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Abstract

Single-grip harvesters are equipped with an on-board computer that can normally collect standardized data. In times of
increased mechanization, digitalization and climate change, use of this extensive data could provide a solution for better
managing calamities-outbreaks and gaining competitiveness. Because it remains unclear in which way harvester data can
contribute to this and optimization of the forest supply chain, the focus of this review was to provide a synopsis of how har-
vester data can be used and present the main challenges and opportunities associated with their use. The systematic literature
review was performed with Scopus and Web of Science in the period from 1993 to 2019. Harvester data in form of length
and diameter measurements, time, position and fuel data were used in the fields of bucking, time study, inventory and forest
operation management. Specifically, harvester data can be used for predicting stand, tree and stem parameters or improving
and evaluating the bucking. Another field of application is to evaluate their performance and precision in comparison to
other time study methods. Harvester data has a broad range of application, which offers great possibilities for research and
practice. Despite these advantages, a lack of precision for certain data types (length and diameter), particularly for trees
exhibiting complex architecture where the contact of the measuring wheel on the harvesting head to the wooden body cannot
be maintained, and position data, due to signal deflection, should be kept in mind.

Keywords Production data - Time study - Productivity - Harvester measurements - Bucking optimization - Digitalization

Introduction
Cut-to-length mechanization

In the field of mechanized forest operations, over 25 years
have passed since the first single-grip harvester was
equipped with a computer-based measurement system
(Ponsse n.d). During this time, additional developments
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and refinements have ensued to offer a full on-board com-
puter (OBC), which collects data in real-time. The data can
contain information about production control, for example
the product instructions in the form of price or demand
matrices. In most instances, the data can be standardized
where information regarding production reporting such as
the harvested production with specifications of each har-
vested log, e.g., assortment, length, diameters, tree num-
ber, species, GPS-position, etc. The data also encompasses
information concerning quality assurance and calibration
(Skogforsk 2019). The global standard for communication
between computers in forest machines is referred to as the
“Standard for Forest machine Data and Communication”
(StanForD) (Wodniok 2018), introduced in 1990 and later
upgraded to StanForD 2010 in 2011 and used by most for-
est machine producers. The standard is a XML-based for-
mat with an open interface, which enables the extraction
and reading of the collected data in a structured report.
Data collected by harvester OBC’s is becoming more rel-
evant since the number of forest machines used in Europe
and North-America (Skogsforum/Red. 2019; Harbauer
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2018) is growing due to increasing awareness of produc-
tivity, stand and soil protection as well as ergonomics
and work safety of single-grip harvesters (BaySF 2019).
The collected data offers great potential of exchange and
improvement of forest operations and the wood supply
chain especially in times where the environment (nature,
society) is rapidly changing.

Climate change

Forest ecosystems are being exposed to a changing cli-
mate that entails a higher frequency and severity of wind
storms and drought periods (Gregow et al. 2017; Hogan
et al. 2018; Rodriguez-Vallejo and Navarro-Cerrillo 2019).
Winters are also increasing in temperature (IPCC 2007;
Lindner et al. 2010), thus often removing the natural
barrier that could be relied upon to mitigate the further
expansion of certain pest outbreaks. To maintain constant
wood flow to processing facilities, a larger proportion of
forest operations are now performed on unfrozen soil con-
ditions that are commonly at high soil moisture content,
thus presenting a higher risk of soil disturbances. These
variations can have significant influence on forest ecosys-
tem dynamics in such a way that forests are progressively
getting more instable (Dale et al. 2001). In an attempt to
circumvent this instability, mixed species stands are often
preferred to monocultures since the presence of multi spe-
cies on a single site can increase stem volume and stability
of the trees (Peltola et al. 2000; Dhote 2005). However,
within an operational context, more species entail a higher
number of assortments, which further complicates bucking
(process of cross-cutting a stem into desired assortments)
and sorting.

Calamities-outbreaks

As a consequence of increased wind storms, there will be a
higher occurrence of wind throws and wind breaks (Gardiner
et al. 2010). Because of stressed trees and warm weather,
bark beetles and other pathogens will find optimal condi-
tions to attack and damage trees (Williams and Liebhold
2002; Schlyter et al. 2006; Cudmore et al. 2010). These are
some of the most relevant reasons why is it imperative for
the forest logistics to extract the timber as fast as possible
out of the forest to mitigate bark beetle infestations and the
associated timber value loss (Dale et al. 2001). It is therefore
necessary to obtain knowledge as quickly as possible about
the harvested and processed timber. Harvester data could be
a start for this information that would also allow for a better
planning of the timber transportation from the stand to the
processing facilities.

@ Springer

Digitalization—Forestry 4.0

In times of the digital revolution, transformation processes
are becoming increasingly fast. The society is going to be
an information society, which is completely saturated with
information and communication technology (Koshel et al.
2019). Physical and virtual worlds will be merged (BMVI
2019). In the case of forestry, data collection and its
exchange among stakeholders will gain enormous impor-
tance as a central decision-making basis and will play a
key role for technical developments and the automation of
processes beyond company boundaries. The aim is to col-
lect digital data that can be fully integrated to planning and
wood purchasing, procurement and harvesting operations
in addition to planning of wood processing (Miiller et al.
2019; Soderberg and Pihlajamaki 2019). As an example of
this change in paradigm, the German government is now
offering funds for digitalization, and in particular where
digitalization can be used throughout entire supply chains
and for keeping pace with the international competitive-
ness of the forestry and timber sector (FNR 2018). This
reiterates the importance of harvester data and how it can
be used.

