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Abstract— The knowledge about the local environment is of
utmost importance for all robotics and autonomous driving
applications. Currently this information is often extracted from
high definition maps used in combination with a highly-accurate
localization restricting the operation to prior mapped areas and
making it vulnerable to changes in the environment. On the
other hand, occupancy grids, a well known representation of
the static environment, provide a common way to model the
environment with online sensor measurement data collected
during the operation. However, the approach is limited to
static occupancy probabilities without further classification or
differentiation.

This paper addresses the topic of estimating the local static
environment solely from online sensor measurements by using
an evidential semantic grid. Based on the Dempster-Shafer
theory and a novel frame of discernment, sensor measurements,
such as lane markings, point clouds from image-based semantic
segmentation, occupancy grids and observed traffic participants
are fused into an evidential grid estimating the semantic
meaning of each grid cell. Afterwards, an online road model
is generated by extraction lane geometries from the evidential
grid. Real sensor data from German highways and urban areas
is used to show the effectiveness of the proposed approach.

I. INTRODUCTION

Modeling and estimating the environment of a vehicle
is one of the major challenges for autonomous driving. A
common approach for building the environment model is
the utilization of offline high definition maps, which contain
all static information of the environment. Thus, it is only
necessary to estimate the dynamic parts of the environment
like information about other traffic participants and traffic
light states. However, using offline maps restricts the opera-
tional domain of autonomous vehicles to mapped areas and
makes them vulnerable to temporary or permanent changes
of the environment (e.g. construction sites). Additionally, the
information in the map can only be used in combination
with a highly accurate self-localization, which in complex
dynamic urban environments still proves to be challenging.
In contrast to offline high definition maps one can aim
for a local environment model built solely using sensor
measurements from the autonomous vehicle to overcome the
aforementioned issues. Therefore, in this paper, we propose
such an local environment model consisting of evidential
semantic grids to model the static part (Lane Surface, Lane
Markings, Lane Boundaries, Sidewalks) of the vehicle’s
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environment using measurement data from different sensors.
The sensors are mounted on an fully autonomous driving
prototype vehicle.

The remainder of the paper is structured as follows: In Sec.
II related work about grid mapping, semantic segmentation
and fusing different sensor modalities in grids is discussed.
In Sec. III the proposed evidential grid framework is pre-
sented. Generating the road model from the semantic grid is
described in Sec. IV and Sec. V shows some results of the
evidential grids as well as the generated road model. Sec. VI
provides concluding remarks and points out future work.

II. RELATED WORK

Although the overall problem of estimating an environ-
ment model based solely on sensor data measurements is
not very well studied yet, several contributions solving sub-
problems exist - mainly focusing on detection and clas-
sification of lane markings and road boundaries. In [1] a
stereo camera is used to extract 3D lane marking information
out of camera images for advanced driver assistant systems
(ADAS). In [2] a complete road model is estimated based
on lane markings detected by a camera system. But lane
markings are sometimes hard to detect (e.g. in construction
sites), or in the case of smaller urban streets not present at
all.

Regarding the more general problem of building up the
static environment model, there exists a broad range of solu-
tions based on classical static occupancy grids. The original
idea of storing occupancy probabilities in grid maps was first
presented in [3] and has been extended in several directions.
For example, [4] and [5] propose a method to distinguish
between static and dynamic parts of the environment on a
grid-cell level. A particle filter is used to estimate the state of
occupancy (occupied by a static or a dynamic obstacle). In
[6] the combination of a static occupancy grid and a particle
filter is used to cluster individual grid cells, resulting in static
and dynamic objects represented by oriented bounding boxes.
[7] describe an alternative approach of extending classical
static occupancy grids. Here, LiDAR measurements are fused
with a-priori knowledge from an offline map in a grid to
model the static environment. The differentiation between
static objects and other (dynamic) traffic participants is done
by analyzing the conflict between the past and the current
cell’s states (the cell’s states change from free to occupied
and vice versa). Other approaches based on conflict analysis
of cell states can be found in [8] and [9]. In [10] the concept
of a static occupancy grid is extended to include more
information about the type of occupancy. A grid is generated
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from radar measurements and then enhanced with a cell-wise
classification by a neural network trained to classify each
occupied cell as car, non-car or unlabeled.

