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Variable renewable energy sources display different space-time variability driving the availability of energy gen-
erated from these sources. Complementarity among variable renewable energies in time and space allows reduc-
ing the variability of power supply and helps matching the electricity demand curve. This work investigates the
temporal structure of complementarity along an alpine transect in North-East Italy, considering a 100% renew-
able energy mix scenario composed by photovoltaic and run-of-the-river energy. We analyze the dominant
scales of variability of variable renewable energy sources and electricity demand. In addition, we introduce a
new metric, the wavelet-based complementarity index, to quantify the potential complementarity between
two different energy sources. We show that this index varies at different temporal scales and it helps explaining
the discrepancy between demand and supply in the study area. Continuous and discretewavelet analyses are ap-
plied to assess the energy balance variability at multiple temporal scales and to identify the optimal mix of re-
newable energies, respectively. This work describes therefore an effective approach to investigate the
temporal-scale dependency of the variance in the energy balance and can be further extended to different and
more complex situations.
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1. Introduction

Variable Renewable Energy (VRE) sources, such as solar, hydro and
wind power, are paramount for the success of the energy transition
(Jacobson and Delucchi, 2011; IEA, 2018). The availability of VRE gener-
ation follows from the spatial and temporal variability of their hydro-
meteorological forcing that include, among others, solar radiation,
wind velocity, air temperature, precipitation and river runoff (Troccoli
et al., 2014; François et al., 2014; Widén et al., 2015; Engeland et al.,
2017; Wörman et al., 2017). Although the electricity demand varies
across seasonal, weekly, and sub-daily time scales, its variability is sig-
nificantly lower than the one stemming from each VRE taken individu-
ally (Engeland et al., 2017; Staffell and Pfenninger, 2018). As a result,
large integration of VRE into the electricity systemwill often lead to pe-
riods duringwhich generation is either significantly larger or lower than
the electricity demand. The former situation might lead to curtailment
of VRE production means, while the latter requires additional genera-
tion to supply the residual load.

Several strategies are commonly used to ensure the balance be-
tween electricity generation and demand. They include transport
through the electricity grid networks (Weitemeyer et al., 2015;
François et al., 2017b; Brown et al., 2018; Chowdhury et al., 2020),
demand-side management (Roldán Fernández et al., 2016; Kies et al.,
2016), optimization of the schedulable production means (Ming et al.,
2018), use of storage (Heide et al., 2010; Weitemeyer et al., 2016;
Clerjon and Perdu, 2019), and use of the complementarity among VRE
sources (François et al., 2016a, 2016b; Kougias et al., 2016). The concept
of complementarity translates the fact that, by combining several VREs
both in space and time, the variability of the aggregated generation be-
comes lower than the one stemming from any individual source, which
significantly increases the system capability of satisfying electricity de-
mand (Han et al., 2019; Jurasz et al., 2020). Temporal complementarity
depends primarily on the co-variability between renewable energy
sources for two main reasons. First, energy sources must vary within
the same order of magnitude to be efficiently combined and satisfy
the energy load (François et al., 2016a, 2016b). Secondly, complemen-
tarity depends on the correlation among the VREs. A strongly negative
correlation between twoVRE sources highlights large potential for com-
plementarity; the correlation however often depends on the temporal
scale (Widen, 2011; François et al., 2016a). Another often-used metric
to assess complementarity between VREs and electricity demand is
the variability of the deviations between generation and demand; the
so-called ‘energy balance’. The complementarity is high when the vari-
ability of the energy balance is low (Jurasz et al., 2020; Kougias et al.,
2016; Puspitarini et al., 2020). Other complementary indexes exist, al-
though applications beyond their authors' work are sparse (Borba and
Brito, 2017; Beluco et al., 2019; Canales et al., 2020).

The abovementioned studies highlight that the multiscale vari-
ability stemming from the VRE sources, ranging from local to meso-
and synoptic-scales and from seconds to decades, leads to various
degrees of complementarity depending on the considered tempo-
ral scale (Engeland et al., 2017). The temporal scales considered
as relevant in these works required an a priori selection for the spe-
cific system, which does not necessarily align with the patterns of
variability of the energy sources. Moreover, the dominant scales
of variability of the VRE sources and electricity demand might sig-
nificantly vary depending on the study region. An analysis that ex-
plicitly permits to identify the most significant scales of variability
for the considered system and to assess temporal complementarity
at those specific scales is still missing, to the best of our knowledge.
Moreover, a complementarity metric which helps to identify the
potential complementarity between VRE sources across the contin-
uous range of temporal scales is lacking in the literature. In this
study, we aim at filling this gap by applying Wavelet analysis
(WA). WA represents a robust methodology for providing
multiresolution representation of geophysical and socioeconomic
time series (Alam et al., 2014; Bonkaney et al., 2019; Chang et al.,
2017). Representation of the time series data into time domains
makes possible to extract useful information about temporal cyclic
events existing in the underlying signal.

The main contribution of our work is to apply wavelet analysis
for: i) the identification of the dominant scales of variability of
the VRE sources and electricity demand, which has proved to be
an indispensable step to cope with the uncertainty associated to
an a priori selection of the temporal scales; ii) the introduction of
a new temporal complementarity metric, termed wavelet-based
complementarity index – WBCI, to identify the potential comple-
mentarity among VRE sources across the continuous range of tem-
poral scales; iii) the detection of the dominant periodicities that
arise from the energy balance assessment of the different energy
mix combinations; iv) the quantitative evaluation of the variance
of the energy balance at multiple temporal scales. Based on the
wavelet analyses, we obtain a complete picture of the performance
of the different energy mix combinations while we are able to focus
on the previously detected dominant temporal scales. We focus in
this work on the complementarity between Run-of-River (RoR) hy-
dropower and solar photovoltaic (PV) power.

2. Methodology

2.1. Energy mix and balance under 100% renewable scenario

The electric energy balance is examined on the basis of two
main assumptions. The first assumption concerns the well-known
‘100% renewable’ scenario, which translates into a hypothetic con-
figuration where power generation from solar PV and RoR hydro-
power equals the electricity demand on average over the
considered study period. This scenario is commonly used for
assessing the complementarity among several energy sources
(von Bremen, 2010; Heide et al., 2010; Raynaud et al., 2018;
François et al., 2018). We also assume no power transmission lim-
itation or loss within the study region. This configuration ensures
the overall energy balance is null over the analyzed period
(i.e., the difference between total generation and total electricity
demand). However, temporal variations of both generation and
consumption lead to mismatches that we analyze as indicator of
the complementarity among energy sources. The models used to
simulate electricity production from RoR and PV, and electricity de-
mand are described in the Supplementary material.

