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We study false vacuum decay for a gauged complex scalar field in a polynomial potential with nearly
degenerate minima. Radiative corrections to the profile of the nucleated bubble as well as the full decay rate
are computed in the planar thin-wall approximation using the effective action. This allows to account for
the inhomogeneity of the bounce background and the radiative corrections in a self-consistent manner.
In contrast to scalar or fermion loops, for gauge fields one must deal with a coupled system that mixes the
Goldstone boson and the gauge fields, which considerably complicates the numerical calculation of
Green’s functions. In addition to the renormalization of couplings, we employ a covariant gradient
expansion in order to systematically construct the counterterm for the wave-function renormalization. The
result for the full decay rate however does not rely on such an expansion and accounts for all gradient
corrections at the chosen truncation of the loop expansion. The ensuing gradient effects are shown to be of
the same order of magnitude as nonderivative one-loop corrections.
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I. INTRODUCTION

With the discovery of the Higgs boson in 2012, the last
missing piece of the Standard Model (SM) was set into
place [1,2]. Remarkably, its properties appear to lie
precisely in the narrow parameter range where the SM
could, in principle, be a consistent effective field theory for
energies up to the Planck scale. If the Higgs quartic
coupling were slightly larger, the SM would exhibit a
Landau pole at energies below the Planck scale that would
severely limit the prediction power of the theory. If it were
slightly smaller, the electroweak vacuum would be too
short-lived. This criticality may have very important
implications for possible extensions of the SM.
Taken at face value, the best-fit parameters of the

SM indicate that the electroweak vacuum is metastable.
This is due to the running of the Higgs quartic, which
turns negative at an energy scale much larger than the

electroweak one, at around 1011 GeV, inducing a lower-
lying, true vacuum in the effective potential at high field
values. The electroweak vacuum may then decay to this
global minimum through quantum tunneling. The scalar
potential, the top Yukawa and the electroweak gauge
couplings have been extracted from data at full two-loop
next-to-next-leading order (NNLO) precision [3,4]. These
parameters have been extrapolated to large energies using
the full three-loop renormalization-group-equation (RGE)
to NNLO precision [4]. With these calculations, the Higgs
and top-quark masses of 125 GeV and 173 GeV respec-
tively, suggest a lifetime for the electroweak vacuum that is
longer than the age of our Universe, leading to the
metastability scenario [3,5]. However, in comparison to
the running couplings, the radiative corrections that appear
in the corresponding tunneling problem have been com-
puted less accurately. So far the one-loop radiative correc-
tions to the decay rate due to fluctuations about the classical
bounce have been calculated for the SM in Refs. [6–10].
The tunneling rate is sensitive to the solitonic field

configuration known as the “bounce” [11,12]. The equa-
tion of motion for the latter is often derived from a
renormalization-group-improved scalar potential, with the
running coupling constants evaluated at a scale given by the
typical values of the scalar field in the bounce solution. Yet
the bounce is an inhomogeneous configuration whose equa-
tion of motion should be determined by the effective action.
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The beta functions for the couplings, or more generally
the Coleman–Weinberg effective potential [13], do not
account for the gradient effects arising from the inhomo-
geneity of the background. To date, the latter have only
been accounted for in the calculation of the lifetime of the
SM electroweak vacuum when estimating the one-loop
fluctuation determinants around the bounce, but not when
obtaining the bounce itself [6–10]. The one-loop effective
action associated with the fluctuation determinants is
often computed using the Gel’fand–Yaglom method.
While this is a powerful approach to obtain this quantity
either analytically or numerically, it is not clear how to
extend it beyond one-loop order.
In order to advance systematically in accuracy, one may

pursue an expansion of the effective action and the
equations of motion consistent with it in terms of
Green’s functions. This Green’s function approach has
been carried out in models with interactions among scalar
fields [14,15] as well as for Yukawa theory [16]. These
studies show that the gradient corrections to the one-loop
result are comparable with terms that appear at two-loop
order in the case of a quasidegenerate quartic potential.
Nonetheless, the impact of the self-consistent Green’s
function approach is expected to be larger when the scalar
potential is nearly scale-invariant, as it is the case in the SM.
In this situation the spontaneous breaking of the approxi-
mate dilatational symmetry of the bounce gives rise to a
pseudo-Goldstone mode. In the approximation of a scale-
invariant bounce, the path integration over the Goldstone
mode can be traded for a collective coordinate, where
different methods of evaluating the integral over the latter
have been proposed [9,10]. On the other hand, when
appreciating that the self-consistently obtained bounce
itself breaks scale invariance, the functional determinant
can be evaluated without transforming the path integral and
regulating it ad hoc. The self-consistent computation of the
effective action and the resulting bounce can then be
understood as a summation of one-loop diagrams. It leads
to infrared effects giving logarithms which dominate
one-loop corrections to the effective action in a model
consisting of only scalar fields [17]. The self-consistent
computation of these one-loop contributions and the
quantum-corrected bounce therefore remains an important
task to be addressed in the SM.
At present, such a full calculation of the tunneling rate in

the SM to next-to-leading order (NLO) accuracy (i.e.,
including the infrared logarithms that appear at that order
by a self-consistent computation of the bounce) requires
further methodical development. Considering the important
role played by the W and Z bosons in electroweak vacuum
metastability, we extend here the methods developed in
Refs. [14,16] to gauge theories. Although our work
elaborates on a specific model and is not applied to realistic
phenomenology, we aim to provide an example for how to
include gradient effects on the decay rate of the false

vacuum through a self-consistent scheme in gauge theories.
Further technical developments and the application to
tunneling in the SM are left for future work.
This paper is organized as follows. In Sec. II we review

the Callan–Coleman formalism for false vacuum decay as
well as the general way of calculating radiative corrections
to false vacuum decay at higher-order using the effective
action. This is followed in Sec. III by the application of the
effective action method to false vacuum decay in gauge
theory. In contrast to pure scalar and Higgs–Yukawa
models, for gauge theories there is a coupled sector
involving the fluctuations of the gauge and Goldstone
bosons which demands a more intricate treatment. The
details of these computations for the Rξ-type gauges are
presented in the subsequent two sections. Section IV is
devoted to a particular choice of gauge in which the mixing
between the gauge and Goldstone degrees of freedom
simplifies. Then, Section V contains the details of the
renormalization procedure applied for this model. The
computer implementation and numerical results are
reported in Sec. VI. Comments and discussion of the
results are given in Sec. VII. Throughout this paper, we
use c ¼ 1 and repeated Greek indices at the same level are
summed up with Euclidean signature.

II. CALLAN–COLEMAN FORMALISM
AND THE BOUNCE

In this section, we review the pertinent details of the
calculation of the decay rate of a metastable vacuum state
following Callan and Coleman [11,12] and considering the
following archetypal model,

LM ¼ 1

2
ημνð∂μΦÞð∂νΦÞ −UðΦÞ; ð2:1Þ

where μ; ν ¼ 0;…; 3, ημν is the Minkowski metric with
signature þ;−;−;− and

UðΦÞ ¼ −
1

2
μ2Φ2 þ 1

3!
λ3Φ3 þ 1

4!
λΦ4 þU0: ð2:2Þ

The couplings μ2; λ; λ3 all take positive values, and the
cubic term breaks the Z2 symmetry at tree level such as to
lift the degeneracy between the vacua. The potential is
assumed to have two minima at φþ and φ−, corresponding
to the false and the true vacuum, respectively. For con-
venience, one can choose the constantU0 such that the false
vacuum has vanishing energy density. An example poten-
tial is depicted in Fig. 1.
In order to obtain the decay rate, Callan and Coleman

consider the following Euclidean false vacuum to false
vacuum transition amplitude

Z½0� ¼ hφþje−HT =ℏjφþi ¼
Z

DΦe−
1
ℏSE½Φ�; ð2:3Þ
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where H is the full Hamiltonian and T is the amount of
Euclidean time taken by the transition. The classical
Euclidean action is SE½Φ�, which can be obtained by a
Wick rotation, i.e., SE ¼ −iSMðx0 → −ix4Þ with x4 ≡ τ
being the Euclidean time. Written explicitly,

SE½Φ� ¼
Z

d4x

�
1

2
δμνð∂μΦÞ∂νΦþUðΦÞ

�
; ð2:4Þ

where δμν is the Kronecker symbol and μ; ν ¼ 1;…; 4 for
Euclidean space. Observe that in the Euclidean action the
sign in front of the potential is flipped. An important
consequence is that, for the boundary conditions of interest,
the Euclidean action allows for a classical soliton solution,
the so-called bounce, as we describe below.
One can extract the ground-state energy E0 of the system

by inserting a complete set of energy eigenstates into the
partition functional, i.e.,

hφþje−HT =ℏjφþi ¼
X
n

e−EnT =ℏhφþjnihnjφþi; ð2:5Þ

where E0 has the smallest real part among all En, and then
taking the limit T → ∞ such that the contribution corre-
sponding to E0 dominates. In the case of an unstable state,
which can be modeled as a non-normalizable eigenstate
with complex energy E0þ, and with ImE0þ related to the
tunneling rate, one can isolate the contribution from E0þ by
appropriately constraining the path integration [18,19].
The constraint is enforced by performing the path integra-
tion using the method of steepest descent around bounce
and multibounce saddle points that can be approximated as
combination of the single bounce φ in the dilute-gas
approximation.
The tree-level bounce is a solution to the classical

Euclidean equation of motion

−∂2φþ U0ðφÞ ¼ 0 ð2:6Þ

that satisfies the boundary conditions φjx4→�∞ ¼ φþ and
_φjx4¼0 ¼ 0, where the dot denotes the derivative with
respect to x4. The prime denotes the derivative of the
classical potential from Eq. (2.2) with respect to the field φ.
Notice that we are interested in a field configuration that
starts and ends in the false vacuum, hence its name. For
the bounce action to be finite, we also require that
φjjxj→∞ ¼ φþ. Given the anticipated Oð4Þ invariance of
the bounce, it is convenient to work in four-dimensional
hyperspherical coordinates, in which the equation of
motion takes the form

−
d2φ
dr2

−
3

r
dφ
dr

þ U0ðφÞ ¼ 0; ð2:7Þ

with r2 ¼ x2 þ x24. The boundary conditions become
φjr→∞ ¼ φþ. The solution must be regular at the origin,
and we therefore require that dφ=drjr¼0 ¼ 0. Its form is
that of a soliton that interpolates between the field value φ�
corresponding to the escape point (which lies close to
the true vacuum φ−) at the origin of Euclidean space and
the false vacuum φþ at infinity, see Fig. 1. Therefore,
it describes a four-dimensional hyperspherical bubble
nucleated within the false vacuum. This classical solution
will be denoted as φb. In the limit in which the potential
energy of the true and false vacua become degenerate, it can
be argued that the bubble is very thin compared to its large
radius [11]. This corresponds to the “thin-wall” limit. One
then may also approximate the bubble wall by a planar
configuration.
When evaluated at the bounce, the fluctuation operator

possesses a negative eigenvalue, and naively performing
the Gaussian integral produces a divergent result. A phy-
sically meaningful answer, however, can be found through
careful analytic continuation by which one obtains an
imaginary part of the energy, which is interpreted in terms
of the complex energy E0þ of the false vacuum state. In
terms of Z½0�, the decay rate is given by [12]

γ ¼ 2jImZ½0�j
T

: ð2:8Þ

Note that in the above formula, the partition function is to
be evaluated by expanding around the bounce solution and
normalized to be one when evaluated at the false vacuum.
At one-loop order, one has [12]

γ

V
¼
�

B
2πℏ

�
2
���� det0½−∂2 þ U00ðφbÞ�
det½−∂2 þ U00ðφþÞ�

����−1=2e−B=ℏ; ð2:9Þ

where B ¼ SE½φb� is the bounce action, det0 means that
the zero eigenvalues are to be omitted from the determinant
and a prefactor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=2πℏ

p
is included for each of the

four collective coordinates that correspond to spacetime
translations [20].

FIG. 1. The classical potential UðΦÞ for the archetypical scalar
model with false vacuum decay, given by Eqs. (2.1) and (2.2).
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In order to reformulate Eq. (2.8) in a way that radiative
effects can be systematically considered, we make use of
the effective action [21,22]. For conciseness, we employ
the DeWitt notation

Jxφx ¼
Z

d4x JðxÞφðxÞ; ð2:10Þ

in which repeated continuous indices are integrated over.
Recall that the effective action is defined as the Legendre
transform

Γ½φ� ¼ −ℏ logZ½J� þ Jxφx; ð2:11Þ

where

Z½J� ¼
Z

DΦ exp

�
−
1

ℏ
ðS½Φ� − JxΦxÞ

�
ð2:12Þ

and

φx ¼ hΩjΦxjΩijJ ¼ ℏ
δ logZ½J�

δJx
ð2:13Þ

is the one-point function in the presence of the source J.
From the effective action, one obtains the equation of
motion

δΓ½φ�
δφx

¼ Jx; ð2:14Þ

which gives the quantum-corrected bounce. The effective
action thus provides a quantum version of the principle of
least action.
In terms of the effective action, the decay rate (2.8) can

be written as [14,15,23,24]

γ ¼ 2jIm e−Γ½φ�=ℏj
T

; ð2:15Þ

where the quantum-corrected bounce φ is the solution to
the quantum equation of motion (2.14) with J ¼ 0. In case
the vacuum structure is generated by radiative corrections
in the first place, one can deal with it using the two-particle
irreducible effective action and evaluate the partition
function by expanding about the self-consistent solution
to the quantum-corrected one and two-point functions, as
explained in Refs. [15,23,25].

