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”Nothing in life is to be feared, it is only to be understood.

Now is the time to understand more, so that we may fear less.”

Marie Curie (1867 - 1934)
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Abstract

The knowledge of crop yields is a prerequisite for an optimisation of agricultural resources

and is necessary for yield prediction. Crop yields are often aggregated at the farm level

and are difficult to derive due to internal farm processes. Machine learning and remote

sensing help to overcome this problem and derive yield maps at the field level. This

requires the identification of crop types and the detection of field boundaries. The aim

of this work was to fill these gaps with satellite data and machine learning methods to

identify field boundaries and crop types that provide a basis for yield estimation at the

field level. A multi-temporal and object-based approach was used to incorporate the high

temporal availability of Sentinel-2 data. Nevertheless, the methods can also be applied

to pixels which is essential for implementing precision farming applications to ensure

optimal fertilisation and irrigation. The identification of field boundaries and crop types

is a prerequisite for yield prediction at the field level, when official data is not available.

In general, the field boundaries are needed for an object-based approach to aggregate

all pixels in a field to a mean value, thus generating a time series of satellite data per

field. The field boundaries identification is based on edge detection and was successfully

evaluated in first experiments. The edge detection reveals many irrelevant edges and

significantly increases the noise ratio. This was solved by using an index to reduce the

noise and focus on field borders. The user accuracy (UA) of 79% and producer accuracy

(PA) of 81% confirm the method, which can be applied worldwide and without training

data. Crop-type mapping achieved around 92% overall accuracy (OA) using Sentinel-2

raw bands, which can be further improved with hyper-parameter optimisation. Random

forest (RF) and support vector machine (SVM) were compared, with RF performing more

efficient, especially for predictions under atypical climatic conditions. The main crop

types, grown in Bavaria, were classified and experiments with a rejection class (”Other”)

were conducted to account for crop types not considered. This resulted in slightly lower
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accuracies, which is why it is preferable to work solely with the target crop types. The

crop-type classification is usually investigated with data from the same time spectrum,

but a real application requires experiments with predictions of an unknown year and

without labels. Official crop types are sometimes not available or only available with

a organisation delay, so a model with data from 2016 and 2017 was trained to predict

crop types in 2018. 2018 was an atypical year, influenced by periods of drought and

heat, which also affected the plant growth and its spectral signature. Nevertheless, the

model classified the crop types with an overall accuracy of 86% for one experimental

area. Another important result relates to the use of all raw bands from Sentinel-2, which

reveals multi-spectral distinguishing features compared to an application-oriented index.

This spectral bandwidth improves the yield prediction, but not as significantly as in

crop-type classification. The aim of this work was to produce yield prediction at the

field level for the years 2016 to 2018 and to evaluate them quantitatively. Depending

on the features, up to 90% of the yield variance of winter wheat was explained. Linear

regression (LR) and random forest were compared, with LR achieving higher accuracies.

RF requires more samples while LR generalises better. Yield data at the field level is

difficult to obtain, and this is one reason why previous research has focused on yield

prediction at the regional level. In contrast, this work analysed each field in terms of

yield and its relationship to water. This is also an important aspect, because previous

empirical research was conducted with indirect parameters or isolated indices. LR and RF

were helpful because both approaches provided the significance or ”feature importance”

to explain relationships. The applied methodology is additionally based on a physical

model for evapotranspiration using climatological and satellite data. Especially, the

incorporation of the normalised difference water index (NDWI), red edge inflection point

(REIP ) and all raw bands achieved the best results for yield prediction. In this context,

approaches for an optimal irrigation at the field level were also discussed. This thesis

covers several topics on yield prediction at the field level, reflects the state-of-the-art

and discusses future satellite-based approaches for advanced digital and sustainable farm

management.
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Zusammenfassung

Die Kenntnis der Erträge landwirtschaftlicher Betriebe auf der Feldebene stellt eine

Grundvoraussetzung für die Optimierung landwirtschaftlicher Ressourcen dar und ist

für eine Ertragsvohersage erforderlich. Häufig liegen Erträge nur aggregiert auf der

Betriebsebene vor oder Erträge können aufgrund des innerbetrieblichen Kreislaufs nur

grob abgeleitet werden. Mit Methoden der Fernerkundung und des maschinellen Lernens

könnten Erträge auf der Feldebene erfasst werden. Voraussetzung dafür ist wiederum

die Kenntnis der Feldgrenzen wie auch die Identifikation der Fruchtarten. Ziel dieser

Arbeit war es somit diese Lücken zu füllen, indem basierend auf Satellitendaten und mit

Methoden des maschinellen Lernens Feldgrenzen und Fruchtarten identifiziert wurden

und darauf basierend Erträge auf Feldebene geschätzt wurden. Hierbei wurde ein objekt-

basierter und multitemporaler Ansatz verwendet, um die hohe zeitliche Verfügbarkeit von

Sentinel-2 Daten zu nutzen. Diese Methoden können auch auf einzelne Pixel angewendet

werden, welches für die Umsetzung von Precision Farming Anwendungen essentiell ist,

um die Düngung und Bewässerung mengenmäßig zu optimieren. Die Kenntnis der

Feldgrenzen wird für einen objektbasierten Ansatz benötigt, um alle im Feld liegenden

Pixel zu einem Mittelwert zu aggregieren und eine Zeitreihe von Satellitendaten pro

Feld zu generieren. Die Feldgrenzenerkennung basiert auf einer Kantenerkennung und

wurde in vorhergehenden Experimenten erfolgreich evaluiert. Kantenerkennung detek-

tiert viele nicht relevante Kanten, welche das Rauschverhältnis deutlich erhöhen. Eine

Indexbildung ermöglichte es die Anzahl der Kanten im Feld zu reduzieren und den Fokus

auf die Feldgrenzen zu legen. Die erzielte Nutzergenauigkeit (UA) von 79% und eine

Herstellergenauigkeit (PA) von 81% bestätigen die Richtigkeit der Methodik, welche

sich weltweit anwenden lässt und ohne Trainingsdaten auskommt. Die Fruchtartenerken-

nung erreichte mittels Rohbändern von Sentinel-2 eine Gesamtgenauigkeit von 92% OA,

wobei dieses Ergebnis mittels Hyperparameteroptimierung weiter verbessert werden kann.
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Zusammenfassung

Random Forest (RF) und Support Vector Machine (SVM) wurden verglichen und es

zeigte sich, dass RF für die Fruchtartenbestimmung besser geeignet ist, besonders für die

Vorhersage unter klimatisch abweichenden Bedingungen. Die Hauptfruchtarten in Bayern

wurden hierbei klassifiziert, wobei auch Experimente mit einer Ablehnungsklasse (”Other”

rejection class) durchgeführt wurden, um zusätzlich nicht betrachtete Fruchtarten in

einer Klasse zu vereinen. Dies war zwar erfolgreich, jedoch führte es auch zu einer

leichten Verschlechterung der Ergebnisse. Es ist vorteilhafter direkt mit den betrachteten

Fruchtarten zu arbeiten. Ein weiterer wichtiger Aspekt für eine reale Umsetzung ist die

Nutzung eines Modells mit Daten aus vergangenen Jahren. Offizielle Fruchtarten liegen in

manchen Gebieten nicht vor oder sind nachträglich verfügbar. Aus diesem Grund wurde

eine Vorhersage von Fruchtarten für 2018 durchgeführt, wobei das Modell mit Daten

aus 2016 und 2017 trainiert wurde. Das Jahr 2018 war geprägt durch trockene Perioden

und Hitze, welche sich im Pflanzenwachstum und in der spektralen Signatur auswirk-

ten. Nichtsdestotrotz konnte das Modell die Fruchtarten mit einer Genauigkeit von bis

zu 86% für ein Testgebiet im Jahr 2018 bestimmen. Ein weiteres wichtiges Ergebnis

bezieht sich auf die Nutzung aller Rohbänder von Sentinel-2, die im Vergleich zu einem

Index-basierten Ansatz mehr spektrale Unterscheidungsmerkmale erkennen lassen. Diese

spektrale Bandbreite verbesserte auch die Ertragsvorhersage, jedoch nicht so signifikant

wie bei den Fruchtarten. Im Rahmen dieser Arbeit wurden Winterweizenerträge für 2016

bis 2018 quantitativ bewertet. Je nach Feature-Zusammenstellung konnten bis zu 90%

der Ertragsvarianz der Winterweizenerträge erklärt werden. Lineare Regression (LR) und

Random Forest wurden als Methoden verglichen, wobei LR die höchsten Genauigkeiten

erzielte. RF benötigt mehr Ertragsdaten während LR besser generalisiert. Ertragsdaten

auf Feldebene sind schwer verfügbar, weswegen in früheren Arbeiten Ertragsvorhersagen

hauptsächlich auf Regionalebene untersucht wurden. Im Gegensatz dazu wurden in

dieser Arbeit einzelne Felder und deren Wasserverfügbarkeit betrachtet. Dies ist auch

deshalb ein wichtiger Aspekt, weil frühere empirische Forschungsarbeiten mit indirekten

Parametern oder isolierten Indizes durchgeführt wurden. LR und RF sind hilfreich,

da mittels Signifikanz und ’Feature Importance’ auch Zusammenhänge erklärt werden

können. Die angewandte Methodik basiert zusätzlich auf einer physikalischen Model-

lierung der Evapotranspiration mittels Wetterdaten und integrierten Satellitendaten. Die
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Integration der Indizes NDWI, REIP und der Rohbänder ergab die besten Ergebnisse in

der Ertragsvorhersage. In diesem Zusammenhang werden auch Ansätze für eine optimale

Bewässerung auf Feldebene diskutiert. Diese Arbeit thematisiert verschiedene Aspekte

der Ertragsvorhersage auf Feldebene, spiegelt den gegenwärtigen Stand der Technik

wieder und diskutiert zukünftige satellitenbasierte Ansätze für eine verbesserte digitale

und nachhaltige Bewirtschaftung.
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1 Introduction

1.1 Precision farming and satellite remote sensing

Precision farming (PF) is based on several technologies ranging from drones, sensors,

Global Positioning System (GPS) to satellites. GPS is a satellite navigation system,

operated by the United States of America (USA). It is sometimes confused with other

satellite navigation systems, which can be summarised as Global Navigation Satellite

Systems (GNSS). Other constellations include the Chinese system Beidou, the Russian

Globalnaja Nawigazionnaja Sputnikowaja Sistema (GLONASS) and Galileo, the Euro-

pean navigation system. All of them provide high localisation accuracies for end users

and thus enable various applications such as variable rate application, soil sampling or

vehicle guidance (Goswami et al., 2012; Pérez-Ruiz and Upadhyaya, 2012). Terrestrial

sensors based on electromagnetic induction or infrared spectroscopy, provide insights

into soil properties, plant health, water or nitrogen (N) status (Becker and Schmidhalter,

2017; Mistele and Schmidhalter, 2010; Rischbeck et al., 2016). Modern tractors are

often equipped with proximal near infrared sensors, used for variable rate application,

which on the one hand save costs, and on the other hand allow to optimise nitrogen

application, thus protecting the environment (Schmidhalter et al., 2008). A tractor-based

near infrared sensor may enable to precisely measure and predict grain yield (Barmeier

et al., 2017).

Unmanned aerial vehicles (UAV’s) are used for different applications and must be con-

trolled by an user within the visual range. They allow rapid and nondestructive analysis

of soils or crop growth (IPATE et al., 2015). Nevertheless, it is an advantage of UAV’s,

that they can be flexibly equipped with different sensors, for instance for determining

ground temperature or for reflection measurements in the near infrared (NIR) or short

wave infrared (SWIR) spectrum. Other advantages are high resolution images which
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1 Introduction

are available independent of cloud cover. The application of UAV’s is also associated

with material and personnel deployment. In addition, processing of data after an over-

flight must be carried out. From a research perspective, the high resolution images

and flexibility make UAV’s very interesting (Saiz-Rubio and Rovira-Más, 2020), but

satellites are better suited for practice-oriented PF applications (Sishodia et al., 2020).

Table 1.1 gives an overview of the most interesting satellite missions identified for PF.

In general, satellites offer different resolutions and sensors. High-resolution images can

be obtained from commercial operators offering images up to a resolution of 0.3 metres.

Free of charge data can be obtained e.g. from the Landsat or Sentinel mission. The

high resolution, revisit time and free availability of data are ideal for PF why Table 1.1

summarises only free satellite data. Figure 1.1 shows the corresponding assignment in the

electromagnetic spectrum. A distinction is made between satellites with hyperspectral,

multispectral and radar-based sensors. Hyperspectral sensors offer a high amount of

bands in the SWIR, visible and near infrared (VNIR) spectrum. SWIR also provides

thermal information which are important for soil moisture determination or surface

temperatures. The Landsat mission dates back to the 1970s and were a great success

for the first developments of Earth observation (EO) applications. Since the availability

of images is a limiting factor solved by the Sentinel mission, this research work focuses

on Sentinel-2. A minor analysis was done with Sentinel-1 data to assess soil moisture,

but this was not the objective of this thesis. The Sentinel-2 mission started in June

2015 and reached its fully capability in 2017. The worldwide availability of data enables

the monitoring of agricultural areas and adapted solutions for digital farm management.

Independent of the determination of soil moisture, Sentinel-1 was also evaluated for other

applications in agriculture (Khabbazan et al., 2019; Mercier et al., 2020; Nasrallah et al.,

2019). The advantage of radar is its independence from clouds due to the frequency

range used.
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1.1 Precision farming and satellite remote sensing

Table 1.1: Overview of current satellite missions and their technical characteristics which can
be used for precision farming applications.

