are often adopted for the solution of stiff differential equations. On the other hand, low-order
BDF methods can produce severe damping effects. The formulas and the associated parameters
needed for the approximation of first and second time derivatives are presented in the following.

B.1 BDF for first derivatives
The first temporal derivative of a function u at the time step n+ 1 can be approximated as

∂un+1

∂t
≈

BDFo∑
b=0

αb
∆t
un+1−b.

The coefficients α are reported in the following table for orders BDFo ranging from 1 to 6

α0 α1 α2 α3 α4 α5 α6

BDF1 1 −1 – – – – –

BDF2
3

2
−2

1

2
– – – –

BDF3
11

6
−3

3

2
−1

3
– – –

BDF4
25

12
−4 3 −4

3

1

4
– –

BDF5
137

60
−5 5 −10

3

5

4
−1

5
–

BDF6
49

20
−6

15

2
−20

3

15

4
−6

5

1

6

Table B.1: BDF coefficients for first derivatives
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B.2 BDF for second derivatives
The second temporal derivative of a function u at the time step n+ 1 can be approximated as

∂2un+1

∂t2
≈

BDFo+1∑
b=0

βb
∆t2

un+1−b.

The coefficients β are reported in the following table for orders BDFo ranging from 1 to 6

β0 β1 β2 β3 β4 β5 β6 β7

BDF1 1 −2 1 – – – – –

BDF2 2 −5 4 −1 – – – –

BDF3
35

12
−26

3

19

2
−14

3

11

12
– – –

BDF4
15

4
−77

6

107

6
−13

61

12
−5

6
– –

BDF5
203

45
−87

5

117

4
−254

9

33

2
−27

5

137

180
–

BDF6
469

90
−223

10

879

20
−949

18
41 −201

10

1019

180
− 7

10

Table B.2: BDF coefficients for second derivatives
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C Definition of elemental matrices and
vectors

In this appendix, the elemental matrices and vectors arising from the HDG and CG formulations
are detailed. A generic variable

[
u
]
e

and its trace representation
[
û
]
e

can be approximated over
each element Ωe and over each face of the element boundary ∂Ωe, respectively, as[

u (ξ)
]
e

=
[
ψ
] [

u
]
e

,
[
û
(
ξ̂
)]

e
=
[
ψ̂
] [

û
]
e

,

with ξ and ξ̂ being the coordinates of the quadrature points in the reference element and face,
respectively, whereas

[
u
]
e

and
[
û
]
e

denote the elemental nodal column vectors. The variables
appearing in the computation of the elemental matrices and vectors are computed on the inte-
gration points and the explicit dependence on ξ and ξ̂ will be henceforth omitted for the sake of
readability. Then, the matrices

[
ψ
]

and
[
ψ̂
]

gather the polynomial shape functions associated
to each element/face node computed on each element/face integration point and they are built as

[
ψ
]

=

 ψ1,1 . . . ψ1,nen

... . . . ...
ψneq,1 . . . ψneq,nen

 ,
[
ψ̂
]

=

 ψ̂1,1 . . . ψ̂1,nfn

... . . . ...
ψ̂nfq,1 . . . ψ̂nfq,nfn

 ,

with nen and nfn denoting the number of element/face nodes and neq and nfq being the number
of element/face quadrature points. The matrix gathering the derivatives of the shape functions is
then represented as

[
∇ {i}ψ

]
=

 ∂x{i}ψ1,1 . . . ∂x{i}ψ1,nen

... . . . ...
∂x{i}ψneq,1 . . . ∂x{i}ψneq,nen

 .

The indices i = 1, 2, 3 return the derivatives of the shape functions with respect to x, y, z,
respectively. Similarly, the matrix

[
∇T

S {i, j}ψ
]

provides the derivatives of the shape functions
with the respect to the spatial coordinates, following the VOIGT notation ordering in Section 3.2.
The notation {i,j} and {i} is adopted in this section to extract a specific block of a generic
matrix

[
K
]

and vector
[
f
]
, respectively, as

[
K
]

=


...

. . .
[
K {i,j}

]
. . .

...

 ,
[
f
]

=


...[

f {i}
]

...

 .

Moreover, the KRONECKER delta δi,j is used to access the diagonal blocks of a matrix. Finally,
in the following definitions, the indices d,e,f,g,h span the values 1, . . . ,nsd, whereas the
indices m,n span the values 1, . . . ,msd.
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C Definition of elemental matrices and vectors

C.1 HDG formulations for weakly compressible flows

In this section, the elemental matrices and vectors appearing in the discrete form of the HDG
formulations for weakly compressible flows in Chapter 3 are defined.

C.1.1 Velocity-pressure formulation

Here, the elemental contributions for the construction of the matrices and vectors in problems
(3.30) and (3.31) are listed. It is worth reminding that in this formulation the density is computed
as a function of the pressure level, i.e. ρ = ρ(p), according to the equation of state (3.2). Alter-
native and more sophisticated relationships may be considered and hence this equation is not
made explicit in the following definitions for the sake of generality. Analogously, the derivative
of the density with respect to the pressure simply stems from the compressibility coefficient, i.e.
∂ρ(p)/∂p = ε, but this coefficient is not explicitly written to easily accommodate potentially
nonlinear equations of state. Only the steady-state problem in Section 3.5.1 is solved by means
of this formulation. However, the intrinsic nonlinearity of the weakly compressible formulation
requires the updating of the left and right hand sides of the discrete problem in every NEWTON
iteration, denoted with the index j. The definition of the matrices and the vectors then reads

[
KLL {m,n}

]j
e

=− δm,n
(
ψT ,ψ

)
Ωe[

KLv {m,d}
]j
e

= +

msd∑
n=1

((
∇T

S {d,n}D1/2 {n,m}ψ
)T
,ψ
)

Ωe

[
KLv̂ {m,d}

]j
e

=−
msd∑
n=1

〈(
NT {d,n}D1/2 {n,m}ψ

)T
, ψ̂
〉
∂Ωe\ΓD

[
KvL {d,m}

]j
e

= +

msd∑
n=1

(
ψT ,∇T

S {d,n}D1/2 {n,m}ψ
)

Ωe[
Kvv {d,e}

]j
e

= + δd,e
〈
ψT , τυψ

〉
∂Ωe[

Kvp {d, 1}
]j
e

= +
(
ψT ,∇ {d}ψ

)
Ωe

−

(
ψT ,

∂ρ (p)

∂p

∣∣∣∣
pj
b {d}ψ

)
Ωe[

Kvv̂ {d,e}
]j
e

=− δd,e
〈
ψT , τυψ̂

〉
∂Ωe\ΓD[

Kpv {1,d}
]j
e

=−
(

(∇ {d}ψ)T , ρ
(
pj
)
ψ
)

Ωe[
Kpp {1, 1}

]j
e

=−
nsd∑
d=1

(
(∇ {d}ψ)T ,

∂ρ (p)