State of knowledge

Harvester data is already being used on different levels by
researchers. In studies performed by Siipilehto et al. (2016)
and Barth et al. (2015), harvester data was not the target
objective but rather used as reference data for evaluating
three different pre-harvest inventory methods and for assess-
ing two inventory methods to predict product recovery.
Harvester data was also used as test data for optimizing the
bucking algorithm (Liski and Nummi 1995). However, other
articles are focusing on harvester data as the main objec-
tive. For example, Holmgren et al. (2012), Caccamo et al.
(2018), Maltamo et al. (2019) and Saukkola et al. (2019)
predicted stem attributes or other forest inventory attributes
by combining airborne laser scanning data (ALS) and har-
vester measurements, whereas Vesa and Palander (2010)
used harvester measurements for modeling stump biomass
in stands. In other instances, harvester data can also supple-
ment harvesting productivity analyses (Purfiirst and Erler
2011; Gerasimov et al. 2012; Eriksson and Lindroos 2014;
Labelle et al. 2017). In a review article by Hiesl and Ben-
jamin (2013), the productivity of international harvesting
equipment was compared and a short overview of studies
in which on-board computers were used was provided.
Through their summary of on-board computer functions,
Olivera and Visser (2016) already provided some potential
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uses of harvester data. Irrespective of study objectives, har-
vester data is used as an absolute method or as a tool for
research.

Despite these advances, it remains unclear in which way
harvester data can contribute to digitalization and optimiza-
tion of the forest supply chain processes. The focus of this
review was to provide a synopsis of ways harvester data can
be used. More specifically, the objective was to provide an
overview of the different applications of harvester data and
discuss their possible uses including benefits, shortfalls and
areas for future research. In this review, harvester data is
referred to as all data, which can be read out by an on-board
computer of a single-grip harvester or an excavator with a
processing head or in form of a protocol in the StanForD for-
mat. Data originating from additional instruments or sensors
such as cameras or 3D laser scanning were not considered.

Materials and methods
Databases

The systematic literature review was performed with Scopus
and Web of Science (WOS). In Scopus, the Medline database
was excluded because medicine topics were not relevant. In
WOS, the literature results in the internal database called
“Web of Science Core Collection” were used but chemical
indexes were removed in the search mask. Both databases
were limited to the document type “articles” to receive only
high-quality literature. Furthermore, the advanced search
was used as search mask for each database.

Research strategy

To obtain relevant articles relating to the objective of the
review, titles, keywords and abstracts were searched with the
grouped synonyms of the search terms “harvester”, “mech-
anized harvesting”, “data” and “on-board computer”. The
synonyms were combined with the Boolean operator OR and
the search terms with AND. The time span settings were 1st
of January 1993 till 31st of December 2019, because the first
harvester on-board computer was available in 1993.

Selection of appropriate search terms was pivotal since
the interest in the word harvester was limited to the field of
forestry, not agriculture. After testing several trials, certain
key words were omitted because their addition did not result
in new relevant articles. Final search terms were:

e (“single grip” OR (harvester AND forest*)) OR (timber
W/3 harvest*) OR (“forest operation”)

e data OR measurement OR report

e computer

Search query for Scopus was:

(((TITLE-ABS-KEY (“single grip” OR (harvester AND
forest*)) PUBYEAR > 1992 AND NOT INDEX (med-
line)) OR (TITLE-ABS-KEY ((((timber) W/3 harvest*)
OR (“forest operation”))) PUBYEAR > 1992 AND NOT
INDEX (medline))) AND (TITLE-ABS-KEY (data OR
measurement OR report) PUBYEAR > 1992 AND NOT
INDEX (medline)) AND (TITLE-ABS-KEY (computer)
PUBYEAR > 1992 AND NOT INDEX (medline))) AND
(LIMIT-TO (DOCTYPE,”ar”)).

Search query for WOS was:

((TS=(((timber) NEAR/3 harvest*) OR “forest opera-
tion” OR (single-grip OR (harvester AND forest*))))
AND (TS =(data OR measurement OR report)) AND
(TS = (computer))) AND DOCUMENT TYPES: (Article)
Indexes = SCI-EXPANDED, SSCI, CPCI-S, CPCI-SSH,
BKCI-S, BKCI-SSH Timespan = 1993-2019.

Search query and article analysis

The search query resulted in 86 articles for Scopus and 37
for WOS (Fig. 1). The line in Fig. 1 shows the yearly sum
of published articles from Scopus and WOS from 1993 to
2019 (total search results). Search results common to both
databases were only counted once. Despite yearly oscilla-
tions, a light trend of increased yearly publications over the
reviewed period can be seen. On average, three to four arti-
cles matching the search criteria were published per year
with a maximum of 10 published in 2006.

Each article resulting from the search queries were evalu-
ated in a three-step process.