In the scenario of 100% renewable mix, electricity generation from
RoR and solar PV are scaled to ensure equality between average gener-
ation and demand over the considered period as follows:

p tð Þ ¼ P tð Þ
〈P tð Þ〉 ð1Þ

where p(t) is the scaled electricity generation (either from solar PV or
from RoR), P(t) is the actual electricity generation, and 〈〉 is the average
operator over the considered time period.

PRoR is calculated as follows with a mixture of snow- and rain-
dominated runoff regimes:

PRoR tð Þ ¼ SH ∙PRoRSnow tð Þ þ 1−SHð Þ∙PRoRRain tð Þ ð2Þ

where PRoRSnow
and PRoRRain

are RoR power generation from snowmelt and
rainfall dominated runoff regimes and SH is the sharing coefficient be-
tween the two hydro-climatic regions (0 ≤ SH ≤ 1). When SH = 1, the
RoR production is only from the snowmelt dominated regime andwhen
SH = 0, the RoR production is only from the rainfall dominated regime.

RoR and PVmixed power generation scenarios are obtained by com-
bining PV and RoR power generation using a sharing coefficient denoted
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SPV. Power generation from a combination of solar PV and RoR is then
obtained as follows:

pmix ¼ sPVpPV þ 1−sPVð ÞpRoR ð3Þ

where pmix is power generation from the combined system, SPV is the
sharing coefficient of solar power, pPV is scaled solar power generation,
pRoR is scaled hydropower generation.

2.2. Wavelet analysis

Wavelet Transform (WT) is a powerful tool to determine the rele-
vant scales of variability of a signal and identify changes in the modes
of variability within non-stationary time series (Grinsted et al., 2004;
Torrence and Compo, 1998). Wavelet analysis is a widely used time se-
ries analysis technique due to its versatile applicability, especially for
hydro-climatic time series analysis (Carey et al., 2013; Guan et al.,
2011; Labat, 2010; Labat et al., 2000; Labat et al., 2004; Marcolini
et al., 2017; Nalley et al., 2012; Pérez Ciria and Chiogna, 2020;
Rathinasamy et al., 2014). More recently, it was applied in the energy
sector (Bonkaney et al., 2019), focusing for example on the integration
between solar and wind power (Alam et al., 2014; Chang et al., 2017),
and to analyze the effects of hydropower production on the environ-
ment (Chiogna et al., 2018; Pérez Ciria et al., 2019; Zolezzi et al.,
2009). In the present section we have included a brief description of
continuous wavelet transform (CWT), wavelet transform coherence
(WTC), the suggested new complementarity metric (wavelet-based
complementarity index-WBCI), and discrete wavelet transform (DWT)
and their application in our study. In the Supplementary material we
provide a more mathematical description and we refer the reader to
Torrence and Compo (1998) and Grinsted et al. (2004) for more details.

2.2.1. Continuous wavelet transform (CWT)
We apply continuous wavelet transform (CWT) to show how elec-

tricity demand and energy production might behave differently de-
pending on the considered temporal scale. We compute also the CWT
of the energy balance to assess the suitability of different VRE combina-
tions. CWT analysis is performed by computing the convolution of the
time series with a scaled and translated version of a mother wavelet.
In our case, we select the widely applied Morlet mother wavelet (Fu
et al., 2012; Nalley et al., 2016; Chang et al., 2017), since it provides a
good compromise between the time and frequency resolution
(Grinsted et al., 2004; Labat, 2006; Schaefli et al., 2007).

2.2.2. Wavelet transform coherence (WTC)
Based on the CWT, it is possible to compute the wavelet transform

coherence (WTC) between two time series, i.e., the local correlation be-
tween two CWTs. In fact, the value of theWTC can be interpreted as the
squared correlation coefficient of the time series components. TheWTC
analysis also allows us to identify if two signals are in phase or in coun-
ter phase and when a change in the phase may occur (Torrence and
Webster, 1999). This is represented in the WTC figures using an arrow
that points to the right when two signals are in phase (i.e., the phase
shift α between the two signals is 0) and gradually turns to the left
the larger is the phase difference between the two signals. When two
signals have a phase shift α = π/2 the arrow points to the bottom,
when the phase sift α= π the arrow points to the left. The 95% signifi-
cance level and the confidence intervals of all CWT and WTC are calcu-
lated against red noise background using Monte Carlo methods.

2.2.3. Wavelet-based complementarity index (WBCI)
Based on theWTC, we introduce the wavelet-based complementar-

ity index (WBCI) as newmetric to assess the complementarity between
energy sources at multiple temporal scales. The index incorporates in-
formation about the time lag between the investigated variables and it
ranges from 0 to 1. The WBCI is computed for every temporal scale s
as follows:

WBCIs ¼ 1
N
∑
N

i¼1
Ci,s∗

1− cos αi,s
� �

2

� �
ð4Þ

where C represents the coherence value between the two signals for a
specific scale s and a specific time i, α is the phase angle that represents
the time lag between the investigated variables and N is the length of
the time series.

Two variables that present very high coherence (Ci, s≈ 1 for all i=1,
…N ) at a specific temporal scale s and are consistently in phase (αi, s≈ 0
for all i=1,…N) will still have very low (close to 0)WBCI values, indi-
cating low complementarity between the variables at this specific tem-
poral scale. On the contrary, high coherence values at a specific
temporal scale, which are consistently in counter-phase (αi, s ≈ π for
all i = 1, …N), will have very high (close to 1) WBCI values, indicating
very high complementarity between these variables at this temporal
scale. When no coherence is detected between the variables, the WBCI
values are also close to 0. If the coherence is equal to one, WBCI ≈ 0.5
for αi,s≈ π

2 or 3π=2 (quarter-cycle phase lag for all i=1,…N). The corre-
sponding lag in time depends on the duration of the cycle and therefore
the scale s. Thus,WTC andWBCI are computed to compare the different
energy sources time series among them as a measure of their potential
complementarity.

We applied the WTC and computed the associated WBCI (Fig. 1) to
three combinations of synthetic signals (data1 with data2, data3, and
data4), defined in Eqs. (5) - (8), where ε is Gaussian noise with 0
mean and standard deviation equal to 1 and t is the time in hours.

data1 ¼ sin
2πt
24

� �
=2þ sin

2πt
365∗24

� �
þ cos

2πt
2∗365∗24

� �
þ ε ð5Þ

data2 ¼ sin
2πt
24

þ π
� �

=2þ sin
2πt

365∗24

� �
þ ε ð6Þ

data3 ¼ sin
2πt
24

þ π
� �

=2þ sin
2πt

365∗24
þ π
2

� �
þ ε ð7Þ

data4 ¼ sin
2πt
24

þ π
� �

=2þ sin
2πt

365∗24
þ π

� �
þ ε ð8Þ

The first synthetic signal is characterized by a daily, a yearly, and a
2 years periodicity. Random noise is included to obtain a signal resem-
blance to the target time series and to guarantee the significance of
the analysis. The same daily periodicity ( sin 2πt

24 þ π
� �

=2) is considered
for data2, data3 and data4, which maintains the same amplitude from
the daily periodicity of data1, but with a time shift of π (counter-
phase signals). Focusing on the yearly scale, both data1 and data2
share the same periodicity (signals in phase). Data3 in relation to
data1 presents a π/2 time shift at the yearly scale. Data4 presents a π
time shift in relation to data1 for the yearly scale (counter phase sig-
nals). Fig. 1a shows the synthetic time series for the time period from
1992 to 2012 (selected for illustrative purposes) and Fig. 1b displays
the daily cycle of the signals.