∂p

∣∣∣∣
pj
υj {d}ψ

)
Ωe

+
〈
ψT , τpψ

〉
∂Ωe[

Kpv̂ {1,d}
]j
e

= +
〈
ψT , ρ

(
p̂j
)
n {d} ψ̂

〉
∂Ωe\ΓD
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[
Kpp̂ {1, 1}

]j
e

= +

nsd∑
d=1

〈
ψT ,

∂ρ (p̂)

∂p̂

∣∣∣∣
p̂j
υ̂j {d}n {d} ψ̂

〉
∂Ωe\ΓD

−
〈
ψT , τpψ̂

〉
∂Ωe\ΓD[

Kv̂L {d,m}
]j
e

=−
msd∑
n=1

〈
ψ̂T ,NT {d,n}D1/2 {n,m}ψ

〉
∂Ωe\ΓD[

Kv̂v {d,e}
]j
e

=− δd,e
〈
ψ̂T , τυψ

〉
∂Ωe\ΓD[

Kv̂v̂ {d,e}
]j
e

= + δd,e

〈
ψ̂T , τυψ̂

〉
∂Ωe\ΓD[

Kv̂p̂ {d, 1}
]j
e

=−
〈
ψ̂T ,n {d} ψ̂

〉
∂Ωe\ΓD[

Kp̂p {1, 1}
]j
e

= +
〈
ψ̂T , τpψ

〉
∂Ωe\ΓD[

Kp̂p̂ {1, 1}
]j
e

=−
〈
ψ̂T , τpψ̂

〉
∂Ωe\ΓD

[
fL {m}

]j
e

= +
(
ψT ,Lj {m}

)
Ωe

−
nsd∑
d=1

msd∑
n=1

((
∇T

S {d,n}D1/2 {n,m}ψ
)T
,υj {d}

)
Ωe

+

nsd∑
d=1

msd∑
n=1

〈(
NT {d,n}D1/2 {n,m}ψ

)T
,υD {d}

〉
∂Ωe∩ΓD

+

nsd∑
d=1

msd∑
n=1

〈(
NT {d,n}D1/2 {n,m}ψ

)T
, υ̂j {d}

〉
∂Ωe\ΓD

[
fv {d}

]j
e

=−
msd∑
m=1

msd∑
n=1

(
ψT ,∇T

S {d,n}D1/2 {n,m}Lj {m}
)

Ωe

−
(
ψT ,∇ {d} pj

)
Ωe

−
〈
ψT , τυυ

j {d}
〉
∂Ωe

+
(
ψT , ρ

(
pj
)
b {d}

)
Ωe

+
〈
ψT , τυυ

D {d}
〉
∂Ωe∩ΓD

+
〈
ψT , τυυ̂

j {d}
〉
∂Ωe\ΓD[

fp {1}
]j
e

= +

nsd∑
d=1

(
(∇ {d}ψ)T , ρ

(
pj
)
υj {d}

)
Ωe

−
〈
ψT , τpp

j
〉
∂Ωe

−
nsd∑
d=1

〈
ψT , ρ

(
pD
)
υD {d}n {d}

〉
∂Ωe∩ΓD

+
〈
ψT , τpp

D
〉
∂Ωe∩ΓD
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−
nsd∑
d=1

〈
ψT , ρ

(
p̂j
)
υ̂j {d}n {d}

〉
∂Ωe\ΓD

+
〈
ψT , τpp̂

j
〉
∂Ωe\ΓD[

fv̂ {d}
]j
e

= +

msd∑
m=1

msd∑
n=1

〈
ψ̂T ,NT {d,n}D1/2 {n,m}Lj {m}

〉
∂Ωe\ΓD

+
〈
ψ̂T , p̂jn {d}

〉
∂Ωe\ΓD

+
〈
ψ̂T , τυ

(
υj {d} − υ̂j {d}

)〉
∂Ωe\ΓD

+
〈
ψ̂T , tN {d}

〉
∂Ωe∩ΓN[

fp̂ {1}
]j
e

=−
〈
ψ̂T , τp

(
pj − p̂j

)〉
∂Ωe\ΓD

C.1.2 Density-momentum formulation

Here the elemental matrices and vectors in problems (3.43) and (3.44) are detailed. These terms
refer to pure flow problems, whereas a modified definition of such terms is presented in Sec-
tions C.3.2 and C.3.3 for the solution of fluid-structure interaction problems. As opposed to the
velocity-pressure formulation, here the pressure is computed as a function of the density, i.e.
p = p(ρ), and its derivative with respect to the density equals the inverse of the compressibility
coefficient, i.e. ∂p(ρ)/∂ρ = 1/ε. For the sake of generality, such expressions are not made ex-
plicit. The stiffness matrices on the left hand side and the residual vectors on the right hand side
to be computed at the j-th NEWTON iteration to advance from the time step n to the time step
n+ 1 are defined as[
KLL {m,n}

]n+1, j

e
=− δm,n

(
ψT ,ψ

)
Ωe(t)[

KLρ {m, 1}
]n+1, j

e
=−

nsd∑
d=1

msd∑
n=1

((
∇T

S {d,n}D1/2 {n,m}ψ
)T
,
ρυn+1, j {d}

(ρn+1, j)2 ψ

)
Ωe(t)[

KLw {m,d}
]n+1, j

e
= +

msd∑
n=1

((
∇T

S {d,n}D1/2 {n,m}ψ
)T
,

1

ρn+1, j
ψ

)
Ωe(t)[

KLρ̂ {m, 1}
]n+1, j

e
= +

nsd∑
d=1

msd∑
n=1

〈(
NT {d,n}D1/2 {n,m}ψ

)T
,
ρ̂υn+1, j {d}

(ρ̂n+1, j)2 ψ̂

〉
∂Ωe(t)\ΓD(t)[

KLŵ {m,d}
]n+1, j

e
=−

msd∑
n=1

〈(
NT {d,n}D1/2 {n,m}ψ

)T
,

1

ρ̂n+1, j
ψ̂

〉
∂Ωe(t)\ΓD(t)[

Kρρ {1, 1}
]n+1, j

e
= +

(
ψT ,

α0

∆t
ψ
)

Ωe(t)

+

nsd∑
d=1

(
ψT ,∇ {d}

(
BDFo∑
b=0

αb
∆t
dn+1−b {d}

)
ψ

)
Ωe(t)
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+

nsd∑
d=1

(
(∇ {d}ψ)T ,

(
BDFo∑
b=0

αb
∆t
dn+1−b {d}

)
ψ

)
Ωe(t)

+
〈
ψT , τρψ

〉
∂Ωe(t)[

Kρw {1,d}
]n+1, j

e
=−

(
(∇ {d}ψ)T ,ψ

)
Ωe(t)[

Kρρ̂ {1, 1}
]n+1, j

e
=−

nsd∑
d=1

〈
ψT ,

(
BDFo∑
b=0

αb
∆t
dn+1−b {d}

)
n {d} ψ̂

〉
∂Ωe(t)\ΓD(t)