In situations where lane markings are not available, at
least road boundaries can be detected by camera, Radar
or LiDAR measurements (e.g. [11]). Most of the existing
road boundary estimation approaches [11]–[13] rely on an
occupancy grid built from LiDAR or Radar measurements to
extract the road boundaries. Unfortunately, road boundaries
only delimit free areas from occupied areas without their
semantic meaning. In that case individual lanes cannot be
estimated robustly. For example, the free area in-between the
left and right road boundary can be considered as drivable.
However, if the area is divided into several lanes by lane
markings painted on the ground, the semantic meaning of
the drivable area is neither reflected by the road boundaries
nor by the underlying occupancy grid. Another important in-
formation missing in occupancy grids is the type of the road
boundary. For maneuver- and trajectory-planning the type of
the boundary should be taken into account. For example, if
the lane is delimited by a sidewalk, the desired behavior of
the autonomous vehicle should be more conservative than
when driving along a crash barrier where no pedestrians
can cross the lane. Other examples for the need of semantic
information is the classification of (free) parking space, bus-
and bicycle lanes. These areas are often part of the road and
drivable in the sense that there is no static obstacle. However,
they should not be used for driving by default, because of
their semantic meaning. Semantic meaning is usually diffi-
cult to extract from LiDAR or Radar measurements alone.
However, semantic segmentation methods with convolutional
neural networks (CNNs) are well suited for this task. The
publication of the Cityscapes dataset [14] for the first time
enabled training for a wide variety of classes relevant to
autonomous driving, such as road, sidewalk, parking, rail
track, vegetation and buildings (e.g. [15]–[18]). To be truly
useful for autonomous driving adding spatial information
for the segmentation is essential. It can typically measured
explicitly by ranging sensors such as Radar, LiDAR, stereo
cameras [19], [20] or inferred implicitly in neural network
architectures e.g. [21]. In [19] the spatial information is
fused with the information from semantic segmentation in
an occupancy grid. However, only the states free, occupied,
unknown and conflict are modeled, thus, missing a more
detailed modeling of the environment.

To summarize, existing approaches for estimating the
local static environment based on lane marking detection,
static/dynamic occupancy grid mapping or road boundary
estimation may work reasonably well in some highway
scenarios but are unable to correctly model the static en-
vironment in urban scenarios. This is mostly because the
information about drivable and non-drivable areas is insuffi-
cient. Regarding grid-based environment modeling existing
approaches focus on either road boundary estimation or
detecting/extracting dynamic objects (traffic participants).
However, semantic grid-based modeling of the static envi-
ronment is not well studied yet.

Compared to the existing state of the art, the contribution
of this paper is as follows: We propose a novel evidential grid
mapping approach to model the static part of the environ-
ment including its semantic meanings. Therefore, arbitrary
information about the road, individual lanes, unclassified
static obstacles, free space and pedestrian sidewalks from
various sensors can be fused in an evidential grid-based
representation. To the best of our knowledge this is the first
time building a consistent environment model representing
all relevant static parts of the vehicle’s surroundings with-
out using a-priori information. Because of the use of the
Dempster-Shafer theory, our approach is easily extensible
when a more detailed classification (like the distinction be-
tween different types of static obstacles) becomes available.
Furthermore, we describe a novel approach for projecting
semantic segmentation information into grids taking the
position and classification uncertainty into account.

