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Aim: Many efforts have been deployed to identify genetic variants associated with BMI. Alternatively, we
explore epigenetic contribution to BMI variation by focusing on long noncoding RNAs (lncRNAs) which
represents a key layer of epigenetic control. Materials & methods: We analyzed lncRNA expression in
whole blood of 229 monozygotic twin pairs in association with BMI using generalized estimating equa-
tions. Results & conclusion: Six lncRNA probes were identified as significant (false discovery rate <0.05),
with BMI showing causal effects on the expression of the significant lncRNAs. Functional annotation of
differential profiles identified Gene ontology biological processes including kidney development, reg-
ulations of lipid biosynthetic process, circadian rhythm, notch signaling, etc. Whole blood lncRNAs are
significantly expressed in response to BMI variation.
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The BMI quantifies the amount of tissue mass including muscle, fat and bone in an individual, and can be an
indicator of high body fatness. It is calculated as weight in kg divided by the square of height in m (kg/m2) and it
is a simple and inexpensive surrogate measurement for body mass and obesity. BMI is connected to diabetes and
cardiovascular diseases which have impact on life quality and mortality [1–3].

Long noncoding RNA (lncRNA) transcripts are longer than 200 nucleotides and are not translated into protein [4].
They have a large range of functions: molecular and biochemical mechanisms, from cis- to trans-regulation of gene
expression, and from epigenetic modulation in the nucleus to post-transcriptional control in the cytoplasm [5]. There
are a large number of traditional epidemiology studies focusing on the association between BMI and individual’s
occupation [6], incomes [7] and many other factors, and many studies, including genome-wide association studies and
epigenome-wide association studies (EWAS) have been carried out on BMI [8–11], very few have studied the roles
of lncRNA in the regulation of BMI [12,13].

Monozygotic (MZ) twins represent an ideal population for controlling the genetic background in investigating
epigenetic associations, as they share similar genetic makeups [14]. We have demonstrated the massive value of the
twin design in previous studies and showed a significantly higher statistical power over traditional case–control
design using unrelated individuals in complex disease studies [15]. Moreover, the use of twins also enables inference
on causal relationships in epigenetic association studies using a cross-sectional setup [16].

To utilize the power of twin design in epigenetic twin studies, the phenotype under investigation is preferable
with modest high heritability as we have showed in our previous simulation study [15]. Twin studies have estimated
high heritability of up to 60% indicating a large contribution of genetic factors to the variation of BMI [17], even
though it is argued that the variance explained by genetic factors is prone to overestimated in twin studies [18]. In
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Figure 1. Scatter plot displaying intrapair BMI discordance by plotting BMI measurements for twin 1 on x-axis & for
twin 2 on y-axis. All twin pairs distance themselves from the diagonal line of equal BMI.

fact, only a limited proportion of BMI variation (2–21%) was explained by current genome-wide association studies
(GWAS) [19–21]. Recently, this estimate has been updated to 40% with whole genome sequencing data assuming
additive genetic effects [22]. On the other hand, the epigenetic contribution to BMI variation on top of genetics
could represent an important layer of molecular mechanism implicated in BMI development, as a considerable
proportion of BMI variation is due to nongenetic factors. This study applies the powerful twin designs in studying
the association between lncRNA expression and BMI in MZ twin pairs to identify significant and causal regulatory
molecular markers of BMI followed by functional annotations.

Materials & methods
Samples
This study used a dataset of the Middle Aged Danish Twins (MADT) study from the Danish Twin Register [23].
There were 220 complete MZ twin pairs included in this analysis, and whole blood samples were taken over the
period from 2008 to 2011. Samples include 242 males and 198 females (Figure 1). The age ranges from 56 to 80
and BMI ranges from 15.77 to 38.15 across the samples. The mean and standard deviation for BMI are 66.49 and
6.12, respectively. Blood cell counts are available for all the samples.

RNA extraction & gene expression analysis
Whole blood was collected in PAXgene Blood RNA tubes (PreAnalytiX GmbH; Hombrechtikon, Switzerland)
and total RNA was extracted using the PAXgene Blood miRNA kit (QIAGEN, Hilden, Germany) according
to the manufacturer’s protocol. The concentration of the extracted RNA was determined using a NanoDrop
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spectrophotometer ND-8000 (NanoDrop Technologies, DE, USA), and the quality was assessed by the Agilent
2100 Bioanalyzer (Agilent Technologies, CA, USA).