−
〈
ψT , τρψ̂

〉
∂Ωe(t)\ΓD(t)[

Kρŵ {1,d}
]n+1, j

e
= +

〈
ψT ,n {d} ψ̂

〉
∂Ωe(t)\ΓD(t)[

KwL {d,m}
]n+1, j

e
= +

msd∑
n=1

(
ψT ,∇T

S {d,n}D1/2 {n,m}ψ
)

Ωe(t)

[
Kwρ {d, 1}

]n+1, j

e
= +

nsd∑
e=1

(
(∇ {e}ψ)T ,ρυn+1, j {d} ρυ

n+1, j {e}
(ρn+1, j)2 ψ

)
Ωe(t)

+

(
ψT ,

∂p (ρ)

∂ρ

∣∣∣∣
ρn+1, j

∇ {d}ψ
)

Ωe(t)

−
(
ψT , bn+1 {d}ψ

)
Ωe(t)[

Kww {d,e}
]n+1, j

e
= + δd,e

(
ψT ,

α0

∆t
ψ
)

Ωe(t)

+ δd,e

nsd∑
f=1

(
ψT ,∇ {f}

(
BDFo∑
b=0

αb
∆t
dn+1−b {f}

)
ψ

)
Ωe(t)

− δd,e
nsd∑
f=1

(
(∇ {f}ψ)T ,

ρυn+1, j {f}
ρn+1, j

ψ

)
Ωe(t)

+ δd,e

nsd∑
f=1

(
(∇ {f}ψ)T ,

(
BDFo∑
b=0

αb
∆t
dn+1−b {f}

)
ψ

)
Ωe(t)

−
(

(∇ {e}ψ)T ,
ρυn+1, j {d}
ρn+1, j

ψ

)
Ωe(t)

+ δd,e
〈
ψT , τρυψ

〉
∂Ωe(t)[

Kwρ̂ {d, 1}
]n+1, j

e
=−

nsd∑
e=1

〈
ψT , ρ̂υ

n+1, j {d} ρ̂υ
n+1, j {e}

(ρ̂n+1, j)2 n {e} ψ̂

〉
∂Ωe(t)\ΓD(t)[

Kwŵ {d,e}
]n+1, j

e
= + δd,e

nsd∑
f=1

〈
ψT ,

ρ̂υn+1, j {f}
ρ̂n+1, j

n {f} ψ̂

〉
∂Ωe(t)\ΓD(t)
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− δd,e
nsd∑
f=1

〈
ψT ,

(
BDFo∑
b=0

αb
∆t
dn+1−b {f}

)
n {f} ψ̂

〉
∂Ωe(t)\ΓD(t)

+

〈
ψT ,

ρ̂υ
n+1, j {d}
ρ̂n+1, j

n {e} ψ̂

〉
∂Ωe(t)\ΓD(t)

− δd,e
〈
ψT , τρυψ̂

〉
∂Ωe(t)\ΓD(t)[

Kρ̂ρ {1, 1}
]n+1, j

e
= +

〈
ψ̂T , τρψ

〉
∂Ωe(t)\ΓD(t)[

Kρ̂ρ̂ {1, 1}
]n+1, j

e
=−

〈
ψ̂T , τρψ̂

〉
∂Ωe(t)\ΓD(t)[

KŵL {d,m}
]n+1, j

e
=−

msd∑
n=1

〈
ψ̂T ,NT {d,n}D1/2 {n,m}ψ

〉
∂Ωe(t)\ΓD(t)[

Kŵw {d,e}
]n+1, j

e
=− δd,e

〈
ψ̂T , τρυψ

〉
∂Ωe(t)\ΓD(t)[

Kŵρ̂ {d, 1}
]n+1, j

e
=−

〈
ψ̂T ,

∂p (ρ̂)

∂ρ̂

∣∣∣∣
ρ̂n+1, j

n {d} ψ̂

〉
∂Ωe(t)\ΓD(t)[

Kŵŵ {d,e}
]n+1, j

e
= + δd,e

〈
ψ̂T , τρυψ̂

〉
∂Ωe(t)\ΓD(t)

[
fL {m}

]n+1, j

e
= +

(
ψT ,Ln+1, j {m}

)
Ωe(t)

−
nsd∑
d=1

msd∑
n=1

((
∇T

S {d,n}D1/2 {n,m}ψ
)T
,
ρυn+1, j {d}
ρn+1, j

)
Ωe(t)

+

nsd∑
d=1

msd∑
n=1

〈(
NT {d,n}D1/2 {n,m}ψ

)T
,
ρυD, n+1 {d}
ρD, n+1

〉
∂Ωe(t)∩ΓD(t)

+

nsd∑
d=1

msd∑
n=1

〈(
NT {d,n}D1/2 {n,m}ψ

)T
,
ρ̂υ

n+1, j {d}
ρ̂n+1, j

〉
∂Ωe(t)\ΓD(t)[

fρ {1}
]n+1, j

e
=−

(
ψT ,

BDFo∑
b=0

αb
∆t
ρn+1−b

)
Ωe(t)

−
nsd∑
d=1

(
ψT , ρn+1, j∇ {d}

(
BDFo∑
b=0

αb
∆t
dn+1−b {d}

))
Ωe(t)

+

nsd∑
d=1

(
(∇ {d}ψ)T ,ρυn+1, j {d}

)
Ωe(t)

−
nsd∑
d=1

(
(∇ {d}ψ)T , ρn+1, j

(
BDFo∑
b=0

αb
∆t
dn+1−b {d}

))
Ωe(t)

−
〈
ψT , τρρ

n+1, j
〉
∂Ωe(t)
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−
nsd∑
d=1

〈
ψT ,ρυD, n+1 {d}n {d}

〉
∂Ωe(t)∩ΓD(t)

+

nsd∑
d=1

〈
ψT , ρD, n+1

(
BDFo∑
b=0

αb
∆t
dn+1−b {d}

)
n {d}

〉
∂Ωe(t)∩ΓD(t)

+
〈
ψT , τρρ

D, n+1
〉
∂Ωe(t)∩ΓD(t)

−
nsd∑
d=1

〈
ψT , ρ̂υ

n+1, j {d}n {d}
〉
∂Ωe(t)\ΓD(t)

+

nsd∑
d=1

〈
ψT , ρ̂n+1, j

(
BDFo∑
b=0

αb
∆t
dn+1−b {d}

)
n {d}

〉
∂Ωe(t)\ΓD(t)

+
〈
ψT , τρρ̂

n+1, j
〉
∂Ωe(t)\ΓD(t)[

fw {d}
]n+1, j

e
=−

(
ψT ,

BDFo∑
b=0

αb
∆t
ρυn+1−b {d}

)
Ωe(t)

−
nsd∑
e=1

(
ψT ,ρυn+1, j {d}∇ {e}

(
BDFo∑
b=0

αb
∆t
dn+1−b {e}

))
Ωe(t)

+

nsd∑
e=1

(
(∇ {e}ψ)T ,ρυn+1, j {d} ρυ

n+1, j {e}
ρn+1, j

)
Ωe(t)