Satellites Launch Resolution
Sensor
type

Spectral
Characteristics

Revisit
time

Data Source

Sentinel-3A,
Sentinel-3B

3A:
02/2016,
3B:
04/2018

300, 500 m
Thermal: 1000 m

Optical
SAR

21 spectral bands:
400 - 1020 nm
(300 m),
550 - 12000 nm
(0.5 -1 km),
Altimeter:
13.575 / 5.41 GHz,
Radiometer:
23.8 / 36.5 GHz

NRT
<2
days

SciHub
Google
AWS

(ESA, 2020f)
(Wikipedia contributors, 2020e)

Sentinel-2A,
Sentinel-2B

2A:
06/2015,
2B:
03/2017

10, 20, 60 m Optical
13 spectral bands,
442,7 - 2202,4 nm

3-5
days

SciHub
Google
AWS

(ESA, 2020e)
(Wikipedia contributors, 2020d)

Sentinel-1A,
Sentinel-1B,
Sentinel-1C,
Sentinel-1D

1A:
04/2014,
1B:
04/2016,
1C/1D:
planned

SM: 5x5 m,
IW: 5x20 m,
EW: 25x100 m,
WV: 5x20 m

SAR
C-Band

Central Frequency:
5.405 GHz,
Polarization:
HH+HV,
VV+VH,
VV, HH

2-5
days

SciHub
Google
AWS

(ESA, 2020d)
(Wikipedia contributors, 2020c)

Proba-1 10/2001 17 m, Pan: 8 m
Hyper-
spectral

62 spectral bands,
Different viewing
angles for same spot

7
days

ESA (ESA, 2020c)

EnMap 2021 30 m
Hyper-
spectral

VNIR:
420 - 1000 nm,
SWIR:
900 - 2450 nm

4
days

(DLR, 2020)

Landsat-7 04/1999
15, 30 m,
Thermal: 60 m

Optical
8 spectral bands:
450 - 2350 nm
10400 - 12500 nm

16
days

NASA
Google
AWS

(USGS, 2020)

Landsat-8 02/2013
15, 30 m,
Thermal: 100 m

Optical
11 spectral bands:
433 - 1390 nm,
10300 - 12500 nm

16
days

NASA
Google
AWS

(Wikipedia contributors, 2020b)

Terra/
Aqua
MODIS

Terra:
12/1999,
Aqua:
05/2002

250, 500, 1000 m Optical
36 spectral bands:
400 - 14400 nm

1-2
days

NASA
Google
AWS

(NASA, 2020)

EO-1
Hyperion

11/2000 30 m
Hyper-
spectral

224 bands:
VNIR:
426.82 - 925.41 nm,
SWIR:
912.45 - 2395.50 nm

16
days

USGS
Google
(<2017)

(GEE, 2020)
(Wikipedia contributors, 2020a)

ALOS-2 05/2014
Strip: 3 - 10 m,
ScanSAR: 100 m,
Spotlight: 1 x 3 m

SAR
L-Band

1257,5 MHz
14
days

Google
JAXA

(ESA, 2020a)

PRISMA 03/2019 30 m, Pan: 5 m
Hyper-
spectral

238 bands:
VNIR:
400-1010 nm,
SWIR:
920-2505 nm,
PAN:
400-700 nm

29
days

ASI (ESA, 2020b)
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Figure 1.1: Overview of the electromagnetic spectrum and spectral classification used for Earth
observation. Depending on the wavelength, different parameters such as texture,
temperature or chlorophyll content can be determined. Especially the infrared (IR)
radiation with its NIR, SWIR and thermal bands is used in PF.

1.2 Crop water demand

Crop water demand is an important aspect of PF as it ensures yields especially in

regions with water scarcity. Climate change means that irrigation may soon be needed

even in regions that have not experienced water stress. Section 1.2.1 and section 1.2.2

therefore compare satellite-based soil moisture and evapotranspiration assessments and

their usability for field level mapping.

1.2.1 Soil moisture

The determination of high resolution soil moisture (SM) estimates can be performed

with the C-band synthetic-aperture radar (SAR) of Sentinel-1 (Wagner et al., 2010).

Other missions like Soil Moisture and Ocean Salinity (SMOS) or Soil Moisture Active

Passive (SMAP) offer a L-band radar, which is more suitable for soil moisture (SM)

determination, since it is not as strongly influenced by vegetation as the C-band. However,

both missions do not provide the required field level resolution, so these missions are not

listed in Table 1.1 (El Hajj et al., 2018b). A SAR system is characterised by frequency,

polarisation and its active sensor. While the frequency range enables to penetrate clouds

and vegetation, the polarisation determines the diffusion. The penetration of soil and
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1.2 Crop water demand

vegetation decreases with a rising frequency. Active means that modulated and pulsed

electromagnetic waves are transmitted and the backscattered signals are received by the

same satellite (Moreira and Krieger, 2003). Various methods have been investigated for

SM retrieval. Paloscia et al. (2013) used an artificial neural network (ANN), resulting

in results with a RMSE of around 4%. A multi-temporal approach, based on Bayes,

which incorporates multiple observations over time achieved soil moisture estimates that

correlate with corresponding precipitation over time (Pierdicca et al., 2014). These

authors propose to exploit optical data in order to correct the underlaying vegetation. In

general, the relationship between backscatter and SM is nonlinear, affected by surface

roughness, topography and vegetation (Greifeneder et al., 2016; Greifeneder et al., 2018;

Pasolli et al., 2015), why SM retrieval improves with the incorporation of land cover

maps, digital elevation models and vegetation indices. Another C-band satellite mission

is the Canadian RadarSAT mission. Although the data must be ordered, which is why

the mission is not listed, several publications on SM retrieval have been produced with

promising results (Merzouki and McNairn, 2015; Merzouki et al., 2011). The polarisation

characteristics of RadarSAT and Sentinel-1 differ, which must be taken into account

when comparing results. However, the SM estimates are limited to bare or sparely

vegetated areas (Merzouki and McNairn, 2015), as denser vegetation over time strongly

influences the SM estimates. In addition to radar-based approaches, hyperspectral sensors

or thermal bands can be used to derive the ground temperature and indirectly the SM.

Soil temperature correlates with soil moisture and was investigated in several studies

(Al-Kayssi et al., 1990; Aliyu Kasim et al., 2020; Idso et al., 1975; Lakshmi et al., 2003;

Zhang et al., 2014). However, since an important requirement is the required field

level resolution, Landsat-7, 8 and Sentinel-3 are particularly suitable. A planned future

Sentinel mission will provide land surface temperature (LST) with a resolution of even 50

metres per pixel. The temperature vegetation dryness index (TV DI) is a proven method

for SM retrieval based on LST and a vegetation index (Li et al., 2016; R. et al., 2009;

Sandholt et al., 2002). Although it delivered good correlations, the indirect negative

relationship is prone to errors depending on the vegetation (Li et al., 2016; Mallick

et al., 2009). Liang et al. (2020) applied high resolution vegetation indices such as the

normalised difference vegetation index (NDV I), the normalised difference water index

5



1 Introduction

(NDWI) and leaf area index (LAI) from Sentinel-2 in order to determine surface soil

moisture and obtained a good correlation with SM in wetlands. Foroughi et al. (2020)

presented a solution verified for a sugarcane field and based on red and NIR reflectance

values and without thermal information. The authors mention that the correlation

decreases with soil depth, why this approach is not suitable for deriving the root zone

SM. Serrano et al. (2019) showed that the usage of optical bands correlated with soil

moisture in the upper soil up to 20 cm for the test site with grass cover. The authors

used the NDWI, which is related to leaf moisture content and achieved a R2 of 0.76 for

biomass productivity and a R2 of 0.75 for soil moisture. In comparison to the presented

SAR methods, which directly determine soil moisture, this represents an interesting

agreement. Both approaches (direct or indirect) are limited by vegetation cover or soil

depth. All presented approaches deliver SM estimates for the upper soil. A comparison

of several active and passive satellite missions also concluded that although it is very

well possible to determine soil moisture in general, soil moisture cannot be determined in

the root zone (Ahmed et al., 2011). However, the root zone must also be considered as

long as the plant type is not grass. In addition, backscatter absorption by the vegetation

cover complicates reliable SM measurements and thus a current incorporation into yield

prediction systems.

1.2.2 Evapotranspiration

Besides SM, evapotranspiration (ET) has the potential to monitor crop water needs.

ET accounts for the evaporation of soil and transpiration of plants. It is a proxy

for water demand of plants and can be measured by local sensors (e.g. lysimeter) or

satellites. In recent years, several approaches for ET determination have been developed

with a focus on surface energy balance (SEB) models or Penman-based approaches.

Important examples for energy balance models are surface energy balance algorithm for

land (SEBAL) (Bastiaanssen et al., 2005; Sun et al., 2011), mapping evapotranspiration

at high resolution with internalised calibration (METRIC) (Allen et al., 2007; McShane

et al., 2017), operational simplified surface energy balance (SSEBop) (McShane et al.,

2017; Senay et al., 2013) and simplified surface energy balance index (S-SEBI) (Roerink

et al., 2000). All models require LST as a prerequisite (Senkondo et al., 2019), but
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1.2 Crop water demand

only SSEBop and S-SEBI do not require additional information such as climatological

data and provide ET estimates based purely on remote sensing data. A comparison

of METRIC with SSEBop regarding advantages and disadvantages has been made by

McShane et al. (2017). Senkondo et al. (2019) verified successfully energy balance models

for a region in Tanzania by integrating Moderate Resolution Imaging Spectroradiometer

(MODIS) data. S-SEBI, SEBAL and SSEBop provided similar results and can be used

for hydrological models, since the medium spatial resolution is only partially suitable for

PA. MODIS provides besides RGB also NIR, SWIR and surface temperature data with a

high temporal availability, but at the cost of spatial resolution. The use of MODIS is

especially suitable for energy balance models because of the surface temperature data

(Faisol et al., 2020; Huang et al., 2017; Li et al., 2009), but only for the production of

ET maps at the regional level. An advantage of certain SEB models is the independence

of climatological data which is interesting for regions without local weather stations.

However, field accurate ET mapping requires high resolution temperature data which is

only possible with Landsat 8, 7 and 5. Landsat 5 was operational from 1984 to 2013.

Landsat 7 is still in operation, but there are gaps in the acquisitions due to a scan line

corrector (SLC) error. While Landsat-7 provides processed 30 m temperature images,

the thermal infrared sensor (TIRS) of Landsat 8 provides surface temperature data with

a resolution of 100 metre (Jeevalakshmi et al., 2017; Sekertekin and Bonafoni, 2020).

Even if the data is scaled up to 30 metres, this would meet the PF requirements, but

revisit time would be still problematic. Landsat has a revisit time of around 2 weeks and

the data availability is limited by clouds (see Table 1.1). Sentinel-3 solves the temporal

coverage but its temperature data have a resolution of around 1 km. A fusion of Sentinel-3

and Sentinel-2 was shown during the preparation of this work and estimates the actual

evapotranspiration with a resolution of 20 metres (Guzinski et al., 2020). This could be

a potential alternative approach for irrigation management or yield forecasts.

A very straightforward methodology for irrigation management is the application of

Penman-Moneith (FAO56) (Allan et al., 1998; FAO, 2020) which is based on climatological

data and a crop coefficient Kc. The Kc coefficient adapts a reference evapotranspiration

ET0 over grass and under standard conditions to a crop-specific evapotranspiration ETc.

It can be determined by remote sensing as indices or raw reflectance can monitor crop
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type and plant phenology (D’Urso and Belmonte, 2006; Kamble et al., 2013; Marszalek

et al., 2020). Vuolo et al. (2015a) describes the Kc factor as a proxy where the LAI

index, albedo radiation and crop height are estimated using satellite data. The crop

coefficient also considers the heterogeneity of fields e.g. due to soil differences or farming

practices (D’Urso and Belmonte, 2006). A drawback of this approach is the dependence

on climatological data, and thus on the distribution of weather stations, which varies from

country to country. A weather station can be several kilometers away from a field. An

irrigation solution at the field level based on the NDV I or LAI was recently proposed

(D’Urso and Belmonte, 2006; D’Urso et al., 2010; Vuolo et al., 2015a). This methodology

optimises the water usage on the one hand and ensures the yields on the other (Vuolo

et al., 2015a,b). Although water is free of charge in Europe, the energy costs for the

water pumps can be very high over time and the water availability is frequently limited.

Since the presented soil moisture approaches in section 1.2.1 consider the upper soil

and suffer from vegetation cover, active and passive soil moisture estimates have not

been considered for winter wheat yield prediction in section 3.3. The promising results

obtained with the FAO56 methodology will be used to determine crop water requirements

(CWR) and ultimately to predict yields to incorporate the water requirements of winter

wheat.

1.3 Crop-type identification

Crop-type mapping was one aspect of this work since it is related to yield prediction. Crop

types have to be identified before a yield prediction can be applied if no crop information or

land cover masks are available (Friedl and Sulla-Menashe, 2019). Crop-type mapping has

been investigated in several studies and the corresponding data sets have been published

to enable other researchers to compare their methods and to establish benchmarks

(Marszalek et al., 2020; Remelgado et al., 2020; Rußwurm et al., 2020). The research

studies differ between classifications based on one satellite or UAV image (Böhler et al.,

2018; Chetan et al., 2017; Immitzer et al., 2016; Mazzia et al., 2019; Natteshan and Kumar,

2020; Saini and Ghosh, 2018; Wei et al., 2019) and a multi-temporal stack of images

(Belgiu and Csillik, 2018; Dimitrov et al., 2019; Harfenmeister et al., 2018; Marszalek

et al., 2020; Vuolo et al., 2018). Multi-temporal crop-type classification uses time as
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a significant dimension that maps information on the development of the crop types.

This enable to include the spectral response and phenology of a crop type, resulting

in a more efficient classification. The implementation of multi-temporal approaches

requires stable and gap-less observations and appropriate methods for noise reduction

and gap filling (Lepot et al., 2017). In the past, the availability of high-resolution

satellite data limited these techniques, or it was important to use medium resolutions

such as MODIS data to meet this requirement. However, the availability of Sentinel-2

multispectral data changed this, as its resolution and time coverage solved this problem.

Only cloud cover remains a limiting factor, especially in regions with high cloud cover.

For instance, the identification of crop types in the tropics would be a challenge that

could be overcome by SAR satellites, since radar operates independently of cloud cover

or sunlight (Orynbaikyzy et al., 2019; Tricht et al., 2018). Regions with average cloud

cover do not necessarily require fusion with radar data, since the temporal coverage of

Sentinel-2 provides sufficient data. Independent of the used data, various methods have

been investigated for this purpose with various sample sizes and classification accuracies

(Belgiu and Csillik, 2018; Ma et al., 2017; Nitze et al., 2012). However, there is a lack

of practical considerations, since the results are based on train/test splits in the same

year. In many countries ground truth data (crop types) is not available or will be made

only available in the course of the year. A train/test split for the same year or region is

appropriate for comparing the efficiency of methods or various feature sets, but when

it comes to real-world applications, it must be possible to determine crop types in a

region or year without ground truth data. Belgiu and Csillik (2018); Maus et al. (2016);

Petitjean et al. (2012) recognised this issue and emphasise that a time series for a crop

type can differ from year to year as weather anomalies or management practices affect

the spectral characteristics of the plants. Hao et al. (2016) is a rare work which addressed

this issue and predicted crop types for a year without ground truth data and based on

NDV I time series from Landsat and MODIS. The authors achieved an accuracy of up to

87.13%, which is slightly lower than research studies, where the validation is based on the

same year. Early classification of crops is also essential from a practical point of view and

considers the best possible classification as early as possible before harvest. Mori et al.

(2018) proposed the usage of a cost function and stopping rule for early classification.
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Rußwurm et al. (2019) proposed a neural network with a stopping rule to classify crops

in 2018. One important finding is that the stopping dates for each class presented were

in June and July before harvest. Another characteristic issue is the similarity of some

crop types, as certain crops have similar spectral characteristics, e.g. winter barley and

winter wheat (Dimitrov et al., 2019). Nevertheless, this topic is also a methodological

problem. Some research projects use indices for crop-type classification, with NDV I

being most frequently used (Belgiu and Csillik, 2018; Dimitrov et al., 2019; Sousa et al.,

2019). The question arises why an index for biomass or chlorophyll is frequently used

for crop-type or land-use classification (Sousa et al., 2019). An index can even make

crop-type detection more difficult, as the biomass can often be similar at the beginning

of the season, while the use of all raw bands benefits from additional insights such as

colour differences (Immitzer et al., 2016).

1.4 Field boundaries

Field boundary extraction was also addressed in this thesis and has emerged in the

context of crop-type detection. The detection of field borders and the creation of

resulting polygons is mandatory for object-based crop-type classification or yield forecasts

at the field level. The usage of object-based approaches improves the accuracy and is

more efficient than pixel-based classification (Blaschke et al., 2014; Schultz et al., 2015;

Watkins and Van Niekerk, 2019). Nevertheless, an object-based classification, where an

aggregated mean value represents a field, does need a polygon that describes field borders.

