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ABSTRACT	

Background:	 	
Abdominal	aortic	aneurysm	(AAA)	poses	a	great	threat	to	patients.	AAA	is	mostly	
asymptomatic	 and	 often	 incidentally	 found	 on	 ultrasound,	 computerized	
tomography	 (CT)	 or	 X-rays	 scans.	 Currently	 there	 are	 no	 pharmacological	
treatments	ameliorating	disease	prognosis.	Single-cell	RNA	sequencing	(scRNA-
seq)	stands	now	at	the	forefront	of	phenotyping	experiments	and	has	been	widely	
used	in	the	quest	for	targets	improving	molecular	diagnostics,	as	well	as	paving	
the	way	for	novel	therapeutic	strategies.	The	aim	of	my	thesis	project	was	to	reveal	
the	cellular	heterogeneity	of	AAA	at	the	single-cell	level.	
	
Materials	and	Methods:	
Human	 AAA	 samples	 were	 collected	 from	 patients	 undergoing	 open	 repair	
surgery.	 In	 particular,	 for	 each	 patient,	 the	 aneurysm	 non-dilated	 neck	 was	
dissected	 from	 the	 enlarged	 aortic	 portion.	 Non-dilated	 and	 dilated	 abdominal	
aorta	 fragments	 were	 subsequently	 digested	 and	 scRNA-seq	 libraries	 were	
prepared	 according	 to	 10X	 Genomics	 Chromium	 Platform	 manufacturer’s	
instructions.	RNA	sequencing	was	performed	with	the	NovaSeq6000	platform	and	
downstream	in	silico	analysis	were	carried	out	by	using	R.	
	
Results:	
After	quality	check	and	filtering,	more	than	900	cells	were	included	for	analysis.	
Unbiased	clustering	analysis	identified	15	distinct	cell	clusters,	mainly	including	
macrophages,	monocytes,	dendritic	 cells,	vascular	muscle	smooth	cells	 (VSMC),	
endothelial	cells	(EC),	fibroblasts,	T	cells,	B	cells	and	plasma	cells.	Further	analysis	
revealed	4	distinct	subclusters	in	macrophages,	3	different	VSMC	subpopulations,	
and	 3	 fibroblast	 subsets.	 The	 4	macrophage	 clusters	 decreased	 from	 the	 non-
dilated	part	to	the	dilated	part,	though,	they	still	accounted	for	most	of	the	immune	
cells	in	AAA.	A	“modulated	VSMC”	was	also	detected	in	this	dataset	and	featured	
at	its	transcriptional	profiles,	which	may	play	important	role	in	AAA	progression.	
	
Conclusion:	
Current	 single-cell	 data	 analysis	 revealed	 the	 heterogeneity	 in	 AAA	 and	
characterized	 the	 subpopulations	 of	macrophages	 and	VSMCs,	 along	with	 their	
possible	functions	during	the	AAA	development	and	progression.	
	
Keywords:	
Single-cell	RNA	Sequencing;	Abdominal	Aortic	Aneurysm;	Macrophages;	Vascular	
Smooth	Muscle	Cell;	Cellular	Heterogeneity.	
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1. INTRODUCTION	
1.1 	 Abdominal	Aortic	Aneurysm	 	

1.1.1 Definition,	Risk	Factors	and	Complications	

Abdominal	aortic	aneurysm	(AAA)	is	defined	as	a	permanent	local	dilation	of	the	

abdominal	aortic	diameter	of	more	than	3cm	or	exceedingly	more	than	50%	the	

size	of	 the	normal	aorta	(as	shown	in	Figure	1).	 Its	prevalence	 increases	along	

with	 age	 (Sampson	 et	 al.,	 2014)	 and	 is	 higher	 in	 developed	 countries	 than	 in	

developing	countries	(894	versus	685	per	100,000)	among	people	aged	≥60.	 	

Currently,	 risk	 factors	 for	AAA	are	 artificially	 classified	 into	modifiable	 and	

non-modifiable.	 The	 former	 includes	 smoking,	 hypertension,	 atherosclerotic	

diseases,	hypercholesterolemia,	etc.	The	 latter	are	represented	by	male	gender,	

advanced	 age	 (≥60),	 family	 history	 (Eckstein	 and	 Maegdefessel,	 2019).	

Interestingly,	patients	with	diabetes	mellitus,	one	of	the	common	risk	factors	of	

cardiovascular	diseases,	hold	a	 lower	risk	of	developing	AAA(Wanhainen	et	al.,	

2019).	

	
Figure	 1.	 Abdominal	 aortic	 aneurysm	 (AAA).	 AAA	 is	 characterized	 as	 larger	 than	 3	 cm	 or	
exceedingly	more	than	50%	the	size	of	the	normal	aorta.	Notes:	NDP,	non-dilated	part	of	the	AAA	
tissue;	 DP,	 dilated	 part	 of	 the	 AAA;	 RRA,	 right	 renal	 artery;	 LRA,	 left	 renal	 artery;	 RCIA,	 right	
common	iliac	artery;	LCIA,	left	common	iliac	artery.	

AAA	 usually	 remains	 asymptomatic	 until	 rupture	 or	 other	 relevant	

complications	occur,	i.e.,	distal	artery	emboli,	aorto-enteric	or	aortocaval	fistulae,	

etc.	 Although	 small	 AAAs	 can	 develop	 with	 different	 patterns	 (linear	 model	

(Newby	et	al.,	2017),	exponential	type	(Badger	et	al.,	2011),	or	staccato	pattern	
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(Vega	de	Céniga	et	al.,	2008)),	usually	the	higher	the	aneurysm	size	is,	the	higher	

is	the	rupture	risk	(Parkinson	et	al.,	2015).	One	typical	symptom	is	abdominal	pain,	

indicating	a	possibility	of	rupture,	which	can	threaten	AAA	patients	life	with	an	up	

to	 80%	 mortality	 rate	 (Golledge,	 2019).	 Routine	 imaging	 examinations	 like	

ultrasound,	computed	tomography	(CT)	are	recommended	for	screening	people	

with	risk	factors.	

	

1.1.2	Clinical	Prevention	and	Treatment	

As	 previously	 mentioned,	 no	 AAA-specific	 pharmacological	 treatment	 is	 yet	

available	 and	 imaging-based	 routine	 screenings,	 as	 well	 as	 smoking	 cessation,	

remain	the	principal	strategies	for	prevention/	monitoring	AAA	development	and	

progression.	Some	clinical	 studies	however	 investigated	 the	efficacy	 in	 treating	

AAA	of	conventional	drugs	employed	in	treatment	of	cardiovascular	diseases	of	

different	nature	(i.e.,	telmisartan,	(Golledge	et	al.,	2020)),	but	none	of	them	turned	

out	to	be	effective	in	limiting	the	rate	of	aneurysm	growth.	Lipid-lowering	therapy,	

beta-blockers,	and	anti-platelet	drugs	can	be	applied	as	“side	strategies”	to	reduce	

patients’	cardiovascular	risks.	

