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Abstract
This paper introduces a generative model for 3D surfaces based on a representation of shapes with mean curvature and metric,
which are invariant under rigid transformation. Hence, compared with existing 3D machine learning frameworks, our model
substantially reduces the influence of translation and rotation. In addition, the local structure of shapes will be more precisely
captured, since the curvature is explicitly encoded in our model. Specifically, every surface is first conformally mapped to a
canonical domain, such as a unit disk or a unit sphere. Then, it is represented by two functions: the mean curvature half-density
and the vertex density, over this canonical domain. Assuming that input shapes follow a certain distribution in a latent space,
we use the variational autoencoder to learn the latent space representation. After the learning, we can generate variations of
shapes by randomly sampling the distribution in the latent space. Surfaces with triangular meshes can be reconstructed from the
generated data by applying isotropic remeshing and spin transformation, which is given by Dirac equation. We demonstrate the
effectiveness of our model on datasets of man-made and biological shapes and compare the results with other methods.
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1. Introduction

While the convolutional neural network (CNN) has achieved sig-
nificant success in 2D image processing, more and more attention
has recently been drawn to applying the technique to the domain of
3D shapes. Unlike 2D images, which are typically represented by a
multidimensional tensor, the representation of 3D shapes is usually
unstructured; hence, the CNN is not directly applicable. Thus, the
main challenge is how to create a suitable representation for 3D
shapes which can take advantage of the state-of-art machine learn-
ing frameworks. Several such representations based on point clouds
[FSG17, ADMG18, GFK*18], volumetric data [TDB17, WSLT18,
WLG*17] and meshes [BHMK*18] have been proposed with differ-
ent applications. However, all these representations are built on the
positional data such as the coordinates of points, vertices or voxels.

In this paper, we propose a 3D deep generative model based on
mean curvature and metric, which in discrete case are expressed by
two functions that are invariant under Euclidean motion. It has the
following advantages against the existing models:

Firstly, our model preserves more
detailed structure in case that the cur-
vature plays a critical role, especially
when the surface is highly folded and
convoluted like the cortical surfaces
in Figure 1. The CNN is known to be good at capturing not only
the global features but also the local fine structure of data. Its effec-
tiveness, however, relies on a proper distance function defined on the
space of features. For example, the Euclidean distance between two
vectors is a straightforward option. As the result, the bumpy circle
(inset) will tend to be deformed through the neural network to the
round circle, which is more regular and is close to the bumpy one
under the measurement by Euclidean distance. In contrast, we adopt
curvature representation and subsequently the distance between cur-
vatures, by which two circles are clearly distinguishable, hence the
small hills will be safely preserved. Secondly, our model is less af-
fected by rigid transformation and uniform scaling. Thanks to the
invariant quantities that constitute our representation and the CNN
on sphere (see Section 4.2 for detailed discussion), we provide a
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Figure 1: Brain autoencoder. We build a curvature-to-curvature autoencoder and compare to the models based on point clouds, the AtlasNet
[GFK*18] (point clouds to surface) and the point-cloud AE [ADMG18] (point clouds to point clouds), the voxel-based model OGN [TDB17]
(IDs to voxels), and a mesh-based baseline model, which replaces the curvature in our model with vertex coordinates. All the neural networks,
except for OGN, are trained on 1400 cortical surfaces and validated on 200 surfaces, which do not appear in the training set. Three of the
predicted surfaces from the validation data are shown above. Although all the models can restore the brain structure in a large scale, only our
model preserves the local fine structure. For more details see Section 4.3.

simple and efficient way to handle the data without a consistent
alignment.

The input shapes for our model are required to be surfaces with
consistent simply-connected topology, e.g. the disk-like surface or
the spherical surface. We first map the input surface to a canonical
domain such as a sphere, where mean curvature and vertex density
are extracted and recorded as the input data for the neural network.
For generative models like VAE, the output is a variant of the input
so it has the same form as the input. To reconstruct the shape, we
first create a conformal parameterization by randomly sampling the
points with respect to the generated density function and applying
the isotropic remeshing. Then, we deform the mesh gradually to-
wards the target shape with the prescribed mean curvature (see the
attached videos).

A curvature-to-shape reconstruction algorithm with high accu-
racy is critical for generating plausible shapes. We follow the basic
idea in [CPS13] and [YDT*18]. The deformation between the do-
main and target shapes is given by the solution of the Dirac equa-
tion. We propose a modified equation with a larger solution space
and it results in the reconstruction comparatively closer to the tar-
get shape. Furthermore, one might be concerned about the stabil-
ity of curvature-based methods, since tiny errors in curvature might
accumulate across the surface and significantly affect the final re-
construction. Indeed, in our case, previous methods fail to locally
scale the shape correctly at regions with large curvature. In fact,
it is hard to directly manipulate the local scaling with the Dirac
equation. Therefore we design a new algorithm inspired by Chern
et al. [CPS15] to calibrate the area scaling factor. This compensates
for the shortcoming of the Dirac equation and significantly stabilize
the reconstruction.

We evaluate our reconstruction algorithm on several shapes,
showing that our method outperforms previous methods visually

and quantitatively. In addition to some preliminary applications such
as shape remeshing, interpolation and clustering, we demonstrate
randomly generated shapes from various datasets and compare to
other 3D generative models.

In summary, the contribution of this paper is (1) an improved al-
gorithm for shape reconstruction from curvature with area calibra-
tion and (2) a 3D shape deep learning framework based on curvature.

2. Related work

2.1. Which invariant quantities determine an immersed
surface in R

3?

It is well-known that an immersed surface in R
3 is determined up

to a Euclidean motion by its first and second fundamental forms.
However, their representation depends on the choice of coordinate.
Hence, in order to consistently represent 3D shapes based on the two
fundamental forms, an identical triangulation for all shapes, which
is not always possible, is required.

Other options are point-wise shape descriptors such as the heat
kernel signature [SOG09] and the wave kernel signature [ASC11].
Indeed, they have been employed in discriminative models for 3D
shape classification and segmentation [BMM*15]. But they can
hardly be used for generative models, because it is unclear whether
these shape descriptors completely determine the shapes or how to
reconstruct shapes from them.