The WTC of the abovementioned combinations is shown in Fig. 1c
(data1 and data2), Fig. 1e (data1 and data3), and Fig. 1g (data1 and
data4). Focusing on the daily scale we can observe high wavelet coher-
ence values and arrows pointing to the left (representing a π shift of the
analyzed signals) for the three different combinations. The WBCI in
Fig. 1d, f and h presents a very high value (N0.9) for the daily scale,
since they are counter-phase signals for the whole represented time
span (Fig. 1b). At the yearly scale we defined three different situations.
First, theWTC in Fig. 1c illustrates that data1 and data2 are highly coher-
ent and in phase (arrows pointing to the right). The suggested WBCI is
computed such that it drops to 0 when two signals are completely in



Fig. 1.Wavelet Transform Coherence (WTC) andwavelet-based complementarity index (WBCI) of synthetic signals. Plot a) shows the synthetic time series for the time period from 1992
to 2012. Plot b) zooms in plot a) and shows the daily cycle of the synthetic signals. The WTC of the three different combinations is shown in plot c) (data1 and data2), plot e) (data1 and
data3), and plot g) (data1 and data4). Blue color means no coherence between the variables (value equal to 0) and red color means total coherence (value equal to 1). Arrows show the
relative angular phase relationships between the signals. Right pointing arrows depict in-phase, while left pointing arrows represent anti-phase relationship. Vertically upward arrows
depict a lead of π/2 or one-quarter (downward a lag) between signals. Next to each WTC the values of the associated WBCI are shown (right plots): plot d) data1 and data2, plot
f) data1 and data3, and plot h) data1 and data4.
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phase during thewhole analyzed time span. This is the case of data1 and
data2 at the yearly scale, aswe can observe in Fig. 1d. At the yearly scale,
theWTC of the second combination (data 1 and data3) shown in Fig. 1e
illustrates two signals with high coherence values, but out of phase. In
this case, the arrows are pointing up and represent a π/2 time shift.
Fig. 1f displays a higher value of WBCI (WBCI = 0.5) at the yearly
scale in comparisonwith thefirst combination in Fig. 1d (WBCI=0). Fi-
nally, Fig. 1g shows theWTC between data1 and data4. We can observe
that at the yearly scale high coherence values are present (as they were
in Fig. 1c and e), but in this plot the arrows are pointing left, which
means that the signals are in counter-phase (π time shift). In the context
of complementarity, this third situation represents the optimal combi-
nation of two different VRE sources and it is captured by the suggested
WBCI (Fig. 1h), where theWBCI= 1 at the yearly scale. As final remark,
we would like to highlight that the use of synthetic signals allows us to
verify the validity of the suggested complementaritymetric and shows a
threshold of significance in WBCI = 0.15 (values observed for non-
dominant scales due to Gaussian noise). However, in comparison with
the analysis of synthetic signals the magnitude of theWBCI is expected
to be lower for the analysis of VRE sources, since the energy production
is determined by geophysical variables (e.g.: solar radiation, tempera-
ture, and streamflow), which are characterized by a more complex be-
havior than the synthetic time series given by Eqs. (5)–(8).

2.2.4. Discrete wavelet transform (DWT)
It is not possible to reconstruct the original signal from the coeffi-

cients derived from the continuous wavelet transform (CWT) analysis.
Consequently to study how the variance of the signal is distributed
among different temporal scales we apply the discrete wavelet trans-
form (DWT). In this case, we decouple the signal into progressively
finer octave bands. This means that DWT, unlike CWT, uses algorithms
that operate on scales with discrete numbers normally based on integer
powers of two (Nalley et al., 2012; Maheswaran and Khosa, 2012;
Tiwari and Adamowski, 2013). The DWT analysis enables us to detect
patterns that are not visible in the raw data and is implemented to de-
tect changes in the time series variance. In our study, we use DWT to:
i) quantitatively evaluate the variability of the energy balance computed
for the different energy mix combinations at multiple temporal scales;
and ii) map variance changes focusing on the dominant scales previ-
ously identified using CWT. The lowest variance values of the energy
balance determine the optimal energy mix for the region of study. The
DWT is hence used to quantitatively evaluate the energy balance vari-
ability at multiple temporal scales and assist us in the selection of the
optimal energy mix.

3. Study area

To analyze the complementarity among VREs, we consider two case
studies located on the opposite edges of a climate transect connecting
the Alpine crest to the Veneto plain in North-Eastern Italy. This transect
provides a range of climatic variability and includes runoff regimes that
gradually vary from snow-melt dominated to rainfall dominated, with a
ratio of solid to total precipitation decreasing from 0.6 in the northern
part to almost 0 in the Veneto plain. In addition, this region is character-
ized by a relatively high level of small RoR hydropower stations related
to the initiatives of private actors or small communities, while the rate
of PV equipment is rather high thanks both to public subsidies and eas-
iness of installation (Moser et al., 2014; GSE, 2019).

We focus specifically on two catchments located in the transect
(Fig. 2), which are of similar size and characterized by different
hydroclimatic regimes, Aurino at Cadipietra (149.8 km2) and Posina at
Stancari (116 km2). The altitude range of Aurino at Cadipietra is from
1049 to 3263 m a.s.l. and for Posina at Stancari is from 390 to
2146 m a.s.l. Aurino at Cadipietra has a snow-dominated regime with
a mean annual precipitation around 1500 mm and a fraction of precip-
itation as snow around 60%. The mean annual streamflow is 6.2 m3/s
and the peak flow occurs usually in summer due to snow and ice-melt
contribution. As a rain-dominated catchment, Posina at Stancari is char-
acterized by a fraction of precipitation as snow around 20%. The mean
annual precipitation and streamflow for this basin is 1325 mm and
3.7m3/s. In Posina at Stancari, streamflow presents two peaks, in spring
and autumn, with N70% of the mean annual precipitation during these
seasons.