1. Titles were verified to make sure that the field of study
was forestry.

2. Abstracts were read and the ones that did not meet the
following criteria were excluded (harvester data, plan-
ning with data/collecting data, log length/diameter,
bucking, productivity, automatic time study/modeling).

3. Full articles were read and inclusion rested on the use of
harvester data meeting the above-mentioned definition.
In total, 23 articles fulfilled all criteria (Fig. 1). Eleven
articles were reported solely in Scopus, three in WOS
and nine more were common to both databases.

Results

Descriptive analysis

From the reviewed literature, four main topics emerged as
most relevant (inventory, bucking, time study, and improv-

ing forest operation management). The most frequently
reported topic was bucking (10 of 23), where the data were
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Fig.1 Search results of Scopus and WOS databases

utilized for bucking algorithms, evaluating the accuracy of
harvester measurements, comparing manual versus auto-
matic bucking, or predicting stem quality. The second
most cited topic was time study (8 of 23). In this instance,
harvester data was used to determine the accuracy of the
observers during manual time studies. Moreover, manual
time study methods were compared with those using har-
vester data, as well as those determining harvesting pro-
ductivity. Time study data was also used to determine fac-
tors that can influence harvesting productivity. Inventory,
relating to the use of harvester data for stand estimation
and for reconstructing tree heights, was reported in 4 of
23 articles. A single article (1 of 23) was concerned with
improving forest operation management of live operations
by integrating scientific methods using harvester data.

Categories of harvester data

Beyond the initial topical classification, articles were
also clustered based on how harvester data was used and
categorized as: time data, measurement data, positioning
data, and fuel data. For a comprehensive overview, the
specific purpose of data use from each article is presented
in Table 1.

The most frequently used data type were measurements
originating from the harvesting head, in particular length
and diameter of the log or thereof resulting parameters as
volume and taper curves. Then, there comes time, position
and lastly fuel data.

@ Springer

Year

E==only WOS articles (included)
total search results

For clarity, the table is structured topic wise, then the
articles are grouped sub-topic wise following a chronolog-
ical order. The results are presented according to the table.

Inventory

For inventory purposes, stand parameters can be predicted.
For example, harvester collected stem data was used as input
in different locally adaptable nonparametric Most Similar
Neighbor (MSN) methods to estimate stand characteris-
tics (Malinen 2003). This was achieved by comparing dif-
ferent local adaption methods with the k-nearest neighbor
(k-nn) MSN method via a stem database prototype, which
resulted from the collection of harvester data. It contained
mean stand characteristics such as, stand area (ha), stand age
(year), basal area (m?), basal area mean diameter (cm) and
height of basal area median tree (m). As a result, the locally
adaptable neighborhood (LAN) MSN method was more
accurate than the k-nn methods. The local k-nn MSN method
was not notably better than the k-nn MSN method (Malinen
2003). Rasinméki and Melkas (2005) used spatial data in
form of GPS position of the harvester, and the two prob-
ability density functions (distance and the angle from the
harvester) at which the tree was cut were used in combina-
tion with diameter, length and volume data to simulate tree
composition and volume of arbitrary regions of a harvested
stand. The average estimated volume root mean squared
error (RMSE) varied from 4 to 29% depending on the size
of the subregions. With the use of tree location simulation,
improvements in volume estimates (total and species-wise)
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varied between 5 and 35% as compared to when only har-
vester data was used (Rasinmiki and Melkas 2005).

Beyond stand parameters, it is also possible to predict tree
parameters. In a study by Lu et al. (2018), diameter overbark
(DOB) was used to estimate DBH overbark (DBHOB) of
trees of any height up to 3 m above ground in a radiata pine
(Pinus radiata D. Don) plantation. Harvester data was used
to develop equations that predict the total height of harvested
stems. In detail, a harvester dataset containing information
about log length, overbark volume and SED overbark of all
logs cut from each stem, were used to derive patterns for the
simulated cutting of the constructed stem profiles. For the
estimation of total tree height, both harvester and taper data
were used to generate a dataset that contained stump height,
number of logs, their length, large-end-diameter outside bark
(LEDOB), SEDOB and the length of the top section of every
tree. Furthermore, the harvester dataset was compared with
the DBHOB and the estimated total length of each tree of
the taper dataset to select the most similar stem for the tree.
The developed equation for predicting total tree height from
DBHOB, total log length, and SED of the top log was better
than the conventional equations found in the literature (Lu
et al. 2018).

In another study, Murphy et al. (2006) evaluated the use
of harvester data for augmenting or replacing pre-harvest
inventory data from the MARVL (Method of assessment of
recoverable volume by log type) system of a company. In
this instance, the harvester optimizer was used to destruc-
tively sub-sample trees of a radiata pine plantation to esti-
mate volume and grade with the aim to test the effectiveness
of the harvester optimizer as a pre-harvest inventory system.
The method performed well and the value recovery of the
harvest was 98% of what was predicted from the 12% or less
pre-harvested trees. Higher sampling intensities provided
even better agreement between the measured and predicted
values. In addition, Murphy et al. (2006) compared the esti-
mated and actual product outturns from the harvester with
the MARVL inventory system. Total volume estimates of the
MARVL system were 8% lower than the harvester optimizer
volume and 14% less than the estimated value recovery. In a
second analysis, harvester optimizer and MARVL diameters,
as well as log length were compared to quantify the effects
that the MARVL taper function had on total volume recov-
ery and log product outturns. Results indicated that the har-
vester underestimated underbark diameters and the MARVL
predicted diameters were partly incorrect. This is why Mur-
phy et al. (2006) assumed that harvester collected stem data
can be used to build site-specific taper functions. As a last
analysis, the value recovery of non-optimizing versus opti-
mizing harvesters was compared and the appropriateness
of using swath cuts as a pre-harvest inventory method was
examined. Therefore, different harvesters (optimizing, non-
optimizing) were used to harvest stands or swaths of a stand.