The idea of this paper comes originally from Bonnet [Bon67].
In fact, except for some very special cases, an immersed surface is
completely determined by conformal structure, regular homotopy
class and mean curvature half-density, which is a scale-independent
variant of the mean curvature [Kam98]. The exceptions, called
the Bonnet immersions, includes minimal surfaces, constant mean
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Figure 2: The pipeline of our model for generating variant shapes: (a) the conformal parameterization (Section 3.1), (b) the density function
extraction (Section 3.2), (c) the mean curvature half-density extraction (Section 3.2), (d) learning and generating (Section 3.3), (e) the isotropic
remeshing (Section 3.4), ( f ) solving the Dirac equation and applying the spin transformation (Section 3.5).

curvature surfaces and Bonnet pairs. In our case the regular ho-
motopy class is unnecessary, since we only consider the simply-
connected surfaces which have only one unique regular homotopy
class [Pin85]. In summary, generic simply-connected immersed sur-
faces are uniquely determined by the conformal structure and the
mean curvature half-density.

2.2. Quaternions, Dirac-type operators and spin
transformation

Now, we sketch the idea how to construct a surface from the mean
curvature half-density. Roughly speaking, for every point on the sur-
face we rotate its infinitesimal neighbourhood with a quaternion.
Recall that a quaternion is a 4-dimensional vector q = a+ bi+
c j + dj with the multiplicative structure:

i2 = j2 = k2 = −1,

i j = − ji = k, jk = −k j = i, ki = −ik = j.

We always identify vectors in R
3 as pure imaginary quaternions

(x, y, z) �→ xi+ y j + zk.

Any quaternion can be written as q = |q|(cos θ

2 + sin θ

2u), where
θ ∈ [0, 2π ) and u ∈ R

3 ⊂ H. It is well known that q gives a scale
rotation in R

3 with scaling factor |q|2, rotation angle θ and rotation
axis u. The rotation is given by

Rq(v) = q · v · q.
The explicit construction of shapes from mean curvature half-
density and conformal structure is called spin transformation. Sup-
pose given an immersion of a surface f : M → R

3 and a quaternion-
valued function on the surface φ : M → H, which is understood as
a continuously varying rotation at each point. We scale and rotate
every tangent plane by

d f̃ = φ · df · φ. (1)

However, there is no guarantee that these rotated tangent planes will
again form a surface. For simply connected surface, d f̃ is again the
tangent plane of an immersion of surface if and only if it is closed:

dd f̃ = 0

It turns out to be equivalent to the Dirac equation [KPP98]

Dfφ = ρφ, (2)

where the Dirac operator is defined by

Dfφ = −df ∧ dφ

|df |2 , (3)

and ρ : M → R is a real-valued function. Therefore, any solution
of the Equation (2) will induce a new immersion f̃ : M → R

3 by
f̃ = ∫

M d f̃ . Moreover, the mean curvature H̃ of f̃ is given by

H̃|d f̃ | = H|df | + ρ|df |, (4)

where H is the mean curvature of the original surface f . Observe
that, due to the scaling factor |d f̃ | in (4), one cannot fully control
the mean curvature H̃. However, by introducing a variant notion,
namely the mean curvature half-density:

h := H|df |, (5)

the Equation (4) turns to

h̃ = h+ ρ|df |. (6)

This means that the mean curvature half-density h̃ can be precisely
realized as long as the solution φ for Equation (2) exists.

Crane et al. [CPS11] first discretize the Equation (3) and show
applications in computer graphics, such as curvature painting. The
following works are, e.g. Crane et al. [CPS13] use the spin trans-
formation for surface fairing. Liu et al. [LJC17] construct a contin-
uous spectrum of operators between the square of the Dirac opera-
tor and the Laplace–Beltrami operator. These operators are utilized
to enhance surface matching and segmentation problems. Ye et al.
[YDT*18] create a framework, which consistently discretized the
extrinsic Dirac operator and an intrinsic Dirac operator. In this pa-
per, we improve the reconstruction based on [CPS11, YDT*18] by
solving an equation with a larger solution space and introducing an
area calibration (see Section 3.5).

2.3. Deep generative models for 3D shapes

Various representations of surfaces have been proposed for 3D
shape generation, e.g. models based on volumetric representation
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Figure 3: The spherical conformal parameterizations of two animals are aligned by a Möbius transformation with three landmark points.
Then, they are packed into tensors with dimension 320 × 32 × 32 × 2. This figure shows a linear interpolation between the curvature repre-
sentation of two shapes and the resulting shape reconstruction from the curvature representation.

[WZX*16, TDB17, SM17, WLG*17, WSLT18], or point clouds
representation [FSG17, NW17, ADMG18]. These methods are par-
ticularly applicable for the dataset with inconsistent topology. How-
ever, without knowing the mesh structure it is hard to capture the fine
structure of certain highly complicated surfaces (see Figure 1).

Our model is closer to the following works, which take the mesh
structure into account. Ben-Hamu et al. [BHMK*18] propose a rep-
resentation based on multiple charts, which conformally map dif-
ferent parts of shapes to a domain. Since features over each chart
are normalized separately, the fine structure will be better preserved
than with a single chart. However, while the creation of such charts
requires a sparse correspondence, reconstruction of shapes from the
charts needs a template shape, which amounts to a dense correspon-
dence. In order to find such correspondence, one has to introduce
a time-consuming workflow beforehand. Groueix et al. [GFK*18]
learns a parameterization of shapes with multiple embedded charts.
Hence one does not have to manually create the charts. However, the
generated charts do not always perfectly fit with each other, nor do
they preserve as much details as the ones in [BHMK*18]. Umetani
[Ume17] develops a depth map representation with a cube as the
domain. This representation works well for close-to-convex shapes
like cars, but would be difficult to be applied on highly curved and
non-convex shapes. Kostrikov et al. [KJP*18] use the same Dirac
operator as ours. But they merely replaced the Laplace–Beltrami
operator in the neural network with the Dirac operator, thus the real
power of the Dirac operator, namely its connection to conformal
transformation, is not exploited.