The period selected for the analysis spans from 1992 to 2012. Over
this period, solar radiation and temperature data are available from 17
stations managed by the Regional Environmental Protection Agency of
Veneto (ARPAV) to simulate solar PV generation and electricity de-
mand. Since the measured time series at the gauging stations of Aurino
at Cadipietra and Posina at Stancari present some data gaps that make
the wavelet analysis difficult to interpret, we based the analysis on
hourly simulated runoff. From the different rainfall-runoff models
(Moore, 2007; Balbastre-Soldevila et al., 2019; García-Bartual and
Andrés-Doménech, 2017; Kratzert et al., 2018), we applied the Inte-
grated Catchment Hydrological Model (ICHYMOD) (Norbiato et al.,
2009; François et al., 2017a). For more detailed information about
ICHYMOD the authors refer to Puspitarini et al. (2020) and Zaramella
et al. (2019).

4. Results

4.1. Wavelet analysis of electricity demand and energy production

4.1.1. Continuous wavelet transform and global wavelet spectrum
CWT provides us a clear understanding of the scales of variability

that characterize each of the considered variables (scaled values): elec-
tricity demand (Fig. 3), energy production of RoR located in the rain
dominated catchment Posina (Fig. 4), energy production of RoR located
in the snowmelt dominated catchment Cadipietra (Fig. 5), and solar en-
ergy production (Fig. 6). The upper panel of the figures (panel a) in
Figs. 3–6) shows the time series values from January 1992 through De-
cember 2012; plot b) shows the hourly data displaying a typical daily
and weekly cycle of each considered variable and in Figs. 4–6 the elec-
tricity demand (hourly data) is included for comparison purposes and
is especially relevant to interpret the energy balance assessment in-
cluded in ourwork. The CWTpower spectrum is shown for the different
variables in Figs. 3–6 plot c. The global power spectrum(i.e., the time av-
eragedwavelet spectrum) is located on the right side of the CWT power
spectrum (Figs. 3–6 plot d). The globalwavelet spectrum (GWS) reveals
the relevant scales as the oneswithwavelet power larger than a 95% sig-
nificance level developed from a red-noise background process (black
dashed line).

In Fig. 3, the CWT of the electricity demand time series shows that
this signal is characterized by specific scales of variability (12 h, 1 day,
3 days, 1 week, 3–6 months and 1 year), which are rather stationary
throughout the period 1992–2012. Some scales are based on geophysi-
cal forcing (1 day, seasonal, 6 months, 1 year) while others follow our
social dynamic (i.e., weekdays – weekend). An optimal combination of
VRE production should be able to resemble this signal. However, we
can observe that for the case study considered in this work, none of
the available renewable resources is characterized by the same scales
of variability as electricity demand (Figs. 3–6).

Considering the scales of variability, the behavior of RoR hydro-
power production from rain fed catchments such as Posina (Fig. 4) dis-
plays asmajor periodicity associated to the 6months scale. The signal is
strongly controlled by the effects of meteorological rainfall events that
lead to flood events and a rapid recession. RoR generation at Posina is
characterized by two peaks that occur usually in April and between Oc-
tober and December. Interestingly, the 6-months pattern associated to
these peaks does not appear with the same intensity every year in the
power spectrum. This could be due to the low-frequency variability
that influences the precipitation falling during the raining season with
a large deviation between interquartile from October through



Fig. 2. The study transect with the location of the two river basins: Aurino at Cadipietra and Posina at Stancari.
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December (François et al., 2018). The 6 months scale periodicity can be
also noticed in the global wavelet spectrum (GWS) reaching a higher
wavelet power value than the yearly scale.
Fig. 3. Time series (plot a), daily andweekly cycle (plot b), CWT power spectrum (plot c), and gl
and weekly cycle of the electricity demand (hourly data) (7.05.2001–14.05.2001). The CWT s
abscissa. Red colors represent high wavelet power values (i.e., strong periodicity), blue color
black contour represent 5% statistically significant results. The cone of influence (COI), region of
area. The global wavelet spectrum (GWS) highlights the relevant scales of variability. The dash
RoR hydropower production from snow-melt dominated catch-
ment, such as Cadipietra (Fig. 5) is characterized by a strong season-
ality, due to the influence of the snowpack dynamic on streamflow
obalwavelet spectrum (plot d) of electricity demand (scaled values). Plot b shows the daily
pectrum shows time (years) on the ordered axis, and the analyzed scales (period) on the
s represent low values of the wavelet power (i.e. weak periodicity). Areas circled with a
thewavelet spectrumwhere edge effectsmight be important, it is shownas awhite shaded
ed black line depicts the 95% significance level against red-noise background spectra.



Fig. 4. Time series (plot a), daily and weekly cycle (plot b) (7.05.2001-14.05.2001), CWT power spectrum (plot c), and global wavelet spectrum (plot d) of energy production (scaled
values) of RoR located in Posina (rain dominated catchment). In plot b) the demand time series is included for magnitude comparison. The explanation of the figure is analogous to
the one given in Fig. 3.
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variability. In the spring and early summer months, we can observe
the occurrence of a strong component at the sub-daily scale, typical
for snow melting processes. In Fig. 5b) the daily cycle is easily recog-
nizable for the RoR energy production in spring, while a constant
production is present for winter months, and a more fluctuating en-
ergy production dependent on rainfall events is associated to late
summer, due to the increasing importance of liquid precipitation.
Fig. 5c) displays that the seasonal variability resulting from the
snowpack accumulation and melt dynamic above-described, is the
dominant scale of variability. In Fig. 5d) the Global Wavelet Spec-
trum (GWS) shows the peak at the yearly scale, and additionally a
peak associated to the daily periodicity. This daily peak is, however,
not statistically significant (it does not exceed the black dashed
line) due to the fact that is not present during the whole year, but
Fig. 5. Time series (plot a), daily andweekly cycle (plot b) (7.05.2001-14.05.2001 for demand an
winter representing the behavior also in fall), CWT power spectrum (plot c), and global wavelet
dominated catchment). The explanation of the figure is analogous to the one given in Fig. 3.
only during the specific months when melting processes become rel-
evant. In contrast to Posina, the 6 months scale of variability is not
present for Cadipietra, which becomes an additional incentive for
combining the two hydrological regimes.

Yearly periodicity is also highly important for solar radiation
(Fig. 6c); this signal however is characterized by two additional relevant
scales of variability at the daily and 12 h scales. Both of them are stron-
ger during the summer months and decrease their wavelet power dur-
ingwinter time. Plot 5b is valuable to understand themagnitude of solar
energy production (extreme behavior that ranges from null production
at night to maximum values tripling and quadrupling electricity de-
mand at midday) in comparison with RoR (more stable in general and
practically constant during fall and winter months for the snow domi-
nated catchments).
d RoR spring, 10.09.2001-17.09.2001 for RoR summer and 08.01.2001-15.01.2001 for RoR
spectrum (plot d) of energy production (scaled values) of RoR located in Cadipietra (snow



Fig. 6. Time series (plot a), daily and weekly cycle (plot b) (7.05.2001-14.05.2001), CWT power spectrum (plot c), and global wavelet spectrum (plot d) of solar PV energy production
(scaled values). The explanation of the figure is analogous to the one given in Fig. 3.
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The take-home message from the above wavelet analysis is three-
fold. First, the electricity demandhighlights complex variability patterns
embedded one with another. Second, none of the three considered VRE
sources shows such complex patterns of variability. Third, the three
considered VRE sources show significant differences in their mode of
variability, which provides a strong incentive for mixing these energy
sources.