−
nsd∑
e=1

(
(∇ {e}ψ)T ,ρυn+1, j {d}

(
BDFo∑
b=0

αb
∆t
dn+1−b {e}

))
Ωe(t)

−
msd∑
m=1

msd∑
n=1

(
ψT ,∇T

S {d,n}D1/2 {n,m}Ln+1, j {m}
)

Ωe(t)

−
(
ψT ,∇ {d} p

(
ρn+1, j

))
Ωe(t)

−
〈
ψT , τρυρυ

n+1, j {d}
〉
∂Ωe(t)

+
(
ψT , ρn+1, jbn+1 {d}

)
Ωe(t)

−
nsd∑
e=1

〈
ψT ,ρυD, n+1 {d} ρυ

D, n+1 {e}
ρD, n+1

n {e}
〉
∂Ωe(t)∩ΓD(t)

+

nsd∑
e=1

〈
ψT ,ρυD, n+1 {d}

(
BDFo∑
b=0

αb
∆t
dn+1−b {e}

)
n {e}

〉
∂Ωe(t)∩ΓD(t)

+
〈
ψT , τρυρυ

D, n+1 {d}
〉
∂Ωe(t)∩ΓD(t)

−
nsd∑
e=1

〈
ψT , ρ̂υ

n+1, j {d} ρ̂υ
n+1, j {e}
ρ̂n+1, j

n {e}

〉
∂Ωe(t)\ΓD(t)
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+

nsd∑
e=1

〈
ψT , ρ̂υ

n+1, j {d}

(
BDFo∑
b=0

αb
∆t
dn+1−b {e}

)
n {e}

〉
∂Ωe(t)\ΓD(t)

+
〈
ψT , τρυρ̂υ

n+1, j {d}
〉
∂Ωe(t)\ΓD(t)[

fρ̂ {1}
]n+1, j

e
=−

〈
ψ̂T , τρ

(
ρn+1, j − ρ̂n+1, j

)〉
∂Ωe(t)\ΓD(t)[

fŵ {d}
]n+1, j

e
= +

msd∑
m=1

msd∑
n=1

〈
ψ̂T ,NT {d,n}D1/2 {n,m}Ln+1, j {m}

〉
∂Ωe(t)\ΓD(t)

+
〈
ψ̂T , p

(
ρ̂n+1, j

)
n {d}

〉
∂Ωe(t)\ΓD(t)

+
〈
ψ̂T , τρυ

(
ρυn+1, j {d} − ρ̂υn+1, j {d}

)〉
∂Ωe(t)\ΓD(t)

+
〈
ψ̂T , tN, n+1 {d}

〉
∂Ωe(t)∩ΓN (t)
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C.2 HDG, CG and HDG-CG formulations for thermal
problems

In this section, the elemental matrices and vectors appearing in the discrete form of the HDG,
CG and the coupled HDG-CG formulations for thermal problems in Chapter 4 are defined.

C.2.1 HDG approximation

Here the elemental contributions to the HDG matrices and vectors in (4.9) and (4.10) are shown.
Owing to the linear and steady-state nature of the problems considered, the computation of
these terms is required only once and no iteration nor advancement in time has to be performed.
Moreover, given the symmetry of the problem, only the independent blocks of the left hand
side matrix are listed, whereas the remaining ones can be computed by simply transposing the
corresponding blocks with inverted row and column indices. The matrices and vectors are thus
defined as[
K11 {d,e}

]
e

=− δd,e
(
ψT
HDG,ψHDG

)
Ωe
HDG[

K12 {d, 1}
]
e

= +
((√

κ∇ {d}ψHDG

)T
,ψHDG

)
Ωe
HDG[

K13 {d, 1}
]
e

=−
〈(√

κnHDG {d}ψHDG

)T
, ψ̂HDG

〉
∂Ωe

HDG\ΓD
HDG[

K22 {1, 1}
]
e

= +
〈
ψT
HDG, τTψHDG

〉
∂Ωe

HDG[
K23 {1, 1}

]
e

=−
〈
ψT
HDG, τT ψ̂HDG

〉
∂Ωe

HDG\ΓD
HDG[

K33 {1, 1}
]
e

= +
〈
ψ̂T
HDG, τT ψ̂HDG

〉
∂Ωe

HDG\ΓD
HDG[

f1 {d}
]
e

= +
〈(√

κnHDG {d}ψHDG

)T
, TDHDG

〉
∂Ωe

HDG∩ΓD
HDG[

f2 {1}
]
e

= +
(
ψT
HDG, s

)
Ωe
HDG

+
〈
ψT
HDG, τTT

D
HDG

〉
∂Ωe

HDG∩ΓD
HDG[

f3 {1}
]
e

= +
〈
ψ̂T
HDG, f

N
〉
∂Ωe

HDG∩ΓN
HDG

C.2.2 CG approximation

The elemental contribution to the CG matrix and vector in (4.17) is simply given by

[
K44 {1, 1}

]
e

= +

nsd∑
d=1

(
(∇ {d}ψCG)T , κ∇ {d}ψCG

)
Ωe
CG[

f4 {1}
]
e

= +
(
ψT
CG, s

)
Ωe
CG

+
〈
ψT
CG, f

N
〉
∂Ωe

CG∩ΓN
CG
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C.2.3 Local-global coupling

The local-global coupling of HDG and CG discretizations requires a modification of the global
matrices of the single discretizations

[
K33

]
and

[
K44

]
, as well as the of the matrices connecting

the HDG local and global DOFs
[
K13

]
and

[
K14

]
, plus the introduction of the coupling blocks[

K̄14

]
and

[
K̄24

]
. The new terms in (4.23) are therefore defined as

[
K̄13 {d, 1}

]
e

=−
〈(√

κnHDG {d}ψHDG

)T
, ψ̂HDG

〉
∂Ωe

HDG\ΓD
HDG\ΓI[

K̄14 {d, 1}
]
e

=−
〈(√

κnHDG {d}ψHDG

)T
,ψCG

〉
∂Ωe

HDG∩ΓI[
K̄23 {1, 1}

]
e

=−
〈
ψT
HDG, τT ψ̂HDG

〉
∂Ωe

HDG\ΓD
HDG\ΓI[

K̄24 {1, 1}
]
e

=−
〈
ψT
HDG, τTψCG

〉
∂Ωe

HDG∩ΓI[
K̄33 {1, 1}

]
e

= +
〈
ψ̂T
HDG, τT ψ̂HDG

〉
∂Ωe

HDG\ΓD
HDG\ΓI[

K̄44 {1, 1}
]
e

= +

nsd∑
d=1

(
(∇ {d}ψCG)T , κ∇ {d}ψCG

)
Ωe
CG

+
〈
ψT
CG, τTψCG

〉
Ωe
CG∩ΓI

C.2.4 NITSCHE-based coupling

The NITSCHE-based coupling of HDG and CG instead requires the addition of some terms in
the global matrices

[
K33

]
and

[
K44

]
and the implementation of the coupling block

[
K̃34

]
solely

associated to the global DOFs on the interface. Such modified terms in (4.31) read[
K̃33 {1, 1}