III. EVIDENTIAL GRID FRAMEWORK

In contrast to classical occupancy grids used in e.g. [12],
[13] this work is based on the theory of belief functions
proposed by A. Dempster and reformulated later by G.
Shafer [22]–[24]. The Dempster-Shafer theory (DST) allows
to calculate the belief in a specific hypothesis taking all
available evidence from different sources into account. In
the DST the frame of discernment (FOD) is defined as a set
Ω, which elements represent all possible states/hypotheses θi
of the system under consideration:

Ω = {θ1, θ2, ..., θN} (1)

Note, that the elements θi must be mutually exclusive and
exhaustive, meaning that at least one hypothesis must be true.
A basic belief assignment function (BBA) is used to assign
belief masses not only to a single hypothesis θi but to any
subset of Ω. 2Ω is defined as the set of all subsets of Ω
including the empty set ∅:

2Ω := {U | U ⊆ Ω} (2)

The BBA itself is defined as

m : 2Ω → [0, 1] (3)

with the following properties

m(∅) = 0 (4)∑
A∈2Ω

m(A) = 1 (5)

The belief mass of an element A ∈ 2Ω, written as m(A), is
the proportion of all available evidence implying exactly A
is true, but no particular subset of A. In contrast to that, the
belief in A, Bel(A), is defined as the sum of the masses of
all subsets of A including A itself:

Bel(A) =
∑
B⊆A

m(B) (6)

It is the amount of evidence that either the given hypothesis-
set A or one of its subsets is true. Belief functions are com-
bined by combining their respective BBAs. This results in a
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new belief function, which includes the knowledge/evidences
of both belief functions. Let Bel1 and Bel2 two different
belief functions over the same frame of discernment, and
m1 and m2 their corresponding BBAs, then their BBAs can
be combined as follows:

m(A) =
1

1− k
∑

Ai∩Bj=A

m1(Ai)m2(Bj), A 6= ∅ (7)

m(∅) = 0 (8)

with
k =

∑
Ai∩Bj=∅

m1(Ai)m2(Bj) (9)

Eq. 7 is also called Dempster’s Rule of Combination. k is a
measure for the amount of conflict between m1 and m2.

In contrast to all previous work, e.g. [5], [9], [19], our
frame of discernment is defined as follows

Ω = {L,M,S,O} (10)

where L stands for Lane, M for Marking, S for Sidewalk
and O for Obstacle. We define a lane as the drivable area
between the left and right lane boundaries, which are not
necessarily the same as the road boundaries. Markings are
the white/yellow lane markings painted on the ground. The
hypothesis Sidewalk includes the boundary between the lane
and the sidewalk (curbstone) as well as the area of the
sidewalk itself. Obstacle represents any static obstacle which
is not passable without a collision.

From the power set 2Ω we only use a ”reduced” power
set

2Ω
r = {L,M,S,O, {S,O}, {M,L}, {L,M,S},

{M,S,O}, {L,O},∅,Ω} (11)

since in our case the masses for all other sets are not directly
measurable with our current sensor setup. However, if some
of these masses become measureable, e.g. due to an improved
sensor setup, more elements from 2Ω to 2Ω

r can easily be
added without changing the overall approach presented here
at all. Using the established Dempster-Shafer Theory and
the above defined reduced power set, measurement data from
different types of sensors can now be fused and accumulated
in an evidential semantic grid, which is described in the
following section.

A. Grid-based Sensor Fusion

A grid is a multidimensional lattice with equally-sized,
quadratic cells, each cell storing stochastic information m
inferred from sensor measurements [25]. For computational
tractability, it is moreover assumed that all cells are con-
ditionally independent of each other, allowing the parallel
computation of all cells. For the sake of readability we define
m(·) as a grid containing for each cell belief masses for all
elements in 2Ω

r .
All beliefs in the grid m can be computed recursively,

for details the reader is referred to [26]. mi(·) denotes the

belief masses in the cell with index i, which is omitted in
the following for the sake of better readability.