4.1.2. Complementarity among energy sources using WTC
WTC analysis is applied to compare the CWT of two different en-

ergy sources as an indicator of their complementarity. In Fig. 7a we
can observe that the coherence between energy production from
RoR in Posina and RoR in Cadipietra is not stationary throughout
the investigation period. In general, we can observe low coherence
values. High coherence values are not present during the whole ana-
lyzed time span, but rather show an intermittent behavior. Focusing
on the 6 months scale in the WTC of Fig. 7a, we observe (especially
from 1992 till 2002, but also around 2005 and from 2008) high wave-
let coherence values with arrows pointing down (π/2 phase shift),
which represent a time lag between one and two months between
runoff peaks. Notice that for Posina there is a runoff peak in April
while for Cadipietra it usually takes place between May and June
due to snow melting processes (implying between 1 and 2 months
lag). In Fig. 7c the WTC between RoR from the rain dominated catch-
ment and solar energy presents non-stationary coherence at the sea-
sonal scale. The phase of the signals is variable (and often in counter
phase). In contrast, in Fig. 7e we can observe that RoR from the snow
dominated catchment has a strong stationary coherence with the
solar energy signal at the yearly scale. Solar radiation intensity and
temperature are the main triggers of melting processes, governing
therefore not only the solar energy production, but the runoff yearly
cycle of snow dominated catchments.

From the WBCI we can observe that focusing on short time scales
WBCI values in Fig. 7b are nearly constant, while two peaks are pres-
ent for the 12 h and daily scales in Fig. 7d and f. These WBCI values
are slightly higher for the snow dominated catchment reaching 0.2
and 0.25 for the 12 h and daily scales, respectively (Fig. 7f), while
WBCI = 0.17 in both peaks for RoR in Posina (Fig. 7d). This might
lead to a better performance of the combination of solar and RoR
from Cadipietra (SH = 1) than the one of solar and RoR from Posina
(SH = 0) at 12 h and daily scales. Especially for the daily scale in
which the difference is larger (from WBCI Solar-Posina = 0.17 to
WBCI Solar-Cadipietra = 0.25) than for the 12 h scale (from WBCI Solar-
Posina = 0.17 to WBCI Solar-Cadipietra = 0.2). This difference might be
caused by the fact that snowmelt dominated streams display a
daily periodicity in the spring and early summer seasons, which pre-
sents a time lag respect to solar radiation. This periodicity is however
not present in rain dominated catchments.

Fig. 7b shows a 6 months WBCI peak that can be interpreted from
the WTC (Fig. 7a) as the result of sporadic coherence with a π/2 time
lag. In addition, the yearly peak is associated to an isolated time span
in which the signals are in counter-phase. Focusing on the WBCI be-
tween solar energy and RoR Posina (Fig. 7d), we observe a high WBCI
value (slightly larger than 0.6) at the 3–6 months scale. The two runoff
peaks that characterize the hydrological regime of Posina normally
occur in April and betweenOctober andDecember, while themaximum
solar energy production takes place between June and August. This
leads to a high complementarity between these two VRE sources during
most of the year.

At the yearly scale we can observe low WBCI values (WBCI = 0.1)
between solar and RoR from snow-dominated catchment (Fig. 7d),
since both follow a similar yearly cycle triggered by solar radiation
and temperature. On the contrary, higher WBCI values are detected
for the complementarity between RoR from Posina with RoR from
Cadipietra (WBCI = 0.32), and solar energy with RoR from Posina
(WBCI = 0.33). Therefore, smoother temporal variability at yearly
scale can be expected for these mix combinations.

The WBCI analysis points out the potential complementarity of the
energy sources at different temporal scales. From theWTC andWBCI re-
sults in combination with the previous analysis of the input data (in-
cluding the electricity demand), we might be able anticipate specific
combinations that will show lower energy balance variance for the
targeted scales of variability. However, the main purpose of the WTC
and suggested index is to serve as screening tool to identify thepotential
complementarity of the VRE sources at multiple temporal scales. The
subsequent assessment is therefore needed to fully understand the evo-
lution of the energy balance variance for the different combinations at
different temporal scales.



Fig. 7. Wavelet Transform Coherence (WTC) and wavelet-based complementarity index (WBCI) between run-of-the-river hydropower energy production from the rain dominated
catchment and from the snow dominated catchment (plot a and b), between photovoltaic energy production and RoR hydropower energy production from the rain dominated
catchment Posina (plot c and d), between photovoltaic energy production and RoR hydropower energy production from the snow dominated catchment Cadipietra (plot e and f). Blue
color means no coherence between the variables (value equal to 0) and red color means total coherence (value equal to 1). Arrows show the relative angular phase relationships
between analyzed signals. Right pointing arrows depict in-phase, while left pointing arrows represent anti-phase relationship. Vertically upward arrows depict a lead of π/2 or one-
quarter (downward a lag) between analyzed signals. The WBCI highlights at which scales the variables show high complementarity.
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4.2. Analysis of the energy balance at different temporal scales

Our study aims at investigating the energy balance at different tem-
poral scales of a 100% renewable energies scenario, in which we con-
sider the different combinations of photovoltaic (PV) and run-of-river
(RoR) energy sources. In particular, the sensitivity studies explore 421
scenarios of energy mix defined by different sharing coefficients SPV
and SH ranging from 0 to 1 using regular steps of 0.05. Note that when
SPV equals 1, SH value does not matter and all the power generation
comes from PV system only.

For this purpose, we compute the continuous wavelet transform
(CWT) of the energy balance for the different combinations of the se-
lected VRE sources. The CWT allows us to better understand the evolu-
tion of the energy balance signal for the different energy mix solutions,
highlighting its relevant periodicities. Fig. 8 shows the CWT of the en-
ergy balance for the different considered combinations of VRE sources.
The different columns show an increase in the amount of the solar
power supplied to the system from 0% (on the left) to 100% (on the
right). The different rows show the contribution to the total energy
supply from rain or snow fed RoR. The top row contains only a combina-
tion of solar power and RoR generated in Cadipietra (snow dominated
catchment) and the bottom row a combination of solar power and
RoR generated in Posina (rain dominated catchment). In particular,
SPV = 0 and SH = 1 represents the scenario for which 100% of the en-
ergy comes from the run-of-the-river hydropower plant of the snow
dominated catchment (Cadipietra), while SPV = 0 and SH = 0 refers
to the scenario for which 100% of the energy comes from the run-of-
the-river hydropower plant of the rain dominated river basin (Posina).