Gene expression analysis was performed using the Agilent SurePrint G3 Human GE 8 × 60 K Microarray
(Agilent Technologies). Sample labeling, hybridization, washing, scanning and quantification were performed
according to the array manufacturer’s recommendations.

Data preprocessing
We used similar data preprocessing procedure as described in our previous publication [24]. Briefly, the array images
were analyzed using Agilent Feature Extraction software v. 10.7.3.1 (Agilent Technologies), and raw intensity was
background corrected using the NormExp method; normalized was performed using loess normalization method for
within-array normalization and quantile normalization for between-array normalization [25–27]. Prior to statistical
analysis, the coefficient of variation (CV) was calculated for each probe, and probes with CV < 0.1 were excluded in
the further analysis. All the probes on the Agilent SurePrint G3 array were re-annotated (hg19) using GENCODE
v.25 gene annotation database (www.gencodegenes.org).

Statistical analysis
The normalized expression data was first adjusted for cell compositions by using linear regression. Then the
association of lncRNA expression and BMI was tested using generalized estimating equations method, with
family as cluster, adjusting age and sex. The analysis was carried out using geeglm() function from R package
geepack [28]. The model tests if the coefficient for BMI is different from zero (the null hypothesis) with a significant
positive/negative coefficient indicating positive/negative correlation between expression/activity of a lncRNA and
BMI measurement. False discovery rate (FDR) was calculated to account for multiple testing [29]. FDR < 0.05 was
used as a cut off for defining significance.

Casual inference
For lncRNAs showing significant association with BMI (FDR < 0.05), causal relationship with BMI was investigated
by the Inference about Causation through Examination of Familial Confounding method, which is a regression-
based method for causal inference in association studies using twins or family data [16,30–34]. In their approach,
‘familial’ means factors (both genetic and environmental) shared by relatives, which is essential for Inference about
Causation through Examination of Familial Confounding to make explicit causal inference. As described by Li
et al. [16], inference on causal relationship from X to Y can be made by examining the changes in the correlation in
the following models:

E
(
Yself

)
= α + βself X self (Eq. 1)

E
(
Yself

)
= α + βco−twin X co−twin (Eq. 2)

E
(
Yself

)
= α + β′

self X self + β′
co−twin X co−twin (Eq. 3)

By adjusting Xco-twin in Equation 3: if the association is due to the family confounding, both Xself and Xco-twin

would have nearly same effects on Yself, and a similar extent of decrease would be observed in β ′
co-twin and β ′

self

in comparison to βco-twin and β self, respectively. Thus, a small |βco-twin – β ′
co-twin| in comparison with |β self – β ′

self|
would be observed; and if the association is causal with X causing changes in Y, the correlation in Equation 2 would
be negated after conditioning on Xself, in Equation 3, in other words, large |βco-twin – β ′

co-twin| in comparison with
|β self – β ′

self|. In brief, if the associations between Yself and the predictors, Xself and Xco-twin, remain unchanged before
and after adjusting for each other, then no evidence of causal relationship is given. On the other hand, if there is
a significant attenuation of Xco-twin association after conditioning on Xself, there is an evidence consistent with X
causing Y. Likewise, the generalized estimating equations model was applied for parameter estimation with twin
pairs set as clusters.

Functional annotations
LncRNA probes with p-value < 0.01 have been passed to Genomic Regions Enrichment of Annotations Tool [35]

to map the binding sites of the differentially expressed lncRNAs to the regulatory domain of the human genome
(UCSC.hg19) to identify enrichments in biological processes and functional clusters implicated in BMI.
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Table 1. Top 20 probes from lncRNA analysis using generalized estimating equation.
Probe ID Gene symbol Genomic coordinate (hg19) Estimate p-value FDR

