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Abstract

Low-rank matrix recovery from structured measurements has been a topic of
intense study in the last decade and many important problems like matrix com-
pletion and blind deconvolution have been formulated in this framework. An
important benchmark method to solve these problems is to minimize the nuclear
norm, a convex proxy for the rank. A common approach to establish recovery
guarantees for this convex program relies on the construction of a so-called ap-
proximate dual certificate. However, this approach provides only limited insight
into various respects. Most prominently, the noise bounds exhibit seemingly
suboptimal dimension factors. In this paper we take a novel, more geometric
viewpoint to analyze both the matrix completion and the blind deconvolution
scenario. We find that for both these applications the dimension factors in the
noise bounds are not an artifact of the proof, but the problems are intrinsically
badly conditioned. We show, however, that bad conditioning only arises for very
small noise levels: Under mild assumptions that include many realistic noise
levels we derive near-optimal error estimates for blind deconvolution under ad-
versarial noise. © 2020 The Authors. Communications on Pure and Applied
Mathematics published by Wiley Periodicals LLC

1 Introduction
A number of recent works have explored the observation that various ill-posed

inverse problems in signal processing, imaging, and machine learning can be natu-
rally formulated as the task of recovering a low-rank matrix X0 2 Cn1�n2 from an
underdetermined system of structured linear measurements

y D A .X0/C e 2 Cm;

where A W Cn1�n2 ! C
m is a linear map and e 2 C

m, kek � � , represents
additive noise. Such problems include, for example, matrix completion [8], phase
retrieval [9], blind deconvolution [1], robust PCA [6], and demixing [48]. In this
paper, we aim to analyze the worst-case scenario; that is, we do not make any as-
sumptions on the noise except for the bound on its Euclidean norm (this scenario
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is sometimes referred to as adversarial noise, as it allows for noise specifically de-
signed to be most harmful in a given situation). A natural first approach to recover
X0 that remains an important benchmark is to solve the semidefinite program

minimize kXk�
subject to ky �A .X/k � �;

where k � k� denotes the nuclear norm, i.e., the sum of the singular values. Recov-
ery guarantees have been shown under the assumption that the measurement op-
erator A possesses a certain degree of randomness. To establish such guarantees
various proof strategies have been proposed, including approaches via the restricted
isometry property [46, 54], descent cone analysis [13], and so-called approximate
dual certificates [25, 26]. While the latter approach remains state of the art for
many structured problems including the highly relevant problems of randomized
blind deconvolution and matrix completion, it seemingly has some disadvantages.
Most prominently, the resulting recovery guarantees take the form

(1.1)
 yX �X0


F
.
p
n1�;

where yX denotes a minimizer of the semidefinite program above and k � kF de-
notes the Frobenius norm, whereas under comparable normalization, the first two
approaches, when applicable, give rise to superior recovery guarantees of the form yX �X0


F
. �:

Before this paper it was open whether the additional dimension scaling factor in
(1.1) is a proof artifact. Similarly, for randomized blind deconvolution one of the
coherence terms appearing in the result was believed to arise only from the proof
technique (cf. [45, remark 2]).

Another drawback of proceeding via an approximate dual certificate is that it
gives only limited insight into geometric properties of the problems such as the
null-space property [17], which is also an important ingredient for the study of
some more efficient nonconvex algorithms [21, 41].

Approaches via descent cone analysis [13], in contrast, provide much more geo-
metric insight. The underlying idea of such approaches is to study the minimum
conic singular value defined by

�min.A ;K / WD inf
Z2K nf0g

kA .Z/k
kZkF

for K the descent cone of the underlying atomic norm—the nuclear norm in case
of low-rank matrix recovery. For a more detailed review of this approach including
a precise definition of the descent cone we refer to Section 2.3 below. Through the
study of the minimum conic singular value many superior results were obtained
for low-rank recovery problems, most importantly in the context of phase retrieval
[39, 40]. Furthermore, minimum conic singular values can also help to understand
certain nonlinear measurement models [51].
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For all these reasons, it would be desirable to apply this approach also for matrix
completion and blind deconvolution. A challenge that one faces, however, is that
for both problems one cannot hope to recover all low-rank matrices; rather, only
matrices that satisfy certain coherence constraints are admissible (cf. the discus-
sion in [59, sec. 5.4]). In this article we address this challenge, providing the first
geometric analysis of these problems. We find that the dimensional factors appear-
ing in the error bounds are the true scaling of the minimum conic singular value
and hence intrinsically relate to the underlying geometry. Nevertheless for blind
deconvolution, near-optimal recovery is possible if the noise level is not too small.

1.1 Organization of the Paper and Our Contribution
In Section 2 we will review blind deconvolution, matrix completion, as well as

some techniques related to descent cone analysis. In Section 3 we will present
the main results of this paper. Theorems 3.1 and 3.5 establish that for both blind
deconvolution and matrix completion, nuclear norm minimization is intrinsically
ill-conditioned. In contrast, Theorem 3.7 provides a near-optimal error bound for
blind deconvolution when the noise level is not too small, implying that the condi-
tioning problems only take effect for very small noise levels. The upper bounds for
the minimum conic singular value that are the main ingredients of Theorems 3.1
and 3.5 are derived in Section 4. In Section 5 we prove the stability results for blind
deconvolution.

We believe that not only our results, but also the proof techniques and geometric
insights in this manuscript will be of general interest and help to obtain further
understanding of low-rank matrix recovery models, in particular under coherence
constraints. We discuss interesting directions for future research in Section 6.

2 Background and Related Work
2.1 Blind Deconvolution

Blind deconvolution problems arise in a number of different areas in science
and engineering such as astronomy, imaging, and communications. The goal is to
recover both an unknown signal and an unknown kernel from their convolution. In
this paper we work with the circular convolution, which is defined by

w � x WD
0
@ LX
jD1

wjxk�j

1
A
L

kD1

;

where the index difference k � j is considered modulo L. Without further as-
sumptions on w and x this bilinear map is far from injective. Consequently, it is
crucial to impose structural constraints on both w and x. Arguably, the simplest
such model is given by linear constraints; that is, both w and x are constrained to
known subspaces. Such a model is reasonable in many applications. In wireless
communication, for example, it makes sense to assume that the channel behaviour
is dominated by the most direct paths and for the signal x a subspace model can
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be enforced by embedding the message via a suitable coding map into a higher-
dimensional space before transmission.

The first rigorous recovery guarantees for such a model were derived by Ahmed,
Recht, and Romberg [1]. More precisely, they assume that w D Bh, where
B 2 C

L�K is a fixed, deterministic matrix such that B�B D IdK (i.e., B is
an isometry) and they model x D Cm0, where Sm0 denotes the complex-conjugate
of m0. Here, the matrix C 2 C

L�K is a random matrix, whose entries are in-
dependent and identically distributed with circular symmetric normal distribution
C N .0; 1=

p
L/. In this paper we also adopt this model.

Using the well-known fact that the Fourier transform diagonalizes the circular
convolution one can rewrite

w � x D
p
LF � diag.Fw/F x;

where F 2 CL�L denotes the normalized, unitary discrete Fourier matrix, and1w � x WD F .w � x/ D
p
L diag.FBh0/FC xm0:

Denoting by b` the `th row of the matrix FB , and by c` the `th row of the matrixp
LFC , one observes that

.1w � x/` D b�` h0m
�
0c` D Tr

�
h0m

�
0c`b

�
`

� D 

b`c

�
` ; h0m

�
0

�
F
:

Furthermore, because of the rotation invariance of the circular symmetric normal
distribution all the entries of the vectors fc`gL`D1 are (jointly) independent and
identically distributed with distribution C N .0; 1/. Noting that the expression
hh0m�

0; b`c
�
`
iF is linear in h0m

�
0 , Ahmed, Recht, and Romberg [1] defined the

operator A W CK�N ! C
L by

(2.1) .A .X//.`/ WD 

b`c

�
` ; X

�
F

obtaining the measurement model

y D1w � x C e D A .X0/C e;

where e 2 CL is additive noise and X0 D h0m
�
0 . The goal is then to determine h0

and m0 from y 2 CL up to the inherent scaling ambiguity, or, equivalently, to find
the rank-one matrix X0 D h0m

�
0 .

For e D 0, among all solutions of the equation y D A .X0/, the matrix X0 is
the one with the smallest rank. For this reason, Ahmed, Recht, and Romberg [1]
suggested minimizing a natural proxy for the rank, the nuclear norm k � k�, defined
as the sum of the singular values of a matrix:

(2.2)
minimize kXk�
subject to kA .X/ � yk � �:

Here � > 0 is an a priori bound for the noise level; that is, we assume that kek � � .
For this semidefinite program, they establish the following recovery guarantee.
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THEOREM 2.1 ([1]). Consider measurements of the form y D A .h0m
�
0/C e for

h0 2 CK , m0 2 CN , e 2 CL, and A as defined in (2.1). Assume that kek � �

and
L= log3L & K�2max CN max

�
�2h0 I z�

2
h0

	
:

Then with probability exceeding 1 � O.L�1/ every minimizer yX of the SDP (2.2)
satisfies

(2.3)
 yX � h0m

�
0


F
.
p
K CN�:

Here �2max and �2
h0

are coherence parameters, which are defined via

�2max WD
L

K
max
`2�L�

kb`k2 and �2h0 WD
L

kh0k2
max
`2�L�

jhb`; h0ij2:

The third coherence factor z�h0 is a technical term corresponding to a partition that
is constructed as a part of the proof of Theorem 2.1, which is based on the Golfing
scheme [25].

To put the impact of the coherence factors into perspective, observe that if
all vectors b` have the same `2-norm, one obtains that �max D 1; this will be
the case, for example, when B is a low-frequency Fourier matrix, as it appears
for applications in wireless communication. The second coherence factor always
satisfies 1 � �2

h0
� K�2max. If �h0 is smaller, this indicates that the mass

is distributed fairly evenly among jhb`; h0ij. For example, if �h0 D 1, then
jhb`; h0ij D .1=

p
L/=kh.k for )/all ` 2 �L�. Numerical simulations in [1] con-

firm that many h0 corresponding to large �h0 show worse performance, indicating
that this factor may be necessary.

The last coherence factor z�h0 , in contrast, will no longer appear in our result
below, which is why we refrain from detailed discussion. We refer the interested
reader to [45, remark 2.1] and [30, sec. 2.3] for details.

For generic h0 the parameters �h0 and z�h0 are reasonably small. For example,
if h0 is chosen from the uniform distribution on the sphere, one can show that with
high probability �h0 D O.

p
logL/.