III. FALSE VACUUM DECAY IN GAUGE THEORY

Our goal is to carry out a proof-of-principle calculation
of the decay rate of the false vacuum in an Abelian gauge
theory, including the effects of radiative corrections on the
self-consistent bounce solution and accounting for gradient
effects without resorting to a gradient expansion of the

effective action. For this purpose, we study a model with
the following particle content: a complex scalar field Φ, a
Uð1Þ gauge field Aμ and the associated ghost fields, η and η̄,
with the following Euclidean Lagrangian

L ¼ ð∂μΦ⋆ þ igAμΦ⋆Þð∂μΦ − igAμΦÞ þUðΦ�ΦÞ

þ 1

4
FμνFμν þ LG:F: þ Lghost; ð3:1Þ

where Fμν ¼ ∂μAν − ∂νAμ. Here UðΦ�ΦÞ is the scalar
potential while LG:F: and Lghost are the gauge fixing and
Faddeev-Popov ghost terms, respectively. Since the cubic
term in Eq. (2.2) for the archetypical real scalar model (2.1)
is not allowed by the gauge symmetry, one may attempt to
use a potential

UðΦÞ ¼ −μ2jΦj2 þ λjΦj4 ð3:2Þ

resembling the case of the SM Higgs field. But this theory
simply displays spontaneous symmetry breaking (SSB)
via the Higgs mechanism while not having a metastable
vacuum.
Instead, we here consider the following potential:

UðΦÞ ¼ αjΦj2 þ λjΦj4 þ λ6jΦj6: ð3:3Þ

The false vacuum is still located at Φ ¼ 0. The last term of
dimension six allows us to manufacture two vacua for a
certain region of parameters, such that the potential
presents a profile as in Fig. 2. Phenomenologically, this
term can be understood as an effective operator induced
by physics beyond the SM (BSM), which is suppressed by
the energy scale of new physics. The model specified
through Eqs. (3.1) and (3.3) can arise, e.g., from an
ultraviolet (UV) completion with extra heavy fermions
coupling to Φ through Yukawa interactions, and whose
associated loop corrections generate higher-dimensional
contributions in the scalar potential, these arguments are
made more precise in Sec. VI for our particular set of para-
meters. Alternatively, one can also consider loop correc-
tions from a singlet scalar S with an S2jΦj2 interaction. If a

FIG. 2. Tree level potential UðΦ�ΦÞ having different vacua
(local or global minima).
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coupling SjΦj2 is allowed, then one can also generate the
higher-dimensional terms from tree-level diagrams with
heavy scalar propagators. All these approaches generate a
Φ6 term plus higher-order interactions, which are sup-
pressed by increasing powers of the coupling between the
heavy fields and Φ, times the inverse of the heavy mass.
Once we have specified a parametric benchmark point, we
will comment on its validity from an effective field theory
point of view. The difference between the model (3.3) and
the λΦ4 model is that the model (3.3) allows for false and
true vacua at tree-level.
When considering the instability of the Higgs field in the

SM, the quadratic term is often neglected and the renorm-
alization scale is chosen to be the Higgs instability scale,
leading to a negative quartic coupling. The potential then
reduces to a quartic monomial with negative λ, such that the
false vacuum is Φ ¼ 0, and the false and true vacua are far
from degenerate. (In fact, there is no true vacuum unless
radiative corrections eventually turn λ positive again for
very large field values, as is the case in the SM.) While the
situation in the latter is of ultimate interest, here we develop
the method of Green’s functions in the gauge sector by
considering a simpler model that leaves aside for now
the issues coming from the approximate scale-invariance of

the SM. The question of how to deal with scale-invariance
in the Green’s function approach is partly addressed for a
model consisting only of scalar fields in Ref. [17].
In the model given by the potential in Eq. (3.3) it is not

possible to obtain a general analytic expression for the
bounce solution φb to the classical Euclidean equation of
motion. Moreover, it will prove convenient to use as an
initial approximation to the quantum bounce φ a con-
figuration φ0 that solves the equations of motion that
follow from using the one-loop Coleman-Weinberg potential
rather than its tree-level counterpart. We obtain φ0 as a
numerical solution. Additionally, we use the thin-wall
approximation—as mentioned before, valid when the min-
ima are quasidegenerate—and the planar-wall limit, in which
the bubble becomes infinitely large and its Oð4Þ symmetry
can be traded for Oð3Þ, such that the bounce solution
becomes invariant under translations parallel to the bubble
wall, which can be taken to be orthogonal to the x4-axis.

A. Effective action

To obtain the decay rate along the lines of Sec. II, we first
work out the effective action [21,22] for the gauge theory
(3.1). The Euclidean partition function for this case is

Z½J;Kμ; ψ̄ ;ψ � ¼
Z

DΦDAμDηDη̄e−
1
ℏ

R
d4x½L−JðxÞΦðxÞ−KμðxÞAμðxÞ−ψ̄ðxÞηðxÞ−η̄ðxÞψðxÞ�; ð3:4Þ

where we have introduced ghost fields η, η̄, while J; Kμ; ψ̄ ;ψ are the external currents corresponding to the various fields.
Defining the one-point expectation values in the presence of sources as

φx ¼ hΩjΦxjΩijJ;Kμ;ψ̄ ;ψ ¼ ℏ
δ logZ½J;Kμ; ψ̄ ;ψ �

δJx
;

Aμ;x ¼ hΩjAμ;xjΩijJ;Kμ;ψ̄ ;ψ ¼ ℏ
δ logZ½J; Kμ; ψ̄ ;ψ �

δKμ;x
;

H̄x ¼ hΩjη̄xjΩijJ;Kμ;ψ̄ ;ψ ¼ −ℏ
δ logZ½J; Kμ; ψ̄ ;ψ �

δψx
;

Hx ¼ hΩjηxjΩijJ;Kμ;ψ̄ ;ψ ¼ ℏ
δ logZ½J; Kμ; ψ̄ ;ψ �

δψ̄x
; ð3:5Þ

the effective action is the Legendre transform of the partition function,

Γ½φ;Aμ; H̄; H� ¼ −ℏ logZ½J; Kμ; ψ̄ ;ψ � þ Jxφx þ Kμ;xAμ;x þ H̄xψx þ ψ̄xHx: ð3:6Þ

It then follows that

δΓ½φ;Aμ; H̄; H�
δφx

¼ Jx;
δΓ½φ;Aμ; H̄; H�

δAμ;x
¼ Kμ;x;

δΓ½φ;Aμ; H̄; H�
δH̄x

¼ ψx;
δΓ½φ;Aμ; H̄; H�

δHx
¼ −ψ̄x: ð3:7Þ
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For false vacuum decay in the present model, the bounce
corresponds to the scalar one-point expectation value, while
the one-point expectation values for other fields remain
zero. We therefore abbreviate Γ½φ;Aμ ¼ H̄ ¼ H ¼ 0� as
Γ½φ� and S½φ;Aμ ¼ H̄ ¼ H ¼ 0� as S½φ�. The tunneling
rate [14–16,23,24] is then

γ

V
¼ 2jIm e−Γ

ðnÞ½φðnÞ�=ℏj
VT

; ð3:8Þ

where ΓðnÞ½φðnÞ� and φðnÞ are the effective action and
corrected bounce at n-loop order

δΓðnÞ½φ�
δφx

����
φx¼φðnÞ

x

¼ 0 ð3:9Þ

with Oð4Þ-symmetric boundary conditions φðnÞjjxj→∞ ¼ 0.
These are Eqs. (2.15) and (2.14) from the previous section,
applied to the present case study. In what follows we

calculate the corrected bounce φð1Þ at one-loop order and
the resulting quantum-corrected decay rate when one
substitutes φð1Þ into Γð1Þ in Eq. (3.8).
We now expand the quantum fieldΦ around the classical

bounce background φb ¼ φð0Þ in terms of real fields,

Φ ¼ 1ffiffiffi
2

p ðφb þ Φ̂þ iGÞ: ð3:10Þ

We consider the family of gauge-fixing terms of the form

LG:F: ¼
1

2ξ
ð∂μAμ − ζgφbGÞ2; ð3:11Þ

where ζ ¼ 0 [10,26] for Fermi gauge, ζ ¼ 1 [6] or ζ ¼ ξ
[7] for Rξ gauge. For this family of gauges and to compute
the one-loop effective action we consider the Lagrangian up
to quadratic order in the field fluctuations, given that higher
order interactions do not enter one-loop effects, thus:

Lð2Þ ¼ 1

2
ð∂μφbÞ2 þ

α

2
φ2
b þ

λ

4
φ4
b þ

λ6
8
φ6
b þ

1

2
Φ̂
�
−□þ αþ 3λφ2

b þ
15λ6
4

φ4
b

�
Φ̂

þ 1

2
Aμ

�
ð−□þ g2φ2

bÞδμν þ
ξ − 1

ξ
∂μ∂ν

�
Aν

þ 1

2
G

�
−□þ αþ λφ2

b þ
3λ6
4

φ4
b þ

ζ2g2φ2
b

ξ

�
G

þ η̄ð−□þ ζg2φ2
bÞηþ

�
ζ þ ξ

ξ

�
gAμð∂μφbÞGþ

�
ζ − ξ

ξ

�
gφbAμð∂μGÞ; ð3:12Þ

where we employ the notation □ to denote the four-dimensional Laplacian operator.
The expansion in Eq. (3.12) allows us to compute the partition function within a Gaußian approximation. The current

corresponding to the tree-level bounce is J½φb� ¼ OðℏÞ, as follows from a loop expansion of Eq. (3.7). Similarly, it can be
seen that the one-point function associated with this current is φ ¼ φb þOðℏÞ. Taking this into account when calculating
the effective action using Eq. (3.6) together with the Gaußian approximation to the partition function, one obtains

Γð1Þ½φb� − Γð1Þ½0� ¼ S½φb� þ
ℏ
2
log

detM−1
Φ̂ ðφbÞ

detM−1
Φ̂ ð0Þ þ ℏ

2
log

detM−1
ðAμ;GÞðφbÞ

detM−1
ðAμ;GÞð0Þ

− ℏ log
detM−1

ðη̄;ηÞðφbÞ
detM−1

ðη̄;ηÞð0Þ
; ð3:13Þ

where

M−1
Φ̂ ðφbÞ ¼ −□þ αþ 3λφ2

b þ
15λ6
4

φ4
b;

M−1
ðAμ;GÞðφbÞ ¼

0B@ ð−□þ g2φ2
bÞδμν þ ξ−1

ξ ∂μ∂ν

�
ζþξ
ξ

	
gð∂μφbÞ þ

�
ζ−ξ
ξ

	
gφb∂μ

2gð∂νφbÞ þ
�
ξ−ζ
ξ

	
gφb∂ν −□þ αþ λφ2

b þ 3λ6
4
φ4
b þ ζ2g2φ2

b
ξ

1CA;

M−1
ðη̄;ηÞðφbÞ ¼ −□þ ζg2φ2

b: ð3:14Þ

AI, CRUZ, GARBRECHT, and TAMARIT PHYS. REV. D 102, 085001 (2020)

085001-6



HereM−1
ðAμ;GÞ is a 5 × 5matrix which operates on the vector

ðAν; GÞT from the left. In Eq. (3.13) we have made use of
the assumption that the tree-level potential is normalized to
zero at the false vacuum φ ¼ 0. One can further choose
counterterms such that the full effective action evaluated at
φ ¼ 0 (equivalent to the effective potential at the origin)

vanishes, such that in the following we will set Γð1Þ½0� ¼ 0

in Eq. (3.13). One can show that φð1Þ ¼ φb þOðℏÞ via
Eq. (3.9). Using this, together with the aforementioned fact
that J½φb� ¼ OðℏÞ, we arrive at the one-loop effective
action evaluated at the one-loop, quantum-corrected
bounce:

Γð1Þ½φð1Þ� ¼ S½φð1Þ� þ ℏ
2
log

detM−1
Φ̂ ðφð1ÞÞ

detM−1
Φ̂ ð0Þ þ ℏ

2
log

detM−1
ðAμ;GÞðφð1ÞÞ

detM−1
ðAμ;GÞð0Þ

− ℏ log
detM−1

ðη̄;ηÞðφð1ÞÞ
detM−1

ðη̄;ηÞð0Þ
: ð3:15Þ

The above expression and its higher-order generalization
can be derived in a rigorous manner by tracking carefully
the distinction between saddle points and one-point func-
tions, and using the method of constrained sources to
ensure that the saddle points of the relevant path integrals
coincide with the quantum-corrected bounce instead of the
tree-level bounce used in the previous derivation [23].
Equation (3.15) will be our starting point, and we will do a
perturbative expansion of the quantum bounce φð1Þ around
an initial approximation φ0—to be referred to as the
“simplified bounce”—which may not necessarily be the
tree-level bounce φb, but e.g., the bounce computed using
the one-loop Coleman-Weinberg potential in which pos-
sible gradient corrections have been neglected.
Before implementing this expansion, we introduce a

further simplification making use of the planar-wall
approximation. In the limit in which the false and true
vacua become degenerate, the radius of the bubble des-
cribed by the bounce configuration grows, and it can
become so large that the bubble can be approximated by
a planar configuration. This allows us to trade the deter-
minants of operators over functions in R4 in Eq. (3.15)
with simpler determinants over momentum-dependent
operators acting on functions in R. In this approximation,

the bubble profile depends on a single Cartesian coordinate
(corresponding to the direction perpendicular to the wall)
that we choose to be x4. We may further shift x4 to a
coordinate z, such that z ¼ 0 at the center the bubble
wall, defined by the location of its steepest gradient. In
this approximation the fluctuation operators M−1

X ðφð1ÞÞ—
with X ∈ fΦ̂; ðAμ; GÞ; ðη̄; ηÞg—become independent of
x ¼ fx1; x2; x3g, and thus one can consider a basis of
eigenfunctions of the form

ϕX;k;iðxÞ ¼
eik·x

ð2πÞ3=2 fX;k;iðzÞ with

M−1
X ðφð1ÞÞϕX;k;i ¼ λX;k;iϕX;k;i: ð3:16Þ

Inserting the definitions of the fluctuation operators in
Eq. (3.14), one ends up with eigenvalue equations for the
functions fX;k;iðzÞ involving planar fluctuation operators
M−1

X;kðφð1ÞÞ:

M−1
X;kðφð1ÞÞfX;k;i ¼ λX;k;ifX;k;i; ð3:17Þ

with

M−1
Φ̂;k

ðφð1ÞÞ ¼ −∂2
z þ k2 þ αþ 3λφð1Þ2 þ 15λ6

4
φð1Þ4;

M−1
ðη̄;ηÞ;kðφð1ÞÞ ¼ −∂2

z þ k2 þ ζg2φð1Þ2;

M−1
ðAμ;GÞ;kðφð1ÞÞ ¼

0BBB@
M−1

k ðφð1ÞÞδij þ ξ−1
ξ ðikiÞðikjÞ ξ−1

ξ ðikiÞ∂z
ζ−ξ
ξ gφð1ÞðikiÞ

ξ−1
ξ ðikjÞ∂z M−1

k ðφð1ÞÞ þ ξ−1
ξ ∂2

z

�
ζþξ
ξ

	
gð∂zφ

ð1ÞÞ þ ζ−ξ
ξ gφð1Þ∂z�

ξ−ζ
ξ

	
gφð1ÞðikjÞ 2gð∂zφ

ð1ÞÞ þ
�
ξ−ζ
ξ

	
gφð1Þ∂z N−1

k ðφð1ÞÞ

1CCCA:

ð3:18Þ
Here

M−1
k ðφð1ÞÞ ¼ −∂2

z þ k2 þ g2φð1Þ2;

N−1
k ðφð1ÞÞ ¼ −∂2

z þ k2 þ αþ λφð1Þ2 þ 3λ6
4

φð1Þ4 þ ζ2g2φð1Þ2

ξ
: ð3:19Þ
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Observe that when choosing ξ ¼ ζ ¼ 1, the fields Ai
(i ¼ 1, 2, 3) neatly decouple and the planar fluctuation
operators for Ai are the same as that for ghost fields, leading
to a cancellation of the contribution from the ghost fields
with one of the three gauge field degrees of freedom.
Due to the Hermiticity of the operators M−1