Polygons are used in order to determine a mean value over all pixels in a polygon and for

each observation. The applications addressed - yield prediction and crop type detection -

are based on this procedure. The field borders applied were provided by the Bavarian

State Ministry of Agriculture and Forestry (StMELF) and include such information as

georeferenced polygons and crop types. These labels are necessary for supervised learning,

but it remains to be seen how the yield for a field in a region can be predicted without

this information? An object-based approach is not possible in this case. Therefore, we

reviewed the current state-of-the-art methods to find a possible solution. Field boundaries

can be extracted by segmentation techniques using approaches such as deep learning

or edge detection. Supervised learning approaches have proven their efficiency and
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achieved excellent results (Chandwadkar, 2013; Diakogiannis et al., 2020; Masoud et al.,

2020; Schultz et al., 2015; Waldner and Diakogiannis, 2019). Unsupervised learning

does not need labels to learn and predict. It infers without knowledge and segments

data into associated patterns. Regardless of the excellent results that can be achieved

with supervised learning, unsupervised learning provides the possibility to deliver results

without labels or large data processing efforts. Consequently, initial attempts focused

on image segmentation and edge detection techniques. Image segmentation separates

regions in an image into homogeneous areas where the pixels have similar properties. In

this context, watershed, simple linear iterative clustering (SNIC), multi-threshold and

multi-resolution segmentation have been investigated for field boundaries (Gorelick, 2020;

Schultz et al., 2015; Waldner and Diakogiannis, 2019; Watkins and Niekerk, 2019a,b; Yan

and Roy, 2014). One general problem here is the over- and under-segmentation of regions.

Edge detection techniques such as the Sobel operator, Scharr operator or Canny edge

have been compared for applications such as feature extraction or object detection in

the past with the result that Canny edge detection achieves better results in comparison

(Chandwadkar, 2013; Huang et al., 2017; Watkins and Niekerk, 2019a; Yellasiri et al.,

2010). These algorithms detect edges to separate regions or objects in an image but suffer

from noise such as false edges and incomplete boundaries (Chen et al., 2015; Watkins

and Niekerk, 2019a). Hybrid approaches using region-based segmentation and edge

detection were also investigated in order to benefit from the strengths of each category

(Mueller et al., 2004; Rydberg and Borgefors, 2001). Following a simple approach, which

eased implementation efforts and reduced noise, hybrid approaches were avoided. Canny

edge shows good results compared to other edge operators. Nevertheless, noise hinders

the application of Canny edge for field boundaries detection. The problem of noise

is addressed by an index to reduce the information content and emphasises the field

boundaries before applying Canny edge on each image. It is also assumed that the use of

multiple observations strengthens the field boundaries as in the case of crop-type mapping.

This simplified procedure was a first experimental attempt to cover all necessary aspects

of object-based yield mapping at the field level.
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1.5 Winter wheat yields at the field level

In a constantly changing environment due to climate change and growing demand for

food, the development of intelligent approaches to optimise resources and yields is

essential. Yield predictions provide a basis for various applications and are necessary for

international organisations, farmers or financial institutions. Yield predictions relate to

the following areas:

• Management zones

• Optimisation of resources (fertiliser, water, pesticides)

• Food security

• Food supply chain

• Forecast of yields

• Futures

In the past, various solutions have been proposed for yield prediction. A main focus of this

work is the implementation of a practical and efficient solution that is cost-effective and

can be used worldwide. For this reason, satellite-based research projects are considered

that differ in terms of spectral information, resolution or satellite information used to

explain different crop yields. Independent of the investigated crop type, parameters such

as water need, nitrogen supply and climatological information are essential and influence

the grain yield. Crop simulation models such as World Food Studies (WOFOST) are a

proven methodology (Basso and Liu, 2018; Pan et al., 2019) as well as the incorporation

of climatological data from nearby stations (Albers et al., 2017; Bolton and Friedl, 2001;

Chen et al., 2004; Heil et al., 2020; Lobell et al., 2006; Schlenker and Roberts, 2009;

Shi et al., 2013; Zhao et al., 2017). In general, past research activities differ between

physical, empirical and hybrid approaches (Basso and Liu, 2018; Peng et al., 2020a,b;

Shelia et al., 2019). The application of climatological data is one of the most used and

simplest procedures whereby precipitation, temperature and solar radiation are the most

important parameters. Some climatological parameters correlate with each other which
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1.5 Winter wheat yields at the field level

can lead to model overfitting if no additional restrictions can be made. Bolton and

Friedl (2001) proposed evapotranspiration as an input variable to fuse climatological

data and avoid overfitting. However, the climatological data only accounts for a part

of the yield variance and is not suitable for yield maps at the field level. One of the

first satellite-based yield applications have been based on MODIS data which provides

a moderate resolution of up to 250 metre per pixel and support yield prediction on

a regional or national scale (Bolton and Friedl, 2013; Doraiswamy et al., 2003; Liang

et al., 2004; Tadesse et al., 2015a; Wang et al., 2018). For instance, Bolton and Friedl

(2013) predicted maize yields in non-semi-arid areas and found out that the enhanced

vegetation index (EV I2) gave the best results and explained around 67% of the yield

variance. The authors also mention that the normalised difference water index (NDWI)

is sensitive to watering and performs well in semi-arid regions. An index explains a plant-

specific or yield-relevant characteristic by establishing a relationship between different

wavelengths. Serrano et al. (2019) also applied the NDWI and found high correlations

with soil moisture and biomass productivity. To get an overview of regional developments,

MODIS is an adequate data source but PF needs to cover the heterogeneity of fields.

The availability of Landsat data enabled yield prediction at the field level, but Landsat

provides only a few images per vegetation period. This changed with the Sentinel mission

which provides a high temporal coverage for every location worldwide and specifically

enables precision farming applications (Escolà et al., 2017; Skakun et al., 2019). Yield

predictions at the field level are very ambitious as the relationship between soil, water,

nitrogen and climatological data needs to be addressed. Therefore, it is important to

learn the relationship between yield-relevant observations also in years with weather

anomalies or varying nitrogen supplies. In the past, mainly indices or climatological data

were used, but this research study focuses on water to explain winter wheat yields at

the field level. The performance of indices and climatological data were additionally

verified. The presented overview in section 1.2 is key to find a methodology which can be

used for monitoring of the crop water demand. An evapotranspiration-based approach

was chosen as it combines climatological and satellite data and tracks the daily crop

water requirements (CWR) of different plants. The efficiency of this approach was

also verified for irrigation management by recent research studies (Alface et al., 2019;
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Argolo dos Santos et al., 2020; D’Urso and Belmonte, 2006; Vuolo et al., 2015a,b). This is

an important confirmation for water demand measurements, since it has already proven

its usefulness in form of a practical use case. The key here is simplicity and efficiency.

Other studies that include water demand for yield prediction focus on energy balance

models such as METRIC or SEBAL. Several authors (Awad, 2019; Khan et al., 2018;

Tadesse et al., 2015a) emphasised the usefulness of actual evapotranspiration, but also

stressed the issue of Landsat data availability. This problem does not occur with the

approach used in Section 2.2.2 because it does not require land surface temperature. This

Penman-based CWR also considered other indices like the normalised difference red edge

index (NDRE), red edge inflection point (REIP ) and NDWI as Kc factor. NDRE and

REIP strongly correlate with the LAI index and are thus more flexible, as they do not

need to be calibrated (GAO et al., 2017; Herrmann et al., 2011; Lilienthal, 2014). LAI

is a derived index based on empirical or physical evaluation (Asam, 2015; Revill et al.,

2020). However, this makes the application in different climate zones or for different

crops more difficult. Secondly, REIP and NDRE do not saturate as fast as NDV I.

And most important, REIP and NDRE correlate with nitrogen content (Lilienthal,

2014; Zhang et al., 2019). The incorporation of observations concerning nitrogen and

water makes it possible, on the one hand, to cover the most important features and, on

the other hand, to treat the most important yield features in a direct and physical way.

1.6 Objectives and outline of the thesis

In summary, this work addresses key issues for yield prediction at the field level, crop-type

and field boundary classification. The question arises how this three topics are related to

each other. Yield prediction at the field level has not much been addressed in the past

due to the availability of high resolution data. Supervised learning methods need labeled

data such as field borders, crop types or yield records. Object-based yield prediction at

the field level needs field boundaries and the corresponding crop type to apply a trained

model. For example, if it is necessary to predict the yield of winter wheat fields in a

region of South Africa, the field boundaries must first be identified, followed by the

classification of winter wheat to specifically predict the yield of these fields. Therefore,

the following questions will be addressed:
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• Which input features are important for winter wheat yields ?

• To what extent does the temporal resolution of time series (monthly/weekly)

influence the prediction?

• Which influence has the processing level of Sentinel-2 images ?

• To what extent do weather anomalies influence the results ?

Section 2 introduces all sites in Bavaria and collected data sets for the investigations with

field borders, crop types and yield predictions, followed by section 3, which presents all

results in detail. The presented results for yield prediction include a detailed comparison

of various configurations and input features. Section 4 discusses the results and open

questions and stresses further needs.
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2 Material and methods

2.1 Crop types and field boundaries

2.1.1 Study site

All the results presented are based on study sites in Bavaria. Depending on the application,

there were differences in the amount of data used for crop-type or yield prediction. The

study area for crop-type mapping is the whole of Upper Bavaria, which comprises about

7875 square kilometres of agricultural land (LfStat, 2017). The crop types investigated

were maize, winter wheat, winter barley, winter rapeseed, sugar beet, and potato. Some

experiments were performed with an additional rejection class (Other), which covers those

plant types not considered. Figure 2.1 summarises the most important characteristics

such as temperatures, monthly precipitation and crop phenology. Figure 2.2 shows the

validation area with 301 fields. The average annual temperature in Bavaria is 8.6 ◦C with

an average precipitation of 811 mm. The measured climatological data in section 2.2.1

differ strongly from the annual average values, because they were determined for the

vegetation period from the beginning of March to the end of July. Crop-type mapping also

focuses on the vegetation period, but from the beginning of February to the end of August

for the years 2016, 2017 and 2018. 2018 was characterised by unusually high temperatures

and drought, while 2016 and 2017 were characterised by rather similar climatic conditions.

The high temperatures and the drought in 2018 influenced the development of the crops

as well as the spectral fingerprint. Table 2.1 provides an overview about the fields for field

boundary and crop-type classification. Crop-type mapping was trained and validated

using 2400 samples, while 301 samples from an area near Freising in Germany were

used to identify field boundaries. 2099 fields were randomly selected from all parts of

Upper Bavaria, and 301 adjacent fields from one region were used for validation and
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2 Material and methods

field boundaries. The corresponding ground truth data with all the field borders and

crop types for all years were provided by the Bavarian State Ministry of Agriculture and

Forestry (StMELF).

Figure 2.1: Climate overview and crop phenology of the test sites in Upper Bavaria. Figure
a) shows the crop phenology with the sowing period in lime green, the vegetation
period in darker green and the harvest period in yellow. Figures b) and c) show the
average monthly maximum and minimum temperatures and precipitation. Figure
d) highlights the area of Upper Bavaria in Bavaria under investigation. The fields
in Upper Bavaria were randomly chosen to cover the whole area.

Table 2.1: Overview of samples for crop-type classification and field boundaries. Data for 2018
includes additional 301 samples to visualise crop-type mapping in one region.

Crop Types Field Boundaries

2016: 699 0

2017: 700 0

2018: 700 + 301 301
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2.1 Crop types and field boundaries

Figure 2.2: Coherent area near Dürnast in Upper Bavaria with 301 fields and corresponding
decimal latitude and longitude coordinates, which were used to validate the field
boundaries and crop types.

2.1.2 Crop-type processing

The processing chain for crop-type mapping is illustrated in Figure 2.3. It shows the

necessary data inputs from OpenStreetMap (OSM), Sentinel-2 and StMELF, the pre-

processing and classification based on support vector machine (SVM) and random forest

(RF) (Biau and Scornet, 2016; Cortes and Vapnik, 1995; Cristianini and Shawe-Taylor,

2000). By using OSM, it is possible to remove non-relevant areas such as water bodies,

forests, buildings or roads. The pre-processing includes the application of the NDV I

standard deviation, which indicates whether a pixel has changed over time. For example,

water bodies or buildings hardly change over time, while vegetation shows a high temporal

variance. The StMELF data consists of field boundaries and crop types in Bavaria for

every year and were applied to the training and testing of both classifiers.
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Figure 2.3: Overview of the processing of crop types with their input data and processing steps.

2.1.3 Field boundaries processing

The detection of field boundaries is an important step towards object-based crop-type

mapping and yield prediction when official field borders are not available. Figure 2.4

introduces an unsupervised learning approach based on Open Computer Vision (OpenCV)

and Canny edge detection (Bradski, 2000; Xu et al., 10/20/2017). Google Earth Engine

(GEE) and OpenCV include the Canny edge algorithm, but the presented approach

applies the GEE-based Canny edge detection to each image in a collection and outputs

the sum of all Canny edge images as an image which in turn is processed with OpenCV.

Gaussian blurring, image conversion or finding contours are supported by OpenCV. The

recognised contours are processed into geo-referenced polygons and masked with OSM

data to remove any irrelevant objects.

Canny sum 
from canny 
collection

Create 
shapefile with 

polygons

Mask 
polygons with 

OSM data

OpenCVGoogle Earth 
Engine

Collection of 
images

Remove 
Gaussian noise

Canny  sum to 
gray scale 

Apply 
inverse binary 

threshold
Find contours

Figure 2.4: GEE, Canny edge detection and OpenCV pipeline for field boundary detection.
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2.2 Winter wheat yield prediction

2.1.4 Metrics

Overall accuracy (OA), user accuracy (UA), producer accuracy (PA) and Kappa statistics

have been applied for the evaluation of the classification performance (Humbold State

University, 2020). Overall accuracy and Kappa evaluate the classification of all crop

types, while PA and UA consider each crop type. OA is expressed by correctly classified

crops divided by all reference crops. The Kappa coefficient ranges from 0 to 1, whereby

1 stands for a perfect classification result with ground truth. PA represents a measure

of how well the ground truth data are classified while UA considers the classification

reliability. It shows whether the classification has erroneously assigned other classes to a

class and thus the classification does not match ground truth. Scikit-learn (Pedregosa

et al., 2012) contains all the metrics presented, as well as algorithms such as SVM and

RF. The Interception over Union (IoU) is additionally used for field boundary evaluation.

It describes the area of overlap divided by the area of union.

2.2 Winter wheat yield prediction

2.2.1 Study site

The study regions are located in Upper Bavaria and in Upper Palatinate in Southern

Germany. The most important crop types are winter wheat, maize, barley, rapeseed,

sugar beet, and potato. In this study, winter wheat was chosen which is sown at the

beginning of October and harvested at end of July or beginning of August. The average

temperatures for the vegetation period and the investigated sites are indicated in Table

2.2, which shows increasing temperatures from 2016 to 2018. Considering the annual

average, Bavaria has a mean temperature of 8.6 ℃ and a mean precipitation of 811 mm.