]
e

= +
[
K33 {1, 1}

]
e

+
〈
ψ̂T
HDG,

γ

h
ψ̂HDG

〉
∂Ωe

HDG∩ΓI[
K̃34 {1, 1}

]
e

= +

nsd∑
d=1

〈
ψ̂T
HDG, κ (−nHDG {d})∇ {d}ψCG

〉
∂Ωe

HDG∩ΓI

−
〈
ψ̂T
HDG,

γ

h
ψCG

〉
∂Ωe

HDG∩ΓI[
K̃44 {1, 1}

]
e

= +
[
K44 {1, 1}

]
e

−
nsd∑
d=1

〈
ψT
CG, κnCG {d}∇ {d}ψCG

〉
Ωe
CG∩ΓI

−
nsd∑
d=1

〈
(κnCG {d}∇ {d}ψCG)T ,ψCG

〉
Ωe
CG∩ΓI

+
〈
ψT
CG,

γ

h
ψCG

〉
Ωe
CG∩ΓI
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C.3 HDG-CG formulations for FSI

In this section, the terms arising from the CG approximation of the structural equations are first
recalled. Then, the elemental matrices and vectors appearing in the discrete form of the HDG-CG
formulations for fluid-structure interaction in Chapter 5 are defined.

C.3.1 CG formulation for structural problems

The discretization of the structural problem is performed by means of the CG method, whereas
the backward differentiation formula is adopted for the temporal integration. The elemental con-
tributions to the stiffness matrix and the residual vector to be computed at the j-th NEWTON
iteration to advance from the time step n to the time step n+ 1 are given by

[
Kuu {d,e}

]n+1, j

e
= + δd,e

(
ψT
S , ρS

β0

∆t2
ψS

)
Ωe

S

+

nsd∑
f=1

nsd∑
g=1

(
(∇ {f}ψS)T ,

∂ [PS (∇uS)] {d,f}
∂ [FS (∇uS)] {e,g}

∣∣∣∣
∇un+1, j

S

∇ {g}ψS

)
Ωe

S[
fu {d}

]n+1, j

e
=−

(
ψT
S , ρS

(
BDFo+1∑
b=0

βb
∆t2

un+1−b
S {d}

))
Ωe

S

−
nsd∑
e=1

(
(∇ {e}ψS)T ,

[
PS
(
∇un+1, j

S
)]
{d,e}

)
Ωe

S

+
(
ψT
S , ρSb

n+1
S {d}

)
Ωe

S

+
〈
ψT
S , t

N, n+1
S {d}

〉
∂Ωe

S∩ΓN
S

It is worth reminding that the first PIOLA–KIRCHHOFF stress tensor with size nsd×nsd is com-
puted as a function of the displacement gradient, i.e. PS = PS(∇uS), according to equations
(2.13), (2.14) and (2.15) and depending on the constitutive model adopted. In this thesis, both
the ST. VENANT–KIRCHHOFF and the Neo-HOOKEan material models have been consid-
ered in the numerical studies. The derivative of the stress tensor with respect to the deformation
gradient, i.e. ∂PS(∇uS)/∂FS(∇uS), has instead size nsd × nsd × nsd × nsd and is needed
for the construction of the stiffness matrix in the structural problem and for the computation of
a number of terms arising from the monolithic NITSCHE-based formulation for fluid-structure
interaction in Section C.3.3. The resulting tensor is constant and solely contains the LAMÉ pa-
rameters in the linear case, whereas for the nonlinear models adopted here each component is a
function of the deformation gradient (and therefore of the displacement gradient). Its derivation
can be cumbersome and the symbolic math toolbox of MATLAB has been used for this purpose.
In the following, the explicit definition of the first PIOLA–KIRCHHOFF stress tensor and its
linearization is provided in the two-dimensional case for the aforementioned material models.
The subscript �S is omitted for the sake of readability.
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ST. VENANT–KIRCHHOFF

Pxx = µ
[
Fxx

(
F 2
xx+F

2
yx−1

)
+Fxy (FxxFxy+FyxFyy)

]
+λFxx

(
F 2
xx+F

2
xy+F

2
yx+F

2
yy−2

)
/2

Pxy = µ
[
Fxy

(
F 2
xy+F

2
yy−1

)
+Fxx (FxxFxy+FyxFyy)

]
+λFxy

(
F 2
xx+F

2
xy+F

2
yx+F

2
yy−2

)
/2

Pyx = µ
[
Fyx

(
F 2
xx+F

2
yx−1

)
+Fyy (FxxFxy+FyxFyy)

]
+λFyx

(
F 2
xx+F

2
xy+F

2
yx+F

2
yy−2

)
/2

Pyy = µ
[
Fyy

(
F 2
xy+F

2
yy−1

)
+Fyx (FxxFxy+FyxFyy)

]
+λFyy

(
F 2
xx+F

2
xy+F

2
yx+F

2
yy−2

)
/2

∂Pxx/∂Fxx = µ
(
3F 2

xx+F
2
xy+F

2
yx−1

)
+λ
(
3F 2

xx+F
2
xy+F

2
yx+F

2
yy−2

)
/2

∂Pxx/∂Fxy = ∂Pxy/∂Fxx = µ (2FxxFxy+FyxFyy) +λFxxFxy

∂Pxx/∂Fyx = ∂Pyx/∂Fxx = µ (2FxxFyx+FxyFyy) +λFxxFyx

∂Pxx/∂Fyy = ∂Pyy/∂Fxx = µFxyFyx+λFxxFyy

∂Pxy/∂Fxy = µ
(
F 2
xx+3F 2

xy+F
2
yy−1

)
+λ
(
F 2
xx+3F 2

xy+F
2
yx+F

2
yy−2

)
/2

∂Pxy/∂Fyx = ∂Pyx/∂Fxy = µFxxFyy+λFxyFyx

∂Pxy/∂Fyy = ∂Pyy/∂Fxy = µ (FxxFyx+2FxyFyy) +λFxyFyy

∂Pyx/∂Fyx = µ
(
F 2
xx+3F 2

yx+F
2
yy−1

)
+λ
(
F 2
xx+F

2
xy+3F 2

yx+F
2
yy−2

)
/2

∂Pyx/∂Fyy = ∂Pyy/∂Fyx = µ (FxxFxy+2FyxFyy) +λFyxFyy

∂Pyy/∂Fyy = µ
(
F 2
xy+F

2
yx+3F 2

yy−1
)

+λ
(
F 2
xx+F

2
xy+F

2
yx+3F 2

yy−2
)
/2

Neo-HOOKE

Pxx = µ (Fxx−Fyy/J) +λFyy ln (J) /J

Pxy = µ (Fxy+Fyx/J)−λFyx ln (J) /J

Pyx = µ (Fyx+Fxy/J)−λFxy ln (J) /J

Pyy = µ (Fyy−Fxx/J) +λFxx ln (J) /J

∂Pxx/∂Fxx = µ
(
F 2
yy/J

2+1
)