In this situation, non-optimizing harvesters produced 19%
less total volumes as medium sawlogs and 20% more volume
as pulp logs than predicted by pre-harvest-swath cutting with
an optimizing harvester. This led to only 81% of the pre-
dicted value. Optimizing harvesters produced more logs with
an overall lower average SED. Total stand value recovery
estimates were better from optimizing harvesters used for
actual cutting of the stands as well as for pre-harvest inven-
tory swath cutting. Estimates by Murphy et al. (2006) indi-
cated that up to 50% of the conventional pre-harvest inven-
tory costs for the fieldwork component can be eliminated
through the use of harvesters for collecting inventory data.

Bucking

A broad field of application of measurement data is bucking.
An important sub-category of bucking is the optimization
of the bucking algorithm. For example, Liski and Nummi
(1996) used length and diameter measurements of Nor-
way spruce (Picea abies (L.) H. Karst) trees to predict the
unknown part of the stem by using an expectation maximiza-
tion (EM) algorithm. The prediction was based on the known
part of the current processed stem and on the knowledge of
previously processed trees. The stem curve estimate was
determined utilizing these new measurements. The results
were that longer known stem parts lead to better predictions
and that the second-degree polynomial model proved to be a
good choice in most cases. Furthermore, the predictor with
independence structure provided the most promising start-
ing point for the implementation of stem curve predictors in
harvesters. These results provided important knowledge for
developing automatic bucking systems of modern harvest-
ers (Liski and Nummi 1996). Measurement data of Norway
spruce was also used in a bucking optimization algorithm
to compile tree profiles required by the genetic algorithm
(GA) in order to optimize the system that searches for stand
specific price matrices (Kivinen 2004). Moreover, Kivinen
(2004) used real stem data for pre-adjustment of log prices,
which lead to better results than simply using price matrices
controlled by estimated stem data. The simulation showed
that even if log prices were adjusted, the pre-control of
price matrices did not improve the fit between the overall
demand matrix and the global output matrix. From a pre-
viously harvested block, collected harvester stem data was
used in a developed adaptive control heuristic to improve
the prediction of appropriate prices and log specifications
to meet market operational constraints (Murphy et al. 2004).
Harvester stem data was also used for comparison with data
from pre-harvest inventory. Results indicated that previously
collected harvester data improved meeting the order book
and targeted proportions the most (19-26%), followed by
pre-harvest inventory data (17-22%), and the combination
of both datasets lay between the results (Murphy et al. 2004).
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In a study from Kivinen (2006), harvester data in form of
taper curves were used in GA-controlled demand matrices
in parallel with the overall demand and price matrices of
each log product to optimize bucking, in such a way that the
fit between the required overall log demand distribution and
the cumulative log output distribution could be improved.
Results showed that the GA-controlled demand matrices
improved the bucking from 22 to 103% compared to the
overall demand matrices, used as reference Kivinen (2006).

Moberg et al. (2006) took a different approach of buck-
ing optimization. In their study, the relationship between
diameter at breast height (DBH) and the largest small-end-
diameter (SED), originating from the harvester on-board
computer, was used to automatically identify saw logs con-
taining sound-knots suitable for appearance-grade sawn
wood to produce sound-knot sawn wood in center boards.
A low sound knot quotient (SKQ)-level, which meant strict
settings, led to a good in-grade sawn wood classification, but
there was still a proportion of appearance-grade sawn wood
in the out-of-grade logs. The harvester was able to identify
about 80% of the total available furniture grade sawn wood
(Moberg et al. 2006).