For the noiseless case, i.e., � D 0, Theorem 2.1 yields exact recovery, and the
required sample complexity L= log3L & K CN is optimal up to logarithmic fac-
tors, as the number of degrees of freedom is K C N � 1 (see [32] for an exact
identifiability analysis based on algebraic geometry.) However, if there is noise,
the bound for the reconstruction error scales with

p
K CN , in contrast to other

measurement scenarios such as low-rank matrix recovery from Gaussian measure-
ments (see, e.g., [13]).

Let us comment on some related work. The foundational paper [1] has triggered
a number of followup works on the problem of randomized blind deconvolution. A
first line of works extended the result to recovering signals from their superpositionPr

iD1wi � xi , a problem often referred to as blind demixing [30, 45]. Another
line of works investigated nonconvex (gradient-descent based) algorithms [28, 44,
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47], which have the advantage that they are computationally less expensive, as
they operate in the natural parameter space. It has been shown that they require a
near-optimal number of measurements for recovery. For such an algorithm, [44]
derived near-optimal noise bounds for a Gaussian noise model. However, these
guarantees are not comparable to the ones in this paper, as we focus on the scenario
of adversarial noise instead of random noise.

2.2 Matrix Completion
The matrix completion problem of reconstructing a matrix X0 2 R

n1�n2 (we
assume that w.l.o.g. n1 � n2) of low rank from only a part of its entries arises in
many different applications such as in collaborative filtering [55] and multiclass
learning [3]. For this reason one could observe a flurry of work on this problem
in the last decade, and we will only be able to give a very selective overview of
this topic. The precise sampling model that we consider is that m entries of X0

are sampled uniformly at random with replacement. Denoting by ei the standard
coordinate vectors in Rn1 and Rn2 , respectively, the corresponding measurement
operator A W Rn1�n2 ! R

m can be written as

(2.4) A .X/.i/ WD
r
n1n2

m
hX; eai e�bi iF ;

where .ai ; bi / 2 �n1� � �n2� is chosen uniformly at random for each i 2 �m� (and
independently from all other measurements). The scaling factor

p
n1n2=m in the

definition of the measurement operator A is chosen to ensure that E�kA .X/k2� D
kXk2F . (Some other papers on matrix completion choose a different scaling. We
have chosen this normalization because in this way the results for the matrix com-
pletion problem can be better compared to those for the blind deconvolution sce-
nario.) Alternative sampling models analyzed in other works include sampling a
subset � uniformly from �n1� � �n2� (i.e., without replacement, see, e.g., [10]), or
sampling using random selectors.

Again we aim to recover X0 from noisy observations y D A .X0/C e, with a
noise vector e 2 Rm that satisfies kek � � via the SDP

(2.5)
minimize kXk�
subject to kA .X/ � yk � �:

For matrix completion, this approach was first studied in [8].
It is well-known that similarly to the blind deconvolution problem, some in-

coherence assumptions are necessary to allow for successful recovery. Indeed,
suppose that X0 D e1e

�
1 . Then, if m � n1n2 with high probability, it holds that

A .X0/ D 0, and one cannot hope to recover X0. To avoid such special cases, one
needs to ensure that the mass of the Frobenius norm of X0 is spread out over all
entries rather evenly. If U�V T is the singular value decomposition of the rank-
r matrix X0 (with � 2 R

r�r ), then this property is captured by the following
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coherence parameters [25]:

�.U / WD
r
n1

r
max
i2�n1�

kU �eik; �.V / WD
r
n2

r
max
i2�n2�

kV �eik:

For these coherence parameters, a series of works [8, 10, 14, 19, 25, 53] lead to the
following recovery guarantee for the noiseless scenario.

THEOREM 2.2 ([19]). Consider measurements of the form y D A .X0/, where
X0 2 Rn1�n2 is a rank-r matrix with singular value decomposition X0 D U�V T

and A is given by (2.4). Assume that

m � C max
�
�2.U /I�2.V /	rn1 log.n1/ log�r.�.U /C �.V //�:

Then with probability at least 1 � O.n�11 / the matrix X0 is the unique minimizer
of the SDP (2.5) with � D 0.

As for blind deconvolution, this result has been shown using an approximate
dual certificate. In [7] this result was generalized to the case of adversarial noise,
showing that with high probability the minimizer yX of (2.5) satisfies

(2.6)
 yX �X0


F
. �

p
n2;

whenever m & n1 polylogn1. As in the blind deconvolution framework, this error
bound differs from the case of full Gaussian measurements as discussed, for exam-
ple, in [13], and also from oracle estimates [6, sec. III.B] by a dimensional scaling
factor, which will be addressed in this paper.

Also random noise models for matrix completion have been studied in a number
of works. In particular, we would like to mention [36, 50], which derive near-
optimal rates (both in sample size and estimation error) for matrix completion un-
der subexponential noise with a slightly different nuclear-norm penalized estimator
than the one we consider as long as the noise level is not too small. Similar bounds
have also been obtained in [35] using an estimator, which is closer to the one in
this work.

Apart from convex methods also many nonconvex algorithms have been pro-
posed and analysed, for example, a number of variants of gradient descent (see
[21, 23, 27, 29, 33, 41, 47, 58]). Arguably the strongest result for matrix completion
under adversarial noise has been shown in [33,34]. These works propose a noncon-
vex algorithm based on Riemannian optimization and show that if the number of
measurements is larger than r2n1 polylog.n1/ the true matrix can be reconstructed
up to an estimation error superior to the one in [7]. Namely, for � denoting the
condition number of the matrix X0, they show that the output yX of their algorithm
satisfies (in our notation)

(2.7)
 yX �X0

 . �2
p
rmkek1;

provided the noise level is below a certain, small threshold that scales with the
smallest singular value of X0. For error vectors e that are spread out evenly and
matrices that are well conditioned, one has that

p
mkek1 � kek2, so this bound
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is superior to (2.6) in the sense that the scaling factors that appear only scale with
the rank r and not the dimension. It should be noted though that in contrast to
nuclear norm minimization, the underlying algorithm requires precise knowledge
of the true rank of the matrix to be recovered.

Just before completing this manuscript, Chen, Chi, Fan, Ma, and Yan [16]
bridged convex and nonconvex approaches, using nonconvex methods to analyze
a convex recovery scheme. Their results provide near optimal recovery guarantees
for the matrix completion problem via nuclear norm minimization under a sub-
Gaussian random noise model for a much larger range of admissible noise levels
than the aforementioned works. More precisely, the proof is based on the obser-
vation that in their scenario the minimizer of the convex problem is very close to
an approximate critical point of a nonconvex gradient based method. This allows
them to transfer existing stability results [47] for nonconvex optimization to the
convex problem. However, the required sample complexity scales suboptimally
in the rank r of the matrix and similarly to (2.7), the error bound depends on the
condition number �.

2.3 Descent Cone Analysis
In recent years a number of works have studied low-rank matrix recovery and

compressed sensing via a descent cone analysis. This approach has been pioneered
for `1-norm minimization in [57] and for more general (atomic) norms in [13].
Here the descent cone of a norm at a point X0 2 CK�N is the set of all possible
directions Z 2 CK�N such that the norm does not increase. For the nuclear norm,
this leads to the following definition:

DEFINITION 2.3. For any matrix X0 2 CK�N define its descent cone K�.X0/ by

K�.X0/ WD
�
Z 2 CK�N W kX0 C "Zk� � kX0k� for some " > 0

	
:

To understand its relevance for recovery guarantees assume for a moment that
we are in the noiseless scenario, i.e., � D 0 and e D 0. Then the matrix X0 2
C
K�N is the unique minimizer the semidefinite program (2.2), if and only if the

null space of A does not intersect the descent cone K�.X0/. In the case of noise,
the constraint ky�A .X0/k � � in the SDPs (2.2) and (2.5) defines a region around
X0C kerA , i.e., the affine subspace consistent with the observed measurements in
the noiseless scenario. The intersection of this region with the set of all signals that
have a smaller nuclear norm than the ground truth X0 is the set of feasible solutions
that are preferred to X0. The following quantity for a matrix X0, which is often
referred to as minimum conic singular value, quantifies the size of this intersection

�min.A ;K�.X0// WD inf
Z2K�.X0/nf0g

kA .Z/k
kZkF

:

If �min.A ;K�.X0// becomes larger, this intersection becomes smaller, which
translates into stronger recovery guarantees. The following theorem confirms this
intuition.
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THEOREM 2.4 ([13, prop. 2.2]). Let A W Cn1�n2 ! C
m be a linear operator and

assume that y D A .X0/ C e with kek � � . Then any minimizer yX of the SDP
(2.2) satisfies  yX �X0


F
� 2�

�min.A ;K�.X0//
:

When measurement matrices of the operator A are full Gaussian matrices (in
contrast to rank-1 measurements as in this paper) and A is normalized such that
E�A �A � D Id, for an arbitrary low-rank matrix X0 one has with high probability
that �min.A ;K�.X0// � 1. Consequently, Theorem 2.4 yields an optimal estima-
tion error even for adversarial noise. As we will show this is no longer the case for
blind deconvolution and matrix completion.

The geometric analysis of linear inverse problems via the descent cone and the
minimum conic singular value has led to many new results and insights in com-
pressed sensing and low-rank matrix recovery. For convex programs the phase tran-
sition of the success rate could be precisely predicted [2]. As the proofs are specific
to full Gaussian measuements, they do not apply for a number of important struc-
tured and heavy-tailed measurement scenarios. Stronger results [20, 31, 39, 40, 42]
were subsequently obtained using Mendelson’s small ball method [37, 49], a pow-
erful tool for bounding a nonnegative empirical process from below, now often
refereed to as Mendelson’s small ball method.

2.4 Notation
For n 2 N we will write �n� to denote the set f1; : : : ; ng. For any set A we will

denote its cardinality by jAj. For a complex number ´ we will denote its real part
by Re.´/ and its imaginary part by Im.´/. By log.�/ we will denote the logarithm
to the base e. By EX we will denote the expectation of a random variable X and
by P .A/ we denote the probability of an event A. If v 2 C

n we will denote its
`2-norm by kvk and its Hermitian transpose by v�. For u; v 2 Cn the (Euclidean)
inner product is defined by hu; vi WD u�v. Furthermore, for Z 2 C

n1�n2 its
spectral norm is given by kZk, i.e., the dual norm of the nuclear norm kZk�.
Moreover, the Frobenius norm of Z is defined by kZkF with corresponding inner
product hZ;W iF WD Tr.Z�W /, where W 2 C

n1�n2 . When we study matrix
completion, we will work with matrices Z 2 Rn1�n2 and the previous quantities
will be defined analogously. Moreover, in that scenario we will use the notation
kZk`1 WD max.i;j /2�n1���n2� jZi;j j; where fZi;j gn1;n2i;jD1.