In the three regions 121 winter wheat fields were selected with different sizes, visualised

exemplary as georeferenced polygons in Figure 2.5. Six yield measurements for 2018 from

a combine harvester were additionally used and aggregated to mean values.
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2 Material and methods

Figure 2.5: Winter wheat yields and corresponding field borders in WGS84 (EPSG:4326) where
A) shows the location of Bavaria in Europe, B) depicts the investigated three regions
where actual yields were determined from 2016 to 2018, and C) visualises the selected
field sites in one test region near Dürnast in Upper Bavaria (Germany).

Table 2.2: Overview of yield and climatological data with their mean values (µ) and standard
deviation (σ) from the beginning of March to the end of July, 2016 - 2018.

2016 2017 2018

µ Temperature (oC): 12.0 12.6 13.3

µ Precipitation (mm): 314.4 294.2 302.3

Number of Fields: 43 48 30

µ Yield (dt ha−1): 84.9 77.9 70.9

σ Yield (dt ha−1): 10.6 12.3 12.0

Table 2.2 lists the mean yield values and standard deviations with the highest yields

obtained in 2016 (84.9 dt ha−1) and the lowest in 2018 (70.9 dt ha−1). We considered

the vegetation period from the beginning of March to the end of July in 2016, 2017

and 2018. Yields determined in 2016 were above-average compared to Bavarian-wide

region values amounting to 72.3 dt ha−1 (StMELF, 2020). All yields were weighed

gravimetrically directly after threshing. Grain moisture content was determined and

expressed as standard value of 14% for all yields. In 2018, we further collected six

additional averaged field yields using a combine harvester. Figure 2.6 indicates the

corresponding average temperatures and precipitation on a weekly basis as an average
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2.2 Winter wheat yield prediction

value for all fields. For this purpose, climatological data were retrieved from the nearest

weather station to each field. Especially noticeable is the temperature trend in April and

early May in 2018, which was above average. The amount of precipitation was quite

comparable in all years, but differed significantly between months. Figure 2.6 shows that

the precipitation in spring 2018 was below average. The soil types are heterogeneous and

include loamy sand, sand, gravel, loam, half-bog, and clay. Figure 2.7 visualises winter

wheat yield distributions for all years and indicates the amount of nitrogen applied.

Figure 2.6: Aggregated average temperature (℃) and cumulative precipitation (mm) in weekly
resolution from March to July.

Figure 2.7: (a-c) Frequency of winter wheat yield distributions (dt ha−1) and d) amounts of N
applied (kg ha−1) in the years 2016, 2017, and 2018.
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2.2.2 Climatological data and evapotranspiration

Climatological data and ET are essential for yield prediction as the availability of water

is one of the most important factors influencing yield. ET is used for irrigation control

and can be customised using satellite data for plant-specific applications (Allan et al.,

1998; Vuolo et al., 2015b). All climatological data were downloaded from nearby weather

stations from the German Weather Service (DWD), which provides all data free of

cost. The corresponding three weather stations are visualised in Figure 2.5 and vary

in distance from 0.23 km to a maximum of 13.77 km to the fields in the target region.

The downloaded measurements included hourly maximum and minimum temperature in

degrees Celsius (°C), wind speed (km h−1), precipitation (mm), dew point (°C), cloud

cover (%), sunshine (min), relative humidity (%) and air pressure (hPa). The estimated

solar radiation Rs is based on the Hargreaves radiation equation and uses the maximum

and minimum temperature as input where Ra stands for the extra-terrestrial radiation

(Eq.(2.1)).

Rs = 0.16
√

(Tmax − Tmin)Ra (MJ m−2 d−1) (2.1)

Wind speed (v) was converted into metres per second at 2 m above ground because the

DWD measures the wind speed at a height (h) of 10 metres above the ground (Eq.(2.2)).

v2m =
vh4.87

log(67.8h− 5.42)
(m s−1) (2.2)

For the computation of daily ET values, all climatological measurements were re-sampled

to daily values. The Penman-Monteith method (FAO-56) was applied, which determines

the reference evapotranspiration ET0 via Eq. (2.3).

ET0 =
0.408∆(Rn −G) + γ

900

T + 273
u2(es − ea)

∆ + γ(1 + 0.34u2)
(2.3)

The difference between net radiation Rn and soil heat flux density G is described by

∆(Rn−G) (MJ m−2 d−1). The difference (es− ea) between saturation and actual vapour

pressure (kPa) is multiplied by wind speed u2 at 2 m height. T stands for the mean

temperature at 2 m above ground and is computed by the maximum and minimum
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2.2 Winter wheat yield prediction

temperature records. The reference evapotranspiration assumes a plant height of 0.12 m,

a surface resistance of 70 s m−1 and an albedo of 0.23, since it assumes grass as hypothetical

reference plant. A detailed description can be found in publications by the Food and

Agriculture Organisation of the United Nations (FAO) (Allan et al., 1998; FAO, 2020).

The minimum required climatological data for the calculation of ET0 values are maximum

and minimum temperatures, wind speed and relative humidity. Additional parameters

improve the performance of the model, but experiences has shown that reliable results can

be obtained with this basic information. To accommodate for physiological differences

of plants, a plant-specific adaptation of ET0 is required. The Kc coefficient can be

calculated by ETc/ET0. If the measured plant evapotranspiration is not available, FAO

recommends the adjustment using previously determined constants per crop (Allan et al.,

1998; FAO, 2020). Therefore, the mean index value for each field and observation was

adopted as the Kc factor for monitoring plant growth (Eq.(2.4)). The mean value is the

aggregated mean value over all pixels within a field, which was rescaled between 0 and

1.15. FAO recommends to use a maximum value of 1.15 as Kc factor for winter wheat.

To avoid negative values, 0 was chosen as minimum. The rescaling is important because

indices have different value ranges.

Kc ∈ {µNDV I, µNDWI, µREIP, µNDRE } (2.4)

The final crop evapotranspiration equation (Eq.(2.5)) is a multiplication of the satellite-

based Kc factor with the evapotranspiration ET0:

ETc = Kc · ET0 (mm) (2.5)

The daily difference between ETc and precipitation (P ) for every field was calculated to

estimate the daily cumulated crop water requirement (CWR) (Eq.(2.6)) as follows:

CWR =

N∑
i=0

(∆i) (mm) (2.6)

where:

∆i = ETc − P (2.7)
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ET0, ETc, ∆i (Eq.(2.7)) and CWR were computed for each field and daily from the

beginning of March until the end of July. The presented variables, climatological data

and satellite observations were used for the evaluation using linear regression and random

forest.

2.2.3 Parametrisation

The calculations were performed using stepwise linear regression and random forest.

Stepwise LR included features if p < 0.01 and excluded them with p > 0.05. RF was

parametrised with n estimators = 300, max depth = 100, max features = sqrt and

J = 984. The training and test sizes were 80% and 20%. All independent variables

(features) were standardised, so that the distributions had 0 as mean value and 1

as standard deviation. Cross-validation (CV ) was performed with ShuffleSplit where

n splits = 4 and test size = 0.2. All methods and metrics were part of scikit-learn

(Pedregosa et al., 2012).

2.2.4 Metrics

The model accuracy is based on R2, mean absolute error (MAE) and root mean square

error (RMSE), which are typical metrics for continues variables (Chai and Draxler,

2014; Moriasi et al., 2015). R2, or the coefficient of determination, is a measure of

how much a model explains the variance of the target variable. MAE determines the

absolute difference between prediction and actual measurement or observation. RMSE

is often used for accuracy determination and is the square root of the mean square error.

The square root thus reduces the effect of large errors. MAE and RMSE evaluate the

model error in the units of the target variable (dt ha−1), which is important for the

evaluation and comparison with other research studies. Equations 2.8, 2.9 and 2.10

express the described statistical measures described with yi for the i-th real observation

and corresponding prediction ŷ.

R2(y, ŷ) = 1−
∑N

i=1(yi − ŷ)2∑N
i=1(yi − ȳ)2

(2.8)
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MAE(y, ŷ) =
1

N

N∑
i=1

| (yi − ŷ) | (2.9)

RMSE(y, ŷ) =

√√√√ 1

N

N∑
i=1

(yi − ŷ)2 (2.10)

2.3 Description of the satellite data for the respective

application

The Sentinel mission with its various satellites, high temporal coverage and free optical

and radar-based data enables advances in precision farming. This study required data

from Sentinel-2A and Sentinel-2B, which together provide multi-spectral data every 2-5

days. The availability depends on the cloud cover and the latitude of the site. Bavaria

is at a latitude where data is available approximately every three days. Both satellites

provide multi-spectral data with 13 available bands. Sentinel-2A was launched in June

2015, followed by Sentinel-2B in March 2017 to achieve a high revisit time. This is also

the reason for a lower data availability until early April 2017. Table 2.3 summarises all

bands and wavelengths. Bands 2, 3, 4, and band 8 have a resolution of 10 m per pixel

while band 11 and 12 cover the SWIR frequencies and have a resolution of 20 m per pixel.

Bands 10 and 9, with a resolution of 60 m per pixel, respond to water vapour and cirrus

clouds and can be used for cloud detection (GEE, 2012). Table 2.3 lists five indices that

are evaluated and compared in this study. The NDV I (Rouse et al., 1974) is a good

proxy and provides information on biomass, plant health and canopy chlorophyll content.

It is widely used for irrigation, yield prediction or nitrogen management. However, it

also has its disadvantages, as it quickly saturates when the biomass becomes dense. The

NDRE (Barnes et al., 2000) can also be used to detect the leaf chlorophyll content,

plant health, the nitrogen status and fertiliser needs. Nitrogen uptake is a crucial yield-

determining factor, why we also included the REIP index (Guyot et al., 1988) which

delivered significant results in past research studies. The NDWI (Gao, 1996) is related

to the canopy moisture content or water accumulations and is traditionally used for
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drought monitoring. All satellite data have been downloaded from Google Earth Engine

(GEE) (GEE, 2020; Gorelick et al., 2017) which provides a JavaScript and Python API

to access and process terabytes of various satellite data. Sentinel-2 data is categorised by

the processing level. There is a Level-1C product, delivering top-of-atmosphere (TOA)

reflectance images and a Level-2A product with bottom-of-atmosphere (BOA) reflectance

information. GEE processes the Level-1C product to BOA reflectance images with the

European Space Agency’s Sen2Cor open-source processor (Main-Knorn et al., 2017).

Level-2A data are not available on GEE for our considered period, especially for 2016

and early 2017. We processed therefore the Level-1C product to BOA images using Py6S

(Py6S, 2020). Both products, Level-1C and Level-2A, were evaluated for yield prediction,

but only Level-1C was used for crop-type and field boundaries mapping. Figure 2.8

compares the reflectance values for a field and the vegetation period in 2017. It is evident

that clouds introduce high noise in form of increased reflectance values. Cloudy pixels

within a polygon or field are not so obvious to detect, why we used a Python framework

(Sentinel Hub, 2020) for cloud filtering. This way, it was possible to minimise the noise

for yield prediction. Nevertheless, we found in a preliminary study, that the usage of the

scene cloud filter, provided by GEE, is acceptable for some applications, and that noise

introduced by clouds can be partially processed.

Figure 2.8: Comparison of reflectance values with a) clouds and b) filtered data of the indicated
bands.
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Table 2.3: Raw bands of Sentinel-2 and five vegetation indices evaluated in this study.

Band/Index
Central Wavelength (nm)

or Formula
Description

Band 1 443.9 (S2A) / 442.3 (S2B) Aerosol (60 m)

Band 2 496.6 (S2A) / 492.1 (S2B) Blue (10 m)

Band 3 560 (S2A) / 559 (S2B) Green (10 m)

Band 4 664.5 (S2A) / 665 (S2B) Red (10 m)

Band 5 703.9 (S2A) / 703.8 (S2B) Red edge (20 m)

Band 6 740.2 (S2A) / 739.1 (S2B) Red edge (20 m)

Band 7 782.5 (S2A) / 779.7 (S2B) Red edge (20 m)

Band 8 835.1 (S2A) / 833 (S2B) NIR (10 m)

Band 8A 864.8 (S2A) / 864 (S2B) NIR (20 m)

Band 9 945 (S2A) / 943.2 (S2B) Water vapour (60 m)

Band 10 1373.5 (S2A) / 1376.9 (S2B) Cirrus (60 m)

Band 11 1613.7 (S2A) / 1610.4 (S2B) SWIR (20 m)

Band 12 2202.4 (S2A) / 2185.7 (S2B) SWIR (20 m)

NDV I
(B8−B4)

(B8 +B4)
Ratio of red to NIR

NDWI
(B3−B8)

(B3 +B8)
Ratio of NIR to green

NDWI
(B8−B11)

(B8 +B11)
Ratio of SWIR to NIR

REIP 700 + 40 ·

(B4 +B7)

2
−B5

(B6−B5)
Red and red edge

NDRE
(B8−B5)

(B8 +B5)
Ratio of red edge to NIR
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Since the number of fields for crop types is very high and the processing of clouds

represents an additional processing effort, not all clouds were filtered for crop-type

mapping. Sentinel-2 data was downloaded from GEE with a filter of 20%. This filter

(CLOUDY PIXEL PERCENTAGE) considers clouds in a complete Sentinel-2 scene.

Field boundaries detection used a cloud filter of 2%. Crop-type mapping was investigated

by NDV I and raw bands. For each field and observation, the pixels were aggregated to

a mean value to generate corresponding time series per field. This object-based approach

was also used for yield prediction. A preliminary comparison of the effect of median, mean,

maximum and minimum values was made with the result that mean values are suitable.

The Sentinel-2 time series for yield prediction were resampled and linear interpolated

to weekly and monthly values. The time series for crop-type mapping have a two-week

temporal resolution. Data gaps were closed by linear interpolation. The polynomial

interpolation was also verified in a previous study, but linear interpolation produced

stable results.
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3 Results

3.1 Crop-type classification

3.1.1 Comparison of crop-type classification using different methods

This section evaluates the influence of features on the classifier accuracy. A total of

2099 samples from the years 2016, 2017 and 2018 were used to evaluate the classifier

performance and characteristics, with each crop class equally distributed. Additional

and independent 301 field samples from 2018 and for one area were added to create

crop-type images. The time series of all features are based on linear interpolation with a

two-week temporal resolution from February to August. RF was evaluated using standard

parameterisation and 1000 decision trees in the forest while SVM was parametrised with

a linear kernel and C = 10. The accuracy evaluation is based on a test size of 25% and

K-Fold cross validation with 5 splits. Table 3.1 shows an overview of the tests performed.

The corresponding confusion matrices can be found in the appendix (section B.1 and

B.2).

Table 3.1: Overview of the crop classification results based on overall accuracy (OA). The SVM
and RF performance was evaluated with NDV I, all raw bands and without the
”Other” rejection class.

NDV I Bands Without ”Other”

SVM: 70% 87% 90%

RF: 75% 88% 92%
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In summary, SVM and RF performed equally well. RF was able to provide slightly

better results and can improve these results with hyperparameter optimisation, but

standard parameters were used for comparability. NDV I achieved significantly lower

accuracies than raw bands. The rejection class has the advantage that it covers crops

that were not considered but it also affects the accuracy. Table 3.2 and Table 3.3 show

the confusion matrix for SVM and RF based on raw bands and without the rejection

class. Figure 3.1 evaluates the feature importance of the best RF model indicating that

the reflectance values for May and band 6 were most important. Figure 3.2 and 3.3

visualise the crop-type maps, classified with the best RF models. The images are based

on the additional and the independent 301 crop samples near Dürnast in 2018. Using the

”Other” class reduced the OA to 78%, while 96% was achieved without the rejection class.