Surgical	repair	represents	the	current	main	approach	to	treat	AAA.	According	

to	current	guidelines,	elective	surgical	repair	is	recommended	when:(1)	aneurysm	

maximal	diameter	is	≥5.5	cm	for	men	or	≥5.0	cm	for	women;	(2)	aneurysm	growth	

rate	 is	 faster	 than	 1	 cm	 per	 year;	 (3)	 AAA	 is	 accompanied	 by	 symptoms	

(Wanhainen	 et	 al.,	 2019).	 Open	 surgical	 repair	 (OSR)	 and	 endovascular	 aortic	

repair	(EVAR)	are	the	two	main	surgical	procedures	in	today’s	clinical	practice.	

OSR	has	been	practiced	since	1951	to	reduce	the	burden	of	AAA	(Dubost	et	al.,	

1951)	and	was	not	challenged	until	the	1990s	when	EVAR	was	firstly	introduced	

(Parodi	et	al.,	1991).	Although	the	goals	of	OSR	and	EVAR	are	the	same,	debates	

about	 the	 pros	 and	 cons	 of	 both	methodologies	 have	 never	 stopped	 since	 the	

emergence	of	EVAR.	While	OSR	poses	trauma	and	high	perioperative	risks,	routine	

EVAR	requires	suitable	anatomical	conditions	to	achieve	the	ideal	treatment	effect.	

Recent	clinical	trials	and	meta-analysis	indicated	that	EVAR	showed	advantages	
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over	OSR	during	the	perioperative	period	(Lederle	et	al.,	2012;	Patel	et	al.,	2016;	

Powell	 et	 al.,	 2017;	 Chen	 et	 al.,	 2019).	 Moreover,	 advanced	 endovascular	

techniques	(i.e.,	fenestrated/	branched	grafts	(Marzelle	et	al.,	2015;	Makaloski	et	

al.,	2018),	chimney/sandwich	techniques	(Wu	et	al.,	2017;	Wu	et	al.,	2019a))	can	

also	be	applied	to	complex	AAAs	to	achieve	better	prognosis	and	to	avoid	surgical	

trauma.	However,	except	for	yet	known	complications	(i.e.,	endoleaks,	occlusions,	

etc.)	 in	EVAR,	patients	may	also	undergo	catastrophic	complications,	 like	aortic	

intimal	intussusception	(Wu	et	al.,	2019b).	In	the	long	term,	patients	under	EVAR	

may	suffer	more	re-interventions	than	those	with	OSR	(Chen	et	al.,	2019).	

	

1.1.3	Biological	View	on	Development	and	Progression	of	AAA	

Although	our	understanding	of	AAA	pathogenesis	 is	 rapidly	accelerating,	many	

issues	 remain	 to	 be	 elucidated	 on	 the	 path	 towards	 development	 of	 effective	

therapeutic	strategies.	In	this	context,	in	vivo	and	in	vitro	studies	can	provide	us	

with	deep	insights	into	the	AAA	development	and	progression.	AAA	animal	models	

(Lysgaard	 Poulsen	 et	 al.,	 2016)	 include	 mouse	 models	 (Angiotensin	 II	

hypercholesterolaemic	knockout	model,	elastase	model,	calcium	chloride	model),	

rat	models	and	porcine	models.	As	each	animal	model	has	its	pros	and	cons;	the	

employment	of	multiple	 animal	models	 is	useful	 to	 approach	 the	 study	of	AAA	

from	different	perspectives.	

Based	on	in	vitro	studies	of	human	AAA	tissues	obtained	from	OSR,	the	culprit	

lesions	are	orchestrated	by	all	layers	of	the	aortic	wall	(Maegdefessel	et	al.,	2013),	

including	 endothelial	 cells	 (ECs),	 immune	 cells	 (monocytes,	 T	 cells,	 B	 cells,	

macrophages,	 dendritic	 cells,	 etc.),	 vascular	 smooth	 muscle	 cells	 (VSMCs)	 and	

adventitial	cells	(Wu	et	al.,	2020).	Scientific	reports	focusing	on	these	cell	types	

have	 extensively	 contributed	 to	 the	 development	 of	 current	 theories	 on	 AAA	

pathogenesis,	 which	 mainly	 include	 atherothrombosis,	 inflammation	 and	

inherited	factors	(Golledge,	2019).	

One	important	contributor	to	AAA	pathogenesis	are	VSMCs,	constituting	the	

main	component	of	the	aortic	wall	and	residing	in	the	medial	aortic	layer.	VSMCs	



	 -	4	-	

can	modulate	vasoconstriction	and	vasodilatation,	playing	a	contractile	function	

under	 non-diseased	 conditions;	 it	 can	 also	 express	 extracellular	matrix(ECMs),	

tissue	inhibitors	of	matrix	metalloproteases	(TIMPs)	(Wilson,	2011).	However,	if	

stimulated	by	local	factors	like	inflammatory	cytokines,	oxidized	lipids,	vessel	wall	

injury,	 etc.,	 VSMCs	 can	 undergo	 apoptosis	 and	 switch	 from	 a	 contractile	 to	 a	

synthetic	phenotype	(Ailawadi	et	al.,	2009;	Wilson,	2011;	Wu	et	al.,	2020).	VSMC	

apoptosis	 can	 be	 induced	 during	 vascular	 disease	 development	 by	 NETosis	

(Silvestre-Roig	et	al.,	2019),	a	program	induced	cell	death	mechanism,	which	 is	

triggered	 by	 neutrophil	 extracellular	 traps	 (NETs).	 Whether	 this	 mechanism	

contributes	to	AAA	needs	to	be	further	elucidated	(Plana	et	al.,	2020).	Conversely,	

perivascular	adipose	tissue	(PVAT)	was	recently	found	to	play	a	vital	role	in	AAA	

(Cheng	et	al.,	2018;	Dias-Neto	et	al.,	2018;	Kugo	et	al.,	2019;	Sagan	et	al.,	2019),	

with	more	mechanistic	studies	being	still	required.	

Beyond	the	cellular	level,	researchers	in	this	field	have	extended	the	theories	

of	AAA	formation	to	the	transcription	level	i.e.	noncoding	RNAs	(ncRNAs)	which	

aren’t	 finally	 translated	 into	 proteins.	 NcRNAs	 encompass	 a	 wide	 range	 of	

categories	including	microRNAs,	long	noncoding	RNAs(lncRNAs),	etc.	MicroRNAs	

have	been	well	studied	(Kumar	et	al.,	2019;	Wu	et	al.,	2020)	and	several	functional	

lncRNAs	like	H19	(Li	et	al.,	2018;	Zhang	et	al.,	2018),	PVT1	(Zhang	et	al.,	2019b)	

have	also	been	demonstrated	a	quite	critical	role	in	AAA,	as	summarized	in	two	

recent	reviews	(Kumar	et	al.,	2019;	Wu	et	al.,	2020).	Among	these	ncRNA	studies,	

aortic	tissues	from	human	or	animal	models	are	usually	harvested	and	sent	 for	

bulk	 RNA	 sequencing	 to	 detect	 differentially	 expressed	 genes	 (DEGs),	 or	 to	

perform	 other	 analysis	 between	 healthy	 and	 diseased	 tissue	 specimens,	 and	

finally	to	get	these	ncRNAs	of	interest.	