3 Our Results
3.1 Instability of Low-Rank Matrix Recovery
Blind Deconvolution

Our first main result states that randomized blind deconvolution can be unstable
under adversarial noise.
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THEOREM 3.1. Let K;N 2 N n f1g. Assume that

C1K � L � KN

36
:

Then there exists a matrix B 2 CL�K satisfying B�B D IdK and with FB having
rows of equal norm, i.e., �2max D 1, such that for all h0 2 C

K n f0g and m0 2
C
N n f0g the following holds:
With probability at least

1 � O

�
exp

�
� K

C2�
2
h0

��
; where �2h0 D

L

kh0k2
max
`2�L�

jhb`; h0ij2;

there is �0 > 0 such that for all � � �0 there exists an adversarial noise vector
e 2 C

L with kek � � that admits an alternative solution zX with the following
properties:

� zX is feasible, i.e., kA . zX/ � yk D � for y D A .h0m
�
0/ C e the noisy

measurement vector,
� zX is preferred to X0 D h0m

�
0 by the SDP (2.2), i.e., k zXk� � kX0k�, but

� zX is far from the true solution in Frobenius norm, i.e.,

k zX �X0kF � �

C3

r
KN

L
:

The constants C1, C2, and C3 are universal.

Remark 3.2. The matrix B in the above result exactly fits into the framework of
Theorem 2.1. Indeed, one can check that for many interesting cases (including
the case that K divides L) it holds that z�h0 . �h0 . That is, the assumptions of
Theorem 2.1 cannot be enough to deduce stability.

We do not expect, however, that this kind of instability is observed for arbitrary
isometric embeddings B 2 CL�K . For example, let B be a random embedding,
which is chosen from the uniform distribution over the Stiefel manifold VL

K , i.e.,
the manifold consisting of all matrices zB 2 C

L�K such that zB� zB D IdK 2
C
K�K . In this case, we expect that a similar proof as in [39, 52] applies and that

the multiplicative dimensional factor does not appear in the error bound with high
probability if one randomizes over B and C simultaneously. In particular, this
implies the existence of an isometric embedding B such that a result analogous to
Theorem 3.1 cannot hold.

An interesting open problem is whether the statement of Theorem 3.1 still holds
if FB is a low-frequency discrete Fourier matrix, which is a common assumption
in blind deconvolution. The corresponding b`’s should lead to better conditioning
as in our counterexample, but worse than in the case of a random B , as a number
of b`’s exhibit substantial correlation, but many are uncorrelated. In that sense,
this scenario is in between the scenario of arbitrary B’s sketched above and the
adversarial scenario in Theorem 3.1.
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To put our results in perspective note that for L � .K CN/ polylog.K CN/,
which is the minimal number of measurements required for noiseless recovery, it
holds that r

KN

L
�
s

minfK;N g
polylog.K CN/

:

Up to logarithmic factors, this coincides with the rate predicted by (2.3), whenever
K � N .

Theorem 3.1 is a direct consequence of the following proposition, which we
think is interesting in its own right.

PROPOSITION 3.3. Let K;N 2 N n f1g. Assume that

(3.1) C1K � L � KN

36
:

Then there exists B 2 CL�K satisfying B�B D IdK and �2max D 1, whose corre-
sponding measurement operator A satisfies the following:

Let h0 2 CK n f0g and m0 2 CN n f0g, and define �h0 as in Theorem 3.1. Then
with probability at least 1 � O.exp.�C2K=�2h0//, it holds that

(3.2) �min
�
A ;K�

�
h0m

�
0

�� � C3

r
L

KN
:

Here C1, C2, and C3 are absolute constants.

The proof of Proposition 3.3 will be provided in Section 4. Note that by def-
inition of the minimum conic singular value �min.A ; .h0m

�
0// Proposition 3.3 is

equivalent to the statement that with high probability there is Z 2 K�.h0m
�
0/nf0g

such that

(3.3) kA .Z/k .
r

L

KN
kZkF :

Our construction of such Z 2 K�.h0m
�
0/ relies on the observation that with high

probability there is a rank-one matrix W 2 CK�N in the null-space of A , which is
relatively close to the descent cone (with respect to the k � kF -distance). Perturbing
W by ��h0m�

0 for a suitable � one can then obtain a matrix Z 2 K�.h0m
�
0/,

which fulfills (3.3).
The existence of such a matrixW 2 ker A also reveals a fact about the geometry

of the problem, which we find somewhat surprising: while the null space of A does
not intersect the descent cone (otherwise exact recovery would not be possible), the
angle between those objects is very small. This is very different from the behavior
for measurement matrices A with i.i.d. Gaussian entries (instead of b`c�` ).

Remark 3.4. While zX is preferred to the true solution by the SDP (2.2) zX is typi-
cally not a minimizer of (2.2). To see this, assume that without noise exact recovery
is possible, which is the case with high probability by Theorem 2.1. Then consider
zX D X0C tZ for Z 2 K�.h0m

�
0/ of the form Z D W ��h0m�

0 with W 2 ker A
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and � > 0 such that kA .Z/k=kZkF .
p
L=KN , as in the proof of Proposi-

tion 3.3. As W � K�.h0m
�
0/ (otherwise exact recovery would not be possible) it

follows that for t > 0

k zXk� D kX0 C tZk�
D k.1 � t�/X0 C tW k�
> k.1 � t�/X0k�

where the last line is due to K�.X0/ D K�..1 � t�/X0/.
On the other hand, we also have that A . yX/ D A ..1 � t�/X0/ due to A .W / D

0 and, hence, .1 � t�/X0 is admissible whenever zX is admissible. Consequently,
the SDP (2.2) will always prefer .1 � �t/h0m

�
0 to zX and zX will never be a min-

imizer. It remains an open problem what one can say about the minimizer yX of
(2.2); see also Section 6.

Even if the minimizer of (2.2) yX is closer to the ground truth (in k � kF -distance)
than zX , however, the nuclear norms ofX and zX will be very close, which can easily
lead to numerical instabilities.

Matrix completion
Our second main result states that for arbitrary incoherent low-rank matrices,

matrix completion is unstable with high probability. Note that in contrast to The-
orem 3.1, which is based on a specific choice of parameters, the following result
holds for an arbitrary incoherent matrix X0.

THEOREM 3.5. Let n1 � n2 and let A W Rn1�n2 ! R
m be defined as in (2.4). As-

sume that X0 2 Rn1�n2 n f0g is a rank r matrix with singular value decomposition
X0 D U�V �. Moreover, assume that

C1rn1�
2.V / log.2r/ � m � n1n2

32
:

Then with probability at least

1 � O

�
exp

�
� m

C2r�2.U /�2.V /

��
;

there is �0 > 0 such that for all � � �0 there exists an adversarial noise vector
e 2 Rm with kek � � that admits an alternative solution zX 2 Rn1�n2 with the
following properties:

� zX is feasible, i.e., kA . zX/ � yk D � for y D A .X0/ C e, the noisy
measurement vector;

� zX is preferred to X0 by the SDP (2.5), i.e., k zXk� � kX0k� ; but
� zX is far from the true solution in Frobenius norm, i.e.,

k zX �X0kF � �

C3

r
rn1n2

m
:

Here the constants C1, C2, and C3 are universal.



CONVEX GEOMETRY OF BLIND DECONVOLUTION AND MATRIX COMPLETION 13

Again, to put our results in perspective, note that form � n1 polylog.n1/, which
is the minimal number of measurements required for noiseless recovery, it holds
that r

rn1n2

m
�
r

n2

polylog.n1/
:

Up to logarithmic factors, this coincides with the rate predicted by (2.6).
Theorem 3.5 is a direct consequence of the following proposition, which, in our

opinion, is of independent interest, as it provides a negative answer to a question
by Tropp [59, sec. 5.4].

PROPOSITION 3.6. Let X0 2 Rn1�n2 n f0g be a rank-r matrix with corresponding
singular value decomposition X0 D U�V �. Moreover, assume that

(3.4) C1rn1�
2.V / log.2r/ � m � n1n2

32
:

Then with probability at least

1 � O

�
exp

�
� m

C2r�2.U /�2.V /

��
;

it holds that

(3.5) �min.A ;K�.X0// � C3

r
m

n1n2r
:

The constants C1, C2, and C3 are universal.

Proposition 3.6 corresponds to Proposition 3.3 for blind deconvolution and will
be proved analogously. We will again show that with high probability there is
W 2 Rn1�n2 such that A .W / D 0 and W is relatively close to the descent cone
of X0 in k � kF -distance. Setting Z WD W � �UV � for a suitable � > 0 yields an
element of K�.X0/ with

kA .Z/k
kZkF

� C3

r
m

n1n2r
:

3.2 Stable Recovery
A geometric interpretation of Theorems 3.1 and 3.5 is that the nuclear norm ball

is near-tangential to both the kernels of matrix completion and randomized blind
deconvolution. Given that tangent spaces only provide local approximation, these
results leave open what happens in some distance, i.e., for larger noise levels—this
will depend on the curvature of the nuclear norm ball.

Our third main result concerns exactly this problem for the randomized blind
deconvolution setup. As it turns out, the descent directions Z 2 K�.h0m

�
0/ with

kA .Z/k=kZkF very small correspond to directions of significant curvature. That
is, only a very short segment in this direction will have smaller nuclear norm than
h0m

�
0 , and the corresponding alternative solutions all correspond to very small e.

For noise levels � large enough, in contrast, these directions can be excluded and
one can obtain near-optimal error bounds. In order to precisely formulate this
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X0

X0 C ker A

FIGURE 3.1. Geometric illustration of our approach: Close to X0 the
descent set (indicated by the red line) is near-tangential to the kernel of
the measurement operator A , so the descent cone (light blue) is rather
wide. By restricting to noise levels above a certain threshold we only
need to cover the descent set at some distance, which is achieved by
a much smaller cone (green). Note that below the noise level (orange
strip), the green cone does not contain the full descent set.

observation, we denote the set of �-incoherent vectors h 2 C
K with respect to

B 2 CL�K for � � 1 by

H WD �
h0 2 CK W

p
Ljhb`; h0ij � �kh0k for all ` 2 �L�

	
:

With this notation, our result reads as follows.

THEOREM 3.7. Let � > 0, � � 1, and B 2 CL�K such that B�B D Id. Assume
that

L � C1
�2

�2
.K CN/ log2L:

Then with probability at least

1 � O

 
exp

 
� L�4=3

C2 log4=3.eL/�4=3

!!

the following statement holds for all h0 2 H� n f0g, all m0 2 CN n f0g, all � > 0,
and all e 2 CL with kek � � :

Any minimizer yX of (2.2) satisfies

 yX � h0m
�
0


F
� C3�

2=3 log2=3L
�2=3

max
�
� I�h0m�

0


F

	
:

Here C1, C2, and C3 are absolute constants.