3. Method

The main pipeline of our model is depicted in Figure 2. In the sequel,
we will explain the detailed methods for encoding shapes with cur-
vature and vertex density in Sections 3.1 and 3.2, building a neural
network based on our representation in Section 3.3 and reconstruc-
tion of shapes in Sections 3.4 and 3.5.

Encoding the conformal structure. In discrete case, how to en-
code a shape in the scheme of the Bonnet problem (Section 2.1)?
While the mean curvature half-density can be represented by a
vertex-based or face-based function, it is not straightforward to pack

Figure 4: [YDT*18] shows that a simply-connected surface in R
3

can be faithfully reconstructed from its conformal parameterization
by prescribing the mean curvature half-density.

the conformal structure in a form that is suitable for machine learn-
ing pipeline. For example, we can recover the shape of a cow from its
spherical conformal parameterization ((b) in Figure 4) by prescrib-
ing the function of mean curvature half-density ((c) in Figure 4). But
it is not clear how to represent a spherical mesh that is conformal
equivalent to a given shape purely by scalar functions. One might
consider the notion of discrete conformal equivalence for triangular
meshes by length cross-ratio on edges ([SSP08]). But it is unclear
how to transfer the length cross-ratio across different meshes.

Recall that the conformal structure is the set of metrics modulo
the equivalence relation g∼ e2ug, i.e. two metrics are identified if
they only differ by a scaling at each point. Therefore, instead of en-
coding the conformal structure, we encode the metric of shapes. In
general, the space of all metrics still does not have an efficient form
of representation, thus we focus on a smaller subset, i.e. the isotropic
meshing. Since the conformal map is locally isotropic, i.e. it takes
an isotropic mesh to a close-to-isotropic mesh (see the zoom-in in
Figure 4), and we know that the isotropic meshing is usually gener-
ated by the centroidal Voronoi tessellation (CVT) with respect to a
density function [ADVDI03], this density function can be utilized
as an approximation of a metric. Therefore, at the beginning of our
pipeline all the input shapes are isotropically remeshed (like (a) in
Figure 4). Then, we successively take the following procedures.
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3.1. Conformal parameterization

We map all the shapes to a canonical domain, e.g. the unit disk for
disk-like surfaces and the unit sphere for spherical surfaces. The
resulting disk-like or spherical meshes are called the conformal pa-
rameterization. However, these maps are not unique but differ by a
conformal automorphism of the domain. To deal with the ambigu-
ity one may choose from the following approaches depending on
the application:

Landmark alignment. We know that the conformal automor-
phism of S2, i.e. the Möbius transformation, is fully determined
by three distinguished points and the conformal automorphism of
a disk is determined by one point and one rotation. Hence we
choose two landmark points for disk-like surfaces and three land-
mark points for closed surfaces and align these landmarks via a con-
formal mapping. One example is shown in Figure 12.

Landmark-free alignment. For example, [BCK18] proposed a
canonical Möbius transformation such that the mass centre is
aligned with the sphere centre. Then, we register two spherical
meshes of centred Möbius transformations by searching for an op-
timal rotation.

Without any alignment at all. This will result in a larger shape
latent space and consequently poses higher demands on the capacity
of neural network, because, for example a rotation of shapes might
also cause a rotation of curvature function. However, our model is
particularly good at capturing this uncertainty (see the discussion in
Section 4.2).

Specifically, there are many available algorithms for confor-
mal parameterization for disk-like and spherical surfaces, e.g.
[GWC*04, CPS13, CL15, CLL15, SC17, YDT*18]. In fact, we
did not observe significant differences between these algorithms in
our experiments.

3.2. Making the representation

In order to build the neural network, we need some fixed meshes
for canonical domains. In particular, we use the standard 256 × 256
grids for the disk. For the spherical domain, we obtain a spherical
mesh by iteratively applying the 1-to-4 subdivision and normaliza-
tion on an icosahedron.

Then, we interpolate the following two functions from the con-
formal parameterization of shapes to the domain with inverse dis-
tance weight.

Mean curvature half-density. The mean curvature half-density h
is a face-based function given by [YDT*18]

hi =
∑

j |ei j| tan θi j/2

2
√
Ai

, (7)

where the sum runs over all the edges ei j of the face Ti, θi j are bend-
ing angles at the edge ei j and Ai are the face area.

Figure 5: Downsampling layers based on the subdivision structure
of the spherical meshes. The tensors in the previous layer, which are
corresponding to a common triangle in the next layer, are merged to
the tensor associated with the father triangle. These downsampling
layers respect the spatial relations among the triangles.

Vertex density function. We estimate the density function d by the
reciprocal of vertex area, di := 1/Ãi, where Ãi is the vertex area of
the conformal parameterization. We do not normalize the density
d, since the integral of the piecewise constant function

∫
U ddA =∑

i diÃi = i is equal to the number of points located in the area U .
At the step of reconstruction, this gives us the information about how
many points should be sampled. In the experiment, we observe that
the logarithmic density d̃ := log d is more evenly distributed. There-
fore, the logarithmic density d̃ is instead recorded on the domain.

3.3. Building CNNs over meshes

Since the disk-like surface is represented like a 2D image with two
channels, any classical CNNs can be directly applied. Hence, we
will focus on the case of spherical surfaces.

Convolution layers. Many CNNs on arbitrary graphs or sur-
faces have been proposed in recent works, see [BZSL14, KW17,
DBV16, MBM*17, BMM*15, MBBV15, MGA*17] and the survey
[BBL*17]. We opt for a mesh-based CNN based on small tangent
patches [TPKZ18].

Each face of the domain is assigned with
a tangent plane, identified with R

2, at the
barycenter. Let l be a positive number such
that the projection of the triangular face
lies entirely in the patch [−l, l] × [−l, l]
on the tangent plane. This projection π gives a local coordinate
system of the points in the pre-image π−1([−l, l] × [−l, l]) ⊂ S2.
Hence, the functions restricted in this region can be interpolated to
some grids on the patch. The distortion caused by the projection is
neglectable when the size of the patches is small. We choose a fixed
length l such that all the triangular faces on the domain are pro-
jected inside the corresponding patches. The convolution is the ordi-
nary 2D convolution within each patch with the shared filter weights
across different patches.