X;kðφð1ÞÞ, the
eigenfunctions fX;k;iðzÞ are orthogonal, and so are the
corresponding eigenfunctions ϕX;k;iðxÞ of the full problem.
The eigenfunctions fX;k;iðzÞ are assumed to have the usual
normalization for either the discrete spectrum (with the
scalar product of eigenfunctions with indices i and j being a
Kronecker delta δij) or the continuum spectrum [the scalar
product being a delta function δði − jÞ]. Given this, one can
write a spectral decomposition of logM−1

X ðφð1ÞÞ into
orthogonal projectors. Representing operators O in terms
of matrices Oðx; yÞ with continuous indices, such that
ðOfÞðxÞ ¼ R Oðx; yÞfðyÞ, one gets:

logM−1
X ðφð1Þ; x0; xÞ

¼
Z

d3k
XZ
i

logðλX;k;iÞϕX;k;iðx0Þϕ†
X;k;iðxÞ

¼
Z

d3k
ð2πÞ3 e

ik·ðx0−xÞXZ
i

logðλX;k;iÞPX;k;iðz0; zÞ: ð3:20Þ

In the previous equation, ⨋ denotes a sum over dis-
crete values and integration over continuum values. The
operators PX;k;iðz0; zÞ ¼ fX;k;iðz0Þf†X;k;iðzÞ are projectors
onto the eigenfunctions of the planar fluctuation operators
M−1

X;kðφð1ÞÞ of Eqs. (3.17), (3.18). Then ⨋i log λX;k;iPX;k;i

is nothing but the spectral decomposition of the operator
logM−1

X;kðφð1ÞÞ, and thus one ends up with

logM−1
X ðφð1Þ; x0; xÞ

¼
Z

d3k
ð2πÞ3 e

ik·ðx0−xÞ logM−1
X;kðφð1Þ; z0; zÞ: ð3:21Þ

In the same manner one can show that the Green’s functions
MXðφð1ÞÞ [the inverses of the planar fluctuation operators
M−1

X ðφð1ÞÞ], satisfy

MXðφð1Þ; x0; xÞ ¼
Z

d3k
ð2πÞ3 e

ik·ðx0−xÞMX;kðφð1Þ; z0; zÞ:

ð3:22Þ

One can then compute log detM−1
X ¼ Tr logM−1

X (with Tr
acting on continuous as well as discrete indices) as follows:

log detM−1
X ðφð1ÞÞ ¼ tr

Z
d4x logM−1

X ðφð1Þ; x; xÞ ¼ VTrz

Z
d3k
ð2πÞ3 logM

−1
X;kðφð1ÞÞ

¼ V
Z

d3k
ð2πÞ3 log detM

−1
X;k; ð3:23Þ

where “tr” denotes a trace over the remaining discrete matrix structure, if any [e.g., for X ¼ ðAμ; GÞ, see Eq. (3.18)]. From
this result, we can finally obtain an expression for the effective action evaluated at the quantum bounce, Eq. (3.15), in the
planar-wall approximation:

Γð1Þ½φð1Þ� ¼ S½φð1Þ� þ ℏ
2
V
Z

d3k
ð2πÞ3 log

detM−1
Φ̂;k

ðφð1ÞÞ
detM−1

Φ̂;k
ð0Þ þ ℏ

2
Vtr
Z

d3k
ð2πÞ3 log

detM−1
ðAμ;GÞ;kðφð1ÞÞ

detM−1
ðAμ;GÞ;kð0Þ

− ℏV
Z

d3k
ð2πÞ3 log

detM−1
ðη̄;ηÞ;kðφð1ÞÞ

detM−1
ðη̄;ηÞ;kð0Þ

: ð3:24Þ

To end this section, let us comment on the interpretation of
Γð1Þ½φð1Þ� in terms of Feynman diagrams. The functional
Γð1Þ½φð1Þ� includes additional two-loop corrections with
respect to the one-loop effective action evaluated at the
initial estimate of the bounce φ0, Γð1Þ½φ0�. When φ0 is the
tree-level bounce and when the propagators are understood
as Green’s functions in the background of φ0, these
corrections to the effective action correspond to dumbbell
diagrams, as shown in Figs. 3 and 4 [14]. While these
corrections are of two-loop order, they may be enhanced

over additional two-loop effects. For example, in non-
Abelian theories the summation over color enhances the
dumbbells with respect to other topologies such as sunset
diagrams. Note that the fact that the two-loop diagrams
contributing to Γð1Þ½φð1Þ� are not one-particle irreducible is
not contradicting the usual properties of the effective
action. This is just an artifact of defining propagators in
the background of the simplified bounce φ0, rather than
φð1Þ. Doing the latter, the diagrams that contribute to Γ½φð1Þ�
are always one-particle irreducible [14].
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B. Green’s function method

Up to now, φð1Þ is yet undetermined. In this section, we
derive its equation of motion. For this purpose, we expand
Eq. (3.24) around φ0. Writing φð1Þ ¼ φ0 þ ℏδφ, one obtains

Γð1Þ½φð1Þ� ¼ Bþ ℏBð1Þ þ ℏBð1Þ
Φ̂;dis

þ ℏBð1Þ
Φ̂ þ ℏBð1Þ

ðAμ;GÞ

þ ℏBð1Þ
ðη̄;ηÞ þ ℏ2Bð2Þ þ ℏ2Bð2Þ

Φ̂

þ ℏ2Bð2Þ
ðAμ;GÞ þ ℏ2Bð2Þ

ðη̄;ηÞ; ð3:25Þ

where the different contributions are explained in the
following. First, we recall that B is the classical action
evaluated at the simplified bounce, B ¼ S½φ0�. Bð1Þ and Bð2Þ
are related to the expansion of the classical action around φ0,
while the rest of the terms originate from the expansion of
the one-loop corrections. Starting with the latter, the first
term

ℏBð1Þ
Φ̂;dis

¼ iπℏ
2

−
ℏ
2
log

�ðVT Þ2α5
4jλ0j

�
B
2πℏ

�
4
�

ð3:26Þ

is the contribution from the discrete modes to the scalar
fluctuations. Four zero modes corresponding spacetime
translations of the scalar field fluctuations have been traded
for collective coordinates. In addition, there is one negative
mode about the bounce, which in the thin-wall approxima-
tion takes the value [14,17]

λ0 ¼ −
3

R2
; ð3:27Þ

where R is the radius of the critical bubble. The integral over
this negative mode needs careful analytic continuation which
leads to half the result obtained when one naively performs
the Gaussian integral as if λ0 is positive, which explains both
the term iπℏ=2 and the factor of 4 inside the logarithm in
Eq. (3.26) [12]. In the planar-wall approximation, these five

FIG. 4. Dumbbells diagrams (with propagators in the φ0

background) corresponding to the two-loop corrections Bð2Þ
X to

the effective action. For simplicity we only represent one
fluctuation leg and one background leg per vertex; the shaded
blobs can be completed so as to match any of the tadpole
diagrams in Fig. 3.

FIG. 3. Diagrammatic representation (with propagators defined in the background of the simplified bounce φ0) of the tadpole terms

associated with the functional derivatives of the one-loop contributions Bð1Þ
X to the effective action. Solid lines correspond to the real

scalar field Φ̂, dotted lines to ghosts, single wavy lines to the gauge field components parallel to the wall, and double wavy lines to the
fluctuations in the mixed A4=G sector. The scalar lines ending in crosses represent insertions of the background φ0, while the lines
ending in dots correspond to fluctuations around the background.
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discrete modes appear for k ¼ 0. Because of the vanishing
integration measure at this point, we pair these up explicitly
with the lowest eigenvalues α at the bottom of the continuum
spectrum about the false vacuum for k ¼ 0. This is to be
compared with the example of the one-dimensional kink,
where no planar-wall approximation is made and the
dimensionless factors in the determinant quotients match
up without ado [19].
The remaining ℏBð1Þ

X contributions are expressed in
terms of functional determinants as

ℏBð1Þ
Φ̂ ¼ ℏ

2
V
Z

d3k
ð2πÞ3 log

���� detM−1
Φ̂;k

ðφ0Þ
detM−1

Φ̂;k
ð0Þ
����; ð3:28aÞ

ℏBð1Þ
ðAμ;GÞ ¼

ℏ
2
Vtr
Z

d3k
ð2πÞ3 log

detM−1
ðAμ;GÞ;kðφ0Þ

detM−1
ðAμ;GÞ;kð0Þ

; ð3:28bÞ

ℏBð1Þ
ðη̄;ηÞ ¼ −ℏV

Z
d3k
ð2πÞ3 log

detM−1
ðη̄;ηÞ;kðφ0Þ

detM−1
ðη̄;ηÞ;kð0Þ

: ð3:28cÞ

Above, the trace “tr” is again understood to apply to the
matrix structure of the operators. Note that the discrete
modes yield a vanishing contribution to the d3k integration
in the planar-wall approximation and therefore do not need

to be dealt with explicitly in the above expression for Bð1Þ
Φ .

To obtain the functional determinants, we follow e.g.,
Refs. [16,27–29] and generalize the Green’s functions
MX;kðφ; z; z0Þ to resolvents

M
X;
ffiffiffiffiffiffiffiffi
k2þs

p ðφ; z; z0Þ ¼ MX;kðφ; z; z0Þjk2→k2þs: ð3:29Þ

The logarithm of the ratio of functional determinants is then
given by

log
detM−1

X ðφÞ
detM−1

X ð0Þ ¼ Vtr
Z

d3k
ð2πÞ3 log

detM−1
X;kðφÞ

detM−1
X;kð0Þ

¼ −tr
Z

∞

−∞
dz
Z

d3x
Z

∞

0

ds
Z

d3k
ð2πÞ3

�
M

X;
ffiffiffiffiffiffiffiffi
k2þs

p ðφ; z; zÞ −M
X;
ffiffiffiffiffiffiffiffi
k2þs

p ð0; z; zÞ
	
: ð3:30Þ

The resolvent is a generalization of the Green’s function that is most straightforwardly defined through a spectral sum over
the eigenmodes as e.g., in Refs. [15,19]. Green’s functions and resolvents for scalar fields in the background of tunneling
solutions have been found in Refs. [14,15]. In the present work, we focus on constructing the Green’s function in the gauge-
Goldstone sector, where the details are explained in Sec. IV.
At next order in the expansion in ℏ of Γð1Þ½φð1Þ�, there are terms of the form

ℏ2Bð2Þ
Φ̂ ¼ ℏ

2
V
Z

d3k
ð2πÞ3

Z
dzℏδφðzÞ δ

δφðzÞ log
detM−1

Φ̂;k
ðφÞ

detM−1
Φ̂;k

ð0Þ
����
φ0

;

ℏ2Bð2Þ
ðAμ;GÞ ¼

ℏ
2
V
Z

d3k
ð2πÞ3

Z
dzℏδφðzÞ δ

δφðzÞ log
detM−1

ðAμ;GÞ;kðφÞ
detM−1

ðAμ;GÞ;kð0Þ
����
φ0

;

ℏ2Bð2Þ
ðη̄;ηÞ ¼ −ℏV

Z
d3k
ð2πÞ3

Z
dzℏδφðzÞ δ

δφðzÞ log
detM−1

ðη̄;ηÞ;kðφÞ
detM−1

ðη̄;ηÞ;kð0Þ
����
φ0

: ð3:31Þ

As anticipated earlier and as will be justified below, these correspond to two-loop dumbbell diagrams. Additional dumbbell
contributions arise when expanding the classical action to second order in ℏδφ, which gives rise to the Bð2Þ contribution in
Eq. (3.25). In order to extract these terms, we functionally differentiate Eq. (3.24) with respect to φð1Þ. This yields the
equation of motion for the corrected bounce,

−∂2
zφ

ð1ÞðzÞ þ U0
effðφð1Þ; zÞ ¼ 0; ð3:32Þ

where

U0
effðφð1Þ; zÞ ¼ U0ðφð1Þ; zÞ þ ℏΠΦ̂ðφ0; zÞφ0ðzÞ þ ℏΠðAμ;GÞðφ0; zÞφ0ðzÞ þ ℏΠðη̄;ηÞðφ0; zÞφ0ðzÞ ð3:33Þ

and
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Uðφð1ÞÞ ¼ 1

2
αφð1Þ2 þ λ

4
φð1Þ4 þ λ6

8
φð1Þ6: ð3:34Þ

The functions ΠΦ̂, ΠðAμ;GÞ and Πðη̄;ηÞ may be interpreted as self-energy contributions from the field fluctuations, which are

derived from the functional derivatives of the various contributions to Bð1Þ with respect to the background field, giving the
so-called tadpole terms:

ℏΠΦ̂ðφ0; zÞφ0ðzÞ ¼
ℏ
2

Z
d3k
ð2πÞ3 ½6λφ0ðzÞ þ 15λ6φ

3
0ðzÞ�MΦ̂;kðφ0; z; zÞ; ð3:35aÞ

ℏΠðAμ;GÞðφ0; zÞφ0ðzÞ ¼
ℏ
2

Z
d3k
ð2πÞ3 tr

�
MðAμ;GÞ;kðφ0; z; zÞ

∂M−1
ðAμ;GÞ;kðφÞ
∂φ ðzÞ

����
φ0

�
; ð3:35bÞ

ℏΠðη̄;ηÞðφ0; zÞφ0ðzÞ ¼ −2ℏζg2
Z

d3k
ð2πÞ3Mðη̄;ηÞ;kðφ0; z; zÞφ0ðzÞ: ð3:35cÞ

Note that the tadpoles correspond to loop integrals of
Green’s functions MX;kðφ0Þ in the background of the
simplified bounce, multiplied by powers of the background
field. Thus they correspond to amputations of the tadpole
diagrams of Fig. 3.
From Eqs. (3.31) and (3.35) it can be easily seen that

Bð2Þ
X ¼ V

Z
dzδφðzÞΠXðφ0; zÞφ0ðzÞ: ð3:36Þ

Substituting φð1Þ ¼ φ0 þ ℏδφ into Eq. (3.32), one finds the
following equation for δφðzÞ:

M−1
Φ̂ ðφ0;zÞδφðzÞ ¼

1

ℏ
ð□φ0 −U0ðφ0; zÞÞ−ΠΦ̂ðφ0; zÞφ0ðzÞ

−ΠðAμ;GÞðφ0; zÞφ0ðzÞ
−Πðη̄;ηÞðφ0; zÞφ0ðzÞ: ð3:37Þ

The first contribution in the right-hand side (rhs) of
Eq. (3.37) vanishes if φ0 is chosen as the classical bounce.
Since as discussed above the ΠXðφ0; zÞφbðzÞ correspond to
amputated tadpole diagrams, Eq. (3.37) relates δφðzÞ to the
full tadpole diagrams of Fig. 3, as follows from the extra
insertion of the propagator MΦ̂ðφ0Þ. Then, Eq. (3.36)
implies that, as mentioned earlier, the Bð2Þ corrections are
given by the dumbbell diagrams of Fig. 4. Finally, the
remaining terms correspond to the expansion of the
classical action,