In words, this theorem establishes linear scaling in the noise level � with only
a logarithmic dimensional factor for � � �kh0m�

0kF , in contrast to the poly-
nomial factor required for small noise levels as a consequence of Theorem 3.1.
Here the value of � can be chosen arbitrarily small, at the expense of an increased
number of measurements. For example, when one is interested in noise levels
� D ���2 log�2L for some � > �0 (this is the largest order to expect mean-
ingful error bounds despite the additional logarithmic factors), one should choose
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� � �0�
�2 log�2L, and near-linear error bounds will be guaranteed for a sample

complexity of

L � C1
�6

�20
.K CN/ log6L:

Remark 3.8. A similar approach to the proof of Theorem 3.7 also yields a corre-
sponding result for rank-one matrix completion. Arguably, however, matrix com-
pletion is mainly of interest for ground truth matrices of rank higher than one, so
we decided to omit the proof details.

4 Upper Bounds for the Minimum Conic Singular Values
4.1 Characterization of the Descent Cone of the Nuclear Norm

The goal of this section is to prove Proposition 3.3 and Proposition 3.6, from
which we will then be able to deduce Theorem 3.1 and Theorem 3.5. For that we
first discuss a characterization of the descent cone K�.X/. In order to state this
characterization, Lemma 4.1, we need to introduce some additional notation. Let
X 2 C

n1�n2 be a matrix of rank r . We will denote its corresponding singular
value decomposition by X D U�V �, where � 2 Rr�r is a diagonal matrix with
nonnegative entries and U 2 C

n1�r and V 2 C
n2�r are unitary matrices, i.e.,

U �U D V �V D Idr . This allows us to define the tangent space of the manifold
of rank-r matrices at the point X by

(4.1) TX WD �
UA� C BV �W A 2 Cn2�r ; B 2 Cn1�r

	
:

By PTX we will denote the orthogonal projection onto TX by PT?
X
D Id�PTX ,

the projection onto its orthogonal complement.

LEMMA 4.1. Let X 2 C
n1�n2nf0g be a matrix of rank r with corresponding

singular value decomposition X D U�V �. Then

K�.X/ D
�
Z 2 Cn1�n2 W �Re

�

UV �; Z

�
F

� � PT?
X

�
Z
�

�

	
;

where K�.X/ denotes the topological closure of K�.X/.

Remark 4.2. Lemma 4.1 is similar to well-known results in convex optimization
and may be known to the community. As we could not find it in the literature in
this form, we decided to include a proof for completeness.

The proof of Lemma 4.1 relies on the duality between the descent cone and the
subdifferential of a convex function. In the following we will denote by @k � k�.X/
the subdifferential of the nuclear norm at the point X 2 Cn1�n2 . We will use that
a characterization of @k � k� is well-known [63]. Namely, for all X 2 Cn1�n2 with
corresponding singular value decomposition X D U�V � it holds that

(4.2) @k � k�.X/ D
�
W 2 Cn1�n2 W PTXW D UV �; kPT?

X
W k � 1

	
:
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PROOF. Recall that for a set of matrices V � C
n1�n2 its polar cone V � is

defined by

V � WD �
Z 2 Cn1�n2 W Re.hW;ZiF / � 0 for all W 2 V

	
:

For all X 2 Cn1�n2nf0g we have the following polarity relation between the de-
scent cone and the subdifferential:

K�.X/
� D f�W W � � 0; W 2 @k � k�.X/g:

For sets and functions defined in Rn with the usual Euclidean inner product, this
is [56, theorem 23.7]. The complex case directly follows, as Cn1�n2 with the
inner product Re.h � ; � iF / can be identified with an 2n1n2-dimensional real-valued
vector space with standard Euclidean inner product. It follows from the bipolar
theorem (see, e.g., [5, p. 53]) that

K�.X/ D .@k � k�.X//�:
Hence, in order to complete the proof it is sufficient to show that�

Z 2 Cn1�n2 W �Re.hUV �; ZiF / � kPT?
X
.Z/k�

	
D .@k � k�.X//� D cone.@k � k�.X//:

(4.3)

First, suppose that Z 2 Cn1�n2 satisfies �Re.hUV �; ZiF / � kPT?
X
.Z/k�. We

have to show that Re.hW;ZiF / � 0 for all W 2 @k � k�.X/. Indeed,

Re.hW;ZiF / D Re
�hPTXW;ZiF

�C Re
�


PT?
X
W;Z

�
F

�
D Re

�hUV �; ZiF
�C Re

�

PT?

X
W;PT?

X
Z
�
F

�
� Re

�hUV �; ZiF
�C PT?

X
W
PT?

X
Z

�

� Re
�hUV �; ZiF

�C PT?
X
Z

�

� 0:

In the first inequality we have used that the spectral norm is the dual norm of the
nuclear norm. The second inequality follows from kPT?

X
W k � 1. Hence, we

have shown that Z 2 .@k � k�.X//�. Next, let Z 2 .@k � k�.X//� be arbitrary.
Choose zW 2 T?

X such that Re.h zW ;ZiF / D kPT?
X
.Z/k� and k zW k � 1. Then by

(4.2) it follows that UV � C zW 2 @k � k�.X/ and as Z 2 .@k � k�.X//� we obtain
that

0 � Re
�hUV � C zW ;ZiF

�
D Re

�hUV �; ZiF
�C PT?

X
.Z/


�
:

This shows that �Re.hUV �; ZiF / � kPT?
X
.Z/k�. Hence, we have verified

(4.3), which completes the proof. �
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4.2 Upper Bound for Blind Deconvolution
The goal of this section is to prove Proposition 3.3. For that we need the fol-

lowing lemma, which is a consequence of the concentration-of-measure theorem
for Lipschitz functions. (For a proof of the real-valued case, see, e.g., [62, lemma
5.3.2]. The complex case can be shown analogously.)

LEMMA 4.3. Let P W Cn ! C
n be a random projection onto a k-dimensional

subspace, which is uniformly distributed in the Grassmannian Gr.k;Cn/. Fix
´ 2 Cn. Then for all " > 0 with probability at least 1 � 2e�zck"

2

we have that

.1 � "/
k

n
k´k2 � kP´k2 � .1C "/

k

n
k´k2;

where zc > 0 is some absolute constant.

PROOF OF PROPOSITION 3.3. A core ingredient of the proof is to find a tight
frame B such that each of its frame vectors is orthogonal to all but a near-minimal
number of other frame vectors. For such a B we then choose a vector h out of
these frame vectors and use it to construct a matrix in the descent cone that is close
to the kernel of the measurement map. For that, we exploit that by the choice of
h, any rank-one matrix h zm� will lead to a large part of zero measurements due to
the orthogonality. Consequently, there are also many vectors m1 and m2 such that
hm�

1 and hm�
2 lead to the same measurements, including some choices such that

hm�
1 � hm�

2 is not only in the kernel of the measurement map, but also close to the
descent cone.

When K divides L a suitable choice for B consists of L=K repetitions of a fixed
orthogonal basis. WhenK does not divideL, one can still start off in the same way,
if one completes the matrix appropriately to obtain a unit norm tight frame without
introducing too many pairs of nonorthogonal frame vectors. One way to achieve
this is to find a tight frame that consists only of very sparse vectors, as this will
also lead to many vanishing inner products. A natural candidate is hence a so-
called spectral tetris frame [11], as it has been shown to be maximally sparse [12].
Indeed, our construction uses exactly this frame.

The spectral tetris algorithm is based on the observation that the rows of a matrix
G 2 RL�K form a tight frame if and only if the columns of G are orthogonal and
of equal norm. It is easy to see that for unit norm tight frames, the column normal-
ization must be

p
L=K. Spectral tetris starts by greedily filling up the first column

of G by choosing the first bL=Kc rows of G to be the first standard basis vector e1.
The next two frame vectors are chosen of the form �e1 �

p
1 � �2 e2, where � is

chosen to fulfil the norm constraint of the first column. Next, the second column
is greedily filled, then the third, and so on. By construction, the resulting frame
will only consist of 1-sparse vectors and 2-sparse vectors supported in neighboring
entries. Consequently, the sets

Bi WD fb` W hb`; e1C3.i�1/i ¤ 0g; 1 � i � K

3
;
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are disjoint. Moreover, note that it follows from the spectral tetris algorithm that

L

K
� jBi j � 3

�
L

K
C 2

�
� 6

L

K
;(4.4)

where in the last inequality we used that by assumption 2K � L.
Without loss of generality we assume that kh0k D km0k D 1 as rescaling does

not change the descent cone K�.h0m
�
0/. For the proof we will condition on two

events. The first event states that

(4.5)
A �

h0m
�
0

� < 2
h0m�

0


F
;

which by the Bernstein inequality (see, e.g., [62]) is fulfilled with probability at
least 1 � exp.�cL=�2/, where c > 0 is some numerical constant. To formulate
the second event, we define for all natural numbers 1 � i � K=3 and cj as in
Section 2.1

Di WD spanfci W i 2 Big � C
N

and denote by m
k
i the orthogonal projection of m0 onto Di and by m?

i the pro-
jection onto D?

i , the orthogonal complement of Di . Note that Di � C
N is a

random subspace of dimension jBi j, distributed uniformly over the Grassmannian
Gr.jBi j;CNf / due to the rotation invariance of C N .0; 1/. Hence, as km0k D 1

Lemma 4.3 together with inequality (4.4) yields that for fixed i 2 �bK=3c� with
probability at least 1 � 2 exp.�ycL=4K/ one has

(4.6)
jBi j
2N

� mk
i

2 � 3jBi j
2N

� 6
L

KN
;

where yc > 0 is some absolute constant. As the matrix C is Gaussian, the different
subspaces Di ’s and hence also the random vectors fmk

i gKiD1 are independent, so
with probability at least

1 �
�
2 exp

�
� ycL
4K

��bK=3c

� 1 � exp
�
K log 2 � ycL

12

�
there exists at least one k 2 �bK=3c� such that (4.6) holds (with k D i ). Also note
that

1 � exp
�
K log 2 � ycL

12

�
� 1 � exp

�
� yc
24
L

�
;

which for C1 D 24 log 2=yc follows from assumption (3.1).
We have shown that the two events E1 WD fkA .h0m