Analyzing the results from left to right we can observe the effect of
an increase in SPV. This leads to a stronger daily signal with increase in
non-stationarity at the daily and sub-daily scales (intermittent high
wavelet power spots due to the seasonality of the solar cycle). We ob-
serve that the higher the SPV contribution, the stronger the yearly peri-
odicity. If we analyze the matrix of results from top to bottom, we can
observe that the yearly signal is stronger and more focused in snow
dominated catchments than in rain fed catchments. This is due to the
fact that snow dominated catchments are characterized by strong sea-
sonality and consequently a strong yearly cycle, while this is not present



Fig. 8. CWT of the energy balance of the different combinations of energy mix considering percentage of photovoltaic energy production (SPV = 1 implies 100% solar energy) and
distribution of the remaining percentage between run-of-the river hydropower plants. SH determines the share from a rain dominated catchment (SPV = 0, SH = 0 indicates 100%
energy from run-of-the river rain dominated river basin) and snow dominated catchment (SPV = 0, SH = 1 indicates 100% energy from run-of-the river snow dominated river basin).
The CWT spectrum shows time (years) on the ordered axis, and the analyzed scales (period) on the abscissa. Red colors represent high wavelet energy values (i.e., strong periodicity)
blue colors represent low values of the wavelet power (i.e. weak periodicity).
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for rain dominated catchments, as already observed in Figs. 2 and 3.
From Fig. 8 we can detect the relevant temporal scales (i.e.: sub-daily,
daily, and from seasonal to yearly scales) that are contributing the
most to the energy balance fluctuations (under or/and over shooting).
Additionally, although with lower wavelet power we observe a pattern
that emerges at weekly scale.

To complement Fig. 8 and support our findings, we include Fig. 9
showing the variability of the energy balance for the different combina-
tions of energy mix at different temporal scales. First, we show the var-
iance values of the original signals and the signal constituted by the
previously detected relevant temporal scales. We can observe that
Fig. 9b represents fairly well the variance values of the original signal
(Fig. 9a).

Secondly, in Fig. 9c–f we focus only on specific scales (i.e.: sub-daily,
daily, weekly, and yearly) to better understand the energy balance var-
iability. The variance values are computed from the decomposed signals
obtained using DWT. The x- and y-axis represent the sharing coeffi-
cients SPV and SH, respectively.

In Fig. 9a we can observe that the original signal has minimum var-
iance for SPV= 0.25 and SH = 0.45. We hence referred to this combina-
tion of energy sources as the optimal combination. Our objective now is
to investigate at which scales this combination outperforms all other
combinations. To achieve this goal, we quantify the variance for the dif-
ferent scales in whichwe can decompose the signal using DWT.We can
observe that sub-daily and daily variance is lowest for SPV values smaller
than 0.1 and 0.2, respectively. The sub-daily scale variance values are
non-dependent on the SH value and increase almost linearly for increas-
ing SPV value. However, at the daily scale we observe that combinations
with SH larger than 0.2 (in addition to SPV b 0.2) have the best perfor-
mance (minimum energy balance variance values). At the weakly
scale (Fig. 9e) we can observe that the range of variance values (from
0 to 0.05) is much smaller than for the other scales. This is due to the
fact that the weekly signal is not a dominant scale in our time series,
as it was shown the energy balance CWT analysis (Fig. 8). It is notewor-
thy that storage driven hydropower plants are however characterized
by this weekly periodicity (Pérez Ciria et al., 2019), triggered, in turn,
by the weekly variability of the electricity demand. Focusing on larger
scales, to assess the wider range of dominant scales we computed the
variance of the summation of the decomposed signals from 3 months
to one year for the DWT analysis (implicitly considering also the domi-
nant 6 months scale), which we referred to as the yearly variance
(Fig. 9f). This yearly variance distribution in the SH–SPV plane displays
a minimum at the point of coordinates (0.55, 0.1).

To finalize our analysis,we determine the dominant scale of variabil-
ity (i.e.: scale atwhichwe find themaximumvariance value) for the dif-
ferent combinations (Fig. 10a), and the variance values of this specific
dominant scale (Fig. 10b). Additionally, we investigate the evolution
of the variance at different temporal scales for a given SPV (Fig. 10c)
and SH value (Fig. 10d), selected from the optimal combination coordi-
nates (SPV = 0.25 and SH = 0.45).

5. Discussion

5.1. Input data CWT and WTC analysis

The continuous wavelet transform (CWT) analysis shows that the
selected variable renewable energy (VRE) sources behave significantly
different at multiple temporal scales. This different behavior among
the potential energy sources implies a high degree of flexibility for the
different energy combinations, which is a prerequisite to satisfy effi-
ciently the electricity demand (high complementarity). In addition,
the analysis gives us the possibility to understand the targeted scales
of variability and detect which temporal scales might not be satisfied
with any of the available combinations.

First, the electricity demand is characterized by a strong sub-daily
and daily variability that we can easily recognize in the global wavelet
spectrum (GWS) (Fig. 3d). The RoR energy production of the rain dom-
inated catchment does not show a strong daily pattern (Fig. 4). In con-
trast, the daily periodicity is consistent for the RoR energy of the snow
dominated catchment. The peak associated to the daily periodicity is



Fig. 9. Variability of the balance between energy load and supply of the different combinations of energy mix computed from the signal decomposition using DWT. The x- and y-axis
represent the sharing coefficients SPV and SH, respectively. The color map gives the variance value of the energy balance (scaled values) for a specific temporal scale or range of
temporal scales. First, plots a) and b) show the variance of the original signal, and fundamental scales (including sub-daily, daily, and from seasonal to yearly), respectively (color scale
ranging from 0 to 2). Secondly, plots c-f show the variance at c) sub-daily, d) daily, e) weekly, and f) yearly scale (with variance values ranging from 0 to 1.2).
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Fig. 10. Variance of the energy balance at different temporal scales determined applying DWT. Plot a) shows the dominant scales of variability (temporal scale at which we find the
maximum variance value for a given combination); plot b) displays the value of the maximum variance observed at the specific scale given in plot b; plot c) and d) show the evolution
of the variance at different temporal scales for SPV = 0.25 and SH = 0.45, respectively. In plot b, c, and d the color indicates the variance value and ranges from red (variance equal to
0) to blue (variance equal to 1.2).