Measurements from detected lane markings, information
about dynamic objects (other traffic participants), a point
cloud generated from a stereo-vision system combined with
image-based semantic segmentation, and occupancy grids
are now used to infer belief masses for the hypotheses
contained in 2Ω

r . For each information source, a belief grid
is created containing - from this specific source - the data
from a single time step only. By analogy with the expression
LiDAR or radar ”scan”, which means the process of getting
measurement data from a single time step, we name these
belief grids ”ScanGrid” and define it as msource

t (·). The
following subsections describe the considerations necessary
for projecting the various types of measurements into their
corresponding grids.

1) Lane Markings:
Obviously, the white/yellow lane markings painted on

the ground directly provide semantic information about the
static environment. They subdivide the free, drivable area
into different subregions based on the type of the marking.
At least in Germany the lane markings are classified as
either lane dividers or road edge markings or lane edge
markings. The semantic meaning of lane dividers is to
separate individual lanes, road edge lines separate the road
(tarred area) from non-road regions like grass stripes. Lane
edge lines are mostly found on highways only since they
separate the most right lane from the emergency lane.

In addition to the ability to detect the physical appearance
of lane markings, state-of-the-art vision-based recognition
systems provide information about the type of the marking
(e.g. continuous line, dashed line) as well as the width
and its color. Especially in construction sites, the color of
the markings makes a significant difference regarding the
semantic meaning. If there are white and yellow markings
present, the yellow ones take precedence over the white ones.

In the present case lane markings are provided by an
automotive camera system and continuously delivers a set
of detected markings M

M = {M1, . . . ,Mn} (12)

Mi =
[
{x1, . . . ,xn}, k, w, c, σ, p

]T
(13)

where {x1, . . . ,xn} is a set of points (x, y) describing the
marking’s geometry in 2D and k the type of the marking.
It can be one of the following: (single or double) solid
line, (single or double) dashed line, sidewalk, road edge or
unknown. w is the width of the marking, c its color, σ a value
reflecting the measurement uncertainty and p the existence
probability.

To infer belief masses for the hypotheses in 2Ω
r for

each grid cell we use a BBA defined as a convolution of
a Gaussian distribution with a rectangular function. The
BBAs are the equivalent to an inverse sensor model p(m|zt)
given a new sensor measurement zt in Bayesian occupancy
probability approach (see e.g. [13]). The BBA is normalized
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to values in [0; 1] to fulfill Eq. (3). A grid cell containing
a belief mass of 0 for a specific hypothesis A means that
there is no evidence, that the cell’s state is A, whereas 1.0
indicates that the state is truly A.

Depending on the hypothesis and the type k of the marking
the BBA is used in different ways to derive the masses to be
written into the grid cells. In the case of a marking classified
as solid or dashed line the mass for the hypothesis Marking,
m(M) can be inferred. For this, the mean of the Gaussian
distribution is positioned in the middle of the marking at each
position xi orthogonal to the orientation of the marking. The
σ of the Gaussian is directly taken from Mi. The Gaussian
is convolved with a rectangular function to take the area of
the marking on the ground into account. The width of the
rectangular function equals the width w of the marking from
Mi. The same procedure is applied when the type of the
marking is sidewalk or road edge. In this case, the mass is
either allocated to {S} or {O} in case of a road edge. If
the type of the marking is unknown, the mass is given to
{M,S,O}. Another deduction can be drawn using the fact
that the frame of discernment is per definition complete -
meaning that the frame has to be defined in a way that at least
one hypothesis in Ω is true. Therefore, for all regions, where
no lane markings or sidewalks were detected, the belief of
m(¬(M ∨S)) = m({L,O}) can be inferred, as long as they
are covered by the field of view of the camera.