+λF 2
yy [1− ln (J)] /J2

∂Pxx/∂Fxy = ∂Pxy/∂Fxx = −µFyxFyy/J2−λFyxFyy [1− ln (J)] /J2

∂Pxx/∂Fyx = ∂Pyx/∂Fxx = −µFxyFyy/J2−λFxyFyy [1− ln (J)] /J2

∂Pxx/∂Fyy = ∂Pyy/∂Fxx = µ
(
FxxFyy/J

2−1/J
)

+λ
{
FxxFyy [1− ln (J)] /J2+ ln (J) /J

}
∂Pxy/∂Fxy = µ

(
F 2
yx/J

2+1
)

+λF 2
yx [1− ln (J)] /J2

∂Pxy/∂Fyx = ∂Pyx/∂Fxy = µ
(
FxyFyx/J

2+1/J
)

+λ
{
FxyFyx [1− ln (J)] /J2− ln (J) /J

}
∂Pxy/∂Fyy = ∂Pyy/∂Fxy = −µFxxFyx/J2−λFxxFyx [1− ln (J)] /J2

∂Pyx/∂Fyx = µ
(
F 2
xy/J

2+1
)

+λF 2
xy [1− ln (J)] /J2

∂Pyx/∂Fyy = ∂Pyy/∂Fyx = −µFxxFxy/J2−λFxxFxy [1− ln (J)] /J2

∂Pyy/∂Fyy = µ
(
F 2
xx/J

2+1
)

+λF 2
xx [1− ln (J)] /J2

J = FxxFyy−FxyFyx
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C.3.2 Partitioned DIRICHLET–NEUMANN coupling

The partitioned DIRICHLET–NEUMANN scheme coupling HDG and CG discretizations for
the solution of fluid-structure interaction problems is outlined in Section 5.2. Such strategy ex-
changes the coupling information by means of the interface vectors

[
f̄DL
]
,
[
f̄DU
]

and
[
f̄Nu
]
, with

UF gathering the fluid density and momentum local DOFs. However, the suppression of the
DOFs associated to the trace of the fluid momentum at the interface implies the modification of
a number of terms in the fluid solver. By denoting with n the time step level, with i the coupling
iteration index and with j the single-field NEWTON iteration, the elemental contributions to the
modified terms in (5.12), (5.13) and (5.15) read

[
K̄Lρ̂ {m, 1}

]n+1, i, j

e
= +

nsd∑
d=1

msd∑
n=1

〈(
NT
F {d,n}D

1/2
F {n,m}ψF

)T
,

ρ̂υn+1, i, j
F {d}(
ρ̂n+1, i, j
F

)2 ψ̂F

〉
∂Ωe

F\Γ
D
F \ΓI[

K̄Lŵ {m,d}
]n+1, i, j

e
=−

msd∑
n=1

〈(
NT
F {d,n}D

1/2
F {n,m}ψF

)T
,

1

ρ̂n+1, i, j
F

ψ̂F

〉
∂Ωe

F\Γ
D
F \ΓI[

K̄ρρ̂ {1, 1}
]n+1, i, j

e
=−

nsd∑
d=1

〈
ψT
F ,

(
BDFo∑
b=0

αb
∆t
dn+1−b
F {d}

)
nF {d} ψ̂F

〉
∂Ωe

F\Γ
D
F

−
〈
ψT
F , τρψ̂F

〉
∂Ωe

F\Γ
D
F

+

nsd∑
d=1

〈
ψT
F ,

(
BDFo∑
b=0

αb
∆t
un+1−b
S {d}

)
nF {d} ψ̂F

〉
∂Ωe

F∩ΓI[
K̄ρŵ {1,d}

]n+1, i, j

e
= +

〈
ψT
F ,nF {d} ψ̂F

〉
∂Ωe

F\Γ
D
F \ΓI[

K̄wρ̂ {d, 1}
]n+1, i, j

e
=−

nsd∑
e=1

〈
ψT
F , ρ̂υ

n+1, i, j
F {d} ρ̂υ

n+1, i, j
F {e}(
ρ̂n+1, i, j
F

)2 nF {e} ψ̂F

〉
∂Ωe

F\Γ
D
F \ΓI

+

nsd∑
e=1

〈
ψT
F ,

(
BDFo∑
b=0

αb
∆t
un+1−b
S {d}un+1−b

S {e}

)
nF {e} ψ̂F

〉
∂Ωe

F∩ΓI

−
nsd∑
e=1

〈
ψT
F ,

(
BDFo∑
b=0

αb
∆t
un+1−b
S {d}dn+1−b

F {e}

)
nF {e} ψ̂F

〉
∂Ωe

F∩ΓI

−

〈
ψT
F , τρυ

(
BDFo∑
b=0

αb
∆t
un+1−b
S {d}

)
ψ̂F

〉
∂Ωe

F∩ΓI[
K̄wŵ {d,e}

]n+1, i, j

e
= + δd,e

nsd∑
f=1

〈
ψT
F ,
ρ̂υn+1, i, j
F {f}
ρ̂n+1, i, j
F

nF {f} ψ̂F

〉
∂Ωe

F\Γ
D
F \ΓI
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− δd,e
nsd∑
f=1

〈
ψT
F ,

(
BDFo∑
b=0

αb
∆t
dn+1−b
F {f}

)
nF {f} ψ̂F

〉
∂Ωe

F\Γ
D
F \ΓI

+

〈
ψT
F ,
ρ̂υn+1, i, j
F {d}
ρ̂n+1, i, j
F

nF {e} ψ̂F

〉
∂Ωe

F\Γ
D
F \ΓI

− δd,e
〈
ψT
F , τρυψ̂F

〉
∂Ωe

F\Γ
D
F \ΓI[

K̄ŵL {d,m}
]n+1, i, j

e
=−

msd∑
n=1

〈
ψ̂T
F ,N

T
F {d,n}D

1/2
F {n,m}ψF

〉
∂Ωe

F\Γ
D
F \ΓI[

K̄ŵw {d,e}
]n+1, i, j

e
=− δd,e

〈
ψ̂T
F , τρυψF

〉
∂Ωe

F\Γ
D
F \ΓI[

K̄ŵρ̂ {d, 1}
]n+1, i, j

e
=−

〈
ψ̂T
F ,
∂pF (ρ̂F)