�
0/k � 2kh0m�

0kF g and

E2 WD
�
9i 2 �K�W L

2KN
� mk

i

2 � 6
L

KN

�

happen with probability at least 1 � O.exp.�C2L=�2//, where C2 > 0 is an ap-
propriately chosen constant.
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Conditional on E1 and E2, we will construct Z 2 C
K�N (depending on the

realization of the random matrix C ) such that Z 2 K�.h0m
�
0/ n f0g and such that

the inequality

(4.7) kA .Z/k < 12

r
L

KN
kZkF

is satisfied. Note that this will complete the proof. Indeed, by definition of the
closure and the continuity of A this implies that there exists zZ 2 K�.X0/ such
that

kA . zZ/k
k zZkF

� 12

r
L

KN
;

which by the definition of �min.A ;K�

�
h0m

�
0

�
/ implies that (3.2) holds with con-

stant C3 D 12.
To construct Z satisfying (4.7), define

W WD � hh0; ei i
km?

i kjhei ; h0ij
ei
�
m?
i

��
;

where i 2 �bK=3c� is chosen to satisfy (4.6). It follows directly from the definition
of W that kW kF D 1. We observe that A .W / D 0 as for each i 2 �bK=3c� and
` 2 �L� we either have hei ; b`i D 0, ` � Bi , or hm?

i ; c`i D 0, if ` 2 Bi . Denote
by T D TX0 the tangent space of the manifold of rank-one matrices at X0 D h0m

�
0

as defined in (4.1) and by PT and PT? the corresponding orthogonal projections.
It follows that

kPT?W k� D
PT?

 
ei

 
m?
i

km?
i k

!�!
F

D Ph?
0
ei
Pm?0

 
m?
i

km?
i k

!
D
q
1 � j
h0; ei �j2

p
1 �

�����
*
m0;

m?
i

km?
i k

+�����
2

�

p
1 �

�����
*
m0;

m?
i

km?
i k

+�����
2

D
q
1 � km?

i k2 D
mk

i

 .4.6/�
r
6
L

KN
:

(4.8)

Thus we have shown that W , an element of the null space of A , is close to the
tangent space T . We will now show that for � D 3

p
L=KN

Z WD ��h0m�
0 CW
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lies in the closure of the descent cone K�.h0m
�
0/. For that, we observe that

�Re
�

Z; h0m

�
0

�� D � � Re
�

W; h0m

�
0

�
F

�
D � C Re

 
hh0; ei i

km?
i kjhh0; ei ij



ei
�
m?
i

��
; h0m

�
0

�
F

!

D � C Re

 
hh0; ei i

km?
i kjhh0; ei ij

hei ; h0i


m0; m

?
i

�!

D � C jhh0; ei ij
m?

i


� �

(4.8)� kPT?W k� D kPT?Zk�
and hence Lemma 4.1 entails that Z 2 K�.h0m

�
0/. Moreover, note that by the

triangle inequality and by the assumption L � 1
36
KN it holds that

(4.9) kZkF � kW kF � � D 1 � 3

r
L

KN
� 1

2
:

These observations together with A .W / D 0 yield that

kA .Z/k D A �
�h0m

�
0

� (4.5)
< 2� D 6

r
L

KN

(4.9)� 12

r
L

KN
kZkF :

This shows (4.7), as desired. �

4.3 Upper Bound for Matrix Completion
In this section, we prove Proposition 3.6. For that we introduce sets Na, a 2

�n1�, via

Na WD fb 2 �n2� W a D ai and b D bi for some i 2 �m�g:
That is, Na contains all the indices of the ath row of the matrix X0, which are ob-
served by the measurements. Furthermore, define by PNa

2 Rn2�n2 the projection
onto the coordinates, which are contained in Na, i.e., PNa

D P
b2Na

ebe
�
b

. By
PN ?

a
DP

b2�n2�nNa
ebe

�
b

we denote the coordinate projection onto �n2� nNa.
We need the following technical lemma.

LEMMA 4.4. Let V 2 Rn2�r be an isometry, i.e., V �V D Id. Assume that

(4.10) m � C1rn1�
2.V / log.2r/:

Then with probability at least 1 � O.exp.�m=C2r�2.V /// there exists a 2 �n1�

such that

kPNa
V k �

s
2m

n1n2
:

C1 and C2 are universal constants.
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PROOF. For each a 2 �n1� we set Ia WD fi 2 �m� W ai D ag and define the
event

Ea WD
�
kPNa

V k2 � 2m

n1n2

�
:

We will first derive a lower bound for P .EajIa/. For that we note that kPNa
V k2 D

kV �PNa
V k. Let v1; v2; : : : ; vn2 denote the rows of the matrix V . By definition of

Na and Ia it follows that for Xi WD vbiv
�
bi

(4.11) V �PNa
V D

X
b2Na

vbv
�
b �

X
i2Ia

vbiv
�
bi
D
X
i2Ia

Xi :

Here we write A � B for two symmetric matrices A and B if and only if B �A is
positive semidefinite. By (4.11) it is sufficient to bound the probability of the event

(4.12)
� X

i2Ia

Xi

 � 2m

n1n2

�
� Ea

conditionally on Ia. To bound kPi2Ia
Xik we will use the matrix Bernstein

inequality (see, e.g., [60, theorem 6.1.1]) conditionally on Ia, which requires as
ingredients

E

hX
i2Ia

Xi

��Ia

i
D jIaj

n2

n2X
bD1

vbv
�
b D

jIaj
n2

V �V D jIaj
n2

Id;

an upper bound for �2.Ia/ WD kE�Pi2Ia
.Xi � E�Xi �/

2jIa�k, and a constant
K > 0 such that kXi �E�Xi �k � K almost surely. To bound �2.Ia/ we note that

E

hX
i2Ia

.Xi � E�Xi �/
2
��Ia

i
� E

hX
i2Ia

X2
i

��Ia

i

�
�

max
b2�n2�

kvbk2
�
E

hX
i2Ia

Xi

��Ia

i

D
jIaj

�
max
b2�n2�

kvbk2
�

n2
Id

D jIaj�2.V /r
n22

Id;

where the fourth line is due to the definition of �2.V /. This implies that

�2.Ia/ � jIaj�2.V /r
n22

:



22 F. KRAHMER AND D. STÖGER

To find an appropriate K > 0, note that almost surely

kXi � EXik D
Xi � 1

n1n2
Id
 � max

i2�n2�

viv�i � 1

n1n2
Id


� 1

n1n2
C max

i2�n2�
kvik2

�
�

1

n1r
C 1

�
max
i2�n2�

kvik2

� 2r

n2
�2.V / DW K;

where in the fourth line we used that

max
i2�n2�

kvik2 � r

n2
D 1

n2

X
i2�n2�

kvik2:

Finally, to apply the Bernstein inequality we need that the Xi ’s are independent
conditionally on Ia, which follows from the fact that the ai ’s and bi ’s are drawn
independently. With these ingredients the matrix Bernstein inequality yields that

P

� X
i2Ia

Xi � jIaj
n2

Id
 � t

���� Ia

�

� 1 � 2r exp
�
�c min

�
t2

�2.Ia/
I t
K

��

� 1 � 2r exp
�
�c min

�
n22t

2

jIajr�2.V /
I n2t

2r�2.V /

��
:

Setting t D m
2n1n2

implies that for fixed a 2 �n1� it holds that

P

�X
i2Ia

Xi

� m

2n1n2
C jIaj

n2

���� Ia

�

� P

� X
i2Ia

Xi � jIaj
n2

Id
 � m

2n1n2

���� Ia

�

� 1 � 2r exp
�
� cm

4rn1�2.V /
min

�
m

jIajn1
I 1
��

:

(4.13)

To complete the proof we restrict our attention to A WD fa 2 �n1�W jIaj � 4m
3n1

g as
it follows from (4.12) that

(4.14)
�
jIaj � 4m

3n1

�
\
� X

i2Ia

Xi

 � m

2n1n2
C jIaj

n2

�
� Ea;
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and, consequently, for a 2 A we obtain that

P .Ea j Ia/

(4.14);
(4.13)� 1 � 2r exp

�
� cm

4rn1�2.V /
min

�
m

jIajn1
I 1
��

a2A� 1 � 2r exp
�
� 3cm

16rn1�2.V /

�
:

(4.15)

As the Ea’s only depend on fbigi2Ia
and are hence independent conditionally on

I�, this implies that

P

�\
a2A

E c
a

�� fIa

on1
aD1

/ D
Y
a2A

P
�
E c
a

�� �Ia

	n1
aD1

�
D

Y
a2A

P
�
E c
a

�� Ia

�
(4.15)�

Y
a2A

�
2r exp

�
� 3cm

16rn1�2.V /

��

D
�
2r exp

�
� 3cm

16rn1�2.V /

��jAj

D
�

exp
�

log.2r/ � 3cm

16rn1�2.V /

��jAj

�
�

exp
�
� m

C 0
1rn1�

2.V /

��jAj
;

where in the last line we have used assumption (4.10) with C1 large enough. Fur-
thermore, note that

m D
n1X
aD1

jIaj �
X

a2�n1�nA

jIaj � 4m

3n1

���n1� n A�� D 4m

3n1
.n1 � jAj/

implies that jAj � n1
4

almost surely. Hence it follows that

P

�\
a2A

E c
a

�� fIagn1aD1
�
� exp

�
� m

C2r�2.V /

�
:

This shows that conditional on fIagn1aD1 we have that almost surely

P

� [
a2�n1�

Ea
�� fIagn1aD1

�
� P

�[
a2A

Ea
�� fIagn1aD1

�
� 1 � exp

�
� m

C2r�2.V /

�
:

Taking expectations yields the claim. �

Now we are prepared to give a proof of Proposition 3.6.
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PROOF OF PROPOSITION 3.6. For the proof we will condition on two events E1
and E2, which we will define in the following. The event E1 is defined by

(4.16) E1 WD fkA .UV �/k2 � 2kUV �k2F D 2rg:
Observe that

kA .UV �/k2 D n1n2

m

mX
iD1

j.UV �/ai ;bi j2 D
mX
iD1

Xi ;

where we have set Xi WD n1n2
m

j.UV �/ai ;bi j2. Note that one has almost surely that

Xi D n1n2

m

� rX
kD1

Uai ;kVbi ;k

�2
� n1n2

m

� rX
kD1

jUai ;kj2
�� rX

kD1

jVbi ;kj2
�

� �2.U /�2.V /r2

m

where we have applied Cauchy-Schwarz and the definition of �.U / and �.V /.
Hence one has

EXi D
kUV �k2F

m
D r

m
;

EX2
i �

�2.U /�2.V /r2

m
EXi D r3�2.U /�2.V /

m2
;

where we used kUV �k2F D r and the previous estimate. Hence, by the Bernstein
inequality (see, e.g., [62, theorem 2.8.4]) we obtain that

P

�����
mX
iD1

Xi � kUV �k2F
���� � t

�

� 2 exp
�
�c min

�
t2m2

r3�2.U /�2.V /
I tm

r2�2.U /�2.V /

��
:

By setting t D kUV �k2F D r we observe that E1 holds with probability at least
1 � 2 exp.�cm=r�2.U /�2.V //.