By taking the semantic meaning of the marking’s type
into account a more optimistic estimate can be used, too.
Since markings painted on the ground split the drivable area
into individual lanes, they implicitly define the existence of
lanes. Although a dashed line is a lane boundary, crossing
it is allowed. Thus, there must exist a lane on both sides of
the marking. In contrast, for solid lines, the existence of a
lane can only safely be assumed on the vehicle-facing side
of the marking. Eventually, to calculate the belief mass for
lane, m(L), for each markingMi the mean of the Gaussian
is shifted to the left/right by half of a typical lane width
depending on the type of the marking. The width of the
rectangular function corresponds to the lane width used for
the Gaussian.

Depending on the existence probability p ofMi, the more
conservative estimate (assigning belief mass to m({L,O}))
or the optimistic one (assigning it to m(L)) is chosen.
This way, the decision about the conservative or optimistic
estimate is automatically deduced from the reliability of the
measured lane marking leading to a more precise estimate
(m({L})) in case of reliably detected lane markings. Cur-
rently, this decision is made based on a predefined threshold
value for p.

Since the lane marking sensor measurements are a snap-
shot of a single time step t, we denote the grid containing
the inferred masses as mLM

t (·). The upper index stands for
the source of the information (lane marking).

2) Dynamic Objects:
The paths of other road users are a valuable source of

Fig. 1. Situation with a single marking measured by the lane marking
detection system. A dashed marking on the left of the ego vehicle was
detected. On top, the BBAs for Marking, m(M) (orange) and for Lane,
m(L) (blue), are shown. Below, the resulting grid is displayed, where the
color denotes the hypothesis ({M}: red; {L}: green). The belief mass is
encoded in the alpha channel of the grid (transparency).

information for environment model estimation, too. Under
the assumption that most vehicles drive on valid lanes,
evidence for lanes and lane boundaries can be derived by
means of appropriate BBAs.

Here, dynamic objects are extracted from evidential dy-
namic occupancy grids and tracked over time. The approach
is described in [27] and provides a set of detected dynamic
objects O

O = {O1, . . . ,On} (14)

Oi =
[
x, y, φ, l, w, k

]T
(15)

where each object is modeled as a rectangular, oriented
bounding box with length l and width w. (x, y) is the 2D
position of the box and φ the orientation. k is the type of
the dynamic object.

A convolution of a Gaussian distribution with a rectangular
function is applied in the same manner as in the case of lane
markings to infer the belief masses for the grid cells. The
width of the object’s bounding box, w, is used as width for
the rectangular function. In case of the belief mass for a
lane, m(L), for each object Oi the mean of the Gaussian
is placed at the object’s box position (x, y), orthogonal to
the orientation φ of the box and the resulting masses are
written into the underlying grid cells. Following the above
mentioned assumption that most vehicles drive on valid lanes
it is possible to infer lane boundaries on the left and right
side of each object. The corresponding mass is assigned to
m({M,S,O}) since there is no evidence what boundary it
is exactly. The resulting grid containing the belief masses
is denoted by mObj

t (·) from now on, since it only holds
measurement data from a single time step t.

3) Semantic Segmentation:
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Because of the huge progress made in recent years in
the field of (fully) convolutional neural networks, semantic
segmentation is nowadays widely used for environment per-
ception and scene understanding in robotics and autonomous
driving applications. Semantic segmentation aims to annotate
every pixel in a camera image with a certain class label.
For the approach presented in this paper, we use a re-
implementation of PSPNet [17].

By using a stereo-vision system, combining semantic
segmentation and disparity calculation (e.g. via Semi-Global
Matching [28]) a semantic point cloud containing semantic
and spatial information can be generated. Our semantic
segmentation system continuously delivers a point cloud P
with points Pi

P = {P1, . . . ,Pn} (16)

Pi =
[
x, y, z, k, σk, σz

]T
(17)

where (x, y, z) is the 3D position of the point, k the
class label, σk the class confidence and σz the depth confi-
dence, which is directly obtained from the stereo disparity
calculation. We merge classes like building, vegetation, wall
and guard rail and treat them as static obstacles, because
they have the same semantic meaning with respect to the
drivability. In Fig. 2 such a semantic point cloud overlaid on
top of a high definition offline map (ground truth) is shown.