S½φð1Þ� ¼ Bþ ℏBð1Þ þ ℏ2Bð2Þ: ð3:38Þ

The second term on the right-hand side is

Bð1Þ ¼ V
Z

dzδφðzÞδS½φ�
δφðzÞ

����
φ0

¼ V
Z

dzδφðzÞð−□φ0 þU0ðφ0; zÞÞ; ð3:39Þ

which vanishes if φ0 is taken as the classical bounce. On the
other hand, using Eq. (3.37) together with (3.39) and (3.36)
one obtains

Bð2Þ ¼ 1

2

Z
d4xδφðzÞM−1

Φ̂ ðφ0; zÞδφðzÞ þOðℏ2Þ

¼ −
1

2
ðBð2Þ

Φ̂ þ Bð2Þ
ðAμ;GÞ þ Bð2Þ

ðη̄;ηÞÞ −
1

2ℏ
Bð1Þ: ð3:40Þ

We see that these contributions can be added to those
of Eqs. (3.39) and (3.31); when φ0 is taken as the
classical bounce, with Bð1Þ ¼ 0, these terms are again of
the dumbbell type.
Collecting all these results, we obtain the tunneling rate

per unit volume:

γ

V
¼
�

B
2πℏ

�
2

ffiffiffiffiffiffiffi
α5

jλ0j

s
exp

�
−
1

ℏ
ðBð0Þ þ ℏBð1Þ þ ℏ2Bð2ÞÞ

�
;

Bð0Þ ¼ B;

Bð1Þ ¼ Bð1Þ
Φ̂ þ Bð1Þ

ðAμ;GÞ þ Bð1Þ
ðη̄;ηÞ;

Bð2Þ ¼ −Bð2Þ: ð3:41Þ

Having organized the expansion in this form we see that,
in order to include gradient effects in the calculation of the
decay rate of the false vacuum, the main task that needs to
be carried out is to compute the coincident limit z0 → z of
the k-dependent Green’s functions MX;kðφ0; z; z0Þ and
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resolvents M
X;
ffiffiffiffiffiffiffiffi
k2þs

p ðφ0; z; z0Þ in the background of the

simplified bounce φ0. From the coincident Green’s func-

tions one can readily obtain the Bð1Þ
X corrections from

Eqs. (3.28) and (3.30). The tadpoles ΠXðφ0; zÞφ0ðzÞ can be
obtained using Eqs. (3.35), which then fixes the Bð2Þ
correction by means of Eqs. (3.40), (3.39), (3.36)
and (3.37).

IV. SOLVING FOR THE GREEN’S FUNCTION IN
THE GAUGE–GOLDSTONE SECTOR

A. Gauge choice

By inspection of the operator M−1
ðAμ;GÞ in (3.18), we see

that the gauge ξ ¼ ζ ¼ 1 is suitable in order to simplify the
problem. In this case, we have

M−1
ðAμ;GÞ;kðφð1ÞÞ ¼

0B@M−1
k ðφð1ÞÞδij 0 0

0 M−1
k ðφð1ÞÞ 2gð∂zφ

ð1ÞÞ
0 2gð∂zφ

ð1ÞÞ N−1
k ðφð1ÞÞ

1CA; ð4:1Þ

where now

N−1
k ðφð1ÞÞ ¼ −∂2

z þ k2 þ αþ λφð1Þ2 þ 3

4
λ6φ

ð1Þ4 þ g2φð1Þ2: ð4:2Þ

This gauge is particularly useful given that M−1
k decouples from M−1

ðAμ;GÞ;k and has the same form as M−1
ðη̄;ηÞ;k, leading to a

partial cancellation between the contributions of M−1
k and M−1

ðη̄;ηÞ;k to the effective action, as can be seen from Eq. (3.24).
Because of this cancellation, the effective action only contains three independent functional determinant terms
corresponding to the scalar, the mixing A4–Goldstone and the ghost sectors:

Γð1Þ½φð1Þ� ¼ S½φð1Þ� þ ℏ
2
V
Z

d3k
ð2πÞ3 log

detM−1
Φ̂;k

ðφð1ÞÞ
detM−1

Φ̂;k
ð0Þ þ ℏ

2
V
Z

d3k
ð2πÞ3 log

detM−1
ðA4;GÞ;kðφð1ÞÞ

detM−1
ðA4;GÞ;kð0Þ

þ ℏ
2
V
Z

d3k
ð2πÞ3 log

detM−1
ðη̄;ηÞ;kðφð1ÞÞ

detM−1
ðη̄;ηÞ;kð0Þ

; ð4:3Þ

where M−1
ðA4;GÞ;k can be read from Eq. (4.1). Note that the sign in front of the ghost contribution is flipped, and the

coefficient halved, due to the partial cancellation between gauge and ghost degrees of freedom mentioned above. From now
on, we use X ∈ fΦ̂; ðA4; GÞ; ðη̄; ηÞg.
Expanding φð1Þ ¼ φ0 þ ℏδφ as in the previous section, we have

Γ½φð1Þ� ¼ Bþ ℏ
2
Bð1Þ þ ℏBð1Þ

Φ̂;dis
þ ℏBð1Þ

Φ̂ þ ℏBð1Þ
ðA4;GÞ −

ℏ
2
Bð1Þ
ðη̄;ηÞ þ

1

2
ðℏ2Bð2Þ

Φ̂ þ ℏ2Bð2Þ
ðA4;GÞ −

ℏ2

2
Bð2Þ
ðη̄;ηÞÞ; ð4:4Þ

where

Bð1Þ
ðA4;GÞ ¼

1

2
V
Z

d3k
ð2πÞ3 log

detM−1
ðA4;GÞ;kðφ0Þ

detM−1
ðA4;GÞ;kð0Þ

; ð4:5aÞ

Bð2Þ
ðA4;GÞ ¼

1

2
V
Z

d3k
ð2πÞ3

Z
dzδφðzÞ δ

δφðzÞ log
detM−1

ðA4;GÞ;kðφÞ
detM−1

ðA4;GÞ;kð0Þ
����
φ0

; ð4:5bÞ

and all remaining terms are unchanged with respect to Sec. III. Correspondingly, the equation of motion for the corrected
bounce takes the form Eq. (3.32) with the explicit potential term

U0
effðφð1Þ; zÞ ¼ U0ðφð1Þ; zÞ þ ℏΠΦ̂ðφ0; zÞφ0ðzÞ þ ℏΠðA4;GÞðφ0; zÞφ0ðzÞ −

ℏ
2
Πðη̄;ηÞðφ0; zÞφ0ðzÞ; ð4:6Þ
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where ΠΦ̂ðφ0; zÞφ0ðzÞ;Πðη̄;ηÞðφ0; zÞ are given in Eqs. (3.35), while

ΠðA4;GÞðφ0; zÞφ0ðzÞ ¼
1

2

Z
d3k
ð2πÞ3 tr

�
MðA4;GÞ;kðφ0; zÞ

�∂M−1
ðA4;GÞ;kðφð1Þ; zÞ
∂φð1ÞðzÞ

�����
φ0

�
: ð4:7Þ

It can be checked that Eq. (3.36) is also valid for the ðA4; GÞ sector. With the present gauge choice, we readily write

∂
∂φM−1

ðA4;GÞ;kðφ; zÞ
����
φ0

¼
�
2g2φ0ðzÞ −2g∂z

−2g∂z 2λφ0ðzÞ þ 3λ6φ
3
0ðzÞ þ 2g2φ0ðzÞ

�
: ð4:8Þ

Substituting the above expression into Eq. (3.35b), we have

ΠðA4;GÞðφ0; zÞφ0ðzÞ ¼
1

2

Z
d3k
ð2πÞ3 ð2g

2φ0ðzÞMðA4;A4ÞðzÞ − 4g∂zMðA4;GÞðzÞ þ ð2g2φ0 þ 2λφ0ðzÞ þ 3λ6φ
3
0ðzÞÞMðG;GÞðzÞÞ:

ð4:9Þ

The correction to the bounce is now

δφðzÞ ¼ 1

ℏ
MΦ̂ðφ0; zÞð□φ0 −U0ðφ0; zÞÞ

−MΦ̂ðφ0; zÞ
�
ΠΦ̂ðφ0; zÞφ0ðzÞ þ ΠðA4;GÞðφ0; zÞφ0ðzÞ −

1

2
Πðη̄;ηÞðφ0; zÞφ0ðzÞ

�
: ð4:10Þ

The final expression for the tunneling rate per unit
volume then is

γ

V
¼
�

B
2πℏ

�
2

ffiffiffiffiffiffiffi
α5

jλ0j

s
exp

�
−
1

ℏ
ðBð0Þ þ ℏBð1Þ þ ℏ2Bð2ÞÞ

�
;

Bð0Þ ¼ B;

Bð1Þ ¼ Bð1Þ
Φ̂ þ Bð1Þ

ðA4;GÞ −
1

2
Bð1Þ
ðη̄;ηÞ;

Bð2Þ ¼ −Bð2Þ; ð4:11Þ

where

Bð2Þ ¼ −
1

2

�
Bð2Þ
Φ̂ þ Bð2Þ

ðA4;GÞ −
1

2
Bð2Þ
ðη̄;ηÞ

�
−

1

2ℏ
Bð1Þ: ð4:12Þ

Having collected these formulas, we see that, in the
planar-wall limit and in comparison with the purely scalar
case, the main complication in the calculation for the theory
with additional gauge and Goldstone fields is due to the
two-by-two matrix structure of the Green’s function
MðA4;GÞ;kðφ0; zÞ. Once more, what we need is to compute
the coincident Green’s functions and associated resolvents,
which in turn determine the tadpole contributions through

Eqs. (3.35a), (3.35c) and (4.9). The Bð1Þ
X corrections follow

from (3.30) and the Bð2Þ correction by means of Eqs. (4.12),
(3.39), (4.10) and (3.36). In the following subsections we

focus on the methods used to calculate the coincident
Green’s functions.

B. Solving for the Green’s functions in the
homogeneous background approximation

For comparison with the results accounting for the full
gradient effects and to facilitate the numerical implementa-
tion of the renormalization procedure detailed in Section V,
it is useful to collect approximate results for the coincident
Green’s functions MX;kðφ0; z; zÞ obtained when the gra-
dients of the background are neglected.Wewill refer to these
approximations as “homogeneous Green’s functions” and
denote them by MX;k;homðφ0; z; zÞ. The idea is to solve for
the Green’s functions in a homogeneous background ϕ, and
at the end substitute ϕ by the bounce φ0.
We start by representing the differential operators

M−1
X;kðϕ; zÞ in terms of generalized matrices

M−1
X;kðϕ; z; z0Þ ¼ δðz0 − zÞM−1

X;kðϕ; zÞ. With the chosen
gauge-fixing and for the constant background ϕ, the
operators M−1

X;kðϕ; z; z0Þ are diagonal with respect to the
discrete matrix structure in Eq. (3.18), and one can write

M−1
X;k;homðϕ; z; z0Þ ¼

Z
dk4
2π

eik4ðz−z0Þðk2 þ k24 þm2
XðϕÞÞ;

ð4:13Þ
where m2

XðϕÞ is a diagonal matrix containing the back-
ground-dependent effective masses in the field sector
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labelled by X. The mass matrices following from (3.18) in
the ξ ¼ ζ ¼ 1 gauge are given next:

m2
Φ̂ðϕÞ ¼ αþ 3λϕ2 þ 15λ6

4
ϕ4;

m2
ðA4;GÞðϕÞ ¼

�
g2ϕ2 0

0 αþ λϕ2 þ 3λ6
4
ϕ4 þ g2ϕ2

�
;

m2
ðη̄;ηÞðϕÞ ¼ g2ϕ2: ð4:14Þ

Equation (4.13) immediately implies

MX;k;homðϕ; z; z0Þ ¼
Z

dk4
2π

eik4ðz−z0Þ
1

k2 þ k24 þm2
XðϕÞ

:

ð4:15Þ

Evaluating the former in the planar bounce background, we
get the homogeneous approximations to the coincident
Green’s functions,

MX;k;homðϕ; z; zÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

Xðφ0ðzÞÞ
q : ð4:16Þ

The resolvents follow by substituting k2 → k2 þ s, which
allows to estimate the tadpoles from Eqs. (3.35a), (3.35c)
and (4.9). The Bð1Þ contributions in this approximation
are related to the usual Coleman-Weinberg potential.
Indeed, starting with Eq. (3.30) and using Eq. (4.15),
one obtains

1

2
V
Z

d3k
ð2πÞ3 log

detM−1
X;k;homðφ0Þ

detM−1
X;k;homðφ0Þ

¼ −
1

2
tr
Z

d4x
Z

∞

0

ds
Z

d4k
ð2πÞ4

�
1

k2 þ sþm2
Xðφ0ðzÞÞ

−
1

k2 þ sþm2
Xð0Þ

�
¼ −

1

2
tr
Z

d4x
Z

∞

0

ds
∂
∂s
Z

d4k
ð2πÞ4 log

�
k2 þ sþm2

Xðφ0Þ
k2 þ sþm2

Xð0Þ
�
≡
Z

d4xUð1Þ
CW;Xðφ0Þ: ð4:17Þ

In the last line we have identified theUð1Þ
CW;X as the one-loop

contribution of the sector X to the Coleman-Weinberg
potential, [normalized to be zero at the origin, as com-
mented after Eq. (3.14)]:

Uð1Þ
CWðφÞ ¼ Uð1Þ

CW;Φ̂ðφÞ þ Uð1Þ
CW;ðA4;GÞðφÞ þ Uð1Þ

CW;ðη̄;ηÞðφÞ;

Uð1Þ
CW;XðφÞ ¼

1

2
tr
Z

d4k
ð2πÞ4 log

�
k2 þm2

XðφÞ
k2 þm2

Xð0Þ
�
: ð4:18Þ

When using a cutoff regularization with cutoffs Λ2
s ;Λ for

the s and k integrals, the fact that in the final step in
Eq. (4.17) one may ignore the contributions at the boundary
s ¼ ∞ can be justified by taking the limits of large Λs;Λ
while maintaining Λs ≫ Λ. It can be checked that the
tadpole contributions satisfy

ΠX;homðφ; zÞφðzÞ ¼
∂Uð1Þ

CW;XðφðzÞÞ
∂φðzÞ . ð4:19Þ

C. Solving the Green’s functions MðA4;GÞ;kðφ0; zÞ
directly for k2 ≲ g∂zφ0

For large momenta, the gradients of the bounce appear-
ing in the off-diagonal components in Eq. (4.1)—which
were neglected in the previous section—are subdominant
and can be handled perturbatively. However for values

k2 ≲ g∂zφ0, the gradients become more relevant. There-
fore, we take a specific approach to directly compute the
Green’s functions for low momenta, for which perturbative
and iterative methods break down.
In the following discussion, we denote M−1