	

1.2 	 Single-Cell	RNA	Sequencing	

Since	the	new	millennium,	novel	platforms,	known	as	Next	Generation	Sequencing	

(NGS),	 have	 marked	 the	 rise	 of	 the	 genomic	 era.	 Cutting	 edge	 technologies	

nowadays	allow	 to	determine	nucleic	acid	 sequences	with	extreme	accuracy	at	
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unprecedented	 scale.	 In	particular,	 transcriptomic	 analysis	have	 contributed	 to	

investigate	the	mechanism	of	gene	expression	regulation	and	to	unveil	the	central	

role	of	RNA	in	orchestrating	this	previously	underestimated	complexity.	A	wide	

variety	 of	 RNA	 sequencing	 (RNA-seq)	 techniques	 has	 been	 developed	 and	

continuously	 improved,	 which	 can	 be	 preferentially	 employed	 upon	 specific	

technical	needs	required	to	address	desired	biological	questions	(Lagarde	et	al.,	

2017;	Sahraeian	et	al.,	2017;	Garalde	et	al.,	2018).	

Transcriptomic	analysis	are	usually	employed	to	profile	average	DEG	patterns,	

upon	different	conditions	(healthy	vs	disease,	treatment	vs	control,	etc.),	starting	

from	bulk	tissue	samples	(Chaudhry	et	al.,	2019).	However,	when	investigating	the	

contribution	 to	disease	of	a	 specific	 cell	 type	or	population,	one	 technique	 that	

goes	 beyond	 bulk	 sequencing	 is	 the	 single	 cell	 RNA-sequencing	 (scRNA-seq),	

which	 can	 discern	 DEGs	 at	 single-cell	 level	 (Stark	 et	 al.,	 2019).	 ScRNA-seq	

techniques	allow	indeed	to	reveal	potential	cellular	heterogeneity	or	phenotypic	

plasticity	(van	Kuijk	et	al.,	2019).	

Since	the	advent	of	the	first	scRNA-seq	methodologies	in	2009	(Lao	et	al.,	2009;	

Tang	et	al.,	2009),	huge	advances	have	been	achieved	and	novel	approaches	have	

been	introduced.	In	the	following	sections,	the	three	main	scRNA-seq	platforms	

currently	 available	 and	 examples	 of	 their	 applications	 in	 the	 field	 of	 vascular	

biology	will	be	introduced.	

	

1.2.1	Three	Main	scRNA-seq	Methodologies	

The	three	main	scRNA-seq	methodologies	to	profile	DEGs	at	single	cell	level,	with	

different	throughputs,	ranging	from	a	few	to	thousands	or	even	millions	of	cells,	

include	 microtiter-plate-based,	 microfluidic	 systems-based	 and	 split-pool	

barcoding-based	approaches	(Lafzi	et	al.,	2018).	 	

	

(1) Microtiter	plates.	

With	 this	 method	 single	 cells	 can	 be	 sorted	 into	 a	 96-	 or	 384-well	 format	

microtiter-plate	and	selected	by	Fluorescence	Assisted	Cell	Sorting	(FACS)	system.	
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An	example	of	widely	used	method	 is	 represented	by	Smart-seq2	(Picelli	et	al.,	

2014).	Despite	high	accuracy	and	sensitivity,	Smart-seq2	only	harvest	 few	cells	

(Ziegenhain	 et	 al.,	 2017).	 Sensitivity	 improvements	 have	 recently	 been	 made	

(Smart-seq3,	(Hagemann-Jensen	et	al.,	2019)).	Furthermore,	Smart-3SEQ	(Foley	

et	al.,	2019),	single	cell	partitioning	is	achieved	by	laser-capture	microdissection.	

Smart-3SEQ	should	be	preferred	 for	 samples	with	 limited	number	of	 cells,	 like	

formalin-fixed	paraffin-embedded	(FFPE)	tissues.	The	overall	costs	of	the	Smart-

seq	platform	are	high.	

Other	methods	based	on	a	plate	can	be	referred	to	STRT-seq	(Islam	et	al.,	2012),	

SCRB-seq	 (Soumillon	 et	 al.,	 2014),	msSCRB-seq	 (Bagnoli	 et	 al.,	 2018),	 CEL-seq	

(Hashimshony	 et	 al.,	 2012),	 CEL-seq2	 (Hashimshony	 et	 al.,	 2016),	 Quartz-seq	

(Sasagawa	et	al.,	2013),	Quartz-seq2	(Sasagawa	et	al.,	2018),	MARS-seq	(Jaitin	et	

al.,	2014),	as	also	shown	in	Figure	2.	

	

	
Figure	2.	A	Brief	history	of	 the	single-cell	RNA	sequencing.	Cell	numbers	reported	 in	some	
representative	scRNA-seq	methods	by	publication	date,	adapted	and	updated	from	(Hashimshony	
et	al.,	2016;	Bagnoli	et	al.,	2018;	Hayashi	et	al.,	2018;	Sasagawa	et	al.,	2018;	Svensson	et	al.,	2018;	
Fürth	et	al.,	2019;	Hagemann-Jensen	et	al.,	2019;	Verboom	et	al.,	2019).	The	red	triangles	indicate	
techniques	 based	 on	 microfluidic	 systems.	 The	 black	 circles	 indicate	 techniques	 based	 on	
microtiter	plate-partitioning.	The	blue	boxes	indicate	techniques	based	on	in	situ	barcoding.	 	
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(2) Microfluidic	systems.	 	

Compared	to	the	microtiter-plate-based	approach,	microfluidic-based	scRNA-seq	

approaches	allow	higher	throughput	(thousands	of	cells)	at	relatively	lower	costs.	

Different	 droplets-,	 nanowells-	 and	 integrated	 fluidics	 circuits-based	 systems	

have	been	developed	to	capture	and	split	cells.	Among	the	droplets-based	system,	

droplet-based	 partitioning	 can	 be	 achieved	 by	 taking	 advantage	 of	 Drop-seq	

(Macosko	et	al.,	2015),	inDrop	(Klein	et	al.,	2015)	and	Chromium	10X	(Zheng	et	al.,	

2017)	platforms.	The	workflows	of	droplets-based	platforms	are	quite	similar	and	

include	 five	 main	 steps:	 1)single-cell	 suspension	 preparation,	 2)droplet	

encapsulation,	 3)cDNA	 synthesis	 and	 amplification,	 4)sequencing	 and	 5)	

computational	analysis	(Salomon	et	al.,	2019).	In	particular,	in	the	Chromium	10X	

platform,	a	“water-in-oil”	or	Gel	Bead-In-Emulsions	(GEM,	Figure	3)	is	generated,	

which	ideally	includes	a	single	cell,	a	gel	bead	with	barcoded	reverse	transcription	

(RT)	 primers,	 enzymes	 and	 partitioning	 oil.	 As	 shown	 in	 Figure	 3,	 the	 10X	

barcodes	 are	 specific	 for	 identifying	RNA	molecules	belonging	 to	 the	 same	 cell	

during	 the	 later	 computational	 multiplexing	 process.	 The	 UMIs	 are	 molecular	

barcodes	 for	 labeling	 and	 quantifying	 unique	 RNA	 molecules.	 However,	 one	

possible	drawback	is	the	possibility	for	a	“water-in-oil”	to	contain	more	than	one	

cell.	 	

	

	
Figure	3.	Single	 cell	 Gel	 Bead-In-Emulsions	 (GEM)	 in	 Chromium	10X	platform.	 (Adapted	 from	
Chromium	Next	GEM	Single	Cell	3ʹ	Reagent	Kits	v3.1(CG000204	Rev	D)).	