In particular, winter barley, winter wheat and winter rapeseed were falsely classified or

not differentiated. Here the multi-temporal approach showed a weakness, because winter

rapeseed was clearly distinguished in spring, but showed a similar time trend as winter

wheat and winter barley from June onwards (see 3.4).

Figure 3.1: Most important features of the model for 2016-2018 and without the ”Other” class.
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3.1 Crop-type classification

Table 3.2: Classification with SVM, all raw bands and without the ”Other” rejection class.

Winter

wheat

(WW)

Winter

barley

(WB)

Winter

rapeseed

(WR)

Maize Potato

Sugar

beet

(SB)

Total
UA

(%)

PA

(%)

WW 61 2 3 2 1 0 69 88.41 87.14

WB 8 62 4 1 0 0 75 82.67 91.18

WR 1 3 78 3 1 0 86 90.7 91.76

Maize 0 0 0 73 6 1 80 91.25 90.12

Potato 0 0 0 1 56 4 61 91.8 84.85

SB 0 1 0 1 2 75 79 94.94 93.75

Total 70 68 85 81 66 80 450

OA 90%

Kappa 0.95

CV 0.91

Table 3.3: Classification with RF, all raw bands and without the ”Other” rejection class.

Winter

wheat

(WW)

Winter

barley

(WB)

Winter

rapeseed

(WR)

Maize Potato

Sugar

beet

(SB)

Total
UA

(%)

PA

(%)

WW 62 3 3 1 0 1 70 88.57 88.57

WB 7 63 4 1 0 0 75 84 92.65

WR 0 2 78 1 0 0 81 96.3 91.76

Maize 1 0 0 76 3 0 80 95 93.83

Potato 0 0 0 1 58 1 60 96.67 87.88

SB 0 0 0 1 5 78 84 92.86 97.5

Total 70 68 85 81 66 80 450

OA 92%

Kappa 0.97

CV 0.91
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3 Results

Figure 3.2: Classification with RF, all raw bands and the ”Other” rejection class. Recorded crop
types (ground truth data) of StMELF are shown in the first image. The classified
crop types are shown in the second image while the last image visualises the falsely
classified crops.
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3.1 Crop-type classification

Figure 3.3: Classification with RF, all raw bands and without the ”Other” class. Recorded crop
types (ground truth data) of StMELF are shown in the first image. The classified
crop types are shown in the second image while the last image visualises the falsely
classified crops.
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3.1.2 Crop-type prediction in a future year

The prediction of crop types in an unknown year and without labels is significant for

practical uses. For this experiment, RF was trained with data from 2016 and 2017

to predict crop types in 2018. The year 2018 was a unique one, with above average

temperatures and so it cannot be compared with earlier years. Figures 3.4 and 3.5

show the raw reflectance and NDV I temporal patterns for each year. Although 2018

represents an anomaly, the temporal patterns are comparable and the crop types are

separable. It should be emphasised that a small part of the clouds was allowed, which

explains some of the peaks and misleading gradients in the images.

Figure 3.4: B6 mean temporal pattern for 2016, 2017 and 2018.

When evaluating Tables 3.4, 3.5, and Tables B.5, B.6 in the appendix, the high overall

accuracies with RF are outstanding. SVM with a linear kernel is not reliable for predicting

the crop types in 2018 (compare B.3). In contrast, RF achieves an overall accuracy of

79% with the rejection class and 80% without. Figures 3.6 and 3.7 show the application
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3.1 Crop-type classification

Figure 3.5: NDV I mean temporal pattern for 2016, 2017 and 2018.

of both models to the test area where an OA of 75% was achieved with the rejection

class (and 86% without). The classification accuracies without labels from 2018 onwards

are in the range of the accuracies with data from all the years concerned.
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Table 3.4: Classification of crop types in 2018 with RF, all raw bands and the ”Other” class.
The model was trained with data for 2016 and 2017.

Other

Winter

wheat

(WW)

Winter

barley

(WB)

Winter

rapeseed

(WR)

Maize Potato

Sugar

beet

(SB)

Total
UA

(%)

PA

(%)

Other 78 9 16 1 4 0 0 108 72.22 78

WW 8 83 11 3 0 0 0 105 79.05 83

WB 3 4 67 1 0 0 0 75 89.33 67

WR 1 3 5 95 0 0 0 104 91.35 95

Maize 3 0 1 0 67 1 0 72 93.06 67

Potato 7 1 0 0 28 99 34 169 58.58 99

SB 0 0 0 0 1 0 66 67 98.51 66

Total 100 100 100 100 100 100 100 700

OA 79%

Kappa 0.91

Table 3.5: Classification of crop types in 2018 with RF, all raw bands and without the ”Other”
class. The model was trained with data for 2016 and 2017.

Winter

wheat

(WW)

Winter

barley

(WB)

Winter

rapeseed

(WR)

Maize Potato

Sugar

beet

(SB)

Total
UA

(%)

PA

(%)

WW 85 20 5 1 0 0 111 76.58 85

WB 10 71 2 1 0 0 84 84.52 71

WR 3 5 93 0 0 0 101 92.08 93

Maize 0 2 0 69 1 0 72 95.83 69

Potato 2 2 0 28 99 34 165 60 99

SB 0 0 0 1 0 66 67 98.51 66

Total 100 100 100 100 100 100 600

OA 80%

Kappa 0.94
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3.1 Crop-type classification

Figure 3.6: Crop types in 2018. The classification achieved an OA of 75% and is based on RF,
all raw bands, the ”Other” class and data from 2016 and 2017.
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3 Results

Figure 3.7: Crop types in 2018. The classification achieved an OA of 86% and is based on RF,
all raw bands and does not include the ”Other” rejection class. The trained model
had no data of the crop type in 2018.
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3.2 Field boundaries

3.2 Field boundaries

Object-based approaches require field boundaries; therefore Canny edge was evaluated.

RGB segmentation was firstly evaluated because humans recognise field boundaries in the

same way. Secondly, a NDWI-based approach was used to reduce the noise introduced

by RGB. Preliminary outputs of the processing pipeline presented in section 2.1.3 are

shown in Figure 3.8 and Figure 3.9 for NDWI. A comparison of both figures reveals

the advantage of NDWI in relation to the reduction of irrelevant edges. NDWI focuses

on the field texture and reduces in-field edges. One image would produce insufficient

results while the multi-temporal approach strengthens the edges from image to image.

The Canny edge detection was parametrised with the mean over all pixels as threshold

and sigma = 0.33. Roads, buildings, forests and lakes were masked using OSM. All the

images in the multi-temporal stack were smoothed with bicubic resampling, since image

resolution is an important success factor. The Sentinel-2 resolution is a limiting factor

for the detection of small fields. Therefore, the use of bands with a resolution of 10

metres per pixel should be preferred. Figure 3.10 compares the polygons identified with

recorded StMELF data. In the first tests with RGB and NDWI an image stack from

September 2017 to September 2018 was used to determine the field boundaries for 2018.

Neighbouring fields with a similar or the same crop type could not be distinguished at

the first attempt. Consequently, several fields were combined to form one field. However,

this issue was overcome by using images that emphasise the contrast between the fields.

This was achieved by using satellite images from the last autumn to May, since this

avoids the vegetation period as much as possible, thus separating the same neighbouring

fields, although over-segmentation is rarely introduced. It seems that some differences in

soil texture cause this over-segmentation. This NDWI-based approach was validated

and achieved an IoU = 0.7, a PA = 81% and a UA = 79%. UA is an important metric

as it determines the reliability of the maps. In a previous work, SNIC was also evaluated

(Lösch, 2019), but the images were over-segmented and therefore not applicable. Figure

B.1 in the appendix shows a comparison of SNIC with the StMELF data basis.
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3 Results

Figure 3.8: Processing steps and corresponding results for RGB-based mapping of field bound-
aries.

Figure 3.9: Processing steps and corresponding results for NDWI-based mapping of field
boundaries.
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3.2 Field boundaries

Figure 3.10: Comparison of the results with the reference data basis from StMELF. The red
circles mark the improved results based on suitable satellite data.
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3 Results

3.3 Winter wheat yield prediction

3.3.1 Comparison of Level-1C and Level-2A data

A comparison of Level-1C (L1C) and Level-2A (L2A) data was made owing to the

continued availability of Level-1C time series since 2015. Various tools, such as the Py6S

or Sen2Cor processor, are available for the atmospheric processing of Level-1C products.

Each framework achieves slightly different results. Independent of the atmospheric

processing quality, we investigated the impact of the respective product on yield prediction.

Figures 3.11 and 3.12 show the correlation between yield and band values. The correlation

is based on the Kendall rank correlation, which does not require normally distributed

measurements and is more robust concerning outliers than Pearson. Significant differences

were not achieved for L2A compared to Level-1C. Figure 3.13 also shows the temporal

pattern of two indices, where L2A-based NDV I patterns were slightly improved while

NDWI patterns did not much differ. The final yield prediction evaluation showed that

the accuracy minimally increased with all raw bands. In contrast, the use of an index

delivers for both products similar results.

Figure 3.11: Correlations between Level-1C data and yield where a) visualises the correlation
for band 6, b) for band 8, and c) for band 12.
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3.3 Winter wheat yield prediction

Figure 3.12: Correlations between Level-2A data and yield where a) visualises the correlation
for band 6, b) for band 8, and c) for band 12.

Figure 3.13: Comparison of temporal patterns of a) NDV I, b) NDWI and c) band 8 of an
exemplary field in 2017. Level-1C is visualised in blue while L2A in orange.

3.3.2 Evapotranspiration and water demand

The water consumption of a plant is an important yield determining factor. Since it is

challenging to determine soil moisture in the root zone by satellite remote sensing, a

validated approach for determining the water demand was adopted and the daily crop

water requirements at the field level were determined by means of ETc. As indicated,

the Kc factor represents an averaged value over all pixels for a given field. Table 3.6
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shows the results for ETc and CWR, depending on the chosen index. Temperature and

solar radiation are mean values, while all the other values were accumulated over the

vegetation period from March to the end of July. Figure 3.14 visualises the cumulative

CWR from March to the end of July. The temperature increased by 1.3 °C, within

the three years under investigation, which is also reflected in a higher solar radiation.

The mean temperature was 12.0 °C in 2016, 12.6 °C in 2017, and 13.3 °C in 2018.

Increasing temperature and solar radiation also increased ET0, while precipitation was

about 300 mm in each year. ETcNDV I showed the highest water demand across all years,

while ETcREIP indicated the lowest. Negative CWR values indicate, that additional

water supply was not needed, while positive values, as in the case of CWRNDV I and

CWRNDRE , indicate additional water needs. The highest crop water requirements were

observed in 2017 with 100.8 mm calculated by CWRNDV I and 60.6 mm calculated by

CWRNDRE .

Table 3.6: Overview of the mean ETc and water balance (CWR) values on the field level in
mm. The ETc values are based on the Level-2A product.

2016 2017 2018

Temperature (°C): 12.0 12.6 13.3

Solar Radiation (MJ): 17.8 19.1 19.2

ET0 (mm): 448.4 499.0 514.6

Precipitation (mm): 314.4 294.2 302.3

ETcNDV I (mm): 385.3 395.1 374.3

ETcNDWI (mm): 276.2 265.6 251.8

ETcREIP (mm): 189.6 210.9 218.0

ETcNDRE (mm): 341.3 354.8 329.2

CWRNDV I (mm): 70.9 100.8 72.0

CWRNDWI (mm): -38.2 -28.6 -50.5

CWRREIP (mm): -124.9 -83.3 -84.4

CWRNDRE (mm): 26.9 60.6 26.9
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3.3 Winter wheat yield prediction

Even though the deficit is small, the individual months must be analysed. The plot for

2018 in Figure 3.14 shows that there was less precipitation between March and middle

May while at the same time, spring temperatures increased substantially (Figure 2.6).

Although the field water capacity was filled up in each year after winter, some fields have

sandy soils characterised by a reduced field water capacity, which in turn may affect

the yield. Crop yields from 2016 onwards were decreased by around 10% annually. In

June and July 2017, the CWRNDV I and CWRNDRE deviated more from the cumulative

precipitation than in 2016 and 2018. Further inspection of Figure 3.15 reveals that both

indices indirectly reflect increased precipitation in May 2017 via altered plant growth.

Biomass and canopy water contents were decreased and increased rapidly due to following

precipitation.

Figure 3.14: Cumulative daily crop water requirement (CWR) and precipitation based on
NDV I, NDWI, REIP and NDRE and cumulative precipitation in the years
2016, 2017 and 2018. The temporal pattern of NDRE and precipitation is
visualised with its maximum and minimum deviation, reflecting the heterogeneity
of the region.
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3 Results

Figure 3.15: Time patterns of NDWI and NDRE for 2016, 2017, and 2018. The NDWI
reflects the effect of precipitation deficit or drought. The NDWI and precipitation
(P ) values were normalised to 1 as maximum and 0 as a minimum to visualise the
precipitation effect in 2017.

3.3.3 Yield prediction

3.3.3.1 Yield prediction with climatological data

The experiments with climatological data, shown in Table 3.7, include cloud cover,

humidity, precipitation, solar radiation, maximum, minimum, and mean temperature,

wind speed, sunshine duration, and air pressure. Since some parameters correlate with

each other, this may lead to multicollinearity. Stepwise linear regression and random

forest are suitable for the investigated cases and avoid overfitting. For stepwise linear

regression, only predictors having the most significant influence on the dependent variable

(yield) were used within the model. By analysing the feature importance of the first

model with R2 of 0.8 and a RMSE of 6.39 dt ha−1, solar radiation revealed to be most

important in all five months before harvest, followed by precipitation in March.
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3.3 Winter wheat yield prediction

Table 3.7: Overview of the best results with climatological data (CD), sorted by R2 and RMSE.
All daily climatological measurements were interpolated to weekly and monthly mean
values and standardized. Random Forest (RF) and Stepwise Linear Regression (LR)
were applied for the prediction of winter wheat yields.

Features Method Resolution R2 MAE RMSE CV CV std

CD RF monthly 0.80 4.26 6.39 0.53 0.11

CD RF weekly 0.79 4.44 6.51 0.62 0.08

CD LR monthly 0.69 5.79 7.92 0.61 0.1

CD LR weekly 0.68 5.9 7.99 0.43 0.15

3.3.3.2 Yield prediction with an index or raw bands

LR was superior to RF, and the usage of all raw bands outperformed the index-based

approach. The best indices for yield prediction were the NDWI and the REIP . The

water-sensitive NDWI achieved a R2 of 0.6 and a RMSE of 8.9 dt ha−1, with cross-

validated results showing that the REIP was slightly better performing. In contrast, the

NDRE and NDV I achieved lower accuracy and explained about 30 to 50 percent of

the yield variance. Table 3.8 also supports the previous notion regarding Level-2A and

Level-1C products. Yield prediction was only slightly better with L2A data. Weekly

resolution excelled the monthly resolution, as it better reflected the biomass growth

status of winter wheat. With a monthly resolution, important information can be lost.