ðA4;GÞ;kðφ0; zÞ
as M−1ðzÞ for brevity. The system to be solved is

M−1ðzÞMðz; z0Þ ¼ δðz − z0Þ12; ð4:20Þ

and we denote the elements of the solution that we seek
after as

Mðz; z0Þ ¼
�
M11ðz; z0Þ M12ðz; z0Þ
M21ðz; z0Þ M22ðz; z0Þ

�
: ð4:21Þ

In order to obtain numerical solutions, we express each of
the Mijðz; z0Þ in terms of two functions ML

ijðzÞ;MR
ijðzÞ as

Mijðz; z0Þ ¼ Θðz − z0ÞMR
ijðzÞ þ Θðz0 − zÞML

ijðzÞ; ð4:22Þ

where Θ is the Heavyside step-function. We can then
solve Eq. (4.20) as an ordinary differential equation for
fixed values of z0. For each component Mij we impose
four boundary conditions, namely ML

ijð−∞Þ ¼ 0 and
MR

ijð∞Þ ¼ 0, together with the matching condition of
continuity, ML

ijðz0Þ ¼ MR
ijðz0Þ, and of the jump in the
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derivativeM0L
ijðz0Þ −M0R

ijðz0Þ ¼ 1=ð1 − z02Þ, which follows
from integrating Eq. (4.20) over z around the singularity at
z ¼ z0. It is useful to compactify the z-coordinate with the
transformation

u ¼ tanhðzÞ; ð4:23Þ

and in the rest of this section the dependence on the
functions will be assumed to be on the variable u.
For the purpose of the present calculations, as explained

in Sec. III B we only need the coincident limit for the
Green’s functions. We have calculated the latter numeri-
cally, taking 1000 points between ð−1; 1Þ for the compac-
tified coordinate u0 ¼ tanhðz0Þ, and solving for each z0 the
matrix-valued differential equation (4.20) as a function of z.
With this, one can evaluate the coincident Green’s function
for each matrix component and each of the chosen values of
z0, and the result can be interpolated in z. To deal with the
effect of the δ function in Eq. (4.20) we separate the
equation for each matrix component into two differential
equations, one for z < z0 involving the functions ML

ijðuÞ,

and one for z > z0 involving MR
ijðuÞ. For each component,

we have thus two differential equations, which can be
solved numerically using the four boundary conditions
detailed above. An example solution for a low value of
k ¼ 0.3, using the parameter choices of Eq. (6.1), is
displayed in Fig. 5 (solid line) compared to the solution
obtained when ignoring gradients of the background in
M−1 (dashed line). Note how the off-diagonal components
are comparable to the diagonal ones, while neglecting
background gradients inM−1 leads to vanishingM12,M21.
Figure 6 shows results for the value of k ¼ 0.5 where, with
the chosen numerical implementation, the exact solution
begins to have problems fulfilling the boundary conditions
at the right edge of the domain. Nevertheless, for such large
values of k (leading to small M12, M21 in relation to M11,
M11) one can start to use a perturbative treatment detailed in
the following section, which leads to the dotted curves.
Although k ¼ 0.5 is at the margin of the validity of either
method, in general the direct and perturbative estimates
agree better with each other than with the approximation
obtained by neglecting gradients.

FIG. 5. For k ¼ 0.3 and with the couplings fixed as in Eq. (6.1), comparison of the coincident limits of the direct solution to (4.20)
(solid), and of the solution obtained when ignoring background gradients inM−1

ðA4;GÞðφ0Þ (dashed). The graphs are labeled according to
the matrix notation of Eq. (4.21).
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D. Solving the Green’s functions MðA4;GÞ;kðφ0; zÞ
iteratively for k2 ≳ g∂zφ0

In this regime, the off-diagonal elements of M−1ðzÞ are
small compared to the diagonal ones. Therefore, we
decompose M−1ðzÞ as M−1ðzÞ ¼ M−1

0 ðzÞ þ δM−1ðzÞ
with

M−1
0 ðzÞ ¼

�
M−1

k ðφ0ðzÞÞ 0

0 N−1
k ðφ0ðzÞÞ

�
ð4:24Þ

and

δM−1ðzÞ ¼
�

0 2gð∂zφ0Þ
2gð∂zφ0Þ 0

�
ð4:25Þ

as a perturbation. To set up an iterative solution, we let
ϵ ∼ δM be a bookkeeping device for tracking the order of
the expansion M ¼ Mð0Þ þ ϵMð1Þ þ ϵ2Mð2Þ þ � � �. Then
Eq. (4.20) can be written as

ðM−1
0 ðzÞ þ δM−1ðzÞÞðMð0Þ þ ϵMð1Þ þ ϵ2Mð2Þ þ � � �Þ
¼ δðz − z0Þ1; ð4:26Þ

which leads to

M−1
0 ðzÞMð0Þðz; z0Þ ¼ δðz − z0Þ;

M−1
0 ðzÞMð1Þðz; z0Þ þ δM−1ðzÞMð0Þðz; z0Þ ¼ 0;

M−1
0 ðzÞMð2Þðz; z0Þ þ δM−1ðzÞMð1Þðz; z0Þ ¼ 0;

..

.

M−1
0 ðzÞMðnþ1Þðz; z0Þ þ δM−1ðzÞMðnÞðz; z0Þ ¼ 0: ð4:27Þ

In the numerical implementation, we stop the iterative
method when the difference between the results at order
OðϵnÞ and Oðϵnþ1Þ becomes less than (10−5). The general
behavior is that the results for smaller k converge more
slowly and one needs more iterations, while for higher k,
the solutions converge faster and moreover approach a
solution that does not deviate too much from the solution

FIG. 6. For k ¼ 0.5 and with the couplings fixed as in Eq. (6.1), comparison of the coincident limits of the solutions to the system in
(4.20) obtained when directly solving the full equation (solid), when ignoring background gradients inM−1

ðA4;GÞðφ0Þ (dashed), and when
using the perturbative numerical treatment of Sec. IV D (dotted). The graphs are labeled with the matrix notation of Eq. (4.21).
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where gradients are neglected. This is expected given that
the gradients become less relevant for large momenta.
Another feature of the perturbative expansion is that,
although the Green’s function must be symmetric, i.e.,
M12 ¼ M21, this property is not strictly maintained at every
step in the perturbative expansion. This can then be used as
a check of the reliability of the perturbative results. For
example, the result for k ¼ 0.5 shown in the dotted graphs
in Fig. 6 shows a slight deviation from this symmetry,
indicating as advertised earlier that the perturbative expan-
sion starts to fail. Figure 7 shows results for the Green’s
function in the background of the bounce φ0—computed
numerically—for k ¼ 1.9 and for the choices of parameters
of Eq. (6.1). The perturbative expansion has converged
after 14 iterations, and one recovers M21 ¼ M21 to much
better accuracy than in Fig. 6. The results at zeroth order
(∼Oðϵ0Þ, dashed lines) are shown for comparison as well.

V. RENORMALIZATION

The coincident Green’s functions correspond to expect-
ation values of composite operators, which are divergent

and require renormalization. The divergences appear when
computing MXðφ0; x0; xÞ from Eq. (3.22): While the
MX;kðφ0; z; zÞ computed as in the previous sections are
finite, integral over k is not convergent. Wewill use a cutoff
regulator, and remove the divergent contributions by means
of counterterms. Even though our calculations of the
effective action include some two-loop contributions, it
turns out that it suffices to compute the one-loop counter-
terms. As usual, the counterterms for the effective action
are just local polynomials of the fields and their derivatives.
Following methods applied in previous work [16], the
counterterms that do not involve field derivatives—which
will be referred to as “coupling counterterms”—can be
calculated simply by evaluating the effective action at a
homogeneous field configuration, rather than at the bounce.
As it was shown in Sec. IV B, the one-loop result is related
to the Coleman–Weinberg effective potential, which can be
calculated analytically. For each renormalizable interaction,
we need one counterterm, while we also anticipate, given
the nonrenormalizable nature of the ϕ6-theory, that a
dimension-eight counterterm will be necessary.

FIG. 7. Numerical results for MðA4;GÞ;k in the gauge ξ ¼ 1, ζ ¼ 1 and k ¼ 1.9 for the benchmark parameters in Eqs. (6.1), at
coincident limit in the background of the numerical bounce φ0. The solid lines are obtained through the iterative strategy, while the
dashed lines are the results at zeroth order (∼Oðϵ0Þ), in which background gradients in M−1

A4G
ðφ0Þ are ignored.
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For a scalar field with gauge interactions, it is known that
one-loop corrections give rise to a logarithmic divergence
in the scalar two-point function, which can be subtracted
through a wave-function renormalization. The latter can be
calculated analytically using a gradient expansion of the
effective action. As said before, we do not rely on such an
expansion to compute the regularized Green’s functions
prior to renormalization, so that our renormalized result for
the effective action contains all the derivative corrections at
the chosen truncation of the loop expansion.

In summary, we consider a counterterm Lagrangian of
the form

Lct½φ� ¼
1

2
δZð∂φÞ2 þ δα

2
φ2 þ δλ

4
φ4 þ δλ6

8
φ6 þ δλ8

16
φ8:

ð5:1Þ
The counterterms can be separated into a sum of terms,

each renormalizing the contributions from the different
sectors X ¼ Φ̂; ðA4; GÞ; ðη̄; ηÞ in the effective action:

Lct½φ� ¼
X
X

Lct;X½φ� ¼
X
X

�
1

2
δZXð∂φÞ2 þ δαX

2
φ2 þ δλX

4
φ4 þ δλ6;X

8
φ6 þ δλ8;X

16
φ8

�
: ð5:2Þ

We then define the renormalized one-loop contributionBð1Þren contributing exponentially to the decay rate in Eq. (4.11) as:

Bð1Þren ¼ Bð1Þren
Φ̂ þ Bð1Þren

ðA4;GÞ −
1

2
Bð1Þren
ðη̄;ηÞ

¼ Bð1Þ
Φ̂ þ Bð1Þ

ðA4;GÞ −
1

2
Bð1Þ
ðη̄;ηÞ þ

Z
d4xLct½φ0�≡

X
X

gXB
ð1Þren
X ; ð5:3Þ

where we have introduced numerical factors

gΦ̂ ¼ gðA4;GÞ ¼ −2gðη̄;ηÞ ¼ 1; ð5:4Þ

while

gXB
ð1Þren
X ¼ gXB

ð1Þ
X þ

Z
d4xLct;X½φ0�: ð5:5Þ

In the numerical implementation, it is useful to express the above renormalized contributions in terms of convergent integrals.
Following Eqs. (3.28), (4.5a), (3.30) and introducing cutoffs Λs, Λ for the integrations in s and k, respectively, one has:

gXB
ð1Þren
X ¼ −

1

2
tr
Z

d4x
Z

Λ2
s

0

ds
Z
BΛ

d3k
ð2πÞ3 ðMX;

ffiffiffiffiffiffiffiffi
k2þs

p ðφ0; z; zÞ −M
X;
ffiffiffiffiffiffiffiffi
k2þs

p ð0; z; zÞÞ þ
Z

d4xLct;X½φ0�; ð5:6Þ

whereBΛ denotes a three-dimensional ball of radiusΛ.Onemaynote thatM
X;
ffiffiffiffiffiffiffiffi
k2þs

p ð0; z; zÞ canbeobtained from the analytic

results for the homogeneous resolvents M
X;
ffiffiffiffiffiffiffiffi
k2þs

p
;hom

in Eq. (4.16). Furthermore, the homogeneous resolvent gives a real

resultwhenevaluated at the falsevacuumφ ¼ 0. To isolate the contributions fromgradient effects, one canadd and subtract the
real part of the homogeneous resolvent evaluated at the bounce background,ReM

X;
ffiffiffiffiffiffiffiffi
k2þs

p
;hom

ðφ0; z; zÞ. Furthermore,wemay

add and subtract a term containing the contribution of the X sector to the wave-function divergence. For this we construct a
kernel Ks;XðkÞ satisfying:

Γ½φ0� ⊃ −
Z

d4x
1

2
δZXð∂zφ0Þ2 ¼ −

Z
d4x
�
1

2

Z
Λ2
s

0

ds
Z
BΛ

d3k
ð2πÞ3Ks;XðkÞð∂zφ0Þ2 þ finite

�
: ð5:7Þ

We then obtain

gXB
ð1Þren
X ¼ −

1

2

Z
d4x
Z

Λ2
s

0

ds
Z
BΛ

d3k
ð2πÞ3 ðtrðMX;

ffiffiffiffiffiffiffiffi
k2þs

p ðφ0; z; zÞ − ReM
X;
ffiffiffiffiffiffiffiffi
k2þs

p
;hom

ðφ0; z; zÞÞ − Ks;XðkÞð∂zφ0Þ2Þ

−
1

2

Z
d4x
Z

Λ2
s

0

ds
Z
BΛ

d3k
ð2πÞ3 ðtrðReMX;

ffiffiffiffiffiffiffiffi
k2þs

p
;hom

ðφ0; z; zÞ −M
X;
ffiffiffiffiffiffiffiffi
k2þs

p
;hom

ð0; z; zÞÞÞ

−
1

2

Z
d4x
Z

Λ2
s

0

ds
Z
BΛ

d3k
ð2πÞ3Ks;XðkÞð∂zφ0Þ2 þ

Z
d4xLct;X½φ0�: ð5:8Þ
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As shown in Sec. IV B, the terms in the second line involving the homogeneous resolvents simply give the one-loopColeman-
Weinberg potential [see Eqs. (4.16), (4.17)]. Supplemented with the coupling counterterms inLct, which by construction are
engineered to remove the divergences in the Coleman-Weinberg potential, one simply gets a contribution involving the

renormalized Uð1Þren
CW;X. Thus, one obtains

gXB
ð1Þren
X ¼ gXB

ð1Þren;hom
X þ gXB

ð1Þren;grad
X ; ð5:9Þ

with

gXB
ð1Þren;hom
X ¼ V

Z
dzReUð1Þren

CW;Xðφ0ðzÞÞ;

gXB
ð1Þren;grad
X ¼ V

Z
dz

�
−
1

2

�Z
Λ2
s

0

ds
Z
BΛ

d3k
ð2πÞ3Ks;XðkÞ

�
þ 1

2
δZX

�
ð∂zφ0ðzÞÞ2

−
1

2
V
Z

dz
Z

Λ2
s

0

ds
Z
BΛ

d3k
ð2πÞ3 ðtrðMX;

ffiffiffiffiffiffiffiffi
k2þs

p ðφ0; z; zÞ − ReM
X;
ffiffiffiffiffiffiffiffi
k2þs

p
;hom

ðφ0; z; zÞÞ − Ks;XðkÞð∂zφ0ðzÞÞ2Þ;

ð5:10Þ

where we have separated contributions captured by the
homogeneous Green’s functions from the gradient correc-
tions. As Ks;XðkÞ generates the divergent contributions to
the wave-function renormalization, all the above integrals
remain finite by construction when taking the cutoffs to
infinity, which is useful for the numerical calculations. As
mentioned in Sec. IV B. it is assumed that the cutoffs
satisfy Λs ≫ Λ.
Finally, it remains to renormalize the two-loop contribu-

tions Bð2Þ. As shown next, this can also be done in terms of

the one-loop counterterms. First, recall that the contributions
Bð2Þ can be entirely calculated from the Green’s functions
MX;k and the tadpoles ΠX;k;zðφ0Þφ0ðzÞ, as follows from
Eqs. (4.10) and (3.36). Both δφ and Bð2Þ inherit diver-
gences from the tadpoles ΠXðφ0; zÞφ0ðzÞ. As explained in
Sec. III B, the tadpoles correspond to functional derivatives
of the one-loop contributions to the effective action. Then it
follows that one can obtain renormalized tadpoles by adding
derivatives of the counterterms in Lct,