A 33 P3815064 LOC283575 chr14:77535783-77535842 -0.021 1.23E-07 0.001

A 21 P0011999 LINC00570 chr2:11542175-11542234 0.046 1.93E-07 0.002

A 19 P00318883 APTR chr7:77314638-77314579 -0.009 1.37E-06 0.012

A 21 P0006309 lnc-AL162389.1-1 chr9:110477317-110477258 0.010 2.98E-06 0.027

A 24 P17870 HCP5 chr6:31432645-31432704 -0.020 3.23E-06 0.029

A 21 P0000382 SNORD71 chr16:71792377-71792318 0.031 4.63E-06 0.042

A 32 P115558 chr17:016285923-016285864 0.025 6.16E-06 0.056

A 21 P0008280 LOC102724190 chr14:77535582-77535523 -0.015 7.77E-06 0.071

A 21 P0008448 LOC101927856 chr14:65170570-65170511 -0.011 1.89E-05 0.172

A 33 P3298750 chr20:47319537-47319596 0.013 1.96E-05 0.179

A 21 P0000223 SNORD15B chr11:75115551-75115610 0.041 2.16E-05 0.197

A 33 P3401284 RMRP chr9:35657998-35657939 0.027 2.35E-05 0.215

A 21 P0000618 EIF1B-AS1 chr3:40214727-40214668 -0.008 2.36E-05 0.216

A 21 P0014322 LOC101928595 chr16:30116145-30116204 -0.014 3.20E-05 0.292

A 21 P0000334 SNORA49 chr12:132515831-132515890 0.013 3.43E-05 0.313

A 21 P0004567 lnc-ARRDC3-1 chr5:90607514-90606842 -0.015 3.63E-05 0.331

A 21 P0000489 SNORD104 chr17:62223458-62223517 0.026 3.64E-05 0.331

A 21 P0000351 SCARNA22 chr4:1976428-1976487 0.033 4.14E-05 0.378

A 33 P3329462 DLEU1-AS1 chr13:51095345-51095286 0.012 4.24E-05 0.386

A 33 P3282394 MLLT1 chr19:6210517-6210458 -0.014 4.47E-05 0.408

FDR: False discovery rate.

Results
Of the 14,832 lncRNA probes measured on the microarray, 438 probes are on the sex chromosomes and 5260
probes with CV < 0.1 (house-keeping lncRNAs). After removal of sex chromosome probes and invariant probes,
a total of 9134 probes remained for subsequent analysis. Statistical testing detected 1374 probes with p-value <

0.05 and 575 probes with p-value < 0.01. The top 20 probes (ranked by p-value) are shown in Table 1, and
the complete result is provided in Supplementary Table 1. There are six probes with FDR < 0.05, and they are
annotated to LOC283575 (p 1.23E-07), LINC00570 (p 1.93E-07), APTR (p 1.37E-06), lnc-AL162389.1-1 (p
2.98E-06), HCP5 (p 3.23E-06) and SNORD71 (p 4.63E-06), respectively.

The results of casual inference on the six significant probes are provided in Supplementary Table 2. Figure 2
visualizes the results of β changes (both self change and co-twin change) for following assumptions: lncRNA
expression causes BMI in Figure 2A and BMI causes lncRNA expression in Figure 2B. The permutation p-values
for β changes under the two assumptions are shown in Supplementary Figure 1 where the changes in βco-twin are
all significant with p-value < 0.05 while no change in β self is significant. Interestingly, a causal effect of BMI on
lncRNA expression is clearly supported by the patterns in Figure 2B for all the six significant lncRNA probes (large
changes in βco-twin, small changes of nearly zero in β self) while the pattern in Figure 2A does not support a causal
relationship from lncRNA expression to BMI (changes in βco-twin and in β self are nearly equal).

Results from annotation of probes with p-value < 0.01 using Genomic Regions Enrichment of Annotations
Tool are displayed in Table 2, and corresponding acyclic graph is in Figure 3. There are 21 Gene ontology (GO)
biological processes identified with FDR < 0.05. Most of the GO biological processes are related to kidney including
metanephric nephron development, renal tubule development, loop of Henle development, glomerulus vasculature
development and cell differentiation involved in kidney development. Other GO biological processes are either
directly or indirectly related to obesity such as to regulation of lipid biosynthetic process, phagocytosis, regulation
of circadian rhythm, positive regulation of notch signaling pathway, negative regulation of auditory receptor cell
differentiation, retinal blood vessel morphogenesis and pharyngeal system development.