The significant bands of the best model (p < 0.01) were B6 and B7, four and five weeks

before harvest and B4, B5, B7, B9, B10, and B11 in April and at the end of March.

When comparing the feature importance of RF, it became evident that B8 and B8A

were most important for RF one month before harvest. Nevertheless, the previously

mentioned significant bands were also identified by RF as yield relevant factors.
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Table 3.8: Comparison of yield prediction with raw bands and based on indices. All satellite
data acquisitions were resampled to weekly and monthly mean values and linearly
interpolated.

Features Method Resolution Level R2 MAE RMSE CV CV std

B1-B12 LR weekly 2A 0.83 4.64 5.78 0.58 0.14

B1-B12 LR weekly 1C 0.77 5.63 6.78 0.56 0.09

B1-B12 LR monthly 2A 0.71 5.64 7.55 0.44 0.08

B1-B12 LR monthly 1C 0.71 6.62 7.55 0.43 0.19

B1-B12 RF weekly 2A 0.64 6.83 8.46 0.44 0.1

B1-B12 RF weekly 1C 0.63 6.91 8.64 0.34 0.1

NDWI LR weekly 1C 0.6 7.12 8.92 0.4 0.29

B1-B12 RF monthly 1C 0.58 7.4 9.19 0.42 0.14

B1-B12 RF monthly 2A 0.54 7.61 9.57 0.3 0.27

NDWI RF weekly 1C 0.52 7.36 9.79 0.41 0.12

NDWI RF weekly 2A 0.52 7.16 9.79 0.28 0.24

NDRE LR weekly 2A 0.51 7.73 9.91 0.29 0.06

NDRE LR weekly 1C 0.49 7.87 10.05 0.3 0.13

REIP LR weekly 2A 0.49 7.88 10.14 0.49 0.08

REIP RF monthly 2A 0.48 7.32 10.17 0.31 0.17

NDWI RF monthly 2A 0.48 7.85 10.2 0.43 0.08

REIP RF weekly 2A 0.48 7.65 10.23 0.26 0.21

REIP RF weekly 1C 0.47 7.3 10.24 0.38 0.09

NDV I RF weekly 2A 0.47 7.89 10.25 0.27 0.08

NDWI RF monthly 1C 0.46 7.98 10.42 0.38 0.14
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3.3 Winter wheat yield prediction

3.3.3.3 Yield prediction with value-based information

The next investigation focused on ET-based information, introduced in section 2.2.2.

Table 3.9 compares the performance of all water-related features and lists the best 20

results.

Table 3.9: Value-based information and its impact on winter wheat yields. All daily values were
resampled to weekly and monthly mean values and linearly interpolated. Precipitation
is referred to as P in the table.

Features Method Resolution Level R2 MAE RMSE CV CV std

B1-B12, ET0, P LR weekly 2A 0.84 4.91 5.63 0.72 0.07

B1-B12, ET0, P LR monthly 1C 0.83 3.94 5.78 0.72 0.09

B1-B12, ET0, P LR weekly 1C 0.83 4.85 5.87 0.72 0.06

CWR (Kc:NDWI) LR weekly 1C 0.79 4.89 6.45 0.62 0.04

B1-B12, ET0, P LR monthly 2A 0.79 5.43 6.45 0.71 0.05

CWR (Kc:NDWI) LR weekly 2A 0.79 4.92 6.46 0.66 0.07

ETc (Kc:NDV I) LR weekly 2A 0.74 5.82 7.15 0.34 0.14

∆ (Kc:NDRE) LR weekly 2A 0.74 5.4 7.16 0.49 0.18

ETc (Kc:REIP ) RF weekly 2A 0.74 5.2 7.2 0.52 0.1

ETc (Kc:NDV I) LR weekly 1C 0.73 5.96 7.36 0.51 0.11

CWR (Kc:REIP ) RF monthly 1C 0.73 5.36 7.37 0.61 0.04

ETc (Kc:REIP ) RF weekly 1C 0.73 5.03 7.37 0.63 0.14

∆ (Kc:NDRE) RF weekly 2A 0.72 5.25 7.44 0.46 0.13

∆ (Kc:NDRE) RF weekly 1C 0.72 5.35 7.52 0.48 0.11

ETc (Kc:REIP ) LR weekly 1C 0.71 6.04 7.63 0.61 0.11

ETc (Kc:REIP ) RF monthly 1C 0.7 5.54 7.68 0.37 0.11

CWR (Kc:REIP ) RF weekly 1C 0.7 5.37 7.71 0.71 0.06

∆ (Kc:NDRE) RF monthly 1C 0.7 5.58 7.73 0.65 0.06

CWR (Kc:NDRE) RF weekly 1C 0.69 5.61 7.85 0.41 0.1

ETc (Kc:NDWI) LR weekly 2A 0.69 6.05 7.87 0.33 0.22

LR achieved the best prediction with all bands, ET0, and precipitation. RF achieved

a R2 of 0.65 with the same features. Surprisingly, the performance of the value-based

information CWR or ETc was less accurate than when using only the bands in combi-
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nation with ET0 and precipitation. It is interesting to notice that evapotranspiration

and precipitation had a smaller influence on the accuracy when comparing the results

in Table 3.8, where the use of bands alone achieved slightly lower accuracies. However,

the cross-validation accuracy showed that this model was more reliable. The significant

features for the best model (p < 0.01) were band 6, band 7 and band 9 at the end of

June and beginning of July, as well as band 5, band 9, and band 11 in March. Short

wave infrared bands were good proxies in spring while red edge bands performed well

around one month before harvest. Precipitation contributed significantly about 9 and 20

weeks before harvest. The ET0 parameter was excluded from the model as it was not

significant. Nevertheless, in one experiment, the use of ET0 alone achieved a R2 of up

to 0.68 and a RMSE of 7.99 dt ha−1. As shown in Table 3.8, the NDWI was the most

successful yield predictive feature using CWR, while the CWR combined with REIP

was also a good proxy depicting a high cross-validated R2 (CV) and a low standard

deviation accuracy.

3.3.3.4 Yield prediction with all features

As final experimental investigation, all features were included to compare the performance

and to determine the best model. The use of all the features achieved a R2 of 0.9 and

a RMSE of 4.4 dt ha−1 (Table 3.10). Comparing the cross-validated models with all

features, monthly resolution weakened the results from 0.79 R2 to 0.67 R2. All features

include climatological data, raw bands, indices and value-based information as input for

the models. Random Forest performed moderate with climatological data and monthly

resolution. Linear regression achieved better results in most cases, whereby the weekly

resolution also improved the results, followed by two models that achieved satisfactory

results with raw bands, precipitation and ET0. The weekly and monthly resolution

slightly influenced the accuracy. Table 3.11 lists all the significant features, determined

by stepwise linear regression. In contrast, RF achieved a R2 of 0.72 and a RMSE of 7.53

dt ha−1 with all features. The significance of the independent variables varied slightly.

When the second-best model was analysed, the solar radiation dominated again instead of

humidity and minimum temperature. In this experimental run, stepwise LR determined

the standard deviation of REIP , B9, and B5 in spring as significantly contributing
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3.3 Winter wheat yield prediction

features. The standard deviation provides information on the heterogeneity of a field.

Besides, the water requirement at the end of March and the beginning of April reflected

by CWR was revealed to be significant.

Table 3.10: Overview of the best 20 results with all features. Precipitation is referred to as P
and climatological data is referred to as CD.

Features Method Resolution Level R2 MAE RMSE CV CV std

All features LR weekly 2A 0.9 3.65 4.4 0.79 0.06

All features LR weekly 1C 0.9 3.21 4.49 0.74 0.11

B1-B12, ET0, P LR weekly 2A 0.84 4.91 5.63 0.72 0.07

B1-B12, ET0, P LR monthly 1C 0.83 3.94 5.78 0.72 0.09

All features LR monthly 2A 0.83 4.68 5.78 0.67 0.1

B1-B12 LR weekly 2A 0.83 4.64 5.78 0.58 0.14

B1-B12, ET0, P LR weekly 1C 0.83 4.85 5.87 0.72 0.06

CD RF monthly 0.8 4.26 6.39 0.53 0.11

CWR (Kc:NDWI) LR weekly 1C 0.79 4.89 6.45 0.62 0.04

B1-B12, ET0, P LR monthly 2A 0.79 5.43 6.45 0.71 0.05

CWR (Kc:NDWI) LR weekly 2A 0.79 4.92 6.46 0.66 0.07

CD RF weekly 0.79 4.44 6.51 0.62 0.08

B1-B12 LR weekly 1C 0.77 5.63 6.78 0.56 0.09

∆ (Kc:REIP ) RF weekly 1C 0.75 4.74 7.0 0.61 0.06

ETc (Kc:NDV I) LR weekly 2A 0.74 5.82 7.15 0.34 0.14

∆ (Kc:NDRE) LR weekly 2A 0.74 5.4 7.16 0.49 0.18

All features LR monthly 1C 0.74 5.29 7.2 0.65 0.1

ETc (Kc:REIP ) RF weekly 2A 0.74 5.2 7.2 0.52 0.1

∆ (Kc:REIP ) RF weekly 2A 0.74 5.25 7.24 0.5 0.17

∆ (Kc:NDV I) RF weekly 1C 0.73 5.25 7.28 0.5 0.26
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Table 3.11: Significant features (p < 0.01). Weeks describes the number of weeks before harvest,
starting with the last week in July and counting back to the first week in March.

Feature Weeks

Humidity 1

B6 mean 4

ETc:(Kc:NDWI) 5

Min. Temperature 11

B9 mean 12

B9 std 12

CWR (Kc:REIP ) 16

REIP std 17

B5 std 19

B9 mean 20
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4 Discussion and conclusions

4.1 Crop water demand

Water is one of the most important yield-contributing factors, if not the most important,

why a detailed research in the field of satellite-based determination of water needs was

conducted. The focus of this thesis is yield prediction at the field level. Therefore,

high spatial and temporal resolutions of the data represent important requirements and

are key to this work. Satellites such as ASCAT, SMOS or SMAP are not suitable in

this context due to the spatial requirements. Sentinel-1 satisfies both requirements and

can be used for soil moisture mapping at the field level. A meta-analysis of different

publications, presented in 1.2, revealed that the estimation of soil moisture is linked

to several issues. On the one hand a denser vegetation influences the measurements or

backscatters, on the other hand the measurements are only suitable for the upper soil

layer at best (Greifeneder et al., 2016; Greifeneder et al., 2018; Merzouki and McNairn,

2015; Merzouki et al., 2011; Pasolli et al., 2015). Basically, the applied C-band is the

limiting characteristic because of its wavelength which can not penetrate vegetation at a

NDV I more than 0.7 (El Hajj et al., 2018a). The application of a P-band or L-band

SAR would overcome this issue due to its higher wavelength. However, it could also

be shown that the C-band provides very good estimates of surface soil moisture over

bare soil or sparse vegetation cover. The dense vegetation could be bridged by including

evapotranspiration (Andorfer, 2019). As part of an accompanying bachelor thesis, it

was verified that ETc can be used for the estimation of surface soil moisture with a

high accuracy. A combination of both approaches, Sentinel-1 for SM determination in

spring in combination with ETc in the course of plant development, represents a possible

alternative to solve the described disadvantages of Sentinel-1 (Andorfer, 2019). This study

was based on continuous SM measurements with a time domain reflectometry (TDR)
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sensor and timed with Sentinel-1 flyovers. Although it is possible to estimate surface

SM, soil moisture measurements in the root zone would be needed to obtain better yield

predictions for deep-rooted plants. The determination of root zone SM is still the subject

of research, and in general no intensive efforts have been made compared to surface SM

(Baldwin et al., 2017, 2019; Ford et al., 2014; Manfreda et al., 2014). For that reason, the

yield prediction takes water needs estimates based on a FAO56-based approach. It was

hypothesised that calculating the daily water demand may also improve yield prediction.

Section 4.4 discusses the results and their general usability. By integrating NDWI, it is

possible to provide indirect information on the status of water supply and this applies to

areas with good water availability (Liang et al., 2020; Serrano et al., 2019).

4.2 Crop-type identification

The crop-type classification investigated covers several aspects. Each field selected was

represented by a geo-referenced polygon, which was used to determine an average value

for all containing pixels. We compared the SVM and RF algorithms and concluded

that RF achieves very high accuracies. A multi-temporal approach was preferred and

included resampled satellite observations every 14 days. This makes it possible to follow

the phenological stages of the selected crops such as winter wheat or maize. Based on

the phenological stage and the spectral differences, the crop types can be identified. This

holds also true for crops such as winter wheat and winter barley, which have similar

spectral fingerprints but are not as distinct as maize and winter wheat, for example.

Cloud coverage represents a critical aspect to be considered. Our data set included 2400

samples (fields) from different locations in Upper Bavaria, so we allowed a small amount

of noise (clouds) and downloaded data on each field from GEE with a meta cloud filter of

20%. Nevertheless, a complete cloud-free time series would be preferable. Still, since cloud

filtering is a time-consuming application, it is sometimes better to focus on the target

and allow some noise. Nevertheless, an analysis of the influence of the signal-to-noise

ratio on the accuracy would be interesting. The application of Level-1C and L2A data is

an important part of this work. L2A slightly improved the crop classification (Rußwurm

et al., 2020) and yield prediction (see section 3.3) but the minimal differences do not

justify the incorporation of L2A data. The greater computation effort, comparable
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accuracies as well as differences of the L2A processors (e.g. Sen2Cor, Py6S) raise the

question of whether Level-2A data should be used to develop new approaches. This

only complicates the comparison of results. On the other hand, atmospheric effects are

eliminated and the quality of the RGB images are improved. Consequently, the use of the

processing level should be considered on a case-by-case basis and not as a necessity. The

results shown in section 3.1, based on linear interpolation and RF, achieved accuracies

up to 92%. It should be emphasised that these results are not yet suitable for further

predictive application. The use of crop-type and field boundary detection also requires

analysis in relation to their forecast capability. Yield forecasts are usually performed

a few weeks before harvest. Consequently, the crop-type and field boundary detection

must be performed in the same way for regions where no official field boundaries or crop

types are available. Another important finding is the usage of all raw bands. While

most publications focus on the usage of NDV I time series, we verified the raw bands as

well which improved the separation of crops. While the use of atmospherically corrected

images seems to be a prerequisite, the arbitrary use of an index is not questioned. NDV I

is an index mainly used to assess chlorophyll and biomass. However, the biomass as well

as the chlorophyll content of some crops do not differ very much, particularly in spring.

So, the question arises why to choose a multi-temporal approach if one loses information?