∂ρ̂F

∣∣∣∣
ρ̂n+1, i, j
F

nF {d} ψ̂F

〉
∂Ωe

F\Γ
D
F \ΓI[

K̄ŵŵ {d,e}
]n+1, i, j

e
= + δd,e

〈
ψ̂T
F , τρυψ̂F

〉
∂Ωe

F\Γ
D
F \ΓI

[
f̄L {m}

]n+1, i, j

e
= +

(
ψT
F ,L

n+1, i, j
F {m}

)
Ωe

−
nsd∑
d=1

msd∑
n=1

((
∇T

S {d,n}D
1/2
F {n,m}ψF

)T
,
ρυn+1, i, j
F {d}
ρn+1, i, j
F

)
Ωe

F

+

nsd∑
d=1

msd∑
n=1

〈(
NT
F {d,n}D

1/2
F {n,m}ψF

)T
,
ρυD, n+1
F {d}
ρD, n+1
F

〉
∂Ωe

F∩ΓD
F

+

nsd∑
d=1

msd∑
n=1

〈(
NT
F {d,n}D

1/2
F {n,m}ψF

)T
,
ρ̂υ

n+1, i, j
F {d}
ρ̂n+1, i, j
F

〉
∂Ωe

F\Γ
D
F \ΓI[

f̄ρ {1}
]n+1, i, j

e
=−

(
ψT
F ,

BDFo∑
b=0

αb
∆t
ρn+1−b
F

)
Ωe

F

−
nsd∑
d=1

(
ψT
F , ρ

n+1, i, j
F ∇ {d}

(
BDFo∑
b=0

αb
∆t
dn+1−b
F {d}

))
Ωe

F

+

nsd∑
d=1

(
(∇ {d}ψF)T ,ρυn+1, i, j

F {d}
)

Ωe

−
nsd∑
d=1

(
(∇ {d}ψF)T , ρn+1, i, j

F

(
BDFo∑
b=0

αb
∆t
dn+1−b
F {d}

))
Ωe

F

−
〈
ψT
F , τρρ

n+1, i, j
F

〉
∂Ωe

F

−
nsd∑
d=1

〈
ψT
F ,ρυ

D, n+1
F {d}nF {d}

〉
∂Ωe

F∩ΓD
F
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+

nsd∑
d=1

〈
ψT
F , ρ

D, n+1
F

(
BDFo∑
b=0

αb
∆t
dn+1−b
F {d}

)
nF {d}

〉
∂Ωe

F∩ΓD
F

+
〈
ψT
F , τρρ

D, n+1
F

〉
∂Ωe

F∩ΓD
F

−
nsd∑
d=1

〈
ψT
F , ρ̂υ

n+1, i, j
F {d}nF {d}

〉
∂Ωe

F\Γ
D
F \ΓI

+

nsd∑
d=1

〈
ψT
F , ρ̂

n+1, i, j
F

(
BDFo∑
b=0

αb
∆t
dn+1−b
F {d}

)
nF {d}

〉
∂Ωe

F\Γ
D
F

+
〈
ψT
F , τρρ̂

n+1, i, j
F

〉
∂Ωe

F\Γ
D
F[

f̄w {d}
]n+1, i, j

e
=−

(
ψT
F ,

BDFo∑
b=0

αb
∆t
ρυn+1−b
F {d}

)
Ωe

F

−
nsd∑
e=1

(
ψT
F ,ρυ

n+1, i, j
F {d}∇ {e}

(
BDFo∑
b=0

αb
∆t
dn+1−b
F {e}

))
Ωe

F

+

nsd∑
e=1

(
(∇ {e}ψF)T ,ρυn+1, i, j

F {d} ρυ
n+1, i, j
F {e}
ρn+1, i, j
F

)
Ωe

F

−
nsd∑
e=1

(
(∇ {e}ψF)T ,ρυn+1, i, j

F {d}

(
BDFo∑
b=0

αb
∆t
dn+1−b
F {e}

))
Ωe

F

−
msd∑
m=1

msd∑
n=1

(
ψT
F ,∇T

S {d,n}D
1/2
F {n,m}L

n+1, i, j
F {m}

)
Ωe

F

−
(
ψT
F ,∇ {d} pF

(
ρn+1, i, j
F

))
Ωe

F

−
〈
ψT
F , τρυρυ

n+1, i, j
F {d}

〉
∂Ωe

F

+
(
ψT
F , ρ

n+1, i, j
F bn+1

F {d}
)

Ωe
F

−
nsd∑
e=1

〈
ψT
F ,ρυ

D, n+1
F {d} ρυ

D, n+1
F {e}
ρD, n+1
F

nF {e}

〉
∂Ωe

F∩ΓD
F

+

nsd∑
e=1

〈
ψT
F ,ρυ

D, n+1
F {d}

(
BDFo∑
b=0

αb
∆t
dn+1−b
F {e}

)
nF {e}

〉
∂Ωe

F∩ΓD
F

+
〈
ψT
F , τρυρυ

D, n+1
F {d}

〉
∂Ωe

F∩ΓD
F

−
nsd∑
e=1

〈
ψT
F , ρ̂υ

n+1, i, j
F {d} ρ̂υ

n+1, i, j
F {e}
ρ̂n+1, i, j
F

nF {e}

〉
∂Ωe

F\Γ
D
F \ΓI
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+

nsd∑
e=1

〈
ψT
F , ρ̂υ

n+1, i, j
F {d}

(
BDFo∑
b=0

αb
∆t
dn+1−b
F {e}

)
nF {e}

〉
∂Ωe

F\Γ
D
F \ΓI

+
〈
ψT
F , τρυρ̂υ

n+1, i, j
F {d}

〉
∂Ωe

F\Γ
D
F \ΓI[

f̄ŵ {d}
]n+1, i, j

e
= +

msd∑
m=1

msd∑
n=1

〈
ψ̂T ,NT

F {d,n}D
1/2
F {n,m}L

n+1 i, j
F {m}

〉
∂Ωe

F\Γ
D
F \ΓI

+
〈
ψ̂T , pF

(
ρ̂n+1 i, j
F

)
n {d}

〉
∂Ωe

F\Γ
D
F \ΓI

+
〈
ψ̂T , τρυ

(
ρυn+1 i, j
F {d} − ρ̂υn+1 i, j

F {d}
)〉

∂Ωe
F\Γ

D
F \ΓI

+
〈
ψ̂T , tN, n+1

F {d}
〉
∂Ωe

F∩ΓN
F[

f̄DL {m}
]n+1, i, j

e
= +

nsd∑
d=1

msd∑
n=1

〈(
NT
F {d,n}D

1/2
F {n,m}ψF

)T
,

BDFo∑
b=0

αb
∆t
un+1−b
S {d}

〉
∂Ωe

F∩ΓI[
f̄Dρ {1}

]n+1, i, j

e
=−

nsd∑
d=1

〈
ψT
F , ρ̂

n+1, i, j
F

(
BDFo∑
b=0

αb
∆t
un+1−b
S {d}

)
nF {d}

〉
∂Ωe

F∩ΓI[
f̄Dw {d}

]n+1, i, j

e
=−

nsd∑
e=1

〈
ψT
F , ρ̂

n+1, i, j
F

(
BDFo∑
b=0

αb
∆t
un+1−b
S {d}un+1−b

S {e}

)
nF {e}

〉
∂Ωe

F∩ΓI

+

nsd∑
e=1

〈
ψT
F , ρ̂

n+1, i, j
F

(
BDFo∑
b=0

αb
∆t
un+1−b
S {d}dn+1−b

F {e}

)
nF {e}

〉
∂Ωe

F∩ΓI

+

〈
ψT
F , τρυρ̂

n+1, i, j
F

(
BDFo∑
b=0

αb
∆t
un+1−b
S {d}

)〉
∂Ωe

F∩ΓI[
f̄Nu {d}

]n+1, i, j

e
= +

nsd∑
e=1

nsd∑
f=1

〈
ψT
S ,
∣∣FF (∇dn+1, i

F
)∣∣ [V−1

(
D

1/2
F L

n+1, i
F

)]
{d,e}

·
[
FF
(
∇dn+1, i

F
)]−T {e,f} (−nS {f})