Fig. 2. A real-world example of the semantic point cloud overlaid over
the HD offline map. The color of each pixel indicates its class affiliation.
The color coding of the HD map is adjusted to match the color coding of
the semantic segmentation

To infer belief masses from the semantic point cloud and
project them into our grid representation, the classes are
mapped to their corresponding hypotheses groups from 2Ω

r :

{M,L} ← road
{S} ← sidewalk
{O} ← wall, fence, building, vegetation, ...

Each point Pi resembles a pixel P in the segmented
image. Knowing the pixel location, the camera intrinsics and
extrinsics each pixel can be projected to a projected pixel
area Apx on the ground plane. A simplified picture of the
situation is depicted in Fig. 3.

with

θ1

Apx

∆θ1

dpx,lon

dpx,lat

dpx,lon

h

z

θ2∆θ2

Fig. 3. Projection of a pixel P (red dot) onto the ground plane. Top view
(top) and side view (bottom).

θ1: lateral pixel location, directly calculated from
pixel coordinate and focal length. Because the
location of P is already available, it can be
calculated using atan(z/x).

θ2: vertical ground projection angle.
z: horizontal distance of P to the camera.
h: height of the camera above ground plane.

∆θ1,2: angular pixel size, causing the projected area
Apx with dimensions dpx,lon and dpx,lat.

Hence, in the ground plane, we approximate the projected
pixel area by:

Apx ≈ dpx,lon · dpx,lat (18)

dpx,lon =
z2

h · fy
(19)

dpx,lat =
z

fx
(20)

where z is the distance (z-component of Pi), h the height
of the camera above ground plane, fx, fy the focal lengths
in horizontal and vertical direction respectively.

Spatial Uncertainty:
In this context, we define spatial uncertainty (or location
probability) as the uncertainty with respect to the projected
location of the pixel P to the ground plane. The better part
of the spatial uncertainty is caused by the uncertainty of the
depth measurement (z). Here, it is modeled as a bi-variate
Gaussian distribution around the projected point P on the
ground plane. The bi-variate Gaussian distribution is defined
with standard deviations in two directions: The major axis
tangential to the pixel-ray (depth-direction), the minor axis
orthogonal to that in the ground plane (see Fig. 4).

Then, the location probability of point P at each location
in the ground plane is calculated as:

pP (u, v) =
1

2π · σu(P )σv(P )
·exp

(
−1

2

(
u2

σ2
u(P )

+
v2

σ2
v(P )

))
(21)
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~t

~n

Fig. 4. Spatial uncertainty modeled as bi-variate Gaussian distribution
(blue ellipse) with major axis (~t) along the pixel-ray for a Point P (red dot).
~n points into the normal direction.

with u, v the distance to the projected point P along the
tangential and normal axis, respectively, and σu(P ), σv(P )
the standard deviation in those directions.

However, the probability density pP does not denote
the probability density of the projected pixel area to be
located here. If there were no spatial uncertainty, then the
probability density of the projected pixel area would be an
uniform distribution with magnitude 1 exactly covering the
projected pixel area. The final probability density of the pixel
projection with spatial uncertainty is a convolution of both
distributions.

The convolution is approximated by

ppixel,P (u, v) =
1

2π · σuσv
· exp

(
− 1

2

(
u2

σ2
u

+
v2

σ2
v

))
(22)

σu = σu(P ) + dpx,lon (23)
σv = σv(P ) + dpx,lat (24)

Depending on the specific class label, points from the point
cloud will add belief mass to one or more of the following
hypotheses: {M,L}, {S} and {O}. The calculation of the
belief mass is the same for each hypothesis, but each time,
only those points in the point cloud that have the correct
class labels are considered for the calculations.