In contrast, the use of a spectral fingerprint, based on raw bands, offers the possibility

to separate crops more clearly. This assumption was confirmed that the usage of raw

bands delivers more accurate results (Marszalek et al., 2020). By using all 13 bands of

Sentinel-2, the spectral bandwidth is extended and a better insight can be gained. For

example, the RGB bands provide colour information, which is very advantageous in the

case of rapeseed with its yellow and distinct colour in spring. The NDV I would lose this

additional information. One further point is related to Sentinel-1. In our experiments,

the availability of cloud-free images is ensured and sufficient data could be used for

detection. Gaps in the time series can be modelled by temporal interpolation, but when

the target region suffers from very high cloud coverage (e.g. in the tropics), it would be

advisable to fuse Sentinel-1 with Sentinel-2. The authors in (Tricht et al., 2018) mention

the advantage of this fusion, but the presented experiments in Bavaria did not suffer

from insufficient multi-spectral data availability.
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4.3 Field boundaries

The need to derive field boundaries is the key to the classification of crop types. The object-

based methodology used in this work for yield prediction and crop-type classification

requires field borders. The investigations were based on recorded data obtained from

StMELF, but a further transfer to regions without official field borders requires an

automatised solution. Evaluating literature regarding the state-of-the-art, Canny edge

detection was selected for the first experimental runs. One typical problem of edge

detection is the high number of detected and irrelevant edges, which can be considered as

noise. This problem could be avoided by using the NDWI as an index designed for water

assessment. Nevertheless, the simplified visualisation and the improved field boundaries

do represent a benefit that reduces noise. A comparison with RGB images (band 2, 3

and 4) demonstrated this advantage. An observer in an aeroplane would recognise field

boundaries from several characteristics such as colour or texture. But edge detection

that suffers from noise detects too many edges in RGB and delivers less accurate results.

The advantage of using the NDWI in combination with a multi-temporal approach

using several images permitted a producer accuracy of 81% and an user accuracy of 79%.

Considering the simplicity of this approach and the fact that no labelled data are needed

as in the case of supervised learning, these results are interesting. Since these results

only reflect the first step, further experiments are necessary. The applied NDWI is

based on band 8 and band 3 and not band 11 as used for yield prediction. The 10 metre

resolution is an important factor, since the resolution should be sufficient to visualise

sharp field borders. Nevertheless, although more effort is required here, this unsupervised

solution can be applied worldwide. The efficiency of supervised learning (Chandwadkar,

2013; Diakogiannis et al., 2020; Masoud et al., 2020; Schultz et al., 2015; Waldner and

Diakogiannis, 2019), especially of neural networks, is not in doubt, but the simplicity of

the methodology presented is motivating.
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4.4 Yield prediction

4.4.1 Climatological data

While the low precipitation in spring 2018 possibly explains reduced yields, this remains

more unclear for 2017. Precipitation in the spring of 2017 contributed to a substantial

increase in biomass and accordingly the canopy water content, almost reaching that of

2016. However, high temperatures shortly before harvest in 2017 decreased yields probably

by accelerating senescence and shortening the grain filling period. The importance of

precipitation in spring is also in line with Albers et al. (2017). In general, higher

temperatures cause heat stress and shorten the grain filling period (Wheeler et al., 1996).

Nevertheless, solar radiation was more important than temperature, which was also

reported in other studies (Andarzian et al., 2008; Fischer, 1985; Hernández-Barrera and

Rodriguez-Puebla, 2017). The shortened grain filling period caused a shortened absorption

of solar radiation, which probably led to yield decreases despite slightly increased solar

radiation in 2017 and 2018. The use of climatological data for yield prediction reveals

no spatial in-field variability, but it covered at least half of the cross-validated yield

variance, which is also in line with previous studies (Albers et al., 2017; Andarzian et al.,

2008). Distances between weather stations and fields should be taken into account. In

our investigation the field stations were representative of the three sub-regions. If there

are no weather stations nearby, satellite-based climatological data could be used as an

alternative.

4.4.2 Indices and raw bands

The Level-2A product was compared to Level-1C, with Level-1C achieving suitable yield

prediction accuracies. Although Level-2A improves reflectance values minimally, this does

not lead to consistent improvements in all cases, and it should be case-specific ascertained

whether L2A brings added value. The processing represents an additional overhead

and is based on Py6S or Sen2Cor. The sole usage of raw bands using linear regression

already achieved good results and eased yield prediction. In contrast, the NDWI and

the REIP achieved slightly lower accuracies. In general, indices as ratios of bands focus

on partial aspects, e.g., water content (NDWI) or nitrogen content (REIP ) (Prey and
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Schmidhalter, 2019a; Serrano et al., 2019). The red and blue wavelengths in the visual

spectrum are absorbed by chlorophyll, but only the red band B4 was relevant in our

investigation, which is also in line with Skakun et al. (2019). Band 5 up to band 9 cover

the red-edge and near-infrared spectrum and are related to leaf structure, chlorophyll,

and thus yield. The importance of these bands was already demonstrated (Prey and

Schmidhalter, 2019b; Skakun et al., 2019). Surprisingly, the water vapour sensitive band 9

with its central wavelength around 945 nm contributed to the model performance, which

is in agreement with (Babar et al., 2006; Prasad et al., 2007). In the SWIR spectrum,

B11 contributed to yield prediction. A possible relationship to the soil and leaf water

content may account for this (Skakun et al., 2019).

4.4.3 Evapotranspiration

The inclusion of the daily crop water requirements was one of the objectives and proved

to be useful for yield prediction, as water is a significant yield driver (Grosso et al.,

2018). By combining evapotranspiration with yield-relevant indices up to 79% of the yield

variance could be explained. While yield prediction based on upper soil layer moisture

content seems rather inappropriate (Pan et al., 2019), evapotranspiration proved to be

valuable (Grosso et al., 2018; Tadesse et al., 2015b). This investigation used the FAO-56

method in combination with indices. Weekly linear interpolations revealed to be useful.

In particular, the CWR explained yield decreases caused by hot and dry periods in

2017 and 2018. Heat and a high water demand in June and July 2017 probably affected

winter wheat growth. Increased temperatures shortened the grain filling period. Nitrogen

fertilisation was adequate being highest in 2017. The higher average temperature in

2018 probably also accounted for the yield reduction caused by a shortened grain filling

period. CWRNDRE in Figure 3.14 shows that the decreased precipitation could not meet

the water demand in spring 2018. Stepwise linear regression proved to be advantageous

compared to RF. Random forest usually needs more data while linear regression also

allows to generalise on sparse data sets. Future testing with ET-related observations

would benefit from additional soil information, but such high-resolution data were not

available in this study. However, index-specific information may indirectly provide soil

differences via vegetation reflectance and should be further investigated. The NDRE and
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NDWI revealed to be useful in estimating the Kc factor and the daily water requirements.

In general, the NDRE is well correlated with biomass and does not saturate as quickly

as the NDV I (Lilienthal, 2014). The NDWI indirectly allows to connect to water

supply and nitrogen uptake (Geesing et al., 2014; Liang et al., 2020; Serrano et al., 2019).

Integrating the REIP as Kc factor to reflect the water and nitrogen status by means of

a simplified feature however proved to be less accurate.

4.4.4 All features

Up to 90 percent of the yield variance could be explained by using stepwise linear

regression. The use of all defined features would be costly. In contrast, raw bands

combined with ET0 and precipitation achieved almost similar results. This simplified

feature combination outperformed all index or CWR-based models, achieving an accuracy

of up to 0.84 R2 with a RMSE of 5.63 dt ha−1. As in CWR, all climatological data were

included, but the raw bands cover a wider spectral bandwidth. Yield relevant parameters

such as temperature or solar radiation as discussed in section 4.4.1 are also part of the

evapotranspiration (Eq. (2.3)). Hunt et al. (2019) assumed that individual bands could

improve yield prediction, but this was not analysed. The authors further highlighted the

advantage of fusing environmental data with Sentinel-2. The presented results could be

transferred to pixel-based yield maps. Future work should also try to make early yield

predictions.
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Objectives The aim of the study includes an efficient and reproducible

implementation of a crop-type and field boundary classifi-

cation. This is an intermediate step for yield prediction at

the field level. In this context, the following experiments

were investigated: 1) Comparison of crop-type classifi-

cation with SVM and RF in combination with various

features. 2) Classification of crop types in 2018 based on

a model with data from 2016 and 2017. 3) A robust field

boundary detection.
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clarified the following questions: 1) Is index-based classifi-

cation or the use of raw bands better for classification? 2)

Can crop types be classified well in a year without labels

and based on observations from previous years? 4) What

accuracy is achieved depending on the classification time

within a vegetation period?

Results and conclusions The results showed that the use of the raw bands achieved

higher accuracies. A prediction based on data from previ-

ous years in a year with unusual climatological conditions

and without labels also achieved valid results. The pre-

diction depending on the time within a growing season

needed satellite observations until July to classify most of
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requirement (CWR) for each field using Penman and inclu-

sion in the yield prediction. 2) Comparison of climatologi-

cal data, raw bands, indices and value-based information

(CWR, ETc) from Sentinel-2.
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Results and conclusions The results showed that climatological data alone is no

more appropriate than using satellite data alone. Com-

bining climatological data with satellite data increased

the yield prediction accuracy. The CWR-based approach

proved to be slightly worse than using all raw bands, ET0

and precipitation. This simplified feature combination

eased the implementation and achieved a R2 of 0.84 with

a RMSE of 5.63 dt ha−1.

Contributions Implementation of the basic concept and analysis of the

results with contributions of the co-authors; writing of the

manuscript with contributions of the co-authors.
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B.1 Crop-type mapping with SVM

Table B.1: Classification with SVM and NDV I. The last row ’Total’ of the confusion ma-
trix shows the amount of ground truth data, while the column ’Total’ shows the
classification sum.

Other
Winter
wheat
(WW)

Winter
barley
(WB)

Winter
rapeseed
(WR)

Maize Potato
Sugar
beet
(SB)

Total
UA
(%)

PA
(%)

Other 52 2 4 10 3 1 0 72 72.22 66.67
WW 8 57 5 8 1 1 0 80 71.25 77.03
WB 5 9 62 18 0 0 0 94 65.96 75.61
WR 6 4 9 35 0 0 0 54 64.81 48.61
Maize 4 0 1 1 46 6 10 68 67.65 63.01
Potato 2 2 1 0 4 51 3 63 80.95 71.83
SB 1 0 0 0 19 12 62 94 65.96 82.67

Total 78 74 82 72 73 71 75 525
OA 70%

Kappa 0.84
CV 0.69

Table B.2: Classification with SVM and all raw bands.

Other
Winter
wheat
(WW)

Winter
barley
(WB)

Winter
rapeseed
(WR)

Maize Potato
Sugar
beet
(SB)

Total
UA
(%)

PA
(%)

Other 64 5 5 2 5 4 1 86 74.42 82.05
WW 7 64 5 2 0 2 0 80 80 86.49
WB 0 4 70 4 0 0 0 78 89.74 85.37
WR 2 1 1 64 0 1 1 70 91.43 88.89
Maize 1 0 0 0 67 3 0 71 94.37 91.78
Potato 2 0 0 0 1 57 3 63 90.48 80.28
SB 2 0 1 0 0 4 70 77 90.91 93.33

Total 78 74 82 72 73 71 75 525
OA 87%

Kappa 0.88
CV 0.89
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B.2 Crop-type mapping with RF

Table B.3: Classification with RF and NDV I. The last row ’Total’ of the confusion matrix shows
the amount of ground truth data, while the column ’Total’ shows the classification
sum.

Other
Winter
wheat
(WW)

Winter
barley
(WB)

Winter
rapeseed
(WR)

Maize Potato
Sugar
beet
(SB)

Total
UA
(%)

PA
(%)

Other 54 0 0 5 2 1 0 62 87.1 69.23
WW 4 54 4 5 1 0 0 68 79.41 72.97
WB 4 7 67 8 0 0 0 86 77.91 81.71
WR 8 12 9 53 1 0 0 83 63.86 73.61
Maize 6 1 2 1 58 10 11 89 65.17 79.45
Potato 2 0 0 0 3 49 6 60 81.67 69.01
SB 0 0 0 0 8 11 58 77 75.32 77.33

Total 78 74 82 72 73 71 75 525
OA 75%

Kappa 0.86
CV 0.75

Table B.4: Classification with RF and all raw bands.

Other
Winter
wheat
(WW)

Winter
barley
(WB)

Winter
rapeseed
(WR)

Maize Potato
Sugar
beet
(SB)

Total
UA
(%)

PA
(%)

Other 58 1 1 1 2 1 0 64 90.62 74.36
WW 8 64 4 0 0 0 0 76 84.21 86.49
WB 5 7 73 6 1 0 0 92 79.35 89.02
WR 0 1 4 65 0 0 0 70 92.86 90.28
Maize 1 1 0 0 65 2 3 72 90.28 89.04
Potato 5 0 0 0 4 65 1 75 86.67 91.55
SB 1 0 0 0 1 3 71 76 93.42 94.67

Total 78 74 82 72 73 71 75 525
OA 88%

Kappa 0.92
CV 0.89
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B.3 Crop-type mapping for 2018 with SVM

Table B.5: Classification of crop types in 2018 with SVC, all raw bands and the ”Other” class.
The model was trained with data from 2016 and 2017.

Other
Winter
wheat
(WW)

Winter
barley
(WB)

Winter
rapeseed
(WR)

Maize Potato
Sugar
beet
(SB)

Total
UA
(%)

PA
(%)

Other 78 49 60 23 56 83 53 402 19.4 78
WW 0 8 0 1 3 1 1 14 57.14 8
WB 4 10 13 2 2 0 0 31 41.94 13
WR 18 33 27 74 33 10 27 222 33.33 74
Maize 0 0 0 0 6 0 1 7 85.71 6
Potato 0 0 0 0 0 6 6 12 50 6
SB 0 0 0 0 0 0 12 12 100 12

Total 100 100 100 100 100 100 100 700
OA 28%

Kappa 0.08

Table B.6: Classification of crop types in 2018 with SVC, all raw bands and without the ”Other”
class. The model was trained with data from 2016 and 2017.

Winter
wheat
(WW)

Winter
barley
(WB)

Winter
rapeseed
(WR)

Maize Potato
Sugar
beet
(SB)

Total
UA
(%)

PA
(%)

WW 39 44 14 21 36 39 193 20.21 39
WB 5 11 2 2 0 0 20 55 11
WR 56 45 84 67 56 42 350 24 84
Maize 0 0 0 10 1 2 13 76.92 10
Potato 0 0 0 0 7 7 14 50 7
SB 0 0 0 0 0 10 10 100 10

Total 100 100 100 100 100 100 600
OA 27%

Kappa 0.12
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B.4 Field boundaries

Figure B.1: Comparison of StMELF data and SNIC results.
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B.5 Combine harvester yields

Figure B.2: Comparison of combine harvester records with weighed yields in 2018.
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Figure B.3: Winter wheat yield values obtained from the combine harvester in 2018. One field
(Moehlacker) was excluded for visualisation consistency.
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B.5 Combine harvester yields

Figure B.4: Box plot for all 22 combine harvester yields, visualising the mean values and variance
within a field.
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B.6 Summarised results for yield prediction

Table B.7: An overview of all results sorted by the highest R2 and the corresponding RMSE.
M. stands for method, Res. for resolution and L. for level. Precipitation is referred
to as P and climatological data is referred to as CD.