12 T. Pérez Ciria et al. / Science of the Total Environment 741 (2020) 140179
detectable in theGWS (Fig. 5d). This periodicity is intermittent and only
present when melting processes are ongoing. The rate of melting of
snow and ice, which is predominantly controlled by the solar radiation
intensity, determines runoff diurnal cycle. Both sub-daily and daily
scales of variability are present for solar energy production. However,
when focusing on the wavelet power spectrum (WPS) (Fig. 6c) we
can observe that this signal is intermittent presenting discontinuities
during the winter period when the solar energy production reaches its
minimum productivity throughout the year. A similar pattern occurs
for the sub-daily scale. It is noteworthy to mention that the diurnal
cycle of photovoltaic energy has a more extreme behavior with no en-
ergy production at night, while the demand has a smoother behavior
(Fig. 6b). This fact highlights the necessity of a combination of VRE
sources, which is dependent on the temporal scale and non-stationary
in time (significant seasonality).

Secondly, a 3 days and weekly pattern emerge in the WPS of the
electricity demand due to higher electricity consumption during the
weekdays. This weekly cycle is strictly linked to human activities and
cannot be reproduced by RoR or photovoltaic energy production. In
order to mimic this signal additional energy sources, such as hydro-
power plants with storage capacity or the use of batteries, would need
to be introduced for a 100% renewable energies scenario. The present
analysis might be useful to optimize reservoir capacity and adapt man-
agement strategies of such hydropower plants to reduce the negative
impacts associated to hydropeaking. Furthermore, we detected a 3–-
6 months periodicity in the electricity demand associated to winter
(heating) and summer (cooling) peaks. To cover this periodicity the
presence in the energy mix of the RoR from the rain dominated catch-
ment becomes relevant, giving a higher degree of flexibility throughout
the year. Finally, although present during thewhole analyzed time span,
the yearly periodicity shows an irregular behavior in terms of wavelet
power intensity. This is not the case for RoR from a snow dominated
catchment and photovoltaic energy, both showing a strong and contin-
uous yearly periodicity. From Figs. 3–6we are able to anticipate that due
to the significance of the daily cycle for the electricity demand, the share
of the photovoltaic energy might play a more relevant role in the mix.
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From a global perspective taking into consideration the whole analyzed
time span, the RoR energy sourcesmight provide amore reliable energy
supply than the solar energy, since photovoltaic energy is characterized
by a strong seasonality and null values at night and during cloudy days.
However, it is also clear that a combination of the three energy sources
will grant the optimal and most efficient solution.

The wavelet transform coherence (WTC) analysis shows high and
low coherence values among the selected renewable energies as indica-
tor of potential complementarity. TheWTC depicts with high coherence
values and arrows pointing to the right (in phase) the temporal scales at
which both energy sources have a similar periodicity. TheWTCbetween
RoR energy production from Posina (representing rain fed catchments)
and RoR hydro from Cadipietra (snow dominated catchment) presents
low coherence values in general and only sporadic high coherence
with a time lag between signals (Fig. 7a). Similar results are obtained
for RoR from Posina and solar energy (Fig. 7c). Both low coherence
values and high coherence with a phase shift present an opportunity
for high complementarity and consequently an increase in energy bal-
ance effectivity. Only the WTC between solar energy and RoR energy
from Cadipietra shows a stationary high coherence at yearly scale,
since the solar radiation directly affects both solar energy production
and the hydrological cycle of snow dominated catchments.

The introduced wavelet-based complementarity index (WBCI) con-
siders coherence values and phase lag between variables providing
therefore a holistic assessment of the complementarity between energy
sources at multiple temporal scales. At the sub-daily and daily scales,
both RoR from Posina and Cadipietra show similarWBCI values in com-
bination with solar energy (Fig. 7d and f). However, the highest WBCI
values at sub-daily and daily scales, implying higher complementarity
and therefore better performance, were detected for the combination
between solar energy and RoR from Cadipietra (Fig. 7f). This small dif-
ference is confirmed in the energy balance variance analysis (Fig. 9c
and d). A closer look reveals that with the same percentage of solar
power, a higher share of RoR from Cadipietra has lower energy balance
variance values at sub-daily and especially at daily scale. We can ob-
serve that at daily scale the lowest variance values are only achieved
for SH N 0.1.

Moreover, at the yearly scalewe observed lowWBCI values between
solar and RoR from snow-dominated catchment (Fig. 7f). Similar WBCI
values were detected for the complementarity between RoR from
Posina with RoR from Cadipietra (Fig. 7b), and RoR from Posina with
solar energy (Fig. 7d) withWBCI= 0.32 andWBCI= 0.33, respectively.
These findings are in line with the results obtained for the energy bal-
ance variance at yearly scale (Fig. 9f), in which the best performance
(lowest energy balance variance) appears for the combination of RoR
from Posina with solar energy (which had the highest WBCI = 0.33).
Low energy balance variance values at the yearly scale are also associ-
ated to the combination of RoR from Posina with RoR from Cadipietra
(SH = 0.5) for the different shares of solar energy. Combinations of
SH = 1 and different SPV values presented, in turn, the highest energy
balance variance values (Fig. 9f). Thus, the WTC analysis reveals that
the share of RoR from the rain dominated catchment plays a relevant
role in the energy mix complementarity, especially at the yearly scale.

5.2. Energy balance of the energy mix combinations

The energy balance CWT analysis is used to assess the complemen-
tarity of the different renewable energies (Fig. 8). We carried out an
analysis exploring 30 mix scenarios covering the full range of PV and
RoR ratios of SPV and SH. The CWT gives us the possibility to assess at a
glance the complementarity of the VRE sources and the suitability of
the energy mix combinations at various temporal scales (from sub-
daily to yearly scale). This type of analysis also allows us to explore
the evolution of the signal behavior at different temporal scales.

We can first observe in Fig. 8 that combinations with a share of pho-
tovoltaic energy higher than 60% (SPV = 0.6, 0.8, and 1) have a
prominent discontinuity in sub-daily and daily scales. This illustrates
that energy mix combinations with high share of solar energy do not
cover electricity demand at night, and neither during cloudy periods.
In fact, if we only focus on the daily scale, a stationary signal (continuous
pattern without discontinuities) in energy balance is observed for the
combinations with SPV = 0 (no presence of solar energy in the mix).
In addition, Fig. 9c and d show that the lowest variance values of the
decomposed signals at the sub-daily and daily scales are for the combi-
nations with no solar energy contribution. In particular, Fig. 9c and d
show that a 20% of photovoltaic energy is enough to mimic the daily
cycle of the electricity demand, while the contribution of RoR energy
supply is needed to cover the electricity demand at night.

If we focus on theweekly scale, we observe that although a pattern is
present in the energy balance CWTs (Fig. 8), no high wavelet power is
associated to this periodicity (color ranges from green to yellow indicat-
ing values between 2 and 3 of the log2 (WPS)). In Fig. 9ewe observe that
the highest variance values at weekly scale are associated to 100% pho-
tovoltaic energy supply (SPV=1) and 100% of RoR from rain dominated
catchment (SH = 0, SPV = 0). However, the computed variance values
for the weekly scale (Fig. 9e) are two orders of magnitude lower than
the original variance (Fig. 9a). This confirms that the significance of
the weekly scale is minor for the comparison of different energy mix
combinations composed of RoR and PV. Weekly variance values of the
energy balancemight be even lower if we consider storage hydropower
for instance.