Estimated class confidence at grid cell:
Each point Pi in the point cloud has an associated class
confidence σk, so the total class confidence of a grid cell is
a fusion of the class confidences of nearby projected pixels.
Therefore, a class confidence for each grid cell is calculated
and updated by using a weighted average with the location
probability as weight:

pclass(q)i =

∑
P∈P q σk · ppixel,P (i)∑

P∈P q ppixel,P (i)
(25)

with q the hypothesis group, i the grid cell index, σk the
class confidence of point Pi and P q all nearby projected
pixels for which the corresponding point Pi has a class label
of q.

Estimated location probability at grid cell:
Each point in the point cloud with the class belonging to the
correct group will increase the probability of that cell really
belonging to one of the projected pixels in the image. The
fusion of probabilities due to multiple points at each grid cell
is a normal product of inverse probabilities (it is the inverse

if the probability that the grid cell does not belong to any
of the projected areas):

ppixel(q)i = 1−ΠP∈P q (1− ppixel,P (i)) (26)

Final estimated mass at grid cell:
The mass for hypothesis group q at each grid cell i is simply
the multiplication of the class confidence and the projected
pixel probability

m(q)i = pclass(q)i · ppixel(q)i (27)

As the semantic segmentation is done for every image frame
independently, the resulting grid reflects a single time step
only. The grids are therefore denoted as mSS

t (·).

4) Occupancy Grids:
For the creation of the occupancy grids the approach

described in [5] is used. The grids are formulated in the
Dempster-Shafer Theory leading to a seamless integration
into our semantic grids. The output of the the occupancy
grid mapping from [5] consists of a grid mOG

t (·) containing
per cell the evidences for the two hypotheses static and free.

To infer belief masses for the semantic grid the two
evidences are mapped to their corresponding hypotheses
groups from 2Ω

r :

{L,M,S} ← free

{S,O} ← static

B. Grid Fusion

In order to obtain belief masses containing the data
from all sources (lane markings, dynamic objects, semantic
segmentation, occupancy grids) the grids described in the
previous section have to be fused. Additionally, the grids
have to be accumulated over time to include all information
from the past up to the current time t. Here, the grid-
based modeling shows its full potential, since the grids
already provide a spatial and temporal connection of the
data implicitly. Formally, the fusion of the ScanGrids can
be described as

mall
t (·) = mLM

t (·)⊕S mObj
t (·)⊕S mSS

t (·)⊕S mOG
t (·) (28)

This way, the fused ScanGrid mall
t (·) contains the infor-

mation available from all sensors at a single time step t.
For the temporal fusion, the accumulated grid from the

previous time step is fused with the current grid mall
t (·):

mall
1:t(·) = mall

1:t−1(·)⊕T mall
t (·) (29)

For the fusion operator ⊕S Eq. 7 is used and the cumulative
fusion rule from [29] for ⊕T. The resulting grid mall

1:t(·) is
denoted as ”DSTMap” in the following. Fig. 5 shows the
different processing steps for a road with two parallel lanes.
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(a)

(b)

(c)

(d)

Fig. 5. (a) Camera image of the situation. (b) Visualization of the sensor
data: Solid (green) and dashed lane markings, the detected dynamic object
in front of the ego (green box) and the semantic point cloud. (c) Fused
ScanGrid (mall

t (·)). The color indicates the hypothesis (green: {L}, red:
{M}, dark blue: {O}, light blue: {L,M, S}, purple: {M,L}). The amount
of belief (belief mass) is encoded in the transparency value of the pixel. (d)
Resulting DSTMap after temporal fusion (mall

1:t(·)).