Features M. Res. L. R2 MAE RMSE CV CV std

All features LR weekly 2A 0.9 3.65 4.4 0.79 0.06

All features LR weekly 1C 0.9 3.21 4.49 0.74 0.11

B1-B12, ET0, P LR weekly 2A 0.84 4.91 5.63 0.72 0.07

B1-B12, ET0, P LR monthly 1C 0.83 3.94 5.78 0.72 0.09

All features LR monthly 2A 0.83 4.68 5.78 0.67 0.1

B1-B12 LR weekly 2A 0.83 4.64 5.78 0.58 0.14

B1-B12, ET0, P LR weekly 1C 0.83 4.85 5.87 0.72 0.06

CD RF monthly 0.8 4.26 6.39 0.53 0.11

CWR (Kc:NDWI) LR weekly 1C 0.79 4.89 6.45 0.62 0.04

B1-B12, ET0, P LR monthly 2A 0.79 5.43 6.45 0.71 0.05

CWR (Kc:NDWI) LR weekly 2A 0.79 4.92 6.46 0.66 0.07

CD RF weekly 0.79 4.44 6.51 0.62 0.08

B1-B12 LR weekly 1C 0.77 5.63 6.78 0.56 0.09

∆ (Kc:REIP ) RF weekly 1C 0.75 4.74 7.0 0.61 0.06

ETc (Kc:NDV I) LR weekly 2A 0.74 5.82 7.15 0.34 0.14

∆ (Kc:NDRE) LR weekly 2A 0.74 5.4 7.16 0.49 0.18

All features LR monthly 1C 0.74 5.29 7.2 0.65 0.1

ETc (Kc:REIP ) RF weekly 2A 0.74 5.2 7.2 0.52 0.1

∆ (Kc:REIP ) RF weekly 2A 0.74 5.25 7.24 0.5 0.17

∆ (Kc:NDV I) RF weekly 1C 0.73 5.25 7.28 0.5 0.26

ETc (Kc:NDV I) LR weekly 1C 0.73 5.96 7.36 0.51 0.11

CWR (Kc:REIP ) RF monthly 1C 0.73 5.36 7.37 0.61 0.04

ETc (Kc:REIP ) RF weekly 1C 0.73 5.03 7.37 0.63 0.14

∆ (Kc:NDRE) RF weekly 2A 0.72 5.25 7.44 0.46 0.13

∆ (Kc:NDRE) RF weekly 1C 0.72 5.35 7.52 0.48 0.11
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Features M. Res. L. R2 MAE RMSE CV CV std

All features RF weekly 1C 0.72 5.71 7.53 0.62 0.08

B1-B12 LR monthly 2A 0.71 5.64 7.55 0.44 0.08

B1-B12 LR monthly 1C 0.71 6.62 7.55 0.43 0.19

∆ (Kc:NDWI) RF weekly 2A 0.71 5.71 7.58 0.59 0.1

All features RF weekly 2A 0.71 5.8 7.59 0.61 0.08

ETc (Kc:REIP ) LR weekly 1C 0.71 6.04 7.63 0.61 0.11

∆ (Kc:NDV I) RF weekly 2A 0.71 5.4 7.63 0.36 0.15

∆ (Kc:REIP ) RF monthly 2A 0.71 5.71 7.64 0.54 0.22

∆ (Kc:NDWI) RF weekly 1C 0.71 5.67 7.66 0.62 0.04

All features RF monthly 1C 0.71 5.67 7.66 0.49 0.08

ETc (Kc:REIP ) RF monthly 1C 0.7 5.54 7.68 0.37 0.11

CWR (Kc:REIP ) RF weekly 1C 0.7 5.37 7.71 0.71 0.06

∆ (Kc:NDRE) RF monthly 1C 0.7 5.58 7.73 0.65 0.06

∆ (Kc:NDWI) LR weekly 1C 0.7 5.94 7.79 0.62 0.11

∆ (Kc:NDWI) LR weekly 2A 0.7 5.93 7.8 0.47 0.24

CWR (Kc:NDRE) RF weekly 1C 0.69 5.61 7.85 0.41 0.1

All features RF monthly 2A 0.69 5.89 7.86 0.57 0.08

ETc (Kc:NDWI) LR weekly 2A 0.69 6.05 7.87 0.33 0.22

∆ (Kc:NDRE) LR weekly 1C 0.69 5.84 7.92 0.58 0.08

CD LR monthly 0.69 5.79 7.92 0.61 0.1

∆ (Kc:REIP ) LR weekly 1C 0.68 5.96 7.95 0.59 0.07

ET0 RF weekly 0.68 5.96 7.99 0.61 0.09

CD LR weekly 0.68 5.9 7.99 0.43 0.15

CWR (Kc:NDV I) LR weekly 2A 0.68 6.2 8.01 0.44 0.11

∆ (Kc:REIP ) LR weekly 2A 0.68 5.97 8.03 0.62 0.08

ETc (Kc:REIP ) RF monthly 2A 0.67 5.98 8.12 0.3 0.15

ET0 LR weekly 0.67 6.07 8.17 0.62 0.04

CWR (Kc:REIP ) LR weekly 2A 0.66 6.63 8.2 0.58 0.1

∆ (Kc:NDV I) RF monthly 1C 0.66 6.34 8.2 0.33 0.17

CWR (Kc:NDV I) RF monthly 1C 0.66 5.86 8.22 0.46 0.13

99



B Supplementary material

Features M. Res. L. R2 MAE RMSE CV CV std

ETc (Kc:REIP ) LR weekly 2A 0.66 6.33 8.23 0.41 0.01

∆ (Kc:NDWI) RF monthly 1C 0.65 6.5 8.33 0.51 0.2

B1-B12, ET0, P RF weekly 2A 0.65 6.66 8.34 0.49 0.1

∆ (Kc:NDWI) RF monthly 2A 0.65 6.45 8.35 0.68 0.1

∆ (Kc:NDRE) RF monthly 2A 0.65 6.55 8.38 0.41 0.1

B1-B12, ET0, P RF weekly 1C 0.64 6.9 8.42 0.41 0.15

B1-B12 RF weekly 2A 0.64 6.83 8.46 0.44 0.1

CWR (Kc:NDWI) RF weekly 2A 0.64 6.26 8.47 0.52 0.2

CWR (Kc:NDV I) RF weekly 1C 0.64 6.17 8.53 0.39 0.11

CWR (Kc:NDRE) RF weekly 2A 0.64 6.09 8.53 0.4 0.12

CWR (Kc:NDWI) RF weekly 1C 0.63 6.32 8.54 0.52 0.18

ETc (Kc:NDWI) LR weekly 1C 0.63 6.76 8.62 0.34 0.17

ET0 RF monthly 0.63 6.34 8.64 0.49 0.08

B1-B12 RF weekly 1C 0.63 6.91 8.64 0.34 0.1

∆ (Kc:NDV I) LR weekly 2A 0.62 6.72 8.66 0.67 0.04

B1-B12, ET0, P RF monthly 1C 0.62 7.04 8.68 0.56 0.05

∆ (Kc:NDWI) LR monthly 2A 0.62 6.74 8.7 0.23 0.27

∆ (Kc:NDV I) LR weekly 1C 0.62 6.64 8.73 0.65 0.14

CWR (Kc:NDRE) RF monthly 1C 0.61 6.26 8.8 0.42 0.06

CWR (Kc:NDV I) RF monthly 2A 0.61 6.72 8.8 0.48 0.1

∆ (Kc:NDWI) LR monthly 1C 0.61 6.83 8.81 0.46 0.27

B1-B12, ET0, P RF monthly 2A 0.61 7.21 8.83 0.38 0.12

ETc (Kc:NDV I) RF weekly 1C 0.61 6.88 8.84 0.45 0.15

CWR (Kc:NDRE) RF monthly 2A 0.61 6.65 8.84 0.19 0.37

∆ (Kc:NDV I) RF monthly 2A 0.61 6.7 8.86 0.6 0.07

NDWI LR weekly 1C 0.6 7.12 8.92 0.4 0.29

ETc (Kc:NDRE) RF weekly 1C 0.6 6.58 8.94 0.47 0.08

CWR (Kc:NDWI) RF monthly 2A 0.6 6.7 8.99 0.38 0.1

ETc (Kc:NDRE) LR weekly 1C 0.59 7.03 9.03 0.4 0.1

CWR (Kc:REIP ) RF monthly 2A 0.59 6.63 9.04 0.41 0.15
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Features M. Res. L. R2 MAE RMSE CV CV std

ETc (Kc:NDWI) RF weekly 2A 0.59 6.27 9.05 0.54 0.06

CWR (Kc:REIP ) RF weekly 2A 0.59 6.87 9.07 0.57 0.11

ETc (Kc:NDWI) RF weekly 1C 0.58 6.3 9.14 0.47 0.14

CWR (Kc:NDWI) RF monthly 1C 0.58 6.87 9.15 0.27 0.21

∆ (Kc:NDRE) LR monthly 1C 0.58 6.98 9.16 0.48 0.14

B1-B12 RF monthly 1C 0.58 7.4 9.19 0.42 0.14

∆ (Kc:REIP ) RF monthly 1C 0.57 6.3 9.21 0.54 0.17

ETc (Kc:NDRE) RF weekly 2A 0.57 6.65 9.23 0.45 0.13

∆ (Kc:REIP ) LR monthly 2A 0.57 7.45 9.24 0.39 0.15

CWR (Kc:NDRE) LR weekly 1C 0.57 7.32 9.3 0.43 0.16

CWR (Kc:NDV I) RF weekly 2A 0.56 6.74 9.37 0.36 0.1

∆ (Kc:NDRE) LR monthly 2A 0.56 7.26 9.41 0.31 0.11

∆ (Kc:NDV I) LR monthly 1C 0.55 7.28 9.46 0.39 0.2

CWR (Kc:NDRE) LR monthly 1C 0.54 7.41 9.55 0.48 0.07

CWR (Kc:NDV I) LR monthly 1C 0.54 7.49 9.56 0.38 0.16

CWR (Kc:NDRE) LR weekly 2A 0.54 7.51 9.57 0.45 0.04

B1-B12 RF monthly 2A 0.54 7.61 9.57 0.3 0.27

CWR (Kc:NDWI) LR monthly 2A 0.54 7.2 9.6 0.12 0.42

ETc (Kc:NDRE) LR weekly 2A 0.54 7.41 9.61 0.39 0.14

ETc (Kc:NDV I) RF monthly 1C 0.54 7.3 9.61 0.26 0.15

ETc (Kc:NDV I) RF weekly 2A 0.53 7.16 9.73 0.5 0.06

CWR (Kc:NDRE) LR monthly 2A 0.52 7.59 9.74 0.25 0.25

CWR (Kc:NDV I) LR weekly 1C 0.52 7.67 9.75 0.5 0.08

NDWI RF weekly 1C 0.52 7.36 9.79 0.41 0.12

NDWI RF weekly 2A 0.52 7.16 9.79 0.28 0.24

CWR (Kc:NDWI) LR monthly 1C 0.52 7.4 9.81 0.35 0.13

ETc (Kc:NDRE) RF monthly 1C 0.52 7.04 9.82 0.42 0.17

CWR (Kc:NDV I) LR monthly 2A 0.52 7.73 9.84 0.26 0.29

CWR (Kc:REIP ) LR monthly 2A 0.51 7.85 9.84 0.11 0.17

∆ (Kc:NDV I) LR monthly 2A 0.51 7.62 9.85 0.3 0.07
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Features M. Res. L. R2 MAE RMSE CV CV std

NDRE LR weekly 2A 0.51 7.73 9.91 0.29 0.06

CWR (Kc:REIP ) LR monthly 1C 0.49 7.89 10.04 0.36 0.17

NDRE LR weekly 1C 0.49 7.87 10.05 0.3 0.13

∆ (Kc:REIP ) LR monthly 1C 0.49 7.61 10.09 0.36 0.17

REIP LR weekly 2A 0.49 7.88 10.14 0.49 0.08

REIP RF monthly 2A 0.48 7.32 10.17 0.31 0.17

NDWI RF monthly 2A 0.48 7.85 10.2 0.43 0.08

REIP RF weekly 2A 0.48 7.65 10.23 0.26 0.21

REIP RF weekly 1C 0.47 7.3 10.24 0.38 0.09

NDV I RF weekly 2A 0.47 7.89 10.25 0.27 0.08

ETc (Kc:NDWI) RF monthly 1C 0.46 7.1 10.39 0.38 0.14

CWR (Kc:REIP ) LR weekly 1C 0.46 8.01 10.41 0.44 0.12

NDWI RF monthly 1C 0.46 7.98 10.42 0.38 0.14

REIP LR weekly 1C 0.45 8.06 10.45 0.39 0.04

NDRE RF weekly 2A 0.45 7.81 10.49 0.2 0.38

NDRE RF weekly 1C 0.45 8.0 10.52 0.23 0.05

NDV I RF weekly 1C 0.44 7.97 10.56 0.21 0.03

REIP RF monthly 1C 0.44 7.98 10.56 0.32 0.11

ETc (Kc:NDWI) RF monthly 2A 0.44 6.99 10.57 0.42 0.05

NDV I RF monthly 1C 0.43 8.24 10.67 0.19 0.15

NDV I LR weekly 1C 0.43 8.41 10.68 0.12 0.42

ETc (Kc:NDRE) RF monthly 2A 0.41 7.54 10.82 0.34 0.13

ETc (Kc:NDV I) RF monthly 2A 0.41 8.13 10.87 0.31 0.07

REIP LR monthly 1C 0.4 8.79 10.97 0.27 0.06

NDWI LR weekly 2A 0.39 7.99 10.99 0.35 0.18

NDV I LR monthly 1C 0.38 8.49 11.13 0.27 0.1

REIP LR monthly 2A 0.38 9.11 11.15 0.4 0.04

NDRE LR monthly 1C 0.37 8.89 11.23 0.19 0.23

NDRE RF monthly 2A 0.36 8.07 11.31 0.29 0.12

NDV I LR weekly 2A 0.36 8.88 11.34 0.19 0.07
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Features M. Res. L. R2 MAE RMSE CV CV std

NDRE RF monthly 1C 0.33 8.42 11.55 0.13 0.12

ETc (Kc:REIP ) LR monthly 1C 0.33 8.59 11.58 0.12 0.09

NDV I RF monthly 2A 0.32 8.69 11.62 0.21 0.06

NDRE LR monthly 2A 0.32 9.2 11.65 0.2 0.11

NDWI LR monthly 2A 0.31 9.25 11.72 0.02 0.11

NDWI LR monthly 1C 0.31 9.22 11.74 0.27 0.14

NDV I LR monthly 2A 0.3 9.32 11.83 -0.0 0.31

ETc (Kc:NDWI) LR monthly 2A 0.27 9.07 12.08 0.12 0.19

ETc (Kc:NDRE) LR monthly 1C 0.26 9.24 12.12 0.09 0.14

ETc (Kc:NDWI) LR monthly 1C 0.26 9.22 12.18 0.03 0.31

ETc (Kc:NDRE) LR monthly 2A 0.25 9.3 12.23 -0.16 0.24

ETc (Kc:NDV I) LR monthly 1C 0.24 9.43 12.33 0.18 0.08

ETc (Kc:NDV I) LR monthly 2A 0.22 9.53 12.46 0.12 0.18

ET0 LR monthly 0.08 10.64 13.58 -0.05 0.15

ETc (Kc:REIP ) LR monthly 2A 0.07 10.65 13.59 0.06 0.11
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B.7 ET validation

Figure B.5: Comparison of calculated ET0 values for 2016 based on climatological data from
DarkSky (DarkSky, 2020). The comparison was done with evapotranspiration data
from DWD (DWD, 2020a,b) and the Arizona meteorological network (AZMET)
(The University of Arizona, 2020). Depending on the data source, the ET0 results
vary slightly as the climatological parameters may vary.
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