Discussion
By controlling genetic effects on BMI through twin design, we have performed an exploratory analysis on the
association between lncRNA expression and BMI, identifying six significant probes after correcting for multiple
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(A) Outcome Y = BMI, and exposure
X = expression. (B) Outcome
Y = expression, and exposure X = BMI.
βself is the estimation of the overall
correlation including the casual
proportion and family confounding
proportion (Equation 1); βco-twin

estimates only the family confounding
proportion of the correlation (Equation
2); β ′

self and β ′
co-twin are estimation of

full model (Equation 3) combing
Equation 1 and Equation 2. If |βco-twin –
β ′

co-twin| is similar to |βself – β ′
self|, then

the association is due to family
confounding (Figure 2A). If |βco-twin –
β ′

co-twin| is much larger than |βself –
β ′

self| (ratio >1.5), then it indicates a
causal effect (Figure 2B). In the figures,
we observed that BMI changes cause
the lncRNA expression change.
EXP: Gene expression.

testing. From the causal inference analysis, we found that all six significant lncRNA probes are expressed in response
to BMI changes, but not vice versa. Among the six significant lncRNAs, LOC283575 harbors SNP rs1986116 which
has been found as one of the independent SNPs most highly associated with sleep quality [36] and which could
indirectly affect BMI [37]. LINC00570 was found downregulated in osteoarthritis patients who had a high BMI [38].
Gene APTR was upregulated in fibrotic liver samples and activated hepatic stellate cells, which was indicated
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Table 2. Significant functional clusters biological process identified by Genomic Regions Enrichment of Annotations Tool.
Term name Binom raw p-value Binom FDR q-val Binom fold enrichment Binom observed region

hits

Negative regulation of auditory receptor
cell differentiation

6.05E-08 1.66E-05 12.797 9

Metanephric nephron development 3.67E-07 8.05E-05 2.926 30

Negative regulation of stem cell
differentiation

1.13E-06 1.85E-04 4.481 16

Mammary gland epithelial cell
differentiation

1.91E-06 2.92E-04 3.873 18

Renal tubule development 2.84E-06 3.93E-04 2.035 51

Phagocytosis 3.15E-06 4.27E-04 2.028 51

Regulation of epidermal cell
differentiation

4.40E-06 5.36E-04 2.630 29

Negative regulation of lipid biosynthetic
process

6.17E-06 6.99E-04 3.066 22

Regulation of circadian rhythm 7.35E-06 8.05E-04 2.201 39

Regulation of lipid biosynthetic process 1.60E-05 1.59E-03 2.001 45

Regulation of epidermis development 5.50E-05 4.46E-03 2.181 32

Loop of Henle development 8.71E-05 6.23E-03 3.445 14

Mammary gland epithelium development 8.80E-05 6.22E-03 2.155 31

Retinal blood vessel morphogenesis 1.02E-04 6.95E-03 8.363 6

Epithelial cell fate commitment 3.20E-04 1.61E-02 2.893 15

Neuroepithelial cell differentiation 3.35E-04 1.68E-02 2.183 25

Glomerulus vasculature development 4.10E-04 1.98E-02 3.104 13

Cell differentiation involved in kidney
development

6.47E-04 2.77E-02 2.050 26

Negative regulation of epithelial cell
differentiation

7.07E-04 2.91E-02 2.190 22

Positive regulation of notch signaling
pathway

7.90E-04 3.07E-02 2.328 19

Pharyngeal system development 1.48E-03 4.70E-02 2.322 17

FDR: False discovery rate.

as a potential biomarker for liver cirrhosis [39], and liver cirrhosis is highly associated with obesity [40]. HCP5
is an important gene that associated with AIDS, and it was found hypermethylated in obese Ghanaian African
migrants [41]. During adipocyte differentiation, SNORD71 was found upregulated when compared with obese over
lean individuals, and it is more expressed in both pre-adipocytes and subcutaneous fat tissue [42].

The enriched GO biological processes suggest that lncRNAs are involved in kidney development associated with
BMI. One of the strong indicators of chronic kidney disease is high BMI. A compensatory hyperfiltration occurs
to meet the heightened metabolic demands for obese individuals [43]. It has been shown that incidence of chronic
kidney disease increases with higher BMI in large cohort studies [44,45]. There are several renal alterations and
impairments that are related to obesity: increased kidney weight, glomerular hypertrophy, tubular hypertrophy,
hemodynamic changes, increased salt sensitivity, renin–angiotensin–aldosterone system activation as well as changes
of glucose metabolism and adipose-derived inflammation and deposition of lipid components [46–48].