IV. ROAD MODEL GENERATION

For fulfilling the autonomous driving task a consistent
road model including the geometry of lane boundaries and
lane center lines is required. In this paper, potential lanes
are extracted by using the previously described evidential
semantic grid as a cost map for a path planning based
approach searching for drivable paths and potential lane
boundary points. Since the goal state is unknown a predefined
fixed path length is used as goal predicate and a combination
of A* and RRT (see [30]) is used for the path planning

Iterative Path Planning: As the fixed path planning length
is used as goal predicate, resulting goal paths will only be
found if the grid exploration extends beyond this distance.
Beyond the explored area in the grid, there is no information
about the presence of a lane and therefore it is not possible
to assume any path planned in such regions are drivable,
and in effect, a goal pose cannot be determined. For this
reason, the path planning length should not be set too high.
To still enable paths to be found as far as the evidence for
the hypothesis Lane allows, path planning is performed in
an iterative manner, by clustering the goal paths and using

the end points of the clustered paths as new starting points
for the next path planner iteration. Compared to a direct
path planning approach with the same total length, this will
also improve the computational efficiency, as the iterative
path planner only needs to expand on the end nodes of the
clustered paths of the previous iteration. In Figure 6b an
example of the iterative path planner is depicted.

Road Model Extraction: Due to the non-deterministic
nature of RRT and the limited information in the evidential
grid, the clustered paths from the path planner should not be
directly used as lane center hypothesis. However, accurate
estimates of the right and left boundary points along the
clustered paths can be obtained, by finding all points in the
evidential grid closest to the clustered path that have a high
belief for the hypothesis group {M,S,O}, see e.g. Fig. 6b.
Using least squares estimation with smoothness penalties,
smooth splines are fitted to the boundary points. Moreover,
smooth estimations of lane center line and lane width are
determined in Fig. 6c. Additional logic is used to correctly
section lanes at branching and merging points and to connect
neighboring lanes by association of shared boundaries.

V. RESULTS

The approach was tested and evaluated with real measure-
ment data from urban scenarios in Munich’s inner city and
on highway-like roads. The autonomous driving test vehicle
is equipped with five LiDARs, a lane marking recognition
system and a stereo camera. The implementation runs -
except the re-implemented PSPNet for image-based semantic
segmentation - in real-time on an NVIDIA GTX 1080 GPU.

Fig. 6 shows the results for a challenging situation in an
urban environment with sidewalks, stationary objects and
parked cars. Next to the ego vehicle on the right side the
lane is limited by a car parked on the lane. Ahead, the lane
is limited by its ”real” boundary (sidewalk) resulting in a
non-constant lane width.

VI. CONCLUSION AND FUTURE WORK

We presented an evidential framework to generate a con-
sistent road model from online sensor data alone. It consists
of a grid-based sensor fusion approach, which is solely based
on online sensor data and thus completely independent of
any offline map or localization. The fusion approach uses a
refined frame of discernment containing all relevant elements
of the environment and allows to elegantly fuse evidence
and beliefs for subsets of hypotheses in a consistent and
coherent manner. In contrast to competing state of the art
approaches, our approach has been shown to also work well
for more complicated urban scenarios. Additionally, it is
easily extensible towards new sensor types.

In future the image-based semantic segmentation will be
optimized in order to let the complete system run in real-
time. Additionally, an extensive evaluation of all hypotheses
on longer tracks in urban scenarios is planned.

The resulting road model is already being used for map
validation and online motion planning.
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Fig. 6. Traffic situation in an urban environment. (a) Camera image of the
situation. In (b) the DSTMap (green: {L}, red: {M}, dark blue: {O}, light
blue: {L,M, S} and the result of the path planning are visualized. For each
lane the goal- (blue) and cluster paths (red) discovered by the path planner
are shown. The planner was parameterized to plan two iterations of paths
with each 15m length. Extracted points on the left/right lane boundary are
depicted as turquoise/yellow dots. (c) Generated road model including the
center line (white dots), left/right lane boundaries per lane (white lines) and
the lane surface (grey area). The ego lane is limited by a car parked next
to the ego car. The boundaries of the extracted lane are correctly identified
leading to a more narrow lane at the beginning and a wider lane ahead with
a smooth continuous left lane boundary.
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