ðΠXðφ0; zÞφ0ðzÞÞren ¼ ΠXðφ0; zÞφ0ðzÞ − δZX□φ0ðzÞ þ δαXφ0ðzÞ þ δλXφ0ðzÞ3

þ 3δλ6;X
4

φ0ðzÞ5 þ
δλ8;X
2

φ0ðzÞ7: ð5:11Þ

Using the renormalized tadpoles ΠXðφ0; zÞφ0ðzÞÞren in Eq. (4.10) one obtains finite δφ0, and doing the same in Eq. (3.39),

(3.36) the resulting values of Bð1Þ, Bð2Þ
X are also renormalized. Explicitly,

δφrenðzÞ ¼ 1

ℏ
MΦ̂ðφ0; zÞð□φ0 − U0ðφ0; zÞÞ −MΦ̂ðφ0; zÞ

X
X

gXðΠXðφ0; zÞφ0ðzÞÞren;

Bð1Þren ¼ V
Z

dzδφrenðzÞð−□φ0 þ U0ðφ0; zÞÞ;

Bð2Þren
X ¼ V

Z
dzδφrenðzÞðΠXðφ0; zÞφ0ðzÞÞren; ð5:12Þ

so that the total two-loop exponential contribution to the decay rate, Bð2Þren, [see Eqs. (4.11), (4.12)] can be written as

Bð2Þren ¼ −Bð2Þren ¼ −
1

2

�
Bð2Þren
Φ̂ þ Bð2Þren

ðA4;GÞ −
1

2
Bð2Þren
ðη̄;ηÞ

�
−

1

2ℏ
Bð1Þren: ð5:13Þ

In the next subsections we obtain the coupling and wave-function counterterms separately.
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A. Coupling counterterms

The coupling counterterms can be extracted from the divergent contributions to the Coleman–Weinberg potential, which
is related to the effective action evaluated at a constant value of the field. The starting point is Eq. (4.3) evaluated at a
homogeneous field configuration ϕ,

ΓCW½ϕ� ¼
Z

d4xUCW ¼ S½ϕ� þ ℏ
2
V
Z

d3k
ð2πÞ3 log

detM−1
Φ̂;k

ðϕÞ
detM−1

Φ̂;k
ð0Þ

þ ℏ
2
V
Z

d3k
ð2πÞ3 log

detM−1
ðA4;GÞ;kðϕÞ

detM−1
ðA4;GÞ;kð0Þ

þ ℏ
2
V
Z

d3k
ð2πÞ3 log

detM−1
ðη̄;ηÞ;kðϕÞ

detM−1
ðη̄;ηÞ;kð0Þ

: ð5:14Þ

Note that this evaluation of Eq. (4.3) does not correspond to the value of effective action for homogeneous fields which
would require a Maxwell construction when ϕ is not equal to the global minimum. In the present case, the logarithms of the
determinants of the Green functions can be obtained as in Sec. IV B, giving the one-loop contributions to the Coleman–
Weinberg potential as in Eqs. (4.17), (4.18). We indicate this interpretation by the subscript CW. To regularize the
divergences we perform the full integration over k4 in Eq. (4.18), while we restrict the integration over the momenta parallel
to the bubble wall to a large three-dimensional ball BΛ of radius Λ. Adding the nonderivative counterterms to Eq. (5.1), the
renormalized effective potential can be written as

Uren
CWðϕÞ ¼ UðϕÞ þ Uð1Þ

CW;Φ̂ðϕÞ þ Uð1Þ
CW;ðA4;GÞ þ Uð1Þ

CW;ðη̄;ηÞ þ
δα

2
ϕ2 þ δλ

4
ϕ4 þ δλ6

8
ϕ6 þ δλ8

16
ϕ8; ð5:15Þ

where UðϕÞ is the tree-level potential, as in Eq. (3.34). Separating the contributions to Uð1Þ
CW;X involving different

components of the mass matrices m2
X of Eq. (4.14), one can write

Uð1Þ
CW;Φ̂ ¼ I1; Uð1Þ

CW;ðA4;GÞ ¼
1

2
I2 þ I3; Uð1Þ

CW;ðη̄;ηÞ ¼
1

2
I2; ð5:16Þ

with

I1 ≡ ℏ
2

Z
BΛ

d3k
ð2πÞ3

Z
∞

−∞

dk4
2π

log
k24 þ k2 þ U00ðϕÞ
k24 þ k2 þU00ð0Þ ;

I2 ≡ ℏ
Z
BΛ

d3k
ð2πÞ3

Z
∞

−∞

dk4
2π

log
k24 þ k2 þ g2ϕ2

k24 þ k2
;

I3 ≡ ℏ
2

Z
BΛ

d3k
ð2πÞ3

Z
∞

−∞

dk4
2π

log
k24 þ k2 þ αþ λϕ2 þ 3λ6

4
ϕ4 þ g2ϕ2

k24 þ k2 þ α
: ð5:17Þ

The integration gives

I1 ¼ ℏ

�
Λ2

16π2
U00ðϕÞ þ 1

64π2
ðU00ðϕÞÞ2

�
1

2
þ ln

U00ðϕÞ
4Λ2

��
− ðϕ ↔ 0Þ þO

�
1

Λ

�
;

I2 ¼ 2ℏ

�
Λ2

16π2
g2ϕ2 þ 1

64π2
g4ϕ4

�
1

2
þ ln

g2ϕ2

4Λ2

��
þO

�
1

Λ

�
;

I3 ¼ ℏ

�
Λ2

16π2

�
αþ λϕ2 þ 3λ6

4
ϕ4 þ g2ϕ2

�
þ 1

64π2

�
αþ λϕ2 þ 3λ6

4
ϕ4 þ g2ϕ2

�
2

×

�
1

2
þ ln

αþ λϕ2 þ 3λ6
4
ϕ4 þ g2ϕ2

4Λ2

��
− ðϕ ↔ 0Þ þO

�
1

Λ

�
: ð5:18Þ

We identify the counterterms from the divergent pieces proportional to Λ2 and logΛ, which need to be subtracted. We use a
“minimal subtraction” scheme in which no finite part is included in the counterterms, except for the introduction of a
subtraction scale μ needed on dimensional grounds for the contributions involving logΛ. We can thus build a finite,
renormalized effective potential as
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Uren
CW ¼ UCW −Uct ¼ UCW − Λ2C1ðϕÞ − log

�
Λ
μ

�
C2ðϕÞ;

ð5:19Þ
whereUCW ¼ UðϕÞ þ I1 þ I2 þ I3, whileC1 andC2 are the
correspondingcoefficientsof thecontributionsproportional to
Λ2; logΛ obtained from I1, I2 and I3. Comparing Eq. (5.15)
with (5.19), we find the renormalization constants

δα¼ 1

8π2

�
αðg2þ4λÞ log

�
Λ
μ

�
−Λ2ð3g2þ4λÞ

�
;

δλ¼−
1

8π2

�
9λ6Λ2− log

�
Λ
μ

�
ð9αλ6þ3g4þ2g2λþ10λ2Þ

�
;

δλ6 ¼
3

8π2
ðg2þ16λÞλ6 log

�
Λ
μ

�
; δλ8 ¼

117λ26
16π2

log

�
Λ
μ

�
:

ð5:20Þ
Alternatively, one could impose particular renormalization
conditions on the effective potential as e.g., in Refs. [14–16].
In the present setup, this would however lead to comparably
complicated expressions for the counterterms, which is why
we proceed with the minimal subtraction of Eq. (5.20).
As discussed above, in order to define renormalized

tadpoles ðΠXðφ0; zÞφ0ðzÞÞren we need to separate the above
counterterms into contributions that subtract the divergen-
ces of the loop corrections associated with the sector X, i.e.,

the divergences in Uð1Þ
CW;X. Proceeding as it has been done

before for the total one-loop potential Uð1Þ
CW one finds:

δαΦ̂ ¼ 1

8π2

�
3αλ log

�
Λ
μ

�
− 3λΛ2

�
;

δαðA4;GÞ ¼
1

8π2

�
αðg2 þ λÞ log

�
Λ
μ

�
− Λ2ð2g2 þ λÞ

�
;

δαðη̄;ηÞ ¼
−g2Λ2

8π2
; ð5:21Þ

δλΦ̂ ¼ 3

16π2

�
ð5αλ6 þ 6λ2Þ log

�
Λ
μ

�
− 5λ6Λ2

�
;

δλðA4;GÞ ¼
1

16π2

�
ð3αλ6 þ 4g2λþ 4g4

þ 2λ2Þ log
�
Λ
μ

�
− 3λ6Λ2

�
;

δλðη̄;ηÞ ¼
g4

8π2
log

�
Λ
μ

�
; ð5:22Þ

δλ6;Φ̂ ¼ 45

8π2
λλ6 log

�
Λ
μ

�
;

δλ6;ðA4;GÞ ¼
3

8π2
λ6ðg2 þ λÞ log

�
Λ
μ

�
; δλ6;ðη̄;ηÞ ¼ 0;

ð5:23Þ

δλ8;Φ̂ ¼ 225

32π2
λ26 log

�
Λ
μ

�
; δλ8;ðA4;GÞ ¼

9

32π2
λ26 log

�
Λ
μ

�
;

δλ8;ðη̄;ηÞ ¼ 0: ð5:24Þ

The loop corrections are smallest when choosing μ2 to be of
order of the numerators in the logarithms of Eqs. (5.18).
Note that, of course, the couplings depend on the renorm-
alization scale μ as well.

B. Wave-function renormalization

For the wave-function renormalization, we follow a
procedure analogous to the previous section. The aim is
to obtain an analytic expression for the derivative correc-
tions to the effective action containing divergent terms, and
to define the wave-function counterterm through minimal
subtraction.
As explained in Ref. [16], interactions with scalar fields

do not lead to a cutoff-dependent wave-function renorm-
alization at one-loop order. We therefore focus here on the
corrections that arise from the interaction of the Higgs
field with the gauge-Goldstone sector. For the present
purpose, we consider the effective action evaluated at a
general inhomogeneous background field φ with the same
spherical symmetry as the bounce φ0. In the following, we
derive the wave-function renormalization using a covariant
gradient expansion as in Refs. [30–35]. We first write the
logarithm of the determinant of the gauge-Goldstone
operator by tracing over a basis of plane waves, so that
matrix elements are written in position space as

Γ ⊃
1

2
Tr logM−1

ðAμ;GÞðφÞ

¼ 1

2

Z
d4x

d4p
ð2πÞ4 e

ipxtr logM−1
ðAμ;GÞðxÞe−ipx; ð5:25Þ

where the trace “tr” that remains is over the matrix structure
in Eq. (4.1) and where we have written the explicit argument
x for M−1

Aμ;G
instead of φðxÞ, which will be clearer for the

following manipulations. Note that here logM−1
ðAμ;GÞðxÞ

corresponds to a representation of the operator as a differ-
ential operator acting on functions, rather than as a matrix
with two continuous indices, as was e.g., used in Eq. (3.20).
Considering that to first order one has

eipx∂μe−ipx ¼ ∂μ − ipμ; ð5:26Þ

then acting with the exponentials on the logarithm gives [33]

Γ ⊃
1

2

Z
d4x

d4p
ð2πÞ4 tr logM

−1
ðAμ;G;pÞðxÞ; ð5:27Þ
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M−1
ðAμ;G;pÞðxÞ

¼
� ððΠ − pÞ2 þmAðφÞÞδμν 2gð∂μφÞ

2gð∂νφÞ ðΠ − pÞ2 þm2
GðφÞ

�
;

ð5:28Þ

where Πμ ¼ −i∂μ. We now insert an identity operator
expð−Πμ

∂
∂pμ

Þ expðΠμ
∂

∂pμ
Þ into Eq. (5.27) and obtain

Γ ⊃
1

2

Z
d4x

d4p
ð2πÞ4 tre

−Π· ∂∂peΠ·
∂∂p logðM−1

ðAμ;G;pÞðxÞÞ

¼ 1

2

Z
d4x

d4p
ð2πÞ4 tre

Π· ∂∂p logðM−1
ðAμ;G;pÞðxÞÞe

−Π· ∂∂p;

ð5:29Þ

where we have used the cyclic property of the trace
(understood in the functional space). Using an expansion
of the logarithm by adding and subtracting the identity
operator, we can push the exponentials inside the logarithm
and use the Baker-Campbell-Hausdorff formula to rewrite
the operators as:

eΠ·
∂∂pOe−Π·

∂∂p ¼ expðadΠ· ∂∂pÞO ¼
X∞
n¼0

1

n!
ðadΠ· ∂∂pÞnO; ð5:30Þ

where

adΠ· ∂∂pO ¼
�
Π ·

∂
∂p ;O

�
: ð5:31Þ

Observing that ½Π · ∂
∂p ;Πμ� ¼ 0 and ½Π · ∂

∂p ; pμ� ¼ Πμ, one
has the following formulas:

eΠ·
∂∂pðΠμ − pμÞe−Π·

∂∂p ¼ eΠ·
∂∂pΠμe

−Π· ∂∂p − eΠ·
∂∂ppμe

−Π· ∂∂p

¼ Πμ − pμ −
X∞
n¼1

1

n!
ðadΠ· ∂∂pÞn−1Πμ ¼ Πμ − pμ − Πμ −

X∞
n¼2

1

n!
ðadΠ· ∂∂pÞn−1Πμ ¼ −pμ: ð5:32Þ

For an arbitrary function of x, one observes

eΠ·
∂∂pfðxÞe−Π· ∂∂p ≡ f̃ðxÞ ¼

X∞
n¼0

1

n!

Yn
i¼1

adΠμi
fðxÞ ∂

∂pμi

¼ fðxÞ þ δfðxÞ; ð5:33Þ

where

δfðxÞ ¼
X∞
n¼1

1

n!

Yn
i¼1

adΠμi
fðxÞ ∂

∂pμi

¼
X∞
n¼1

ð−iÞn
n!

ð∂μ1∂μ2 � � � ∂μnfðxÞÞ
∂n

∂pμ1∂pμ2 � � � ∂pμn

: ð5:34Þ

One can act on the operator M−1
ðAμ;G;pÞ in Eq. (5.29) with the exponentials by using equations (5.32) and (5.33).