Other articles focused on the accuracy and errors of buck-
ing. Chiorescu and Gronlund (2001), for example, used
simulated harvester measurements in modeled scenarios to
investigate the impact of their accuracy on the theoretical
sensitivity in comparison to other final product parameters
such as sawlog features, sawing pattern optimization, and
log positioning in a saw line. When considering the accu-
racy of diameter measurements, results indicated that 29%
of the logs were incorrectly sorted, 45% sawlogs were over-
estimated and 55% were underestimated. It was determined
that small improvements in the harvester’s measuring per-
formance could lead to considerable improvements in the
wood transformation chain. When focusing on value loss,
the diameter seemed to have more influence on the sorting
than the length. In general, logs with a trimming allowance
less than 50 mm always produced off-grade boards (Chio-
rescu and Gronlund 2001). In a study by Nummi and Mot-
tonen (2004), the prediction accuracy of stem curves for
low degree polynomial models under harvester data meas-
urement errors were analyzed concerning the error type.
For harvester data of pine trees, the first-degree polynomial
model with dependent measurement errors provided the
best prediction, whereas second-degree polynomial models
with independent measurement errors performed well for
manually measured data. Marshall et al. (2006) analyzed
the length and diameter measurement errors of harvesters
concerning their impact on value loss by using an error esti-
mation simulation model with an embedded optimal buck-
ing algorithm. The error was calculated by subtracting the
manual log measurement from the harvester measurement.
It was found that there are value losses between 3 and 23%
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by harvesting with a harvester depending on the type of error
(scanning length and diameter, bucking). Similarly, Leitner
et al. (2014) analyzed the accuracy of harvester length meas-
urements to determine what was the impact on the supply
chain and economic value loss. Furthermore, they wanted
to assess the influence of harvesting head calibration on the
accuracy of length measurements. This was done by compar-
ing the target length, which was shown on the OBC to the
actual physical length. The comparison was done before and
after calibration, as well as for different harvesting heads.
Results showed that in 73.7% of the cases, logs were cut
longer than the desired length and that logs processed dur-
ing the winter were on average 2 cm longer as compared to
other seasons. When logs were too long, the associated value
loss was between 0.93 € and 1.90 € per cubic meter. Proper
calibration of harvesting heads could improve the length
measurement between 58 and 70% with a length difference
of 0.5 cm (Leitner et al. 2014).

A different field of bucking optimization is the compari-
son of bucking methods. Stem diameter values and length
measurements were used in the study from Labelle and Huf3
(2018) to feed the bucking algorithm of the OBC to predict
optimal bucking in a Norway spruce dominated stand. The
objective was to determine if automatic bucking lead to dif-
ferent harvesting productivity, product recovery and prod-
uct revenue through the use of an optimization software as
compared to manual bucking. Results showed that, when
using identical price matrices, product recovery was slightly
increased with manual bucking but that automatic bucking
entailed a 17% higher harvesting productivity. Revenues of
products stemming from automatic bucking were approx.
4% higher than in manual bucking.

Time study

In time studies, harvester data is generally used to develop
productivity models using automatically collected harvester
data or to analyze influencing factors of harvester productiv-
ity and to evaluate their performance in comparison to other
time study methods.

In the article by Palander et al. (2013), which focuses
on the development of an automated time study, automati-
cally computed controller area network (CAN-bus) time
consumption of a harvester OBC was used in combination
with manually recorded time study data to develop an auto-
matic time study method with data input of a harvester OBC.
The main work phases could be identified by Palander et al.
(2013) and the method provided good results.

Harvester data is used for analyzing influences on the
productivity in the following articles. Olivera et al. (2016)
firstly used time stamp data to calculate cycle time. More
specifically, they used the processing time component of the
effective work time from a.drf file (detailed information on
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time and mechanical events during the operation) to identify
the beginning of each period of down time and to calculate
work statistics. The DBH (40 mm > DBH > 400 mm) was
used as a criterion for excluding trees from the study, as well
as the commercial height and the top diameter (top diam-
eter > DBH). With automatically collected harvester data as
input, the influence of different factors such as terrain slope,
operator, species, DBH, and shift on machine productiv-
ity was assessed. Therefore, the stem merchantable volume
divided by the cycle time was used as the modeled depend-
ent productivity variable. Independent variables concerning
metric data were DBH, interactions between DBH and spe-
cies, and DBH and terrain slope. For slope, the automatically
collected geographic coordinates of a harvester were also
used as input to create a shape file of all stem records. The
shapefile was then overlaid with a slope surface to evalu-
ate its effect, besides other factors, on machine productivity.
Results indicated that DBH was the most influential variable
on harvester productivity and that terrain slope and shift
(early vs. late) had no significant effect, whereby the study
area only had flat and mildly sloping terrain (Olivera et al.
2016). A similar approach of evaluating influencing fac-
tors on productivity was performed by Rossit et al. (2019)
where harvester data was used to calculate the productivity
of harvesters and to compare the decision tree (DT) tech-
nique with the multiple regression analysis of Olivera et al.
(2016). In this test, time data in form of time stamp records
were used to calculate cycle time by determining the dif-
ference between consecutive stem time stamps. Afterward,
productivity was calculated by dividing the volume of a pro-
cessed tree by the respective cycle time. The dependency of
DBH, operator, shift, and species on the productivity were
also tested. Therefore, DBH was tested as an independent
variable alone and in combination for the productivity vari-
able. Moreover, they compared the Decision Tree (DT) tech-
nique with the multiple regression analysis of Olivera et al.
(2016). The result was that the most significant influencing
variable on productivity was DBH, followed by operator and
species. According to Rossit et al. (2019), decision trees
and k-means algorithms were deemed suitable methods for
analyzing large amounts of data and the DT algorithm was
suitable to model harvester productivity.

Focusing on a complete harvesting system, Apéifidian
et al. (2017) investigated as part of a productivity study the
performance of a mid-sized harvester-forwarder system in
clear-cuts when supplementary processing tree-tops. They
used daily initial and end fuel levels to estimate hourly fuel
consumption of the harvester. The result was an hourly con-
sumption of about 21 I resulting in a unit fuel consump-
tion of about 1.1 I m? 0.b. The delivery of one cubic meter
of wood to roadside (entire harvesting system) required on
average 1.7 1 of fuel (Apaféian et al. 2017).