Principles	 or	 details	 about	 the	 other	 two	 microfluidic	 system-based	

approaches	 could	 refer	 to	Drop-seq[41]	 and	 inDrop[42]	 (Figure	 2),	 as	well	 as	

other	 literature	 (Ziegenhain	 et	 al.,	 2017;	 Wang	 et	 al.,	 2019).	 One	 additional	
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interesting	method	may	be	the	recent	SMARTer	system	that	claims	the	capacities	

of	detecting	circular	RNAs	(Verboom	et	al.,	2019).	

	

(3) In	situ	barcoding	

Conversely	to	the	two	previously	described	approaches,	with	 in	situ	barcoding-

based	 methods	 (also	 called	 split-pool	 barcoding)	 cells	 are	 pooled	 and	

redistributed	into	96-	or	384-well	plates	and	subsequently	barcodes	are	applied	

(i.e.	sci-RNA-seq,	(Cao	et	al.,	2017);	SPLiT-seq	(Rosenberg	et	al.,	2018);	INSTA-seq	

(Fürth	 et	 al.,	 2019)).	 While	 barcoding	 is	 achieved	 in	 only	 one	 step	 with	 the	

Chromium	10X	platform,	this	takes	several	rounds	when	using	in	situ	barcoding	

technologies.	 The	most	 appealing	 features	 are	 their	 throughput	 (thousands	 to	

millions	of	cells),	as	well	as	the	costs	per	cell,	which	are	much	lower	compared	to	

the	two	prior	approaches.	Furthermore,	cells	are	fixed	on	a	plate,	which	can	be	

stored	for	further	experiments.	

	

1.2.2	Applications	of	scRNA-seq	in	Vascular	Disease	

ScRNA-seq	has	been	extensively	performed	and	are	shaping	our	understanding	on	

the	mechanisms	 of	 cardiovascular	 diseases	 (Chaudhry	 et	 al.,	 2019).	 It	 has	 also	

been	 adopted	 to	 study	 physiological	 aspects	 of	 vascular	 development	 and	

differentiation,	as	well	as	to	investigate	vascular	disease	pathogenesis	(Chavkin	

and	Hirschi,	2020).	 	

Thanks	 to	 this	 technology,	 the	 transcriptional	 landscape	 of	mouse	 vascular	

system	at	 single-cell	 level	has	been	made	available	 to	 the	 scientific	 community	

(Kaur	 et	 al.,	 2017;	 Dobnikar	 et	 al.,	 2018;	 Kalluri	 et	 al.,	 2019).	 A	 pioneer	 study	

focused	on	the	heterogeneity	of	G-protein-coupled	receptor	in	the	vascular	system,	

pointing	 out	 the	 existence	 of	 a	 population	 of	 spontaneously	 dedifferentiating	

VSMC	in	the	healthy	aorta	(Kaur	et	al.,	2017).	Dobnikar	and	colleagues	(Dobnikar	

et	al.,	2018)	demonstrated	the	VSMC	heterogeneity	in	vascular	beds	and	proved	

the	 capability	 of	 a	 multipotent	 progenitor	 marker,	 Sca1,	 in	 regulating	 VSMC	

phenotypic	 switching	 by	 downregulating	 contractile	 genes	 and	 upregulating	
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synthetic	genes.	They	further	found	a	population	of	Sca1-positive	VSMC	in	murine	

atherosclerotic	plaques	(Dobnikar	et	al.,	2018).	Another	recent	study	(Kalluri	et	

al.,	2019)	revealed	three	EC	subpopulations	in	the	mouse	aorta	as	characterized	

by	distinct	functional	roles.	 	 	

ScRNA-seq	 was	 also	 applied	 to	 profile	 different	 cell	 populations	

characterizing	 human	 atherosclerotic	 plaques(Fernandez	 et	 al.,	 2019).	 In	

particular,	 different	 T	 cells	 and	 macrophages	 phenotypes	 were	 identified	 in	

plaques,	 blood	 and	 vascular	 tissue	 from	 symptomatic	 versus	 asymptomatic	

patients	 (Fernandez	 et	 al.,	 2019).	 However,	 differences	 in	 cell	 composition	

between	 stable	 and	 unstable	 plaques	 still	 remains	 unexplored.	 In	 PVAT,	

mesenchymal	 stem	 cells	 (MSCs)	 were	 found	 of	 heterogeneity	 in	 two	

subpopulations,	 contributing	 to	 vascular	 remodeling	 and	 VSMC	 differentiation	

(Gu	et	al.,	2019).	

In	the	context	of	aortic	aneurysm,	scRNA-seq	analysis	have	been	carried	out	

in	a	human	thoracic	aorta	study	(Pedroza	et	al.,	2020)	and	a	murine	abdominal	

aorta	study	(Zhao	et	al.,	2020).	However,	no	scRNA-seq-based	studies	focusing	on	

human	AAA	has	yet	been	introduced.	 	
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2. AIMs	
This	study	aims	at	exploiting	scRNA-seq	to	obtain	novel	biological	 insights	 into	

AAA	disease.	Detailed	aims	are:	

(1) To	set	up	a	pipeline	for	the	analysis	of	AAA	scRNA-seq	data	and	to	compare	

single	cell	expression	patterns	in	the	non-dilated	versus	the	dilated	portion	

of	human	AAA	tissue	collected	from	open	repair	surgeries.	 	

(2) To	identify	expression	profiles	of	immune	cells	and	structural	cells	at	single-

cell	level.	 	

(3) To	explore	cellular	heterogeneity	in	human	AAA	disease.	
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3. MATERIALS	AND	METHODS	
This	study	was	approved	by	the	local	ethics	committee	and	was	conducted	in	line	

with	the	ethical	guidelines	of	Technische	Universität	München,	Klinikum	rechts	

der	Isar.	The	investigation	of	human	samples	here	conformed	with	the	principles	

of	Declaration	of	Helsinki	(Helsinki,	1997).	

	

3.1 	 Patient	Sample	Source	

Human	 AAA	 samples	 utilized	 in	 this	 study	 were	 obtained	 from	 the	 Munich	

Vascular	Biobank	(MVB)	(Pelisek	et	al.,	2019).	A	written	informed	consent	form	

was	signed	by	all	patients.	This	study	was	approved	by	the	Ethics	Committee	of	

Technische	 Universität	 München,	 Klinikum	 rechts	 der	 Isar	 (Project	 number:	

2799/10).	 	

	

3.2 	 Workflow	

As	shown	in	Figure	4,	the	workflow	for	AAA	scRNA-seq	carried	out	in	this	study	

mainly	includes	five	steps:	 	

(1) AAA	tissue	collection	from	patients	undergoing	elective	OSR;	

(2) Aortic	dissociation	via	mechanical	mincing	and	enzymatic	digestion;	

(3) Micro-fluidic	system-based	scRNA-seq	library	preparation	(10x	Genomics	

Chromium	Platform);	

(4) Single	cell	RNA	sequencing	(Illumine	NovaSeq6000);	

(5) In	silico	analysis	(R	package).	