The second event E2 is defined by

E2 WD
(
9a 2 �n1� such that kPNa

V k �
s

2m

n1n2

)
:

For C1 in assumption (3.4) chosen large enough, Lemma 4.4 then entails that
P .E2/ � 1 � O.exp.�cm=r�2.V ///. Consequently, we can find a 2 �n1� (de-
pending on the random sampling pattern) such that the condition defining E2 is
satisfied.
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Note that in order to prove Proposition 3.6 it is enough to find Z 2 K�.X0/ n f0g
such that

(4.17) kA .Z/k < 8

r
m

rn1n2
kZkF ;

because by definition of the closure and the continuity of A this implies that there
is a matrix zZ 2 K�.X0/ n f0g such that

kA . zZ/k
k zZkF

� 8

r
m

rn1n2
;

which implies (3.5) with constant C3 D 8. In the following we will construct such
a matrix Z. Let x 2 Rr be a vector such that kxk D 1. Then for a 2 �n1� as above
we define the vector wa 2 Rn2 by

wa WD PN ?
a
Vx

and set

W WD � heaw�
a ; UV

�iF
jheaw�

a ; UV
�iF j

eaw
�
a D � heaw�

a ; UV
�iF

jheaw�
a ; UV

�iF j
eax

�V �PN ?
a
:

It follows directly from the definition of Na that A .W / D 0. In the following let
T be the tangent space of the manifold of rank-r matrices at X0 as defined in (4.1).
Furthermore, denote by PU D UU � the orthogonal projection onto the column
space of U and, analogously, by PV D V V � the orthogonal projection onto the
column space of V . Then we obtain that

kPT?W k� D
PT?

�
eaw

�
a

�
�
D PU?eaw�

aPV?

�

D PU?eaw�
aPV?


F

D kPU?eakkPV?wak
� kPV?wak;

where in the second equality we have used that PT?M D PU?MPV? for all
M 2 Rn1�n2 and in the last line we used that kPU?eik � 1. Plugging in wa D
PN ?

a
Vx it follows that

kPT?W k� � kPV?PN ?
a
Vxk

D kPV?PNa
Vxk;

where the last line is due to PV?Vx D 0. The fact that kPV?k � 1 then yields
that

kPT?W k� � kPNa
Vxk � kPNa

V kkxk �
s

2m

n1n2
(4.18)

where for the last line we used that a 2 �n1� was chosen such that the condition in
E2 holds. This shows that W is relatively close to T . Based on W we now aim to
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find Z 2 K�.X/ of the form

Z WD W � �UV �;

where � > 0 will be chosen in the following such that Z 2 K�.X0/, which by
Lemma 4.1 is equivalent to �hUV �; ZiF � kPT?Zk� . First, we note that

(4.19) kPT?Zk� D kPT?W k� �
s

2m

n1n2

due to PT?.UV
�/ D 0 and the inequality chain (4.18). Furthermore, we have

that
�
UV �; Z

�
F
D r� � 
UV �; W

�
F

D r� C
�
UV �;

heaw�
a ; UV

�iF
jheaw�

a ; UV
�iF j

eaw
�
a

�
F

D r� C ��
eaw�
a ; UV

�
�
F

�� � r�:

(4.20)

Hence, setting � D 2
p
m=r2n1n2 and combining (4.19) and (4.20) it follows that

Z 2 K�.X0/. This Z also satisfies (4.17). To see that, we observe that

kZkF � keaw�
akF � �kUV �kF D kwak � �

p
r

D kPN ?
a
Vxk � �

p
r

D
q
kVxk2 � kPNa

Vxk2 � �
p
r

�
s
1 � 2m

n1n2
� 2

r
m

rn1n2
>
1

2
;

where in the last line we used the assumption that m � n1n2
32

. Furthermore, from
A .W / D 0 it follows that

kA .Z/k D �kA �
UV �

�k (4.16)� �
p
2r D 2

s
2m

rn1n2
< 8

r
m

rn1n2
kZkF :

Combining the last two inequality chains implies (4.17), which completes the
proof. �

4.4 Proofs of Theorem 3.1 and Theorem 3.5
As already mentioned, Theorem 3.1 can be deduced from Proposition 3.3 and

Theorem 3.5 can be deduced from Proposition 3.6. We only show how to prove
Theorem 3.1, as the proof of Theorem 3.5 is analogous.

PROOF OF THEOREM 3.1. By Proposition 3.3 and the definition of the mini-
mum conic singular value �min.A ;K�.h0m

�
0// with probability at least

1 � O

�
exp

�
� K

C2�2

��
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there is a matrix Z 2 K�.h0m
�
0/ n f0g such that

(4.21) kA .Z/k � C3

r
L

KN
kZkF

and such that zXt WD h0m
�
0 C tZ obeys k zXtk� � kh0m�

0k� for all 0 < t � 1.
Next, set et D t

2
A .Z/. Then for yt D A .h0m

�
0/C et we have that

kA . zXt / � zytk D kA .tZ/ � ek D t

2
kA .Z/k:

Hence, by setting �0 WD kA .Z/k=2 we observe that kA . yXt / � ytk D t�0. Fur-
thermore, note that

k zXt �X0kF D ktZkF
(4.21)� t

C3

r
KN

L
kA .Z/k D 2t�0

C3

r
KN

L
:

Now let 0 < � � �0. Then by setting t D �
�0

, zX WD zXt , y WD yt , and e WD et the
desired claim follows. �

5 Stability of Blind Deconvolution
5.1 Outline of the Proof and Main Ideas

The goal of this section is to prove Theorem 3.7. We first give a proof sketch and
present the key ideas. We have seen in Proposition 3.3 that for certain isometries
B 2 CL�K with high probability one has that

�min
�
A ;K�

�
h0m

�
0

��
.

r
L

KN
:

Hence, applying Theorem 2.4 cannot lead to very strong error estimates. However,
if we closely inspect the proof of Proposition 3.3 we observe the following. Again,
denote by T the tangent space of the manifold of rank-1 matrices at point h0m�

0 as
defined in (4.1) and assume that kh0k D km0k D 1. By construction we have that
Z D W � �h0m

�
0 , where

W D hh0; ei i
km?

i kjhh0; ei ij
ei
�
m?
i

��
:

This implies that

��
Z; h0m�
0

�
F

�� � ����
� hh0; ei i
km?

i kjhh0; ei ij
ei
�
m?
i

��
; h0m

�
0

�
F

����C �kh0m�
0k2F

D jhei ; h0ij
m?

i

C �kh0m�
0k2F

� �p
L
C � .

�p
L
C
r

L

KN
;
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where we have used the triangle inequality in the first line and the definition of m?
i

in the second line. In the third line we used that km?
i k � 1, jhei ; h0ij � �=

p
L,

and � D
p
L=KN . As kZkF & 1 this implies that


Z; h0m
�
0

�
F

kZkF kh0m�
0kF

is quite small, meaning that Z and h0m�
0 are almost orthogonal to each other. All

the descent directions Z with this property, however, have in common that the
admissible descent step size

t0 WD max
�
t > 0 W h0m�

0 C tZ

�
� h0m�

0


�

	
is necessarily very small. Geometrically, this corresponds to the fact that the nu-
clear norm ball is curved near X0, which is why its near-tangential behaviour only
holds locally. This will be made precise in Lemma 5.7 below. For this reason the
idea of the proof of Theorem 3.7 is to split the descent cone into two parts. One
part will consist of all the matrices aligned with h0m�

0 . The second part will con-
sist of all remaining matrices, which are almost orthogonal to h0m�

0 . As mentioned
above, these matrices must necessarily be close to T . The first part is captured by
the set E�;� with

E�;� WD
[

h02H;

m02C
N

�
Z 2 K�

�
h0m

�
0

� W � � �Re
�

Z; h0m

�
0

�
F

�
kh0m�

0kF
and kZkF D 1

�
;

where � > 0. In Section 5.2 we will show that with high probability it holds that

(5.1) inf
Z2E�;�

kA .Z/k & �2

log2.L/�2
:

Hence, if we have for the minimizer yX of (2.2) that yX � h0m
�
0 is an element of

the conic hull of E�;� , we can proceed similarly as in [13] to obtain near-optimal
error bounds. Let us briefly explain which property of E�;� allows us to show (5.1).
We define for any matrix W 2 CK�N its k � kB1-norm by

kW kB1 WD
LX
`D1

kW �b`k:

In other words kW kB1 is the `1-norm of the vector .kW �b`k/L`D1. We show in
Lemma 5.5 below that all Z 2 E�;� have rather large k � kB1-norm, which entails
that the mass of the vector .kW �b`k/L`D1 cannot be concentrated on only very few
entries. This in turn will allow us to employ a non-i.i.d. version of Mendelson’s
small ball method [37], allowing us to show a lower bound for (5.1); see Lemma
5.6 below. To understand the behaviour on the second part, recall from Proposition
3.3 that for matrices Z=kZkF 2 K�.h0m

�
0/ n E�;� the quantity kA .Z/k may be

quite small, so a uniform bound is not feasible. However, asZ is almost orthogonal
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to h0m
�
0 , also kPT?Zk� must be rather small because of the characterization of

the descent cone, Lemma 4.1. Hence Z is close to the tangent space and is almost
orthogonal to h0m�

0 . For that reason, whenever kh0m�
0C tZk� � kh0m�

0k� holds,
the cylindrical shape of the nuclear norm ball implies that t > 0 is small. This fact
is captured by Lemma 5.7 below. Theorem 3.3 can then be proven by combining
inequality (5.1) and Lemma 5.7; see Section 5.3.

5.2 A Lower Bound for the Minimum Conic Singular Value
First we recall the notion of Gaussian width (see, e.g., [62]).

DEFINITION 5.1. For a set E � C
K�N its Gaussian width is defined by

!.E / WD E
�

sup
X2E

Re
�hX;GiF ��;

where G 2 CK�N is a matrix whose entries are independent and identically dis-
tributed random variables with distribution C N .0; 1/.

This definition allows us to state the following lemma, which is important for
our analysis of the conic singular value. It relies on a uniform lower bound on the
number of measurements whose magnitude is larger than a certain constant and is
a variant of theorem 2.1 in [37].