In another study, Nuutinen et al. (2008) used time con-
sumption data of the harvester’s PlusCAN data logger for
felling and processing as the reference for manual time
measurements in order to investigate the accuracy and vari-
ation of experienced versus unexperienced time recording
observers. Results indicated that inexperienced observers
made more measurement errors, but there was no significant
difference between the two groups (Nuutinen et al. 2008).

Another field that the reviewed articles are addressing
is the topic of time and productivity studies is the com-
parison of manual versus automated methods. For example,
time data of a harvester’s PSION OBC was used in a work
cycle analysis (Szewczyk and Sowa 2017). This cumulative
method was compared statistically with cumulative video
recording time analysis and the standard snap-back timing
method, with the result that snap-back timing was slightly
more accurate than the cumulative timing methods. The
OBC PSION method had significantly shorter mean duration
of harvester work cycles clear-cutting (22%) and in thinning
(approx.14%) operations as compared to video recording.
Snap-back timing underestimated work cycle time in clear-
cut operations by 6%, but provided overestimations in thin-
ning operation by approx. 12% (Szewczyk and Sowa (2017).

In a study performed by Strandgard et al. (2013), Stan-
ForD stem files were used to create harvester productivity
models, which were then compared with results obtained
from a conventional time and motion method (video record-
ing). Time differences between consecutive StanForD stem
files were used to estimate cycle time and log volumes of
the stem files were used to build sums to estimate the mer-
chantable tree volume. Productivity was then estimated by
dividing cycle time with merchantable tree volume. Fur-
thermore, end height (total length of processed stem) was
used as one of the filters to remove stems with broken tops
or multiple-leaders. Merchantable tree volume was calcu-
lated for both time and motion methods (video recording
vs. harvester data) on the basis of the stem files. In sum-
mary, merchantable volume of trees where the final stem
section passes through the harvesting head without further
cutting were slightly underestimated, because the OBC only
recorded logs that were cut at the small end. Results for
the time and motion comparison showed no statistical dif-
ferences between harvester productivity models created by
stem files to those created from the conventional time and
motion method. However, stem file productivity models had
a poorer fit than the time and motion models (Strandgard
et al. 2013). Brewer et al. (2018) also modeled and estimated
productivity of a CTL harvesting operation from harvester
data and compared it with manual time study. This was done
by using harvest time stamp to provide the exact time in
hour, minute and second (h:m:s) format when processing of
an individual tree was completed. The difference between
consecutive time stamps determined individual cycle times
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(seconds per tree). Harvester estimated tree volumes were
calculated by summing the volume of merchantable logs
from a respective tree. This technique led to underestima-
tions compared to the manually calculated volumes, which is
the reason Brewer et al. (2018) used individual tree volumes
from manual measurements for the calculation of harvest-
ing productivity for each individual cycle. When comparing
both methods (harvester data vs. manual data (Time Study
App)), volume estimates and DBHs differed significantly.
However, the productivity of the harvester data method was
not significantly lower to the one measured by manual time
study. Brewer et al. (2018) reported that when the volume
estimates are standardized, no statistical differences existed
between different productivity models.

Improving forest operation

Brown et al. (2011) used time and stem file information in a
productivity model for harvesters to; (1) estimate rates and
manage operations by harvesting entrepreneurs, (2) plan har-
vest schedules and estimate harvest costs by forest managers,
and (3) allow researchers to evaluate harvester performance.
The tool developed could import stem files from the har-
vester and apply user-selected filters to remove cycle times
with large delays and trees with broken tops and multiple
leaders. Results showed no statistical differences in produc-
tivity models from stem file approach compared to those
produced from time and motion studies (Brown et al. 2011).

Discussion
Limitations of literature review

Even though different search terms were tested diligently
to obtain the most appropriate search query, it is possible
that other relevant articles could have been omitted. Testing
supplementary search terms more in the direction of digitali-
zation and information technologies lead to different search
results, since more specific computer related keywords could
be used. For example, additional bucking algorithm articles
could appear. Despite the expected benefits of an increased
pool of articles, these search terms were not used since the
resulting literature was too broad and out of context (e.g.,
in Scopus the search query TITLE-ABS-KEY (forest*
AND machine AND data) PUBYEAR > 1992 AND NOT
INDEX (medline) AND (LIMIT-TO (DOCTYPE, “ar”))
led to almost 5000 search results). Conversely, using more
specific search terms easily led to too narrow search results
(e.g., TITLE-ABS-KEY (“single grip” AND harvester AND
computer) PUBYEAR > 1992 AND NOT INDEX (medline)
AND (LIMIT-TO (DOCTYPE, “ar”)) achieved fewer than
10 search results), thus leaving out pertinent articles. This
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occurred frequently with the word “harvester”, because of its
dual application in forestry and agriculture. Another poten-
tial limitation can be that the search was focused on scien-
tific articles. In computer science topics, it is often common
to publish in conference papers or proceedings, because it
is a quickly evolving research field.