In	detail,	 the	more	upstream	non-dilated	neck	was	dissected	and	separated	

from	the	downstream	dilated	portion	of	the	AAA,	as	shown	in	Figure	1	and	Figure	

4.	Both	tissue	fragments	subsequently	underwent	enzymatic	digestion,	according	

to	 two	 alternative	 dissociation	 protocols,	 which	 were	 applied	 to	 each	 aortic	

portion	in	parallel	(an	“in-house-developed”	procedure	referred	to	as	“Self”	versus	

a	commercial	kit,	labeled	“Milt”).	Thus,	four	samples	were	eventually	submitted	to	

sequencing	 analysis	 (“Dilated_Self”;	 “Non-dilated_Self”;	 “Dilated_Milt”;	 “Non-
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dilated_Milt”).	 Details	 about	 the	 two	 applied	 digestion	 protocols	 will	 be	

introduced	in	the	following	section	(3.3	Aortic	Dissociation).	 	
	

	
	
Figure	 4.	 Workflow	 of	 the	 experiment.	 Samples	 obtained	 from	 the	 operative	 room	 were	
promptly	transferred	to	the	cell	culture	lab	for	mechanical	and	enzymatic	dissociation.	Sequencing	
libraries	were	prepared	according	to	10X	Genomics	Chromium	Platform,	sequenced	with	Illumina	
NovaSeq6000	system	and	analyzed	in	silico.	Notes:	GEM,	gel	bead-in-emulsions.	 	
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3.3 	 Aortic	Dissociation	 	

AAA	 tissue	 samples	 obtained	 from	 patients	 undergoing	 elective	 OSR	 were	

promptly	 placed	 in	 phosphate-buffered	 saline	 (PBS,	 Sigma	 Aldrich,	 Lot#	

RNBJ1283)	and	transferred	on	ice	to	the	cell	culture	lab.	Samples	were	processed	

within	one	hour	after	surgery.	After	rinsing	in	PBS	to	wash	any	blood	or	thrombus	

residues,	 the	 non-dilated	 neck	 was	 dissected	 and	 separated	 from	 the	 dilated	

aneurysmal	 fragment,	 for	 subsequent	 dissociation	 procedures.	 Two	 alternative	

enzymatic	 digestion	 protocols	 were	 compared:	 an	 “in-house-developed”	

enzymatic	cocktail,	referred	to	as	“Self”	(0.8	mg/ml	Collagenase	A;	2.68	Kunitz/ml	

DNase	 l	 in	DMEM/F12	Medium	 (Dulbecco’s	Modified	Eagle’s	Medium/Nutrient	

Mixture	F-12	Ham;	Sigma	Aldrich,	Lot#	RNBH2773)	with	5%	FBS(Fetal	Bovine	

Serum)	and	1%	penicillin–streptomycin	(PS)),	and	a	commercial	kit	“Multi	Tissue	

Dissociation	Kit	 2”	 (Miltenyi	Biotech,	 130-110-203),	 referred	 to	 as	 “Milt”.	 Both	

dissociation	 process	 lasted	 about	 1	 hour.	 Details	 of	 the	 procedures	 for	 aortic	

dissociation	relative	to	each	protocol	follow:	

	

(1) Materials	

1) Scalpel,	forceps	and	1ml	Syringe,	

2) Two	to	three	cell	culture	dishes,	

3) Cell	Strainer	70	µm	(EASYstrainerTM,	Cat.	-no.542070),	

4) Cell	Strainer	40	µm	(EASYstrainerTM,	Cat.	-no.542040),	

5) PBS	(Sigma	Aldrich,	Lot#	RNBJ1283)	at	room	temperature,	

6) PBS	(Sigma	Aldrich,	Lot#	RNBJ1283)	at	4	℃,	

7) Trypan	Blue	solution	(Sigma	Aldrich,	Lot#	RNBH2126)	

8) DMEM-F12	+10%	FBS	+	1%	PS,	

9) Multi	Tissue	Dissociation	Kit	2	(Miltenyi	Biotech,	130-110-203),	

10) GentleMACS	C	Tube	(Milteny	Biotech,	130-096-334),	

11) GentleMACS	Dissociator	(Miltenyi	Biotech,	130-093-235),	

12) Debris	Removal	Solution	(Miltenyi	Biotech,	130-109-398).	 	
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(2) Protocol	

1) Obtain	vessel	biopsy	and	wash	with	sterile	PBS.	Cut	with	a	sharp	sterile	

scalpel	into	small	pieces.	

2) For	commercial	enzyme	kit:	Add	2.3	mL	of	Buffer	X,	62.5	µL	of	Enzyme	P,	

25µL	of	Buffer	Y,100µL	of	Enzyme	D	and	12.5µL	of	Enzyme	A	of	the	Multi	

Tissue	Dissociation	Kit	 2	 into	 a	GentleMACS	C	Tube.	 Prepare	 the	 same	

volume	of	the	enzyme	from	homemade	protocol	as	mentioned	above	into	

another	GentleMACS	C	Tube.	

3) Transfer	biopsy	pieces	into	a	GentleMACS	C	Tube	containing	the	enzyme	

mix	and	tightly	close	C	Tube	and	attach	it	upside	down	onto	the	sleeve	of	

the	GentleMACS	Dissociator.	

4) Run	the	GentleMACS	Program	“37C_Multi_G”.	

5) After	termination	of	the	program,	detach	“C	Tube”	from	the	GentleMACS	

Dissociator.	

6) Apply	the	cell	suspension	to	a	70	µm	strainer	placed	in	a	petri	dish.	 	

7) Add	 7	mL	 of	 cell	 culture	medium	with	 FBS	 into	 the	 C	 Tube	 to	 collect	

leftover	 cells.	 Strain	 the	 cells	 through	 the	 filter	with	 the	 inlay	of	 a	1ml	

syringe.	 	

8) Strain	the	cell	suspension	through	another	strainer	(40	µm)	placed	on	a	

50	mL	tube.	 	

9) Centrifuge	cell	suspension	at	300×g	for	5	minutes,	4°C.	 	

From	now	on,	stay	at	4°C!	

10) Carefully	suction	off	the	medium,	be	careful	not	to	disturb	the	cell	pellet.	

11) Resuspend	in	3,1	mL	of	cold	PBS	and	transfer	the	cells	in	a	15	ml	tube.	

12) Add	900	µl	Debris	Removal	Solution	(Miltenyi	Biotech)	and	mix	well	by	

slowly	pipetting	up	and	down	several	times.	

13) Overlay	the	mix	very	gently	with	4	ml	cold	PBS	(Note:	Trypan	blue	can	

be	added	for	better	visualization).	

14) Centrifuge	at	3000×g	for	10	minutes,	4°C.	 	

15) Aspirate	the	two	top	phases	completely	and	discard	them.	
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16) Full	up	with	cold	PBS	to	a	final	volume	of	15	ml.	

17) Mix	by	gently	inverting	the	tube	3	times.	

18) Centrifuge	at	1000×g	for	10	minutes,	4°C.	 	

19) Aspirate	supernatant	completely	and	resuspend	in	1-2	ml	cold	PBS.	

20) Place	in	the	fridge	or	on	ice	until	counting.	

21) Count	 the	 cells	 and	 prepare	 the	 cell	 suspensions	 with	 target	

concentrations	according	to	the	instructions	of	Chromium	Next	GEM	Single	

Cell	3ʹ	Reagent	Kits	v3.1(CG000204	Rev	D).	