Downsampling and upsampling layers. Like the MaxPooling
and UpPooling layers for classical CNNs, we need the same sort
of operations for mesh domain to decrease and increase the spatial
dimension of neural network. One can first apply the ordinary 2D
pooling layers within each patch. Furthermore, since our spherical
domain is constructed by subdividing an icosahedron, it is naturally
endowed with a hierarchical structure (Figure 5), which gives rise
to downsampling and upsampling layers between spherical meshes
with different refinements.
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6 T. Hoffmann et al. / A curvature and density-based generative representation of shapes

Figure 6: Centroidal Voronoi Tessellation. In order to obtain an
isotropic meshing with respect to a given density, we first sam-
ple a point set according to the density and repeatedly apply the
Lloyd’s relaxation. Observe that the point set becomes more and
more isotropic as the iteration goes.

Figure 7: Constraint CVT. To avoid dealing with unbounded
Voronoi cells, we flip the points, which are close to the boundary,
such that the cells close to the boundary are all bounded.

The detailed architectures of our CNNs are depicted in the ap-
pendix.

3.4. Reconstruction of conformal parameterization

In order to construct a conformal parameterization from a given ver-
tex density function d, we first randomly sample ni points in every
faces of the domain, where ni = diÃi and Ãi is the face area. Next,
an isotopic meshing is constructed as follows.

Centroidal Voronoi tessellation. The isotropic meshing is usually
made by CVT [DFG99]. Given a set of points {vi} in a metric space,
particularly R

2 or S2. The Voronoi region Vi corresponding to vi is
defined by

Vi = {x||x− vi| ≤ |x− v j|, j 
= i}, (8)

which are polygons (see Appendix A.1 for the formula for comput-
ing the weighted centroid of polygons). Given a density function d,
the centroid v∗

i of the polygon Vi is given by

v∗ =
∫
V yd(y)dy∫
V d(y)dy

. (9)

We call a point set {vi} the weighted CVT if vi = v∗
i holds true

for all i.

In this paper we use Lloyd relaxation to compute the CVT. Given
a point set {vi}, we iteratively update the point vi with the corre-
sponding centroid v∗

i until it converges (see Figure 6):

1. Randomly sample the points with respect to the density d (de-
fined in Section 3.2).

2. Create the Voronoi diagram. For the disk case, we have to be a
bit careful that the Voronoi cells close to the boundary are mostly
unbounded. Hence we reflect the points close to the boundary,
so that all the Voronoi cells inside or close to the unit disk are
bounded.

3. Compute the weighted centroids of the (bounded) Voronoi cells
and, for the disk case, remove the points lying outside the disk
(see Figure 7).

Then, a Delaunay triangulation is constructed by taking the dual
of the Voronoi diagram. Generally, this triangulation does not per-
fectly fit the disk at the boundary, but it does not significantly affect
the global appearance of shapes.

3.5. Surface reconstruction

Now, we are ready to reconstruct the surface from a conformal pa-
rameterization with prescribed mean curvature half-density. In the
following we first demonstrate an improved reconstruction method
which is a slight modification of [YDT*18] and then introduce a
new procedure of area calibration, which would be particularly ef-
fective when the area scaling is not accurately restored by the pre-
vious method.

Dirac energy. In practice, the exact solution of the Dirac equation
(2) can hardly be obtained, so we actually search for the solution
φ : M → H such that:

(Df − ρ − σ )φ = 0

for a very small real number σ , which actually amounts to the eigen-
value problem

(Df − ρ )φ = λφ,

where λ is the eigenvalue with the smallest magnitude [CPS11].

In discrete case, Df − ρ is a |F| × |F| quaternion-valued matrix
[CPS11], or in practice, a 4|F| × 4|F| real-valued matrix such that
any quaternion q = a+ bi+ c j + dk is represented by a 4 × 4 real-
valued block matrix: ⎛

⎜⎜⎝
a −b −c d
b a −d c
c d a −b
d −c b a

⎞
⎟⎟⎠ .

We briefly introduce the discretization of the matrix Df − ρ and
refer the reader to [CPS11, YDT*18] for more details. Let ei j ∈
Im(H) be the oriented edge embedded in the quaternion space and
Hi j := 1

2 |ei j| tan
θi j

2 be the integrated mean curvature at the edge ei j,
where θi j is the bending angle between the face i and j. The matrix of
the Dirac operator is a 4|F| × 4|F| matrix Df given by ([YDT*18])

(Dfφ)i = 1

2
Ei j · φ j − Hiφi,

where Ei j := 2Hi j + ei j and Hi =
∑

j Hi j. The discrete form of ρ

is a 4|F| × 4|F| diagonal matrix P with the discrete mean curvature
half-density (7) as the diagonal. Instead of building the target shape
in one step, we slowly flow the initial shape to the target for the
purpose of stability. Hence, we build the matrix D̂(t ) = Df − tP,
where t ∈ [0, 1] is a step length parameter.

We observe that, even though this face-based Dirac operator gives
the exact solution, it is not numerically stable, because its solution
space is often too large (technically, some solutions that give the
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edge-constraint normals far from the actual face normal will result
in unwanted transformations). On the other hand, while the vertex-
based operators in [CPS11, YDT*18] works well in many cases,
they are not able to faithfully recover the high curvature regions on
the surface, because their solution spaces are too limited. To have
a balance between these two approaches we propose the following
regularized energy based on the face-based operator:

ED(t ) = D̂T (t ) · D̂(t ) + cR,

where c is a positive coefficient and R is the 4|F| × 4|F| regulariza-
tion matrix such that

R =
∑
i j

|e∗
i j|(φi − φ j )

2,

where the sum runs over all adjacent faces i and j. Note that the
weights with the dual edge length are used in [CKPS18]. To have
finer control of the regularizer, one can decompose R into four com-
ponents and set different weights as in [CKPS18], but we did not
see that this will make any obvious difference in our setting. Empir-
ically, the coefficient c is set to be 0.001 max

i j
|ei j|.