For the yearly variance we observed in the input data analysis that
the electricity demand time series does not present a particularly strong
periodicity, as it is the case for the streamflow of the snow dominated
catchment and the photovoltaic energy. On the contrary, a wider spec-
trum of scales (from monthly to yearly) seems to present high wavelet
power values (red area in Fig. 3c). The variance of the yearly scale for the
DWTanalysis (Fig. 9f) is the summation of the decomposed signals from
3months to one year, which iswhy although photovoltaic andRoR from
snow fed catchment succeed in covering the yearly scale, fail to satisfy
the wider range of scales that are demonstrated to be significant for
the electricity demand (Fig. 3). This is true especially for solar energy,
which shows very low wavelet power at temporal scales immediately
smaller than the yearly scale (Fig. 6), while a completely different pat-
tern is present for the electricity demand. In our study, the only renew-
able source that shows awider spectrumof highwavelet powerwith no
dominant periodicity is the RoR from the rain dominated catchment.
However, the distribution of discontinuities is associated to precipita-
tion events and does not fully correspondwith the discontinuities pres-
ent in the CWT of the electricity demand. Therefore, a mixture of the
available energy sources achieves the best performance for this range
of scales. We can therefore conclude that different sources comply
with the electricity demand for different temporal scales and different
periods of the year.

5.3. Advantages and limitations of the proposed method

The suggestedmethodology can only be successfully implemented if
a minimum time series length with hourly resolution is available. This
requirement must be met to obtain statistical significant results out of
the cone of influence (COI). The proposed methodology presents also
several advantages in comparison to other available methods. One of
its main strengths is that we have the possibility to address different
temporal scales without losing any piece of information, unlike might
happen when using temporal aggregation. Secondly, we are able to
find the most relevant temporal scales for the electricity demand and
establish them as target temporal scales (the ones associated with the
largest variability). Additionally, we are able to detect temporal scales
that although not the main drivers of variability, still play a role (e.g.:
weekly).

The wavelet analyses (CWT, WTC, WBCI, and DWT) of the available
VRE sources allow us to identify at which temporal scales the electricity
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demand can be satisfied by one or a mix of the renewable sources con-
sidered. The information revealed by the WTC and especially by the
WBCI, which includes coherence values and phase lag computed for
each scale, assists us in thedetection of the scales forwhich the analyzed
variables show on average low or high complementarity at multiple
temporal scales. Furthermore, we can detect the limitations of the en-
ergy mix combinations to mimic patterns that are associated to specific
temporal scales (e.g.: weekly) that do not naturally emerge in any of the
renewable sources considered. In our case study, to mimic the demand
signal at the weekly scale, we would need to rely on additional energy
sources, such as hydropower plants using dams as storage facilities.

The analysis explicitly permits to relate energy balance variations at
different temporal scales to the time-varying characteristics of the geo-
physical processes and the electricity demand. We apply wavelet anal-
ysis to disclose the crucial periodicities of a signal and to determine
their alterations, if present, in time. Our study area shows a rather sta-
tionary behavior during the whole analyzed time span (from 1992 to
2012). However, wavelet analysis allows us to detect changes (i.e.:
breakpoints or trends) of the analyzed time series. These changes
might lead us to a better understanding of trends of the different signals
and contribute to more sophisticated predictions.

More specifically, while focusing on the climate variables, changes in
temperature, precipitation and glacier coverage affecting changes in the
time series patterns of VREs production (Bonato et al., 2019; François
et al., 2018; Puspitarini et al., 2020), can be identified and therefore
taken into account in further studies (e.g.: included in simulations of dif-
ferent energy mix combinations). In addition, climate change impacts
might directly affect socioeconomic factors, such us electricity demand
(Gaudard et al., 2014; Maran et al., 2014; Ravazzani et al., 2016). One
additional advantage of our method regarding further research is that
allows us to increase the complexity of the mixing (i.e.: including addi-
tional renewable energy sources) and still be able to detect the relevant
temporal scales at a glance.

6. Conclusions

In this work, we consider the performance of 100% renewable en-
ergy supply scenarios. This study investigates the structure of the com-
plementarity at multiple temporal scales between run-of-river (RoR)
hydro and solar photovoltaic (PV) power in an alpine transect located
in the North of Italy. We applied various wavelet analyses to assess
the energy mix combinations and the driving mechanisms behind the
energy sources complementarity. The input data analysis represents
an indispensable step to better understand the temporal structure of
the energy sources and the electricity demand time series. The CWT
does not only show the relevant periodicities that characterize each
time series, but might aid in the detection of intermittent patterns,
such as sub-daily and daily energy production and electricity consump-
tion patterns that significantly change over the year (especially relevant
in Nordic countries) or alterations in time of the signal behavior (e.g.:
sudden changes in the signal variability due to climatic forcing or socio-
economic triggers).

The WTC analysis among the selected VRE sources serves as indica-
tor of potential complementarity and allows us to detect non-stationary
behaviors. Based on the WTC, we introduce a new metric to assess the
complementarity between VRE sources across the continuous range of
temporal scales, the wavelet-based complementarity index (WBCI).
We show that this index varies at different temporal scales and it
helps explaining the discrepancy between demand and supply in the
study area. Moreover, the CWT and DWT-variance analyses allow us
to anticipate optimal energy sources combinations. Using wavelet
transform we analyze the performance of the mix scenarios to
determine the optimal energymix for the selected study area at specific
temporal scales. The signal behavior differs from short time scales (i.e.
sub-daily, daily, weekly scales) to large temporal scales (i.e.: monthly,
seasonal, 6 months, and yearly scales). Short time scales are relevant
mainly due to the diurnal cycle of PV, but also due to the daily pattern
of the electricity demand. In turn, variability at large temporal scales
has proved to be a good index for assessing the storage requirement.
Combining different renewable energy sources is beneficial due to
their complementarity in time, which limits the energy production
and load balance variability. The most efficient energy mix needs mini-
mum balancing costs (i.e.: minimizing investments in over-capacity or
transmission capacity) and storage needs (i.e.: optimizing reservoirs
volume and batteries). Our findings can contribute to the proper devel-
opment of further studies addressing the optimization of 100% renew-
able energy scenarios. Thus, the applied wavelet based analyses offer a
robust framework for practical renewable energy balance studies. In
particular, our analysis might be especially interesting for regions
where the temporal scales of the dominant periodicities have not
been identified yet orwhere dominant periodicities significantly change
over the year (e.g.: in Nordic region). As a potential future research
stemming from this one, the developed methodology could be applied
using longer time series so that we could also detect potential comple-
mentarity at large temporal scales and analyze the influence of climate
patterns on VRE.
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