	

3.4 	 Single-cell	RNA	Library	Preparation	and	Sequencing	

ScRNA-seq	libraries	preparation	and	cDNA	synthesis	were	carried	out	according	

to	 10x	 Genomics	 Chromium	 Platform	 (Zheng	 et	 al.,	 2017;	 Azizi	 et	 al.,	 2018),	

following	manufacturer’s	instructions	(CG000204	Rev	D).	In	particular,	libraries	

were	 constructed	with	 P5,	 TruSeq	 Read	 1	 (sequencing	 primer	 site),	 16bp	 10x	

Barcode	(for	identifying	cells),	12bp	UMI	(for	identifying	molecules),	TruSeq	Read	

2(sequencing	primer	site),	Sample	 Index	 (for	 indexing	sample),	P7.	Sequencing	

was	performed	by	taking	advantage	of	Illumina	NovaSeq	6000	Sequencing	system.	

	

3.5 	 Demultiplexing	

Raw	 data	 obtained	 from	 sequencing	 was	 demultiplexed	 according	 to	 10x	

Genomics	 pipeline	 by	 using	 Cell	 Ranger	 v2.1.0	 software	

(https://support.10xgenomics.com).	 A	 gene-barcode	 matrix	 was	 generated	 for	

each	library,	and	cell	barcodes	and	UMIs	were	corrected	and	filtered.	

	

3.6 	 Single-Cell	Data	Analysis	

R	package	Seurat	(version	3.1.4)	(Butler	et	al.,	2018;	Hafemeister	and	Satija,	2019;	

Stuart	et	al.,	2019)	was	used	for	analysis	of	scRNA-seq	data	in	RStudio	(version	

1.2.5001).	For	each	Seurat	object	created,	genes	were	filtered	out	if	expressed	in	

fewer	 than	 5	 cells.	 Moreover,	 during	 preprocessing,	 two	 further	 filtering	

conditions	were	set:	
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(1)	Maximum	of	3000	genes	and	minimum	of	100	genes	were	expressed	per	cell;	

(2)	Mitochondrial	genes	more	than	20%	of	the	expressed	genes	in	the	cell.	 	

Possible	 confounding	 factors	 arising	 from	 cell	 cycle	 heterogeneity	 were	

mitigated	 by	 using	 the	 CellCycleScoring	 function(Barron	 and	 Li,	 2016).	

SCTransform	 normalization	 in	 Seurat	 was	 also	 applied	 to	 remove	 technically	

driven,	 as	 well	 as	 other	 sources	 of	 variations	 (Hafemeister	 and	 Satija,	 2019).	

Principal	 component	 analysis	 (PCA)	 was	 run	 (RunPCA	 function)	 for	 further	

dimensional	 reduction	 and	unsupervised	 cell	 clustering.	 The	Uniform	Manifold	

Approximation	 and	 Projection	 (UMAP)	 was	 used	 to	 convert	 cells	 into	 a	 two-

dimensional	map	(dimension	of	reduction	set	at	1:20).	 	

Clustering	was	performed	with	Seurat	FindClusters	function,	with	a	resolution	

of	 0.1	 in	 order	 to	 get	 the	 main	 cell	 types.	 Labeling	 of	 clusters	 with	 cell-type	

identities	was	achieved	by	using	Enrichr	(https://amp.pharm.mssm.edu/Enrichr/)	

(Chen	 et	 al.,	 2013;	 Kuleshov	 et	 al.,	 2016),	 as	 well	 as	 by	 referring	 to	 canonical	

markers.	 Sub-clustering	 was	 further	 obtained	 raising	 the	 resolution	 in	

FindClusters	function.	All	markers	were	tabled	with	the	FindAllmarkers	function.	

Gene	Ontology(GO)	analysis	comparison,	KEGG	pathway,	and	Reactome	Pathway	

Enrichment	comparison	(Yu	et	al.,	2012;	Yu	and	He,	2016)	were	also	applied	for	

related	 analysis	 with	 top-expressed	 markers.	 Differentially	 expressed	 genes	

(DEGs)	were	detected	by	utilizing	FindAllmarkers	function	in	Seurat,	with	default	

statistical	method.	An	adjusted	P	value	of	0.05	was	considered	as	the	threshold	of	

statistical	significance.	 	

	

3.7 	 Statistical	Analysis	

RStudio	(version	1.2.5001)	was	used	for	the	statistical	analysis.	Marker	genes	of	

each	cluster	were	identified	by	using	FindAllmarkers	function	of	Seurat	package,	

by	applying	default	Wilcoxon	rank-sum	statistics.	Other	statistical	methods	used	

in	this	manuscript	were	applied	with	default	settings,	unless	differently	specified.	

Prism	8	(Version	8.2.1,	GraphPad	Software)	was	utilized	for	data	representation.	
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3.8 	 Data	Availability	

All	the	data	and	methods	described	in	this	manuscript	are	available	upon	request	

to	the	Vascular	Biology	and	Experimental	Vascular	Medicine	Unit,	Department	of	

Vascular	 and	 Endovascular	 Surgery	 of	 the	 Technical	 University	Munich	 (TUM)	

(contact@vascular-tum.de	or	https://www.vascular-tum.de/).	 	



	 -	18	-	

4. RESULTS	

4.1 Single-cell	RNA	Profiling	and	Unbiased	Clustering	of	Human	Abdominal	

Aneurysmal	Aorta	

The	specimens	were	finally	prepared	from	two	sites	(dilated	part	and	non-dilated	

aortic	 neck)	 of	 the	 AAA	 collected	 from	 one	 patient	 undergoing	 elective	 OSR	

(Figure	1).	Two	dissociation	protocols	were	applied	in	parallel	on	both	the	dilated	

and	 the	 non-dilated	 aortic	 fragments,	 thus	 ending	 up	with	 4	 different	 samples	

(labeled	 “Dilated_Self”;	 “Non-dilated_Self”;	 “Dilated_Milt”;	 “Non-dilated_Milt”,	

details	seen	in	Methods	section).	Single-cell	suspensions	and	the	final	libraries	for	

sequencing	 were	 prepared	 according	 to	 the	 instructions	 of	 10X	 Genomics	

Chromium	Platform.	The	sequencing	dataset	was	then	processed	with	Cell	Ranger	

(also	described	in	the	Methods)	and	was	subsequently	analyzed.	

A	total	of	1690	cells	were	finally	harvested	from	the	four	sequenced	samples.	

Detailed	descriptions	about	the	estimation	of	the	cell-barcode	and	UMIs	in	each	

library	are	 listed	 in	Table	S1,	as	well	as	 the	number	of	cells	 from	each	sample.	

Noteworthy,	the	use	of	different	enzymatic	digestion	protocols	did	not	affect	the	

enrichment	 of	 any	 specific	 cell	 type,	 as	 shown	 in	Figure	 5A.	 Furthermore,	 cell	

populations	 did	 not	 significantly	 differ	 between	 non-dilated	 and	 dilated	 tissue	

samples	(Figure	5B).	Similar	features	in	terms	of	cell	type	could	also	be	observed	

among	the	four	sequenced	samples	(Figure	5C).	Based	on	these	observations	and	

as	a	consequence	of	the	limited	number	of	sequenced	cells	within	each	sample,	

data	relative	to	each	group	were	merged	together	for	subsequent	analysis.	