By the min–max principle, solving the generalized eigenvalue
problem

ED(t )φ = λMφ,

whereM is the mass matrix, is actually equivalent to minimizing the
energy

minED, s.t. |φ| = 1,

with the metric defined by |φ|2 := φT ·M · φ.

Finally, the edges are constructed by the spin transformation

ei j �→ Im(φi · Ei j · φ j ),

the position of vertices vi are recovered by solving the Poisson equa-
tion (see Section 3 of [SA07] or Section 5.6 of [CPS11]). In the at-
tached videos, we prescribe the mean curvature half-density of two
shapes (red) on their conformal parameterization (blue) and it shows
deformation from the sphere to the original shapes.

Area calibration. Even though the Dirac operator with regulariza-
tion term improves the accuracy of reconstruction, we observe that
some area distortion is still visible, especially at the region with re-
ally high curvature. To overcome this problem, we make the recon-
struction algorithm be aware of the area scaling factor. Chern et al.
[CPS15] prescribe a volumetric scaling factor eu and obtains the
close-to-conformal volumetric deformation by minimizing an en-
ergy Eu depending on u. While the energy Eu in [CPS15] is specif-
ically designed for 3D volumetric meshes, an analogy for 2D sur-
faces still holds in smooth case:

Figure 8: Reconstruction of shapes from their conformal parame-
terization. While the Willmore energy is defined by W = ∑

i h
2
i , we

define the relative Willmore energy between two meshes with identi-
cal connectivity by r.W := ∑

i((h1)i − (h2)i)2, which measures how
close the mean curvature half-density of two meshes are. This ex-
periment shows that our method substantially improves the accu-
racy of curvature reconstruction. Furthermore, the area distortion,
which usually appears in the regions with high curvature, gets much
reduced by the area calibration. Note that, in contrast to [CPS15],
we only encode the expected scaling factor in the energy |ω|2 and
the factual scaling factor |φ|4 is determined by the optimizer.

Theorem 1. Let f : M → R
3 ⊂ H be an isometric immersion and

h : M → R be any function. The quaternion gradient is defined by

grad f h = df (grad h).

The spin transformation d f̃ := φ · df · φ with Dfφ = 0 is closing if

dφφ−1 = −1

2
Gdf , (10)

where G := grad f u is the gradient of the logarithmic factor e
u :=

|φ|2.

Proof. See Appendix A.2. �

Therefore, given a spin transformation induced from φ with the
area factor u = log |φ|, the quaternion-valued 1-form

ω := dφ + 1

2
Gdfφ

vanishes. In practice, we minimize the energy Eu := |ω|2, where the
metric for quaternion-valued 1-form is defined by

〈ω, η〉 :=
∫
M

ω ∧ (∗η). (11)

In discrete case, minimizing the energy Eu again amounts to solv-
ing a generalized eigenvalue problem for a 4|F| × 4|F| matrix (see

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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Figure 9: Remeshing. Given an original shape with |V | = 5000,
the density is modified by multiplying with 0.25, 0.75, 1 and 2.
The mean curvature half-density changes accordingly such that the
mean curvature is preserved.

Section A.4). To avoid introducing the scaling factor as one more
function in our representation and subsequently increasing the data
size, we first apply the isotropic remeshing with approximate equal-
ized face area [FAKG10] for all shapes. In this case the logarithmic
factor u should be set to ui = log(1/

√
|Ãi|), where Ãi is the face area

of the conformal parameterization.

In summary, we first minimize the energy ED with a small step
length several times until the mean curvature half-density converges
to the prescribed one. Then, we minimize the energy Eu once to get
the correct area scaling factor.

4. Results

We use the Matlab package gptoolbox [J*18] for data pre-
processing and Tensorflow [AAB*15] for building the neural net-
works on meshes. All the neural networks are trained and evaluated
with the GPU GeForce GTX 1080 with 8GB memory.

4.1. Preliminary applications

We first present some simple applications that are unrelated to ma-
chine learning.

In smooth case, the mean curvature half-density changes co-
variantly h �→ m · h under the parameterization scaling x �→ m · x,
m ∈ R. Analogously, in discrete case, one can adjust the parameteri-
zation by scaling the vertex density, i.e. multiplies the density dwith
a constant number, d �→ md. In order to preserve the shape, one has
to adjust the mean curvature half-density by h �→ h√

m . The shapes
reconstructed from the modified representation are actually remesh-
ings with approximately m|V | vertices, where |V | is the number of
vertices of the original mesh. Figure 9 shows that our method will
preserve the smooth features on the shape. However, the regions of
high curvature tend to be smoothed with declining vertex number.

Shape interpolation. We visualize the interpolation of our
curvature-based representation. Figure 3 shows the shapes recon-
structed from a linear interpolation of two animals, whose confor-
mal parameterizations are matched by a Möbius transformation that
aligns 3 chosen landmark points. In addition, one can interpolate
the latent space representation of a trained autoencoder (see Sec-
tion 4.3). Figure 11 shows two latent space bi-linear interpolations
of cars.

Random generation of disk-like and spherical shapes. We test
our model for disk-like surfaces on a dataset of anatomical shapes
provided by [BLC*11]. In particular, we choose the shapes of teeth,
which is one of three types of bone in this dataset. To create the
representation, we first take an intermediate conformal map, which
maps the teeth to the unit disk by the algorithm from [CL15].

Several landmark points are available in [BLC*11], hence we
choose two landmark points ui, vi for every shapeMi. We know that
the conformal automorphisms of the unit disk have the form

f (z) = eiθ
z− a

1 − az
,

where θ ∈ R and a ∈ C. Set a = ui and θ such that f (vi) ∈ R.
Clearly, this uniquely determined map fa,θ satisfies f (ui) = 0 and
f (vi) ∈ R. Fixing a reference shape M0, for any shape Mi we apply
the alignment map f−1

0 ◦ fi for every shapes.