Decomposing the resulting matrix operator M̃−1
ðAμ;G;pÞ into a free piece, a piece coming from the effective masses and one

from the gradients of the background, the result is

M̃−1
ðAμ;G;pÞðxÞ ¼ eΠ·

∂∂pM−1
ðAμ;G;pÞðxÞe

−Π· ∂∂p ¼ M̃−1
0ðAμ;G;pÞðxÞ þ M̃−1

1ðAμ;G;pÞðxÞ þ M̃−1
2ðAμ;G;pÞðxÞ; ð5:35Þ

where

M̃−1
0ðAμ;G;pÞðxÞ ¼

� ðp2 þm2
AÞδμν 0

0 p2 þm2
G

�
;

M̃−1
1ðAμ;G;pÞðxÞ ¼

�
δm2

Aδμν 0

0 δm2
G

�
;

M̃−1
2ðAμ;G;pÞðxÞ ¼

 
0 2gg∂μφ

2gg∂μφ 0

!
: ð5:36Þ

Expanding the logarithm of the shifted operator about the free contribution, one gets:

tr logM̃−1
ðAμ;G;pÞðxÞ ¼ tr logM̃−1

0ðAμ;G;pÞ − tr
X∞
m¼1

ð−1Þm
m

ðM̃0ðAμ;G;pÞðM̃−1
1ðAμ;G;pÞ þ M̃−1

2ðAμ;G;pÞÞÞm; ð5:37Þ
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with

M̃0ðAμ;G;pÞ ¼

0B@ δμν
p2þm2

A
0

0 1
p2þm2

G

1CA≡
�ΔA;μν 0

0 ΔG

�
:

ð5:38Þ

Now we assemble contributions to the wave-function
renormalization by collecting terms proportional to a
kinetic term. Let us first deal with the terms coming from
M̃−1

1 , that is the contributions corresponding to n ¼ 2 in
the expansion in Eq. (5.34) and m ¼ 1 in the expansion of
the logarithm in Eq. (5.37):

Γ ⊃ −
1

4

Z
d4x

d4p
ð2πÞ4

�∂2ΔA;μμ

∂pρ∂pσ
∂ρ∂σm2

A þ ∂2ΔG

∂pρ∂pσ
∂ρ∂σm2

G

�
; ð5:39Þ

where

∂2ΔA;μμ

∂pρ∂pσ
¼ 8pρpσ − 2ðp2 þm2

AÞδρσ
ðm2

A þ p2Þ3 ;
∂2ΔG

∂pρ∂pσ
¼ 8pρpσ − 2ðp2 þm2

GÞδρσ
ðm2

G þ p2Þ3 ð5:40Þ

for our particular gauge choice. Both integrands are naively divergent, going as p−4, but due to the propertyR
d4pð4pμpν − δμνp2Þfðp2Þ ¼ 0, following from Oð4Þ symmetry, they are actually finite. The only remaining term that

can contribute to the wave-function renormalization comes from M̃−1
2ðAμ;G;pÞ, withm ¼ 2 in the expansion (5.37), and n ¼ 0

in the expansion (5.33), leading to

Γ ⊃ −2g2
Z

d4x
d4p
ð2πÞ4 ΔGΔA;μνð∂μφÞ∂νφ: ð5:41Þ

All other contributions in Eq. (5.37) involving higher or mixed powers of M̃−1
1=2 do not contribute to the wave-function

renormalization, as they give rise to interactions with more than two background fields. With the definitions above we haveZ
d4p
ð2πÞ4ΔGΔA;μν ¼

Z
d4p
ð2πÞ4

δμν
ðp2 þm2

AÞðp2 þm2
GÞ

¼
Z

1

0

dw
Z

d4p
ð2πÞ4

δμν
ðwðp2 þm2

AÞ þ ð1 − wÞðp2 þm2
GÞÞ2

¼
Z

1

0

dw
Z

d3p
ð2πÞ3

δμν
4ðp2 þ wðm2

A −m2
GÞ þm2

GÞ3=2

¼
Z

∞

0

ds
Z

1

0

dw
Z

d3p
ð2πÞ3

3δμν
8ðp2 þ sþ wðm2

A −m2
GÞ þm2

GÞ5=2

¼ δμν

Z
∞

0

ds
Z

d3p
ð2πÞ3

1

4ðm2
A −m2

GÞ
�

1

ðm2
G þ p2 þ sÞ3=2 −

1

ðm2
A þ p2 þ sÞ3=2

�
: ð5:42Þ

The last manipulations are aimed at defining a kernel containing the divergent part of the effective action as in Eq. (5.7).
Indeed, defining

KsðkÞ≡ Ks;ðA4;GÞðkÞ ¼
g2

ðm2
A −m2

GÞ
�

1

ðm2
G þ k2 þ sÞ3=2 −

1

ðm2
A þ k2 þ sÞ3=2

�
; ð5:43Þ

we can write

Γ½φ0� ⊃ −
1

2

Z
d4x
Z

∞

0

ds
d3p
ð2πÞ3KsðkÞð∂zφ0Þ2 ¼ −

1

2

Z
d4x

�
g2

4π2
logðΛ2Þð∂zφ0Þ2 þ finite

�
: ð5:44Þ
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From the divergent contribution we can directly extract the
value of the wave-function renormalization constant in the
counterterm Lagrangian,

δZ ¼ δZðA4;GÞ ¼
g2

4π2
log

Λ2

μ2
: ð5:45Þ

By comparison of Eqs. (5.44), (5.45) with Eq. (5.7) we see
that indeed KsðkÞ satisfies the desired properties, and it
can be used to obtain the renormalized one-loop contri-

butions Bð1Þ
X by means of cutoff-independent integrals,

as in Eqs. (5.3), (5.9) and (5.10). We have identified
δZ ¼ δZðA4;GÞ; KsðkÞ ¼ Ks;ðA4;GÞðkÞ because, as discussed
above, the sector ðA4; GÞ is the only one that gives rise to
divergent wave-function contributions.

VI. NUMERICAL IMPLEMENTATION
AND RESULTS

Given the large amount of time required for the
numerical computations, we present results for one set
of parameters that illustrate the methods developed in
this work.
Before we present the numerical results, we must give

some comments. First, in the thin-wall and planar-wall
limits the vacua are assumed to be nearly degenerate and
the bubble radius is taken to infinity, with the bounce
interpolating between the two vacua (the true vacuum at
z → −∞, the false vacuum at z → ∞). Near z → �∞, one
has quantum fluctuations about a homogeneous back-
ground, whose contributions to the effective action are
captured by the spacetime integral of the renormalized
effective potential. With the effective potential normalized
to be zero at the false vacuum, then unless it is exactly
degenerate with the true vacuum one expects an infinite
contribution coming from the z integral of the renormalized
effective potential near z → −∞, where the background
stays very close to the true vacuum. This intuition is
confirmed quantitatively by our results of the renormalized
one-loop contributions to the effective action, Eqs. (5.9)
and (5.10), which involve the spacetime integral over the
one-loop corrections to the effective potential. Adding to
this the tree-level action of the bounce, one gets a con-
tribution to the effective action involving the integral over
all z of the one-loop renormalized effective potential. Exact
degeneracy between the one-loop energies of the vacua—
not just at tree-level—is a necessary requirement for
obtaining sensible answers in the planar limit. If the
degeneracy at tree-level necessarily implies a Z2 symmetry
that exchanges the true and false vacuum, the one-loop
degeneracy is automatically satisfied, as it happens for the
quartic potentials that were studied previously in the
literature [14,16]. In those works the tree level degeneracy
has been achieved for a vanishing cubic interaction, for
which the models exhibit a Z2 symmetry under which the

false and true vacua are exchanged.1 Our model however
lacks this property because, even though one can define a
Z2 symmetry, it would relate physically equivalent vacua,
rather than the false vacuum at the origin and the true
vacuum with spontaneous symmetry breaking. Hence we
choose values of the parameters of the tree-level potential
α, λ and λ6 such that for the renormalized Coleman-
Weinberg potential of Eq. (5.15), the false and the true
vacuum are degenerate. This strict requirement is only due
to the planar-wall approximation. Without the latter, the
bubble-wall volume is finite and no divergences in the
integral of the effective potential inside of the bubble wall
appear. We leave the study beyond the planar-wall approxi-
mation for future work.
For the numerical evaluation we take ℏ ¼ 1, for which

the effective action is dimensionless, and furthermore we
assume appropriate rescaling for the fields and spacetime
coordinates that give dimensionless and dimensionful
couplings and masses of order one. Note that these
rescaling do not affect the value of the effective action.
A set of values satisfying the one-loop degeneracy con-
dition is the following:

α ¼ 2; λ6 ¼
1

2
; λ ¼ −2.0254571; g ¼ 1

2
; μ ¼ 1

2
:

ð6:1Þ
Note that λ has been tuned against the remaining couplings
to achieve the degeneracy of the vacua. In the following, to
facilitate generalizations beyond the chosen arbitrary units,
we will present results for dimensionful quantities in units
of the dimensionful parameter α.
In Figure 8 we show the real part of the one-loop

renormalized effective potential in the infinite cutoff limit,
obtained from Eq. (5.15) and the identities that follow. (For
a cutoff Λ ¼ 49 ¼ 34.65

ffiffiffi
α

p
, as will be used below, the

total renormalized potential in the region between the vacua
differs from its infinite cutoff limit by less than 10−13α2).
Noting that the symmetry-breaking vacuum appears at
φ− ∼

ffiffiffi
α

p ¼ ffiffiffi
2

p
, then given the fact that the tunneling

calculations only involve field values φ ≤ φ−, our effective
theory treatment with the jΦj6 operator will be justified
as long as there are UV completions in which higher-
dimensional interactions jΦj2m withm > 3—ignored in our
calculations—become subdominant for φ ≤ φ−. To argue
that this is the case we can consider a UV completion with
heavy Dirac fermions Ψ, χ, in which Ψ is a gauge singlet
and χ has charge −1, so that one can write down a Yukawa
coupling

Lheavy ⊃ −yΨ̄Φχ þ c:c: ð6:2Þ

1Note that in Ref. [16], in which there are Yukawa interactions,
the Z2 symmetry involves chiral transformations of the fermion
fields.
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For heavy fermion masses of order M, then one-loop
diagrams induce interactions λ2mjΦj2m with

λ2m ∼
y2m

16π2M2ðm−2Þ : ð6:3Þ

One can quantify the relative impact of the higher-dimen-
sional interactions with m > 3 for φ ≤ φ− ∼

ffiffiffi
α

p
by con-

sidering the ratio

λnjΦj2m
λ6jΦj6

����
jΦj2¼α

¼
�
y
ffiffiffi
α

p
M

�
2ðm−3Þ

: ð6:4Þ

In our benchmark scenario, we have that Eq. (6.1) and (6.3)
implyM ∼ y3=2

ffiffiffi
2

p
π such as to generate a value of λ6 of the

assumed size. Substituting this into Eq. (6.4), and imposing
α ¼ 2 we get

λnjΦj2m
λ6jΦj6

����
jΦj2¼α¼2

¼
�
4π

y2

�
2ðm−3Þ

: ð6:5Þ

Thus we can get a relative suppression of ð1=10Þn for every
jΦj6þ2n interaction for y ¼ 2

ffiffiffiffiffi
104

p ffiffiffi
π

p
, still within the

perturbative bound y < 4π. Thus, for this example, it is
consistent to ignore the higher-dimensional operators
beyond jΦj6 in our analysis.
As we are forced to consider the degenerate limit of the

one-loop potential, the simplest way to proceed with the
numerical determination of the Green’s functions is to
use as initial background φ0 the solution to the equation
of motion using the real part of the one-loop effective
potential. In the thin-wall approximation appropriate for
nearly degenerate vacua, implying a large bubble radius,
the bounce is computed by neglecting the friction term
appearing in Eq. (2.7). Substituting the tree-level potential
by its one-loop counterpart, and implementing the planar
wall approximation by substituting r with z, we have to
solve

−
d2φ
dz2

þ ReðUren
CWÞ0ðφÞ ¼ 0; φ0ðzÞjz→∞ ¼ 0;

φ0
0ðzÞjz→−∞ ¼ 0: ð6:6Þ

The solution is found numerically and is adjusted so that
the wall location, defined as the point where the derivative
is maximal, is located at z ¼ 0. In terms of the compact
variable u of Eq. (4.23)—which will be used in the
remainder of this section—the initial bounce φ0 is shown
as the dashed orange line in Fig. 9.
This bounce is then used as the background for the

remainder of the numerical analysis. We note that since
there is translation symmetry along the directions parallel
to the bubble wall, all the quantities B, Bð1Þ etc. are
proportional to V ¼ R d3x [cf. Eq. (3.30)]. In the following,
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FIG. 9. Left: Initial approximation to the bounce (dashed orange) and the version including gradient corrections arising from the self-
energies computed above (solid blue). Right: relative variation of the bounce induced by gradient corrections.

FIG. 8. Tree-level potential (orange dashed) and renormalized
Coleman–Weinberg potential (solid blue) with enforced degen-
eracy between the vacua. The values used for the couplings are
stated in Eq. (6.1).
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all the quantities are understood with this three-volume
factored out.
The code which solves for the Green’s function of the

gauge-Goldstone block is run for a range of values of the
three-momentum jkj ranging from 0 to jkmaxj ¼ 50. For
jkj < 0.5 we use the direct method of Sec. IV C, while for
larger jkj we use the iterative approach described in IV D.
For the latter, we have adapted the number of iterations
depending on the value of jkj: lower values of jkj need
more iterations to converge, while for higher values the
solution stabilizes faster. Once the iterations are completed
and the solutions for the range of jkj compiled and once the
solutions in the Φ̂ and ðη̄; ηÞ sectors are also calculated, the
coincident limit is taken in order to compute quantities such
as the resolvents M

X;
ffiffiffiffiffiffiffiffi
k2þs

p ðφ0Þ and the renormalized

determinants Bð1Þren
X , see Eqs. (5.9), (5.10). The numerically

generated solutions allow us to integrate up to values of
jkj ¼ Λ ≤ 49 ¼ 34.65

ffiffiffi
α

p
for the momentum along the

wall directions. The s integration in (5.10) has been
constructed such that it remains finite for a large cutoff
Λ in the jkj integration, so that the dependence on the upper
limit of the s integration is suppressed; we have checked
this explicitly by comparing results in which we integrate
up to a value of s ¼ Λ2

s > Λ2, and in which we extrapolate
the integrand for large s (after performing the integrals in
u; jkj) using a power-law fit, and integrate up to s ¼ ∞.
The results agree within percent precision or better. From

the Bð1Þren
X one can obtain the contribution Bð1Þren to the

renormalized effective action using Eq. (5.3).
The renormalized tadpoles ðΠXðφ0Þφ0Þren follow then

from Eqs. (3.35), (4.9), (5.11), and from them one readily
obtains the correction to the bounce δφren and the renor-
malized two-loop correction to the effective action Bð2Þren
[see Eqs. (5.12), (5.13)].
A subtlety in the calculation of the jkj integrations is the

appearance of an integrable singularity in the X ¼ Φ sector,
which arises from a divergence of the resolventM