Our results from over-representation analysis suggest that the lipid biosynthetic process related to obesity could
be medicated by lncRNA expression. Lipids are essential for many vital functions such as storing energy and
forming cell membranes. However, exceeding lipid could result in high body fat such as triglycerides, which is the
main form of stored energy and main constituents of body fat [49–51]. It is thus highly sensible that our identified
lncRNA genes and GO biological processes are frequently linked to internal organs such as the liver and kidneys
as visceral fat content is strongly associated with metabolic disorders [52].

Other GO biological processes are also highly related to obesity. Many studies have reported that circadian
rhythm such as abnormal sleep/wake patterns are associated with obesity since sleep is an important modulator of
neuroendocrine function and glucose metabolism [53–55]. Our finding suggests that lncRNA could also be involved in
regulation of circadian rhythm. Phagocytosis is a critical part of the immune system, and obesity and diabetes could
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decrease phagocytosis capacities [56–58]. Notch signaling is crucial for cell–cell communication and development,
and it has been found important for metabolism that improves glucose tolerance, insulin sensitivity and ameliorates
obesity and atherosclerosis [59]. There are also reports of changes in auditory [60–62], sight [63,64] and pharyngeal
function [65,66] that relate to high BMI or obesity.

The top significant probes are all inferred as differentially expressed in response to BMI but not as causing
changes in BMI. Interestingly, by causal inference on the association between peripheral blood DNA methylation
and BMI, Li et al. [16] reported that BMI has a causal effect on DNA methylation which means methylation
changes in response to BMI. Although our study focused on a different epigenetic mechanism (lncRNA regulation
of gene activity), the two approaches both revealed similar nature of causal relationship between BMI and epigenetic
regulation in peripheral blood cells.

Even with the powerful twin design, we identified only six significant lncRNAs associated with BMI after
FDR correction. Although the heritability for BMI might be overestimated, still the moderate–high heritability
estimates indicate that a large proportion of BMI variation could be explained by DNA sequence variations [20].
Meanwhile, different from DNA methylation, another epigenetic mechanisms that are well studied, to what extend
that lncRNA is involved, and the function of lncRNA in regarding to BMI variation is still unknown and requires
further investigation. Nevertheless, our exploratory analysis identified lncRNAs associated with BMI in MZ twins.
Annotations based on regulatory domain were able to reveal significant biological processes potentially implicated
in BMI and obesity. Importantly, the use of twins enables causal inference on significant findings in cross-sectional
studies.

Conclusion
Our differential expression profiling in whole blood of MZ twin pairs identified six significant lncRNAs in associa-
tion with BMI, all expressed in response to changes in BMI. Functional analysis showed significant enrichment of
GO biological processes involving kidney development, regulations of lipid biosynthetic process, etc. Overall, the
lncRNAs represent alternative epigenetic markers associated with BMI.

Future perspective
In this study we used whole blood samples as sources for lncRNA expression profiling. Twin-based lncRNA profiling
on BMI using other relevant tissues (muscles or adipose) should help with validating and verifying our results.
Furthermore, future studies correlating lncRNA profiling with genetic sequence variations and gene expression that
integrates multiple omics would be valuable to investigate the functions of lnRNA in relation to BMI.

Summary points

• Whole blood samples from 220 complete monozygotic twin pairs were used in this study.
• Agilent SurePrint G3 Human GE 8 × 60 K Microarray was used for long noncoding RNA (lncRNA) profiling.
• Discordant twin design was applied to investigate the association between lncRNA expression and BMI variation.
• Causal inferences were made using Inference about Causation through Examination of Familial Confounding

method for the top significant lncRNA probes.
• Result from causal inference suggests that six significant lncRNA probes are expressed in response to BMI changes.
• LncRNAs are involved in kidney development associated with BMI.
• The lipid biosynthetic process related to obesity could be medicated by lncRNA expression.
• Gene ontology biological processes including regulation of circadian rhythm, regulation of notch signaling were

identified.
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