Figure 10: The randomly generated cortical surfaces by Multi-chart GAN [BHMK*18] and the VAE based on our representation. Our
representation has dimension 320 × 32 × 32 × 2 = 655360, which has the same magnitude as the data size of Multi-chart, i.e. 16 × 64 ×
64 × 3 = 196608. However, we only require 3 landmark points for alignment, while the Multi-chart needs a dense correspondence for surface
reconstruction. The surfaces are labeled by the mean curvature half-density. Note that, the training data mostly have the Willmore energy from
900 to 1000. Although the generated surfaces from our model have been smoothed to a certain extent (partly due to a well-known limitation
of VAE), our model apparently preserves more fine structures than the position-based model.
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Figure 11: Latent space interpolation. We choose four examples in
the car dataset and interpolate their mean values in the latent space
of VAE. The left lower triangle is a bilinear interpolation of a van, a
car and an SUV. The right upper triangle is a bilinear interpolation
of a van, a car and a race car.

All the aligned disk meshes are then mapped to the square via
the Schwarz-Christoffel mapping. The functions are interpolated
on the 256 × 256 grid using the scatteredInterpolant function
in Matlab.

For spherical surfaces we take the dataset of 1240 cars from
ShapeNet [CFG*15]. All the shapes are converted into genus-0
surfaces by Umetani [Ume17]. Then we create the aligned con-
formal parameterization by the canonical Möbius transformation
[BCK18]. The canonical domain with is obtained by subdividing
the icosahedron twice so it has 20 × 42 = 320 faces. Each face is
assigned with a 32 × 32 grid. Hence, each shape is represented by
a 320 × 32 × 32 × 2-dimensional tensors.

The randomly generated teeth and cars are shown in the appendix
as well as their curvature representation.

4.2. Generation of unaligned data

Discussion of local invariance.
We call two functions f1 and f2 lo-
cal invariant if they have the same
function value but only differ by
a transformation g of domain, i.e.
f1 = f2 ◦ g. Traditional CNNs are
able to capture the translational fea-
tures such as (a) of inset. Hence
one would expect the CNNs for 3D
shapes with the similar properties
like local invariance under transla-
tion, rotation or even scaling. How-
ever, 3D generative models based on position, such as point cloud
and mesh, will not have such properties due to the varied function
value of coordinates (see (b)). This makes it more difficult for CNNs
to extract meaningful information. The voxel-based models are lo-
cal invariant, but they are not applicable for data with high resolu-
tion due to the high cost of memory and computation. Some multi-
resolution representations, e.g. octree [TDB17, WSLT18], are de-
signed to overcome this problem, but the local invariant property

Figure 12: For disk-like surfaces, given two landmark points there
is a unique conformal map which maps the first point (red) to zero
and maps the second one (blue) to the x-axis.

Figure 13: Latent space visualization. The dataset is composed of
three different types of anatomical surfaces. We project the latent
space representation on a 2-dimensional space by PCA. Though all
the shapes are packed without alignment, the three types of bones
are clearly separated in the latent space. In contrast, the model
based on the coordinate failed to learn the structure of the bones,
so their distribution in the latent space is not well separated.

does not hold anymore. In contrast, our model (sketched by (c)),
together with the CNN on the sphere, provides an efficient way to
learn the 3D data without a certain alignment. We verify our argu-
ment with the following two examples.

Learning unaligned anatomical data.
We merge three different anatomical
models in [BLC*11] and create the
representations without any alignment
methods. Insect shows the randomly
generated bones of different types. Com-
pared with Figure 16 the bones get smoothed due to the expanded
shape space. However, we show that our model is still capable to
extract the meaningful information from the ambiguity by visualiz-
ing the latent space distribution (Figure 13). We compare the result
with a baseline model that has the same network architecture but
operates on the coordinate functions.

Generation of transformed cars. In this experiment we would
like to see whether the 3D generative models are able to correctly
predict shapes with various transformations. The dataset is created
by randomly translating, rotating and scaling a single shape of car
in the cube of size [−1, 1] × [−1, 1] × [−1, 1]. We train autoen-
coders based on different models on 900 training data and test them
on 100 validation data. The comparison shows that our method
produces more accurate predictions than others (see Figure 15).
Since only our model considers the mesh structure of shapes, to
make a fair comparison, we evaluate the results with Chamfer dis-
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Figure 14: Volume-Curvature autoencoder. The input is the MRI volumetric data from [MFC*10]. Since only the left hemisphere is generated,
we align the volume using FreeSurfer [RRF10] and chop the volume properly such that the dimension is 193 × 80 × 195. The encoder is shown
in Figure 3 and the decoder is the same as Figure 1.

tance which only depends on the underlying point clouds. Note that,
as a trade-off, our representation loses the information of transla-
tion and scaling. Thus we first normalize the shapes reconstructed
from our model and then calculate the Chamfer distance to the
ground truth.

4.3. Cortical surface generation

To show that our model is particularly good at preserving the fine
structure, we perform the experiment on human cortical surfaces,
which are highly folded with a lot of ”hills” and ”valleys”. A dataset
of cortical surfaces are available on the Open Access Series of Imag-
ing Studies (OASIS) [MFC*10]. The MRI images are converted
to genus-0 surfaces via the open-source reconstruction software
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).

We first compare our model to three other state-of-art autoen-
coders for 3D shapes. Figure 1 shows that, although all models suc-
ceed in characterizing the shapes in a large scale, our model pre-
serves much more small features, e.g. the curvature, than the others.

Training details. Our model and the baseline model are trained
with 200 epochs for around 5 h. The point-cloud AE [ADMG18]
with 2048 points for each data and AtlasNet [GFK*18] with 2500
points for each data are both trained with 500 epochs for approx-
imately 4 h. Although the point-cloud based models above have
smaller data size than ours, the training of their neural networks al-
ready exhausted our GPU memory. The OGN, with the octree rep-
resentation of 128 × 128 × 128-dimensional voxels, is trained with
4000 epochs with 5 h. While other models produce the shapes in-
stantly after training, it takes 2 min with our method to reconstruct
a mesh with 10000 vertices from curvature.