Φ̂;
ffiffiffiffiffiffiffiffi
k2þs

p
of the form

M
Φ̂;
ffiffiffiffiffiffiffiffi
k2þs

p ðφ0; z; zÞ ∼
φ−ðzÞ2

k2 þ s − λ−
þOððk2 þ s − λ−Þ0Þ

for λ− ¼ 0.21933: ð6:7Þ

The reason for such a divergence is simply that the operator
M−1

Φ̂;k¼0
ðφ0Þ, when acting on functions of z, has a discrete

negative mode φ−ðzÞ with eigenvalue −λ−, i.e.,

M−1
Φ̂;k¼0

ðφ0Þφ−ðzÞ ¼ −λ−φ−ðzÞ: ð6:8Þ

The existence of such a negative mode can be understood
from the fact that, although we have enforced degeneracy
of the potential at the one-loop level, the tree-level vacua
are not degenerate (see Fig. 8). As is well known from

one-dimensional tunneling calculations, the fluctuation
operator in the background of a configuration that inter-
polates between nondegenerate vacua has a negative mode,
and from the existence of the latter and the spectral
decomposition of the resolvent one infers a contribution
of the form of Eq. (6.7). Luckily, such contribution still
leads to convergent integrals in jkj in the evaluation of

the determinant contributions gXB
ð1Þ
X and the tadpoles

gXΠXðφ0Þφ0, because the integral of k2=ðk2 − b2Þ around
jkj ¼ b is finite:Z

bþδ

b−δ
djkj k2

k2 − b2
¼ 1

2

�
4δþ b log

�
2b − δ

2bþ δ

��
: ð6:9Þ

To avoid numerical instabilities we treat separately the
integration of the resolvent (or Green’s function, in the
case of tadpoles) around the singularity, expressing it as a
contribution coming from the difference between the
resolvent and the divergent piece of Eq. (6.7)–with
φ−ðzÞ and λ− computed numerically by solving the
eigenvalue equation (6.8)—plus the contribution from
the divergent piece alone. The first term yields a finite
result, while the jkj integral of the divergent term is
calculated using the analytic result of Eq. (6.9), i.e., it is
evaluated in the principal value sense.
As follows from the arguments at the beginning of this

section, in the considered limit of exact degeneracy
between the one-loop energies of the vacua (which in
our case implies nondegeneracy at tree level), only the
combination ðBð0Þ þ Bð1ÞrenÞ=V is finite, and thus we will
not fully distinguish between the two contributing terms.
Rather, we separate homogeneous and gradient contribu-
tions using Eqs. (5.9), (5.10) and (5.3), and write

Bð1Þren ¼ Bð1Þren;hom þ Bð1Þren;grad; ð6:10Þ

where

Bð1Þren;hom ¼
X
X

gXBð1Þren;hom;

Bð1Þren;grad ¼
X
X

gXBð1Þren;grad: ð6:11Þ

It follows that

1

V
ðBð0Þ þBð1Þren;homÞ¼

Z
dzð1

2
ð∂zφ0ðzÞÞ2þReUren

CWðφ0ÞÞ;

ð6:12Þ

which involves the integral over the full one-loop potential.
As a consequence of Eq. (6.6), our initial bounce φ0 is
chosen to extremize the above combination ðBð0Þ þ
Bð1Þren;homÞ=V, and the result is finite. The renormalized
gradient contribution Bð1Þren;grad likewise involves no pieces
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that are divergent under spacetime integration and remains
finite.
Figure 10 shows the numerical result for the total

tadpole,
P

X gXΠXðφ0; uÞφ0ðuÞ, before renormalization,
obtained using Eqs. (3.35a), (3.35c) and (4.9), compared
with the corresponding result using the homogeneous
Green’s functions (4.19), which do not include gradient
effects. The similarity between both calculations is due to
the fact that, prior to renormalization, the leading cutoff-
dependent contributions dominate, and they are fully
captured by the homogeneous Green’s functions. In con-
trast to this, Fig. 11 shows the sum of the renormalized
tadpoles with (solid blue) and without (dashed orange)
gradient effects, whose impact becomes now manifest after
the subtraction of the cutoff dependence. For comparison,
we also show in Fig. 12 the renormalized tadpoles for the
individual sectors X, whose gX-weighted sum constitutes
the quantity shown in Fig. 11. From Figs. 12 and 11 it is

clear that scalar fluctuations dominate the total result, and
that the sectors more affected by gradient corrections are
those involving the degrees of freedom Φ̂ and ðA4; GÞ. The
scalar dominance, seen both for the homogeneous and full
results, is due to the large ratio between the scalar quartic
and the gauge coupling in our benchmark scenario [see
Eq. (6.1)]. The gradient corrections are typically of order
100% of the homogeneous results at the same loop order,
and even larger for X ¼ ðA4; GÞ. As the tadpoles are one-
loop quantities, it follows that one-loop gradient effects can
become equally (or more) important than homogeneous
one-loop effects. Note that in the ðA4; GÞ sector it is
important to include the effect of wave-function renorm-
alization, as if it were ignored one would obtain much
larger gradient corrections, as shown in the dotted grey line
in the lower right plot of Fig. 12. In the right plot of Fig. 11
we show the quantity U0ðφ0Þ þ

P
XðΠXðφ0Þφ0Þren, which

corresponds to the functional derivative of the full one-loop

FIG. 10. Left: tadpole
P

X ΠXðφ0ðuÞ; uÞφ0ðuÞ with gradient effects (diamonds) and tadpole ðUð1Þ
CWÞ0ðφ0Þ ¼

P
X ΠX;hom ×

ðφ0ðuÞ; uÞφ0ðuÞ without gradient effects (solid). Right: ratio of the total tadpole contribution over its counterpart without gradient
effects. The cutoff is taken as Λ ¼ 34.65

ffiffiffi
α

p
.
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FIG. 11. Left: plot of the total renormalized tadpole
P

XðΠXðφ0ðuÞ; uÞφ0ðuÞÞren (solid blue line), and its approximation neglecting

gradients, ðUð1Þren
CW Þ0ðφ0Þ ¼

P
XðΠX;homðφ0ðuÞ; uÞφ0ðuÞÞren (dashed orange), as a function of the compactified radial coordinate u. Right:

analogous plot, adding the tree-level tadpole contribution U0ðϕÞ so as to obtain the one-loop functional derivative of the effective action
at the bounce φ0. The cutoff is taken as Λ ¼ 34.65

ffiffiffi
α

p
.
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effective action evaluated at the bounce. Note that it
approaches zero at u ¼ �1, i.e., when the field reaches
the two vacua. As the latter are extrema of the one-loop
effective action, one indeed expects δΓ=δφ ¼ 0. In general,
as for u ¼ �1 (z ¼ �∞) the field approaches the vacua
with zero derivative with respect to z, one expects gradient
effects to go to zero, which is indeed observed in Figs. 12
and 11. These tadpole contributions lead to the quantum-
corrected bounce shown as a solid blue line in the left plot
in Fig. 9, to be compared with the initial approximation
shown in dashed orange. As the initial bounce solves the
equations of motion for the one-loop effective action in the
homogeneous approximation, the correction to the bounce
shown on the right plot of Fig. 9 is purely due to gradient
effects, and can be seen to stay below a few percent. These
corrections are somewhat larger than the effects found in
the studies of Refs. [14–16]. In those works, the models
have an emerging Z2 symmetry in the limit of degenerate
vacua which implies a negative parity symmetry for the
bounce and its corrections, (i.e., φð−uÞ ¼ −φðuÞ so that the
tadpoles vanish at u ¼ 0 because φð0Þ ¼ 0), that ultimately

constrains gradient corrections to be zero around u ¼ 0,
where one would naively expect maximal effects due to the
larger derivative of the bounce. Such a symmetry is not
present here, which may explain the larger effects. Again,
gradient corrections go to zero for u ¼ �1. As the bounce
accounts for both tree and loop-level effects, and a relative
loop factor with order one couplings is expected to lead to
percent corrections, it follows that gradient corrections to
the bounce are roughly of the same order (or greater) as
generic one-loop effects, which matches what was seen in
the renormalized tadpoles.
With the above results for the renormalized tadpoles and

for the correction of the bounce configuration, we can
finally estimate the contributions BðiÞ for the effective
action appearing in the decay rate (3.41). These are given
in Table I. Table II gives the one-loop contributions

gXB
ð1Þren;grad
X arising from gradient effects, together with

their percentual weight on the total one-loop contribution
Bð0Þ þ Bð1Þren. Again, gradient corrections are of order 1%
of the tree-level plus one-loop result, i.e., the same size of
generic one-loop effects. All the individual contributions
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FIG. 12. For Λ ¼ 34.65
ffiffiffi
α

p
, renormalized tadpoles ðΠXðφ0ðuÞ; uÞφ0ðuÞÞren for each set of fields (solid blue) and the corresponding

terms ignoring gradient effects, ðUð1Þ
CW;XÞ0ðφ0Þ ¼ ðΠX;homðφ0Þφ0Þren (dashed orange). From upper left to lower right we have

X ¼ Φ̂; ðη̄; ηÞ; ðA4; GÞ; ðA4; GÞ. The lower right plot includes an extra dotted grey curve illustrating the result in the ðA4; GÞ sector
when one ignores wave-function renormalization. Note that this latter curve is cutoff dependent because the logarithmically divergent
wave-function renormalization has not been subtracted.

AI, CRUZ, GARBRECHT, and TAMARIT PHYS. REV. D 102, 085001 (2020)

085001-28



have a positive sign, as expected in general for bosonic loop
corrections.
It should be noted that the relative weight of the one-loop

and two-loop corrections is in accordance with the expect-
ations of perturbation theory with order one couplings.
Aside from the already mentioned fact that the one-loop
gradient contributions in Table II are two orders of
magnitude (roughly a loop factor) below the tree-level
plus one-loop result Bð0Þ þ Bð1Þren in Table I, one also has
that the former is four orders of magnitude above the two-
loop contribution Bð2Þren.

VII. CONCLUSIONS

The self-consistent Green’s function method of Ref. [14]
for the calculation of radiative corrections to decay rates of
false vacuum states, which allows to account for all
gradient effects at a given loop order, has been applied
here for the first time to a gauge theory. We have considered
a Uð1Þ gauge field coupled to a complex scalar and, in
order to have two physically distinct vacua amenable to
tunneling transitions at zero temperature, we have consid-
ered a potential including a higher-dimensional jΦj6
interaction. The model is intended as an illustration of
how the method of Ref. [14] applies to gauge theories, as a
first step on the way toward self-consistent calculations
of vacuum decay in theories like the SM. The model
studied in this article can be considered as an effective
description of a UV theory in which heavy fermions have
been integrated out. Our specific choice of parameters is
consistent with a UV completion in which higher-order
interactions jΦj2m;m > 3, are subdominant, justifying our
truncation beyond jΦj6.

In the limit of degenerate vacua, leading to a planar thin-
wall regime, we have included corrections to the effective
action coming from background gradients and from the
shift of the background induced by quantum effects. As
expected from the bosonic nature of the gauge and scalar
fields, quantum corrections to the effective action are
positive, leading to a longer lifetime for the false vacuum.
Our results also show that gradient corrections are of the
same order as homogeneous one-loop corrections. This
implies that considering only the leading terms in a gradient
expansion at one loop would result in theoretical uncer-
tainties that would remain of the order of a loop factor.
Hence, accounting for full gradient effects is crucial to
achieving full one-loop accuracy. The method applied here
captures all one-loop effects plus two-loop corrections
associated with dumbbell diagrams. The latter can be the
dominant two-loop effects in more general models with
more degrees of freedom, e.g., non-Abelian theories or in
the presence of several spectator fields [16].
In relation to previous applications of the Green’s

function method to tunneling calculations in the thin-wall
regime [14–16], in which gradient effects were found to be
comparable to two-loop corrections, here we have found
comparatively larger gradient corrections. This can be due
to the fact that, in contrast to the case of the aforementioned
works, in the model studied here there is no emergent Z2

symmetry, which exchanges the false and true vacua, in the
limit of degenerate vacua. In earlier works such symmetry
led to parity constraints in the z-dependence of the gradient
corrections, which limited their impact. On the other hand,
the use of the Green’s function method has already been
shown to have an important effect on the results for a non-
Z2 symmetric setup away from the thin-wall limit, as in the
scale-invariant scalar model of Ref. [17].
In comparison to earlier applications of the Green’s

function method for tunneling computations, the present
work has addressed the following novel challenges:

(i) The gauge and Goldstone boson fluctuations form a
coupled system, for which earlier methods to com-
pute the Green’s functions are no longer applicable. In
contrast to the usual calculations in a constant back-
ground in gauge theories, the freedom in the gauge
fixing procedure does not allow us to eliminate the
mixing in the presence of background gradients.
Nevertheless, a judicious choice of gauge-fixing
allows to restrict the mixing so that, in the planar
limit, it only involves a single gauge field component
and the Goldstone degree of freedom of the complex
scalar. At low values of the momenta in the directions
parallel to the wall one can solve directly for the full
mixed equations numerically, while for larger mo-
menta one is forced to use an iterative method to
account for the mixing effects.

(ii) The planar thin-wall regime can be reached by enforc-
ing degeneracy between the two vacua. However, as

TABLE II. Numerical results for the gradient contributions to
the determinant terms of the effective action.

Value
[×α−3=2]

Value=
ððBð0Þ þ Bð1ÞrenÞ=VÞ [%]

gΦ̂B
ð1Þren;grad
Φ̂=V

0.00139 0.29

gðη̄;ηÞB
ð1Þren;grad
ðη̄;ηÞ =V 0.0000748 0.016

gðA4;GÞB
ð1Þren;grad
ðA4;GÞ =V 0.00332 0.70P

X gXB
ð1Þren;grad
X =V 0.00479 1.0

TABLE I. Numerical results for the renormalized contributions
to the effective action.

Value [×α−3=2]

ðBð0Þ þ Bð1ÞrenÞ=V 0.473

Bð2Þren=V −0.000345
ðBð0Þ þ Bð1Þren þ Bð2ÞrenÞ=V 0.474
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mentioned before and in contrast to previous studies,
this limit is not associated with an emergent Z2

symmetry enforcing degeneracy of the vacua at every
order of perturbation theory. In particular, this means
that startingwith a potential with tree-level degeneracy
leads to long-distance divergences in the quantum
corrections to the bounce action, which arise from the
mismatch between the vacuum energies at one-loop.
This simply means that planar-wall approximation is
no longer applicable at one loop unless one enforces
vacuumdegeneracy at one loop rather than at tree level
and uses an initial bounce configuration which solves
the Euclidean equations of motion corrected with the
one-loop Coleman-Weinberg potential. Finiteness of

the bounce action at one loop is achieved when
considering tree and loop effects jointly.

The techniques developed here can be applied in future
studies on models that capture more of the features present
in the case of the SM, e.g., going beyond the thin-wall
approximation, or considering non-Abelian gauge theories.
Moreover, it would be of interest to directly evaluate the
sensitivity of the quantum corrections to the tunneling rate
with respect to changes in the gauge-fixing parameters.
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