Another reason why relevant articles might not have
passed the filtering process could be that before the era of
forestry 4.0 harvester data was not as important. They could
be used in the methods, for volume calculations or time
measurements, but only rarely be mentioned. For example,
in productivity or time studies they could be used, but not
explicitly described. This could also be estimated by the ris-
ing number of relevant published articles in the last 8 years.
This is maybe why not in every article, such as Rasinmaiki
and Melkas (2005), Olivera et al. (2016), Lu et al. (2018)
and Brewer et al. (2018) harvester data is explicitly men-
tioned in the title or in the keywords.

Benefits of harvester data use
Time

Harvester data plays an important role for time and pro-
ductivity studies. The easily and quickly available time data
makes it possible to rapidly obtain cycle times and to calcu-
late productivity. As Brown et al. (2011) reported, there were
no statistical differences between productivity models from
stem file approach and those from manual time and motion
studies. It is also possible to evaluate the influence of differ-
ent factors such as DBH, terrain slope, shift, operator and
species on machine productivity. Another strong advantage
of calculating productivity from harvester recorded data is
that it does not require people to be sent to the stands and
being placed in rather dangerous positions in relation to the
harvester. This is why it is worth to consider, if expensive
manual time studies are still necessary.

Concerning the accuracy of harvester data using for time
and productivity studies, Strandgard et al. (2013) reported no
significant differences in productivity compared to manual
time and motion methods. However, stem file productivity
models had a poorer fit (Strandgard et al. 2013). The lack of
a field observer when using stem file productivity models
is a considerable advantage in overcoming the Hawthorne
effect (variation in the performance of forest machine opera-
tors caused by the knowledge that they are being observed)
but can also become a disadvantage since no records of
changing stand or field conditions can be collected. Palander
et al. (2013) could identify the main work phases from har-
vester time data. In combination with manually recorded
time data, the automatic time study model could be adjusted
to improve accuracy. Olivera et al. (2016) could explain 73%
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of the variability of productivity with their mixed-effect
model. Brewer et al. (2018) found out that no statistical dif-
ferences existed between the productivity (models) from
harvester data and manual time study. According to their
productivity model based on a DT algorithm, Rossit et al.
(2019) achieved an accuracy of over 90%.

Unlike these positive aspects, Szewczyk and Sowa (2017)
found out, that snap-back timing was slightly more accurate
than the harvester data method. The latter had significantly
shorter mean durations of some harvester work cycles (Sze-
wezyk and Sowa 2017). It is also important to note that stem
volume and DBH estimates differed significantly from those
obtained from manual measurements (Brewer et al. 2018),
which is why only time data was used in this study. Nonethe-
less, it is possible to record more accurately the important
work phases and larger volumes of data at a lower cost with
the use of harvester data (Palander et al. 2013; Strandgard
et al. 2013). Ultimately, the decision to select an automated
or manual method depends on the goal and the conditions
of a time study. Besides the advantage of relatively easily
implementation of automatic data collection, which allows
collecting large amounts of data for extended periods, new
knowledge about the interpretation of new data formats,
organization and processing of large databases is needed
(KoSsir et al. 2015). It is also important that researchers do
expand their objectives in accordance with the superior
strength of their new methods (KoSir et al. 2015).

Precision

In studies performed by Strandgard et al. (2013) and Brewer
et al. (2018), the volume of harvested wood was generally
underestimated by the harvester, but had no significant influ-
ence on productivity models when the volume estimates
were standardized (Brewer et al. 2018). Concerning the
estimation of tree stock volume of a subregion, the improve-
ment of volume estimation was between 5 and 35% when
using harvester data with tree location simulation compared
to only using harvester data (Rasinméki and Melkas 2005).
The estimation of DBHOB at any height below 3 m was
good, because errors were smaller than 1 cm for the first tree
heights below 0.3 m (Lu et al. 2018). For the prediction of
the total tree height, values between 1.25 and 1.35 m across
the height range were reported. Stem parameter prediction
from harvester data was quite satisfactory. It was possible
to identify about 80% of the total available furniture grade
sawn wood with the harvester (Moberg et al. 2006). Con-
cerning bucking optimization, previously collected harvester
data improved meeting the book order (Murphy et al. 2004)
and the GA-controlled demand matrices also improved the
bucking drastically (Kivinen 2006). Automatic bucking can
also ameliorate the productivity and revenue of products as
compared to quality bucking (performed by the harvester

operator), particularly when trees with strong apical domi-
nance are harvested (Labelle and Huf3 2018). Conversely,
when trees exhibit severe crooks and forks, such as the case
with Scots pine (Pinus sylvestris L.) found in Germany, qual-
ity bucking generally generated a higher harvesting produc-
tivity and revenue (Labelle et al. 2017). This diverging result
could be linked to the fact that the algorithm of the OBC was
designed for pine trees with a simpler crown architecture
than the trees harvested in the study. Furthermore, an opera-
tor performing quality bucking can see problematic sections
approaching while processing occurs and can therefore react
accordingly, a task that the bucking optimization system can-
not currently achieve.