LEMMA 5.2. Let E � C
K�N be a symmetric set, i.e., E D �E . For all � > 0 and

t > 0 it holds with probability at least 1 � exp.�2t2/ that

(5.2)

inf
X2E

����` 2 �L�W ��
b`c�` ; X �F �� � �
	���

� inf
X2E

� LX
`D1

P
���
b`c�` ; X �F �� � 2�

�� � 4!.E /

�
� t

p
L:

Here "1; : : : ; "L are independent Rademacher variables, i.e., random variables
that take the two values �1 each with probability 1

2
.

The proof of Lemma 5.2 is based on a variant of Mendelson’s small-ball method
and proceeds in analogy with [37]. We have deferred a detailed proof to Appendix
A. In order to apply Lemma 5.2 we need to estimate the first term of the right-hand
side of Lemma 5.2. Such an estimate can be derived using the Paley-Zygmund
inequality as in [37]. For the sake of completeness we have included a proof in
Appendix B.

LEMMA 5.3. Let X 2 CK�N be an arbitrary matrix. Then for all � > 0

LX
`D1

P
���
b`c�` ; X �F �� � 2�

� � 9

32

���` 2 �L�W kX�b`k � 4�
	��:

In order to use Lemma 5.3 we need a lower bound for jf` 2 �L�W kX�b`k � �gj.
This will be achieved by the next lemma. For the statement of this lemma and its
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proof we will need to introduce the following notion. We define for any matrix
W 2 CK�N its k � kB1;w -quasinorm by

kW kB1;w WD sup
��0

�
���` 2 �L� W kW �b`k � �

	��:
That is, kW kB1;w is the weak `1-norm of the vector .kW �b`k/L`D1. (For a more
detailed discussion of the weak `1-norm, see, e.g., [24].) A direct consequence of
this interpretation is the inequality (see, e.g., [22, prop. 2.10 and exercise 2.4])

(5.3) kW kB1;w � kW kB1 � log.eL/kW kB1;w :
LEMMA 5.4. Let Z 2 CK�N such that kZkF D 1. Then it holds that����

�
` 2 �L�W kZ�b`k �

kZkB1
L log.eL/

����� � kZk2B1
log2.eL/

:

PROOF OF LEMMA 5.4. Choose �� such that

(5.4) kZkB1;w D ��j�` 2 �L�W kZ�b`k � ��
	j:

As jf` 2 �L�W kZ�b`k � ��gj � L it follows that

(5.5) �� � kZkB1;w
L

� kZkB1
L log.eL/

;

where we also used inequality (5.3). We observe that

1 D kZk2F D
LX
`D1

kZ�b`k2

� ��
2���` 2 �L�W kZ�b`k � ��

	��
(5.4)D

kZk2B1;w
jf` 2 �L�W kZ�b`k � ��gj

(5.3)�
kZk2B1

log2.eL/jf` 2 �L�W kZ�b`k � ��gj ;

where for the second equality we used the identity
PL

`D1 b`b
�
`
D Id. Using in-

equality (5.5) and rearranging terms, it follows that����
�
` 2 �L�W kZ�b`k �

kZkB1
L log.eL/

����� � ���` 2 �L�W kZ�b`k � ��
	�� � kZk2B1

log2.eL/
;

which completes the proof. �

The next lemma gives a bound on infZ2E�;� kZkB1 .

LEMMA 5.5. It holds that

inf
Z2E�;�

kZkB1 �
�
p
L

�
:
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PROOF. Let Z 2 E�;� be arbitrary. By definition of E�;� there is h0 2 H� and
m0 2 CN such that Z 2 K�.h0m

�
0/ and such that the inequality

� � �Re.hZ; h0m�
0iF /

kh0m�
0kF

holds. It follows that

� � �Re.hZm0; h0i/
kh0m�

0kF

D �PL
`D1 Re.hZm0; b`ihb`; h0i/

kh0m�
0kF

� .max`2�L� jhh0; b`ij/
PL

`D1 jhZm0; b`ij
kh0m�

0kF
;

where for the second equality we have used that
PL

`D1 b`b
�
`
D Id. Note that for

all ` 2 �L� it holds that
jhZm0; b`ij

km0k
� kZ�b`k:

Hence, by the previous inequality chain it follows that

� � max`2�L� jhh0; b`ij
kh0k

LX
`D1

kZ�b`k �
�p
L
kZkB1 ;

where in the last inequality we used the definition of � and kZkB1 . Rearranging
terms and taking the infimum over all Z 2 E�;� yields the desired inequality. �

Having gathered all the necessary ingredients, we can state and prove the main
lemma of this section.

LEMMA 5.6. Let � > 0. Assume that

(5.6) L � C1

��
�

�6
.K CN/ log6.eL/;

Then with probability at least 1 � exp.�L�4=C2 log4.eL/�4/, it holds that

(5.7) inf
Z2E�;�

kA .Z/k & �2

log2.L/�2
:

C1 and C2 are absolute constants.

PROOF. Our goal is to apply Lemma 5.2. In order to apply it, we first derive a
lower bound for the first term on the right-hand side of inequality (5.2). For that,
recall that by Lemma 5.5 it holds that

(5.8) inf
Z2E�;�

kZkB1 �
�
p
L

�
:
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Thus, for any Z 2 E�;� we obtain that����
�
` 2 �L�W kZ�b`k �

�

�
p
L log.eL/

����� �
����
�
` 2 �L�W kZ�b`k �

kZkB1
L log.eL/

�����
�

kZk2B1
log2.eL/

� �2L

�2 log2.eL/
;

where the first inequality follows from (5.8), the second one is due to Lemma 5.4,
and the third one follows again from (5.8). Hence, by Lemma 5.3 applied with
� D �=4

p
L ln.eL/�, we finally obtain that

inf
Z2E�;�

 
LX
`D1

P

���
b`c�` ; Z�F �� � �

2
p
L ln.eL/�

�!

� 9

32
inf

Z2E�;�

����
�
` 2 �L�W kZ�b`k �

�p
L ln.eL/�

�����
� 9�2L

32�2 log2.eL/
:

(5.9)

Next, we need an upper bound for the Gaussian width. For that, we first observe
that

E�;� �
� [
h02C

K ;

m02C
N

K�

�
h0m

�
0

�� \ �Z 2 CK�N W kZkF D 1
	 DW E :

The Gaussian width of E has been bounded in [31, lemma 4.1]; combined with the
monotonicity of the Gaussian width that bound yields that

(5.10) !.E�;�/ � !.E / � 2
p
.K CN/:

Thus for � D �=4
p
L log.eL/� we obtain from Lemma 5.2 together with (5.9),

(5.10) that with probability at least 1 � exp.�2t2/ it holds that

inf
Z2E�;�

���` 2 �L�W ��
b`c�` ; Z�F �� � �
	��

� 9L�2

32 log2.eL/�2
� 2 log.eL/�

p
L.K CN/

�
� t

p
L

� 9L�2

64 log2.eL/�2
� t

p
L;

where the second inequality follows from assumption (5.6) if the constant C1 > 0

is chosen large enough. Consequently, setting t D 9�2
p
L=128 log2.eL/�2 and

recalling that .A .Z//.`/ D hb`c�` ; ZiF we have that with probability at least
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1 � exp
��L�4=C2 log4.eL/�4

�
with C2 chosen appropriately,

inf
Z2E�;�

����
�
` 2 �L�W jA .Z/.`/j � �

4
p
L log.eL/�

����� � 9L�2

128 log2.L/�2
:

Summing up we obtain that with probability at least 1�exp.�L�4=C2 log4.eL/�4/

inf
Z2E�;�

kA .Z/k

� inf
Z2E�;�

�

4
p
L log.eL/�

s����
�
` 2 �L�W jA .Z/.`/j � �

4
p
L log.eL/�

�����
&

�2

log2.L/�2
:

This shows the claim. �

5.3 Proof of Theorem 3.7
As mentioned in Section 4, in order to control all matrices Z 2 K�.h0m

�
0/,

which are almost orthogonal to h0m�
0 , we need the following key lemma.

LEMMA 5.7. Let h0m�
0 2 Cn1�n2 be a rank-1 matrix. Assume Z 2 K�.h0m

�
0/ n

f0g. Then, whenever kh0m�
0 CZk� � kh0m�

0k�, it holds that

kZkF � �2Re
��
h0m

�
0;

1

kZkF
Z

�
F

�
:

PROOF. We observe thath0m�
0

2
F
D h0m�

0

2
�
� h0m�

0 CZ
2
�

� h0m�
0 CZ

2
F

D h0m�
0

2
F
C kZk2F C 2Re

�

h0m

�
0; Z

�
F

�
:

Rearranging terms yields the result. �

Now we have gathered all tools that are needed to prove Theorem 3.7.

PROOF OF THEOREM 3.7. We set � WD .log eL/2=3�2=3�1=3. Throughout the
proof we will assume that inequality (5.7) holds, which by Lemma 5.6 holds with
probability at least

1 � exp
�
� L�4

C2 log4.eL/�4

�
D 1 � exp

 
� L�4=3

C2 log4=3.eL/�4=3

!
:

Let h0 2 H� and m0 2 CN . Furthermore, let yX be a minimizer of (2.2) and set
Z WD yX � h0m

�
0 . Note that from the minimality of yX it follows that k yXk� �

kh0m�
0k�. This implies that Z 2 K�.h0m

�
0/. To prove the lemma, it remains

to derive an appropriate upper bound on kZkF . For that we will distinguish two



34 F. KRAHMER AND D. STÖGER

cases, namely Z=kZkF 2 E�;� and Z=kZkF � E�;� . If Z=kZkF 2 E�;� , it
follows from inequality (5.7) that

kZkF .
log2.L/�2

�2
kA .Z/k

� log2.L/�2

�2
.kA . yX/ � yk C kek/

� 2
log2.L/�2

�2
� D 2

log2=3.L/�2=3

�2=3
�;

(5.11)

where in the second inequality we used the triangle inequality as well as Z D
yX � h0m

�
0 and y D A .h0m

�
0/ C e. In the third inequality we used that yX is

feasible and kek � � . If Z=kZkF � E�;� , it follows directly from the definition
of E�;� that

�Re
��

h0m
�
0

kh0m�
0kF

;
Z

kZkF

�
F

�
< �:

By Lemma 5.7 we obtain that

kZkF � �2Re
��
h0m

�
0;

1

kZkF
Z

�
F

�
< 2�kh0m�

0kF
< 2.logL/2=3�2=3�1=3kh0m�

0kF :

(5.12)

Combining the estimates (5.11) and (5.12) we obtain that

 yX � h0m
�
0


F
D kZkF .