After	 processing	 with	 the	 filtering	 conditions,	 983	 cells	 were	 included	 in	

further	analysis	steps.	Unbiased	clustering	identified	15	distinct	subpopulations	

(Figure	5D),	 including	monocytes/macrophages	(Mono/Mφ,	cluster	0,	1,	2,	3,	9	

and	13),	T	cells	(cluster	4,	7),	B	cells(cluster	11)	and	plasma	cells	(cluster	5),	ECs	

(cluster	10,	14),	VSMCs	(cluster	8)	and	adventitial	cells	(cluster	6,	12).	The	top	ten	

markers	of	each	cluster	are	depicted	in	Figure	5E	and	Table	S2.	
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Figure	5.	Cell	populations	in	AAA	identified	by	ScRNA-seq	analysis.	A.	Cell	clusters	from	two	different	
dissociation	protocols	are	not	significantly	different;	B.	Cell	clusters	from	non-dilated	and	dilated	
AAA	are	not	significantly	different;	C.	Cell	cluster	identified	in	the	four	libraries	(DS,	NDS,	DM,	NDM)	
are	not	significantly	different.	D.	scRNA-seq	identified	15	distinct	clusters;	E.	Top	ten	markers	for	
each	cluster	(weighed	by	avg_logFC)	of	each	cluster.	Notes:	DM,	Dilated_Milt	group;	DS,	Dilated_Self	
group;	NDM,	Non-dilated_Milt	group;	NDS,	Non-dilated_Self	group.	
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4.2 Cell	Amount	and	Percentage	Altered	 in	Dilated	AAA	Compared	to	Non-

dilated	Aortic	Neck	

Next,	 the	 proportion	 of	 each	 cell	 type	 was	 calculated.	 Among	 the	 cells	 after	

processing,	 immune	 cells	 accounted	 for	 73.04%	 (718/983)	 including	

macrophages,	monocytes,	dendritic	cells,	T	cells,	and	B	cells	(Figure	6A,	left	and	

middle).	 Among	 these	 immune	 cells,	 macrophages	 represented	 the	 largest	

population	(50.14%,	360/718),	followed	by	T	cells	13.63%	(134/983),	B	cells	for	

4.98%	(49/983)	and	monocytes	accounted	for	4.4%	(54/983).	On	the	other	hand,	

structural	cells	(26.96%,	263/983)	mainly	included	adventitial	cells,	VSMCs,	and	

ECs,	 which	 were	 respectively	 11.70%	 (115/983),	 5.49%	 (54/983)	 and	 9.77%	

(96/983),	as	shown	in	Figure	6A	and	Table	1.	 	

In	order	to	explore	differences	in	the	amount	of	cells	populating	each	cluster	

in	dilated	versus	non-dilated	AAA,	the	percentage	of	each	cell	type	per	cluster	was	

calculated	 and	 compared.	 Interestingly,	 the	 greater	 proportion	 of	 cells	 61.85%	

(608/983)	came	from	non-dilated	fragment,	likely	due	to	consistent	apoptosis	and	

subsequent	reduced	cell	number	characterizing	the	aneurysmal	dilated	region.	At	

the	same	time,	in	line	with	results	from	a	AAA	mouse	study	(Zhao	et	al.,	2020),	the	

fraction	of	immune	cells,	significantly	increased	at	the	site	of	aneurysm,	as	shown	

in	Figure	6B	(T	cells,	non-dilated:	10.69%,	65/608	vs	dilated:	18.40%,	69/375;	B	

cells,	non-dilated:	3.45%,	21/608	vs	dilated:	7.47%,	28/375.).	However,	this	was	

not	true	for	macrophages,	depleted	in	dilated	part	(30.40%,	114/375).	 	

As	 regards	 structural	 cells,	 the	 percentage	 of	 fibroblasts	 in	 the	 non-dilated	

fragment	 (14.47%,	 88/608)	 was	 remarkably	 reduced	 in	 dilated	 AAA	 (7.2%,	

27/375),	 as	 shown	 in	Figure	 6B	 and	Table	 1.	 On	 the	 contrary,	 the	 number	 of	

VSMCs	and	ECs	were	similar	between	the	two	groups.	 	
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Figure	6.	Proportions	of	main	cell	types.	A.	Cell	composition	of	total	cells	(dilated	+	non-dilated,	
left),	immune	cells	(middle)	and	structural	cells	(right);	B.	Comparison	between	cell	composition	
in	non-dilated	dilated	AAA.	Notes:	Mφ,	macrophages;	DC,	dendritic	cells;	TC,	T	cells;	BC,	B	cells;	PC,	
plasma	cells;	VSMC,	vascular	smooth	muscle	cell;	AFC,	adventitial	cells;	EC,	endothelial	cells.	

	

Table	1.	Cell	amount	and	proportion	of	each	cell	type	
	 NDP	(%)	 DP	(%)	 Sum	(%)	 Total	(%)	

Mφ	 246(40.46)	 114(30.40)	 360(36.62)	

718(73.04)	

Mono	 34(5.59)	 8(2.13)	 42(4.40)	
DC	 37(6.09)	 17(4.53)	 54(5.49)	
TC	 65(10.69)	 69(18.4)	 134(13.63)	
BC	 21(3.45)	 28(7.47)	 49(4.98)	
PC	 26(4.28)	 53(14.1)	 79(8.03)	

VSMC	 32(5.26)	 22(5.87)	 54(5.49)	
265(26.96)	AFC	 88(14.47)	 27(7.2)	 115(11.70)	

EC	 59(9.70)	 37(9.87)	 96(9.77)	
Total	 608(61.85)	 375(38.15)	 983	 983	

Notes:	NDP,	non-dilated	part;	DP,	dilate	part;	Mφ,	macrophages;	Mono,	monocytes;	DC,	dendritic	
cells;	TC,	T	cells;	BC,	B	cells;	PC,	plasma	cells;	VSMC,	vascular	smooth	muscle	cell;	AFC,	adventitial	
cells;	EC,	endothelial	cells.	

	

	

A	 Total	cells	

B	
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Non-dilated	 Dilated	
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4.3 Heterogeneity	of	Monocytes/macrophages	in	Human	AAA	

Unsupervised	clustering	 identified	6	distinct	clusters	of	Mono/Mφ,	assigned	by	

referring	to	canonical	markers	LGALS3,	CD68,	CD14,	FCGR3A	(All	the	full	names	

of	gene	abbreviations	are	listed	in	Appendix),	as	shown	in	Figure	7A.	Each	cluster	

was	 then	 submitted	 to	 further	 analysis	 to	 better	 explore	 its	 specific	 features	

(Figure	 7B).	 To	 this	 end,	 Seurat	 function	 FindAllmarkers	was	 applied	 and	 the	

resulting	top20	significantly	DEGs	(weighted	by	avg_log	FC,	p_val_adj<0.05)	were	

presented	 in	 the	 heatmap,	 Figure7C	 and	 Table	 S3.	 Based	 on	 the	 profiled	

signatures	of	each	cluster,	cluster	labelling	was	assigned	as	follows:	fibroblast-like	

Mφ	 (cluster	0),	 inflammatory-like	Mφ	 (cluster	1),	 resident-like	Mφ	 (cluster	2),	

foamy	 Mφ	 (cluster	 3),	 Mo/DC	 (cluster9),	 and	 monocyte	 (cluster	 13).	