〉
∂Ωe

S∩ΓI

+

nsd∑
e=1

〈
ψT
S ,
∣∣FF (∇dn+1, i

F
)∣∣ pF (ρ̂n+1, i

F
)

·
[
FF
(
∇dn+1, i

F
)]−T {d,e} (−nS {e})

〉
∂Ωe

S∩ΓI

+

〈
ψT
S , τρυ

[
ρυn+1, i
F {d} − ρ̂n+1, i

F

(
BDFo∑
b=0

αb
∆t
un+1−b
S {d}

)]〉
∂Ωe

S∩ΓI
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C.3.3 Monolithic NITSCHE-based coupling

The monolithic HDG-CG NITSCHE-based coupling has been presented in Section 5.3. This
minimally-intrusive strategy requires the inclusion of some additional terms in the global single-
field matrices

[
KÛÛ

]
and

[
Kuu

]
and the implementation of the coupling blocks

[
K̃Ûu

]
and[

K̃uÛ

]
, with ÛF gathering the fluid density and momentum global DOFs. Moreover, owing

to the unsteady and nonlinear nature of the equations involved, the global residuals
[
fÛ
]

and[
fu
]

need to be computed accordingly. The elemental contributions to the updated matrices and
vectors in (5.28) and (5.29) at each NEWTON iteration j, to advance from the time step n to the
time step n+ 1, are

[
K̃ŵρ̂ {d, 1}

]n+1, j

e
= +

[
Kŵρ̂ {d, 1}

]n+1, j

e

−

〈
ψ̂T
F ,
γ

h

ρ̂υ
n+1, j
F {d}(
ρ̂n+1, j
F

)2 ψ̂F

〉
∂Ωe

F∩ΓI[
K̃ŵŵ {d,e}

]n+1, j

e
= +

[
Kŵŵ {d,e}

]n+1, j

e

+ δd,e

〈
ψ̂T
F ,
γ

h

1

ρ̂n+1, j
F

ψ̂F

〉
∂Ωe

F∩ΓI[
K̃ŵu {d,e}

]n+1, j

e
=

+

nsd∑
f=1

nsd∑
g=1

nsd∑
h=1

〈
ψ̂T
F ,
∣∣FS (∇un+1, j

S
)∣∣−1 ∂ [PS (∇uS)] {d,f}

∂ [FS (∇uS)] {e,g}

∣∣∣∣
∇un+1, j

S

·
[
FS
(
∇un+1, j

S
)]T {f,h} (−nF {h})∇ {g}ψS

〉
∂Ωe

F∩ΓI

− δd,e
〈
ψ̂T
F ,
γ

h

α0

∆t
ψS

〉
∂Ωe

F∩ΓI[
K̃uρ̂ {d, 1}

]n+1, j

e
= +

〈
ψT
S ,
γ

h

ρ̂υ
n+1, j
F {d}(
ρ̂n+1, j
F

)2 ψ̂F

〉
∂Ωe

S∩ΓI

−
nsd∑
e=1

nsd∑
f=1

nsd∑
g=1

〈(
∂ [PS (∇uS)] {f,g}
∂ [FS (∇uS)] {d,e}

∣∣∣∣
∇un+1, j

S

nS {g}∇ {e}ψS

)T

,

ρ̂υn+1, j
F {f}(
ρ̂n+1, j
F

)2 ψ̂F

〉
∂Ωe

S∩ΓI[
K̃uŵ {d,e}

]n+1, j

e
= −δd,e

〈
ψT
S ,
γ

h

1

ρ̂n+1, j
F

ψ̂F

〉
∂Ωe

S∩ΓI

+

nsd∑
f=1

nsd∑
g=1

〈(
∂ [PS (∇uS)] {e,f}
∂ [FS (∇uS)] {d,g}

∣∣∣∣
∇un+1, j

S

nS {f}∇ {g}ψS

)T

,
1

ρ̂n+1, j
F

ψ̂F

〉
∂Ωe

S∩ΓI[
K̃uu {d,e}

]n+1, j

e
= +

[
Kuu {d,e}

]n+1, j

e
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−
nsd∑
f=1

nsd∑
g=1

〈
ψT
S ,
∂ [PS (∇uS)] {d,f}
∂ [FS (∇uS)] {e,g}

∣∣∣∣
∇un+1, j

S

nS {f}∇ {g}ψS

〉
∂Ωe

S∩ΓI

+ δd,e

〈
ψT
S ,
γ

h

α0

∆t
ψS

〉
∂Ωe

S∩ΓI

−
nsd∑
f=1

nsd∑
g=1

〈(
∂ [PS (∇uS)] {e,f}
∂ [FS (∇uS)] {d,g}

∣∣∣∣
∇un+1, j

S

nS {f}∇ {g}ψS

)T

,
α0

∆t
ψS

〉
∂Ωe

S∩ΓI

[
f̃ŵ {d}

]n+1, j

e
= +

[
fŵ {d}

]n+1, j

e

−
nsd∑
e=1

nsd∑
f=1

〈
ψ̂T
F ,
∣∣FS (∇un+1, j

S
)∣∣−1 [

PS
(
∇un+1, j

S
)]
{d,e}

·
[
FS
(
∇un+1, j

S
)]T {e,f} (−nF {f})

〉
∂Ωe

F∩ΓI

+

〈
ψ̂T
F ,
γ

h

[(
BDFo∑
b=0

αb
∆t
un+1−b
S {d}

)
− ρ̂υ

n+1, j
F {d}
ρ̂n+1, j
F

]〉
∂Ωe

F∩ΓI[
f̃u {d}

]n+1, j

e
= +

[
fu {d}

]n+1, j

e

+

nsd∑
e=1

〈
ψT
S ,
[
PS
(
∇un+1, j

S
)]
{d,e}nS {e}

〉
∂Ωe

S∩ΓI

−

〈
ψT
S ,
γ

h

[(
BDFo∑
b=0

αb
∆t
un+1−b
S {d}

)
− ρ̂υ

n+1, j
F {d}
ρ̂n+1, j
F

]〉
∂Ωe

S∩ΓI

+

nsd∑
e=1

nsd∑
f=1

nsd∑
g=1

〈(
∂ [PS (∇uS)] {d,g}
∂ [FS (∇uS)] {e,f}

∣∣∣∣
∇un+1, j

S

nS {f}∇ {g}ψS

)T

,(
BDFo∑
b=0

αb
∆t
un+1−b
S {d}

)
− ρ̂υ

n+1, j
F {d}
ρ̂n+1, j
F

〉
∂Ωe

S∩ΓI
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