Next, we compare the cortical surfaces randomly generated by
our VAE to the ones by Multi-chart GAN [BHMK*18] (Figure 10).
While both mesh-based models generate significantly more faith-
ful results than other types of representation in Figure 1, the ”hills”
and ”valleys” are much more visible with our model. Moreover, we
only choose 3 landmark points on each shape to align the conformal
parameterization, while it requires 21 landmark points to create 16
charts as in [BHMK*18], and even a template shape, which amounts
to a dense correspondence, to reconstruct the final shapes.

At last, we try to create an autoencoder that converts the 3D MRI
images of brain to cortical surfaces. In this case, the encoder con-
sists of several 3D convolutional layers (see Figure 3) and the de-
coder is the same as the ones in previous experiments. Figure 14
shows that our model is able to predict the cortical surface from the
MRI volume to a certain extent, but the accuracy is not yet optimal,
because the neural network failed to capture the spatial correspon-
dence between the volumetric data and the spherical data. We leave
the construction of a finer 3D-to-2D autoencoder to future work.

5. Limitations and future work

First, currently it is difficult to model
the shapes like long tubes, such as
arms and legs of human, because the
conformal parameterization of such
shapes always has extremely large
area distortion. The information easily
gets lost while being transferred from
such regions to the canonical domain
(inset), unless one uses a domain with
extremely high resolution. A solution might be a multi-resolution
data structure, such as [GKS02, WSLT18]. Then it is desirable to
design a structure of neural network that is specifically adapted to
such multi-resolutional data structures.

Second, to make our model fully rotational invariant rather than
just local invariant, one might combine our representation with the
equivariant neural networks by Cohen et al. [CGKW18], so that the
alignment procedure can be completely removed. Then it would be
interesting to develop a corresponding decoder network.

6. Conclusion

We propose a novel intrinsic representation of 3D surfaces based on
mean curvature and metric. A 3D generative model is built based on
this representation and it manifests better performance than other
models in capturing the fine structure and the symmetry of the am-
bient space.
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Appendix: A

A.1. Compute the weighted centroid of polygons

The weighted centroid of a polygon is given by

v∗ =
∫
V yd(y)dy∫
V d(y)dy

.

A Voronoi cell is naturally decomposed in several triangles, of
which we first compute the weighted centroid.

Denote the density on the vertex vi
by di and we assume that the density
is linearly interpolated on every trian-
gle. The denominator of v∗ is called the
weighted area, which is given by Ai =
d(v1 )+d(v2 )+d(v3 )

3 Ai, where Ai is the trian-
gle area.

Integrating the linear function on the triangle i, we obtain

v∗
i = (2d1 + d2 + d3)v1 + (d1 + 2d2 + d3)v2 + (d1 + d2 + 2d3)v3

4(d1 + d2 + d3)
.

Then, the centroid of the polygon is the weighted sum

v∗ =
∑

i v
∗
i · Ai∑
i Ai

.

A.2. Proof of Theorem. 1 (Closing condition for prescribing
the area factor)

Proof. Let (x, y) be a conformal coordinate of the immersion f :
M → R

3. The left-hand side of (10) is actually

φx · φ−1dx+ φy · φ−1dy,

while the right hand side reads

−1

2
(−ux f−1

x − uy f
−1
y ) · ( fxdx+ fydy)

= 1

2
((ux + uy f

−1
y fx)dx+ (uy + ux f

−1
x fy)dy)

= 1

2
((ux + uyn)dx+ (uy − uxn)dy). (A.1)

The equation (10) implies that

φx · φ−1 = 1

2
(ux + uyn),

Figure A.1: Autoencoder for transformed cars. We transform a shape of car by applying random translation, scaling and rotation. We demon-
strate our results with other models based on the point clouds, namely the point-cloud AE [ADMG18] and the AtlasNet [GFK*18], the one
based on voxels, namely the O-CNN [WSLT18]. Other methods, though were shown to achieve satisfying results on the aligned dataset, do
not correctly capture the symmetry of various transformations. In contrast, our model succeeds in producing convincing transformed shapes.
We evaluate the results by measuring the Chamfer distance CD. However, since our model loses the information of translation and scaling,
we have to first normalize the volume of the results with a centered position (unnormalized shapes are shown above). In the end we compute
the Chamfer distance of the normalized outputs CP.
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Figure A.2: Randomly generated teeth and cars via the variational autoencoder. The first and third rows show the isotropic meshings, which
are induced from the generated density function, with the generated mean curvature half-density. The second and fourth rows show the resulting
reconstruction. The architectures of neural networks are modified from the traditional autoencoders in Table B.1 and B.2 to variational
autoencoder.

φy · φ−1 = 1

2
(uy − uxn).

Substituting the equations above into the Dirac operator (2) in local
form, we obtain

Dfφ = fxφy − fyφx

= 1

2
fx(uy − uxn) − 1

2
fy(ux + uyn)

= 0,

by fx · n = − fy and fy · n = − fx. �

A.3. Finite element method for quaternion gradient

To obtain the discrete formula of the energy |ω2|, we first derive the
formula of the quaternion gradient in discrete case.

Let h : M → R be any function. We know that the gradient is
defined by grad u := (du)
, where 
 : T ∗M → TM is called raising
indices defined by

〈ω
, v〉 = ω(v), for any v ∈ TM

In a triangle i in quaternion space with
the oriented edges a, b, c ∈ H, we choose
a coordinate (x, y) system (inset). Assum-
ing that h is a linear function with the
value h1, h2, h3 at the vertices, write dh
in local form as:

dh = (h2 − h1)dx+ (h3 − h1)dy

Since 〈(dx)
, ∂x〉 = 1 and 〈(dx)
, ∂y〉 = 0, df ((dx)
) is perpendic-
ular to b and has the length 1

|c| sin θ
= |b|

2A , where A is the area of the

triangle. Thus df (dx
) = n·b
2A and, by the same argument, we have

df (dy
) = n·c
2A .

Therefore,

grad f h = n

2A
(ah1 + bh2 + ch3)

A.4. The energy of quaternion 1-form

We discretize the energy

Eu = |ω|2 = |dφ + 1

2
Gdfφ|2

in the scheme of finite element method. In the local coordinate sys-
tem above, the metric and its inverse read:

g=
( |c|2 −〈c, b〉

−〈c, b〉 b2

)
, g−1 = 1

2A

(
b2 〈c, b〉

〈c, b〉 |c|2
)

.