�2=3 log2=3L
�2=3

max
�
� I�h0m�

0


F

	
;

which completes the proof. �

6 Outlook
In this paper we have analyzed two important cases of structured low-rank ma-

trix recovery problems, blind deconvolution and matrix completion, through an
inspection of the descent cone of the nuclear norm and its interaction with the
measurement operator A . We have shown that the conic singular value is typically
quite small and, consequently, previous analysis approaches cannot give strong re-
covery guarantees. For the example of blind deconvolution we have presented a
new approach based on a refined analysis of the descent cone, showing that the
nuclear norm minimization approach is stable against adversarial noise in certain
important parameter regimes and allows for uniform recovery guarantees in the
presence of noise. In our opinion our results give rise to a number of interesting
follow-up questions.

� Stability for small noise-levels: Until now, our stability result only cov-
ers the situation that the noise level � is of constant order (up to logarithmic
factors). For small � , Theorem 3.1 and Theorem 3.5 put some barriers on
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what performance can be expected. Nevertheless, it will be interesting
to examine the transitional case, that � is rather small, even further. For
example, while the bad conditioning for small noise levels has been estab-
lished, it remains open whether one can construct a noise vector e such that
the true minimizer behaves like the alternative (but nonminimal) solutions
constructed in Theorems 3.1 and 3.5. Also the transitional behavior of the
minimum conic singular values between very small noise levels (where we
established bad conditioning) and larger noise levels (where at least for
randomized blind deconvolution we proved stability) will be an interesting
question to study.

� Extension to the rank r case: Understanding nuclear norm recovery
for matrix completion under adversarial noise remains an important open
problem in the field. While our result established that recovery guarantees
for arbitrary noise levels are not feasible, our considerations for the rank
one scenario give hope that for sufficiently large noise levels, near optimal
guarantees are within reach also for matrices of arbitrary rank.

Similarly, a natural generalization of blind deconvolution is the problem
of blind demixing [30, 45], where one observes a noisy superposition of
several convolutions, that is, y D Pr

iD1wi � xi C e. The corresponding
low-rank matrix formulation can be interpreted as a rank r version of the
randomized blind deconvolution problem.

We expect that a rank r version of Theorem 3.7 will apply to both these
scenarios, which is why we consider this a very promising direction for
future research.

� Extension to other low-rank matrix recovery models: Various other
low-rank matrix models also involve incoherence in some way, for exam-
ple, robust PCA [6] and spectral compressed sensing via matrix comple-
tion [15]. Also for these problems, recovery results are typically proven
via the Golfing scheme and lead to a seemingly suboptimal noise bound
(see, e.g., [64, sec. VI]). Can these problems be analyzed with the methods
developed in this paper? Moreover, [38] provided an incoherence-based
analysis of the phase retrieval problem under random Bernoulli measure-
ments. It will be interesting to analyze this setup with similar methods as
in this manuscript.

Appendix A Proof of Lemma 5.2
The proof of Lemma 5.2 will rely on the following two lemmas. The first lemma

is a version of Mendelson’s small-ball method for non-i.i.d. measurements. In
order to state it, let X1; : : : ; XL be independent, matrix-valued random variables
defined on a probability space .�;�/. For every measurable, real-valued function
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f and for every � > 0 we define the quantity

Q�.f / D
LX
`D1

P .f .X`/ � �/:

LEMMA A.1. Let X1; : : : ; XL 2 CK�N be independent random variables and F
be a set of real-valued functions that are measurable with respect to .�;�/. Let
t > 0 and � > 0. Then with probability at least 1 � exp.�2t2/ it holds that

inf
f 2F

jf` 2 �L�W f .X`/ � �gj � inf
f 2F

Q2�.f / �
2

�
E

"
sup
f 2F

LX
`D1

"`f .X`/

#
� t

p
L;

where "1; : : : ; "L are independent Rademacher variables, i.e., random variables
that take the two values �1 each with probability 1

2
.

The proof of Lemma A.1 is exactly analogous to the proof of the original small-
ball method [37]; see Section A.1. The second auxiliary lemma, proved in Sec-
tion A.2, relates the quantityE�supf 2F

PL
`D1 "`f .X`/� in the blind deconvolution

framework to the Gaussian width (cf. Definition 5.1).

LEMMA A.2. Let E � C
K�N . Then it holds that

E

"
sup
X2E

Re

 
LX
`D1

b�`Xc`

!#
D !.E /:

With these lemmas we can now prove Lemma 5.2.

PROOF OF LEMMA 5.2. Set X` WD b`c
�
`

for all ` 2 �L� and define

F WD fjhM; � iF j WM 2 E g:

Then, by a direct application of Lemma A.1 we obtain that with probability at least
1 � exp.�2t2/ it holds that

inf
M2E

���` 2 �L�W ��
M;b`c
�
`

�
F
j � �

	��
� inf

M2E

 
LX
`D1

P
���
b`c�` ;M �

F

�� � 2�
�!

� 2

�
E

"
sup
M2E

LX
`D1

"`
��
b`c�` ;M �

F

��# � t
p
L:

(A.1)
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To bound the second summand, we observe that

E

"
sup
M2E

LX
`D1

"`j


b`c

�
` ;M

�
F
j
#

� E

"
sup
M2E

LX
`D1

"`jRe
�

b`c

�
` ;M

�
F

�j
#

C E

"
sup
M2E

LX
`D1

"`jIm
�

b`c

�
` ;M

�
F

�j
#

D 2 E

"
sup
M2E

LX
`D1

"`jRe
�

b`c

�
` ;M

�
F

�j
#

D 2 E

"
sup
M2E

LX
`D1

"` Re
�

b`c

�
` ;M

�
F

�#

D 2!.E /

(A.2)

where in the first equality we used that Re.hb`c�` ; XiF / and Im.hb`c�` ; XiF / have
the same distribution. The fourth line follows from the symmetry of the set E
and the last line is due to Lemma A.2. Combining (A.1) and (A.2) finishes the
proof. �

A.1 Proof of Lemma A.1
We directly trace the steps of the proof of theorem 1.5 in [37]. In the following

1A denotes the indicator function, which takes the value 1 if the event A occurs and
the value 0 otherwise. Note that

�
��f` 2 �L�W f .X`/ � �g

�� D �

LX
`D1

1ff .X`/��g:

Taking the infimum we observe that by the definition of Q2�

� inf
f 2F

��f` 2 �L�W f .X`/ � �g
��

� � inf
f 2F

Q2�.f / � � sup
f 2F

LX
`D1

�
P .f .X`/ � 2�/ � 1ff .X`/��g

�
:

(A.3)
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The bounded difference inequality (see, for example, [4]) implies that with proba-
bility at least 1 � exp.�2t2/ it holds that

sup
f 2F

LX
`D1

�
P .f .X`/ � 2�/ � 1ff .X`/��g

�

� E

"
sup
f 2F

LX
`D1

�
P .f .X`/ � 2�/ � 1ff .X`/��g

�#C t
p
L

D E

"
sup
f 2F

LX
`D1

�
E
�
1ff .X`/�2�g

� � 1ff .X`/��g�
#
C t

p
L:

(A.4)

To deal with the expectation we will use the function �� W �0;C1/ �! R defined
by

��.u/ D

8�<
�:
0; 0 � u � �;
1
�
.u � �/; � � u � 2�;

1; u � 2�:

We observe that �� is Lipschitz-continuous with Lipschitz constant 1=� . Further-
more, for all u 2 �0;C1/ it holds that 1fu�2�g � ��.u/ � 1fu��g. Combining
this monotonicity relation with Gine-Zinn symmetrization (see, e.g., [61, lemma
2.3.1]) and the Rademacher comparison principle for Lipschitz-continuous func-
tions (see, e.g., [43, eq. (4.20)]), we obtain that

E

"
sup
f 2F

LX
`D1

�
E�1ff .X`/�2�g� � 1ff .X`/��g

�#

� E

"
sup
f 2F

LX
`D1

�
E���.f .X`//� ���.f .X`//

�#

� 2E

"
sup
f 2F

LX
`D1

"`��.f .X`//

#

� 2

�
E

"
sup
f 2F

LX
`D1

"`f .X`/

#
:

Together with the inequality chains (A.3) and (A.4), this completes the proof. �

A.2 Proof of Lemma A.2
First, we observe that

E

"
sup
X2E

Re

 
LX
`D1

b�`Xc`

!#
D E

"
sup
X2E

Re

 *
X;

LX
`D1

b`c
�
`

+
F

!#
:
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Note that due to the definition of .E / in order to finish the proof it is enough to
show that the entries of the matrix X D PL

`D1 b`c
�
`

are independent and identi-
cally distributed with distribution C N .0; 1/. For that, let .i; j / 2 �K� � �N � and
compute that

E

"�����e�i
 

LX
`D1

b`c
�
`

!
ej

�����
2#

D
LX
`D1

e�i b`b
�
` eiE

���c�` ej ��2�2 D
LX
`D1

e�i b`b
�
` ei D 1:

This implies that e�i .
PL

`D1 b`c
�
`
/ej 2 C N .0; 1/.

It remains to show that the individual entries of the matrix
Pm

`D1 b`c
�
`

are inde-
pendent. For that, we set

Xi;j WD
 

mX
`D1

b`c
�
`

!
i;j

D e�i

 
LX
`D1

b`c
�
`

!
ej :

Now let .i; j /; .i 0; j 0/ 2 �K� � �N � such that .i; j / ¤ .i 0; j 0/. Our goal is to show
that E�Xi;jX i 0;j 0 � D 0. If j ¤ j 0 this follows immediately from the observation
that c�

`
ej and c�

`
ej 0 are independent for all ` 2 �L�. Now assume that j D j 0.

Then we can compute that

E�Xi;jX i 0;j 0 � D
LX
`D1

e�i b`b
�
` ei 0

��c�` ej ��2 D
LX
`D1

e�i b`b
�
` ei 0 D 0:

Hence we have shown that all entries of the matrix X are uncorrelated. As the
entries of X are jointly Gaussian, this implies that they are independent, which
completes the proof. �

Appendix B Proof of Lemma 5.3
PROOF OF LEMMA 5.3. Let ` 2 �L� such that kX�b`k � 4� . Using the Paley-

Zygmund inequality (see, e.g., [18]) we obtain that

P
���
b`c�` ; X �F �� � 2�

� � P

���
b`c�` ; X �F �� � 1

2
kX�b`k

�

�

�
E
���
b`c�` ; X �F ��2� � 1

4
kX�b`k2

�2
E

h��
b`c�` ; X �F ��4
i

D
�kX�b`k2 � 1

4
kX�b`k2

�2
2kX�b`k4

D 9

32
:

(We used that Ejhb`c�` ; XiF j2 D kX�b`k2 and Ejhb`c�` ; XiF j4 D 2kX�b`k4,
which is due to hb`c�` ; XiF � C N .0; kX�b`k/.) Summing over all ` 2 �L� such
that kX�b`k � 4� yields the claim. �
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