The versatility and usefulness of harvester data can be
increased substantially when geopositioning is available.
Cross-referencing harvester volume data with geospatial
information of processed trees opens up new avenues for
research and can strengthen our understanding of the effect
of tree form on harvesting productivity (Labelle et al. 2016).
When considering the positioning of the harvester or that of
felled trees during clear-cutting operations, Hauglin et al.
(2017) reported promising results where sub-meter accuracy
was obtained for tree positioning with an integrated accurate
positioning system based on real-time kinetic global satel-
lite positioning. However, under partial harvest conditions,
the presence of a continuous cover could greatly hinder the
precision of the positioning system.

Value creation

It is important to take care of the measurement system of
the harvester, since incorrect cutting and sorting can cause
value losses that are very difficult to overcome in a later
stage. In the study of Chiorescu and Gronlund (2001), nearly
one third of the logs were sorted incorrectly due to diameter
overestimation (45%) and underestimation (55%). When
considering length, nearly 74% of the logs were longer than
required in the study of Leitner et al. (2014), thus triggering
a value loss between 0.93€ and 1.90€ per cubic meter. For
example, Marshall et al. (2006) found that mechanized har-
vesting operations lose 18% of the potential value compared
to 11% for motor-manual operations. Appropriate calibration
of the harvesting head remains the most suitable method of
improving length measurements.

Considering the findings from the results above it makes
sense to firstly improve the harvester measurements, because
of the largest error potential and its effects. Most errors are
rather easy to address as they are not technical errors, but
mostly managerial errors. Many forest entrepreneurs do not
know which stem volume and bark equations their system
is using and are often operating using the wrong functions.
Performing the appropriate settings of the stem volume and
bark equations as well as the calibration and regular control
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of measurement systems can lead to substantial improve-
ments. In Germany, there exists a quality assurance sys-
tem for the harvester measurement for forest entrepreneurs
(KWF 2020). After appropriate calibration, the bucking
sequence with its algorithm should be optimized and finally,
the price and/or demand matrices should be adapted in order
to maximize value of the harvest.

Areas of improvement for science and practice

For forest science and in particular forest growth and yield,
possibilities of using harvester data instead or in addition
to conventional inventories are promising. However, a cru-
cial aspect to consider is that harvester-based inventory data
are only available post-harvest. Stem profiles of harvested
trees, which are generated in the harvester, can provide an
opportunity for increasing the knowledge of tree growth
and refine tree growth models. Through the establishment
of ratios between merchantable and non-merchantable vol-
ume per tree, forest managers could better understand the
impact of different silvicultural treatments on harvested
volume. Within the same theme, using the estimation of
tree height (Lu et al. 2018) for calculation of the total tree
volume could provide more representative values for the cal-
culation of harvesting productivity than simply relying on
biomass expansion factors. In general, harvester data should
be faster and less expensive to acquire as compared to con-
ventional labor-intensive methods, thus opening the door to
big data approaches.

Within a practical scope, the question of measurement
accuracy is both relevant and timely in harvesting produc-
tivity studies. Determining an acceptable level of accuracy
in harvesting productivity studies is a topic that requires
further attention. If a harvesting head is properly calibrated,
the bottleneck could quickly become the noise in the data-
sets produced over long periods of time as opposed to the
accuracy of the measurements and the methods of analyzing
them. With a standardized procedure, it would be possible
to get a broader overview of the range of services of the
machines depending on the objectives of the data user. Some
key examples are harvesting productivity and fuel consump-
tion, information that would prove highly helpful for forest
entrepreneurs when preparing offers. In the broader context
of digitalization, it will become even more relevant not only
to use harvester data, but to provide input of data in relation
to price and demand matrices in the harvester and integrate
both incoming and outgoing data continuously within the
supply chain and its stakeholders. Another worthy aspect
is that with the large quantity and fast availability of data
collected from processed trees, accuracy improvements
could be made to inventory methods to better reflect the
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actual volume (Murphy et al. 2006; Malinen 2003). How-
ever, one has to consider that harvester data is only available
post-harvest.

Monitoring data of machine parameters could also be
helpful to reduce interruptions of working time and optimi-
zation of fleet management. Furthermore, the real harvested
timber could be proven and how much timber is remaining
as death wood in the forest.

Conclusions

In this systematic review, it is shown that despite being
quickly acquired and readily accessible to users, harvester
data remains comprehensive and under-utilized in many
regions. Thus far, it has most frequently been used for buck-
ing optimization and during productivity studies, while
topics of inventory and improvement of operation manage-
ment have received less attention. Despite some noticeable
advancements, available data from harvester OBC’s is often
not used to its full potential. An avenue of future research
lies in big data analysis where different approaches (data
mining, machine learning, predictive modeling, etc.) should
be further developed and tested. Moreover, by intersecting
harvester data with other data sources, such as those col-
lected at wood processing facilities, laser scanner, manual
measurement (inventory, productivity) data and geo data
(satellite and aerial data), the current methods could be
improved. Therefore, in future research it should be analyzed
how much time and money could be saved with the use of
integrated harvester data. As the review is focused on time,
measurement, position and fuel data, other harvester data
types, such as machine monitoring data, could also be a wor-
thy of future consideration. Extracting and using harvester
data seems rather straightforward, but data ownership and
protection are still lacking clarity and additional research
could be directed at these topics.
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