With ω = ωxdx+ ωydy, (11) becomes∫
(|ωx|2|b|2 + 〈c, b〉(ωxωy + ωyωx) + |ωy|2|c|2)dx ∧ dy.

Now, we work out the formula ω = dφ + 1
2Gdfφ in one triangle:

ω =
(

(φ2 − φ1) + 1

2
G · c((1 − x− y)φ1 + xφ2 + yφ3)

)
dx

+
(

(φ3 − φ1) − 1

2
G · b((1 − x− y)φ1 + xφ2 + yφ3)

)
dy

where

G · c = u1 − u2 + n

2A
(−〈a, c〉u1 − 〈b, c〉u2 − |c|2u3)

G · b = −u1 + u3 + n

2A
(−〈a, b〉u1 − |b|2u2 − 〈c, b〉u3)
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The energy Eu is a |V | × |V | quaternion-valued matrix. With a te-
dious calculation the entries related to the triangle are given by

|ω|211 = 1

2
|a|2 − 1

6
(|a|2u1 + 〈b, a〉u2 + 〈c, a〉u3) + 1

6
|G|2A2,

|ω|223 = 1

2
〈b, c〉 + |G|2A2

12

+ 1

12
((4An+ |a|2)u1 − (a · b)u2 − (c · a)u3)

where

|G|2 = 1

4A2
(a2u2

3 + b2u2
2 + c2u2

1

+ 2〈a, b〉u1u2 + 2〈b, c〉u2u3 + 2〈c, a〉u3u1).

Appendix B: Architectures

Table B1: The architecture for spherical surfaces.

Encoder

layers input output
Conv2D (4 × 4) 320 × 32 × 32 × 2 320 × 32 × 32 × 4

BatchNormalization
LeakyReLu

Conv2D (4 × 4) 320 × 32 × 32 × 4 320 × 16 × 16 × 8
BatchNormalization

LeakyReLu
Conv2D (4 × 4) 320 × 16 × 16 × 8 320 × 8 × 8 × 16

BatchNormalization
LeakyReLu

Conv2D (4 × 4) 320 × 8 × 8 × 16 320 × 4 × 4 × 32
BatchNormalization

LeakyReLu
Conv2D (4 × 4) 320 × 4 × 4 × 32 320 × 2 × 2 × 64

BatchNormalization
LeakyReLu

Conv2D (4 × 4) 320 × 2 × 2 × 64 320 × 1 × 1 × 128
BatchNormalization

LeakyReLu
Reshape 320 × 1 × 1 × 128 80 × 512

FC 80 × 512 80 × 256
BatchNormalization

LeakyReLu
Reshape 80 × 256 20 × 1024

FC 20 × 1024 20 × 512
BatchNormalization

LeakyReLu
FC 20 × 512 200

Decoder

layers input output
FC 200 20480

BatchNormalization
LeakyReLu

(Continues)

Table B1: (Continued).

Decoder

Reshape 20480 20 × 1024
FC 20 × 1024 20 × 2048

BatchNormalization
LeakyReLu
Reshape 20 × 2048 80 × 512

FC 80 × 512 80 × 1024
BatchNormalization

LeakyReLu
Reshape 80 × 1024 320 × 2 × 2 × 64

Deconv2D (4 × 4) 320 × 2 × 2 × 64 320 × 4 × 4 × 32
BatchNormalization

LeakyReLu
Deconv2D (4 × 4) 320 × 4 × 4 × 32 320 × 8 × 8 × 16

BatchNormalization
LeakyReLu

Deconv2D (4 × 4) 320 × 8 × 8 × 16 320 × 16 × 16 × 8
BatchNormalization

LeakyReLu
Deconv2D (4 × 4) 320 × 16 × 16 × 8 320 × 32 × 32 × 4

BatchNormalization
LeakyReLu

Deconv2D (4 × 4) 320 × 32 × 32 × 4 320 × 32 × 32 × 2

Table B2: The architecture for disk-like surfaces.

Encoder

layers input output
Conv2D (4 × 4) 256 × 256 × 2 128 × 128 × 4

BatchNormalization
LeakyReLu

Conv2D (4 × 4) 128 × 128 × 4 64 × 64 × 8
BatchNormalization

LeakyReLu
Conv2D (4 × 4) 64 × 64 × 8 32 × 32 × 16

BatchNormalization
LeakyReLu

Conv2D (4 × 4) 32 × 32 × 16 16 × 16 × 32
BatchNormalization

LeakyReLu
FC 16 × 16 × 32 100

Decoder

layers input output
FC 100 8192

BatchNormalization
LeakyReLu
Reshape 8192 16 × 16 × 32

Deconv2D (4 × 4) 16 × 16 × 32 32 × 132 × 16
BatchNormalization

LeakyReLu
Deconv2D (4 × 4) 32 × 32 × 16 64 × 64 × 8

(Continues)
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Table B2: (Continued).

Decoder

BatchNormalization
LeakyReLu

Deconv2D (4 × 4) 64 × 64 × 8 128 × 128 × 4
BatchNormalization

LeakyReLu
Deconv2D (4 × 4) 128 × 128 × 4 256 × 256 × 2

Table B3: The architecture for volumetric data.

Encoder

layers input output
Conv3D (4 × 4 × 4) 193 × 80 × 195 × 1 97 × 40 × 98 × 4
BatchNormalization

LeakyReLu
Conv3D (4 × 4 × 4) 97 × 40 × 98 × 4 49 × 20 × 49 × 8
BatchNormalization

LeakyReLu
Conv3D (4 × 4 × 4) 49 × 20 × 49 × 8 25 × 10 × 25 × 16
BatchNormalization

LeakyReLu
Conv3D (4 × 4 × 4) 25 × 10 × 25 × 16 13 × 5 × 13 × 32
BatchNormalization

LeakyReLu
Conv3D (4 × 4 × 4) 213 × 5 × 13 × 32 7 × 3 × 7 × 64
BatchNormalization

LeakyReLu
FC 7 × 3 × 7 × 64 200
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