Representative	 markers	 are	 shown	 in	 Figure	 7D.	 GO	 enrichment	 comparison	

among	all	the	six	clusters	are	listed	in	Figure	7E,	as	well	as	KEGG	and	Ractome	

pathway	(Figure	7F-G).	

“Fibroblast-like	Mφ”(cluster0)	signature	genes	like	FN1	(Murphy	and	Hynes,	

2014),	MMP9,	COL6A1	and	COL6A2	(Figure	7D),	play	a	crucial	role	in	aneurysm	

formation,	 as	 involved	 in	 regulation	 of	 production	 of	 the	 extracellular	 matrix	

(ECM).	Linked	GO-terms	were	indeed	“extracellular	matrix	structural	constituent”	

and	“collagen	binding”	(Figure	7E).	“Inflammatory-like	Mφ”	(cluster	1)	exhibited	

high	 expression	 of	 pro-inflammatory	 genes	 encoding	 for	 cytokines	 (TNF,	 IL1B,	

CCL20,	 CCL4,	 et	 al.)	 and	 chemokines	 (CXCL3,	 CXCL5,	 CXCL2;	 Figure	 7D).	 In	

agreement	 with	 a	 previous	 study	 (Cochain	 et	 al.,	 2018),	 the	 expression	 of	

inhibitors	of	NFκB	signaling,	like	NFKBIA	and	IER3	(Schott	et	al.,	2014),	was	also	

to	be	found	in	this	cluster.	Based	on	the	expression	of	F13A1,	FOLR2	and	SELENOP	

(Willemsen	and	de	Winther,	2020),	cluster	2	was	labeled	as	“resident-like	Mφ”.	

This	included	cells	involved	in	antigen	presentation,	as	inferred	by	the	expression	

of	genes	encoding	for	complement	proteins	(C1QC,	C1QB	and	C1QA,	Figure	7D),	

as	 long	 as	Major	 Histocompatibility	 Complex	 Class	 II	molecules	 (MHC	 class	 II,	

CD74,	 HLA-DPA1	 and	 HLA-DPB1,	 Figure	 7D).	 Cluster	 3	 included	 “foamy	Mφ”,	

involved	in	cholesterol	metabolism	and	PPARγ	pathway	signaling	(FABP4	(Liu	et	
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al.,	 2020),	 CD36	 (Lamas	 Bervejillo	 et	 al.,	 2020),	 SCD),	 and	 sharing	 functional	

similarities	with	TREM2hi	Mφ	(Cochain	et	al.,	2018;	Willemsen	and	de	Winther,	

2020).	 Cells	 belonging	 to	 this	 cluster	 presented	 increased	 expression	 of	 ECM-

related	genes	like	MMP12,	MMP19,	MMP14,	as	well	as	higher	levels	of	cathepsins	

(CTSB,	CTSZ,	CTSD).	 	

Cluster	 9	 was	 enriched	 in	 genes	 responsible	 for	 antigen	 processing	 and	

presentation	(HLA-DQA1,	CLEC10A	(Hoober	et	al.,	2019),	HLA-DQB1,	HLA-DRA,	

HLA-DPA1,	 HLA-DRB1)	 and	 thus	 labelled	 as	 “dendritic	 cells”	 (DC,	 Figure	 7E).	

Finally,	 cluster	 13	 expression	 profile	 (Figure	 7D)	 was	 compatible	 with	

“monocytes”	 and	 included	 inflammation	markers	 (S100A8	 (Wang	 et	 al.,	 2018),	

PTGS2	 (Rodemerk	 et	 al.,	 2020),	 IL1B,	 SERPINB9,	 CXCL8),	 along	 with	 ECM	

remodeling	ones	(VCAN,	TIMP1)	and	ligands	of	epidermal	growth	factor	receptor	

(AREG,	EREG).	Details	about	the	pathway	can	also	be	found	in	Figure	7E-G.	

Macrophage	clusters	(cluster	0,	1,	2,	and	3)	accounted	for	36.62%	of	the	total	

cells,	in	particular	40.46%	of	the	cells	from	the	non-dilated	fragment	and	30.40%	

of	 cells	 from	 the	 dilated	AAA,	 as	 shown	 in	Table	 1.	 Differences	 in	 the	 relative	

percentage	of	each	cluster	in	non-dilated	versus	dilated	specimens	are	shown	in	

Figure	 7H.	 In	 detail,	 the	 percentage	 of	 cluster	 1	 (inflammatory-like	 Mφ)	 and	

cluster	 2	 (resident-like	 Mφ)	 did	 not	 significantly	 vary	 (around	 9%	 in	 both	

samples).	Conversely,	significant	shifts	occurred	in	cluster	0	(fibroblast-like	Mφ)	

and	cluster	3	(foamy	Mφ),	which	dropped	from	13%,	to	7.47%,	and	from	10%	to	

5.33%,	 respectively,	 in	 dilated	 AAA.	 Similarly,	 the	 percentages	 of	 monocytes	

(cluster	13)	and	DCs	(cluster	9)	were	also	diminished	in	dilated	AAA,	compared	to	

the	non-dilated	portion.	
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Figure	7.	Characterization	of	Mono/Mφ	in	human	AAA.	A.	Canonical	markers,	LGALS3,	CD68,	
CD14,	FCGR3A,	highly	expressed	in	cluster	0,	1,	2,	3,	9	and	cluster	13;	B.	Clusters	labelled	Mono/Mφ	
were	singled	out	in	an	individual	UMAP;	C.	Top20	genes	(weighted	by	avg_log	FC,	p_val_adj<0.05)	
of	 clusters	 0,	 1,	 2,	 3,	 9,	 13	 were	 identified	 with	 FindAllmarkers	 in	 Seurat;	 D.	 Representative	
markers	for	each	cluster(Cluster	0,	1,	2,	3,	9,	13);E.	Gene	Ontology	(GO)	for	all	the	six	clusters	in	
Mono/Mφ;	F-G.	Pathway	analysis	of	Mono/Mφ.	KEGG	Pathway	Enrichment	Comparison	(F)	and	
Reactome	 Pathway	 Enrichment	 Comparison	 (G)	 among	 the	 six	 clusters	 of	 Mono/Mφ;	 H.	
Percentage	of	each	cluster	from	Mono/Mφ	cells	in	each	sample.	Notes:	NDP,	non-dilated	part	of	
AAA;	DP,	dilated	part	of	AAA.	
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4.4 Heterogeneity	of	VSMC	and	Adventitial	Fibroblasts	in	Human	AAA	

Phenotypic	switch	of	VSMC	has	received	increasing	attention	in	the	study	of	AAA	

pathophysiology	 (Wu	et	al.,	2020).	 Interestingly,	 recent	 single-cell	 studies	have	

demonstrated	 a	 close	 relationship	 between	 VSMC	 and	 fibroblasts	 and	 the	

existence	of	“fibromyocytes”	(or	“modulated	SMC”)	(Wirka	et	al.,	2019;	Pedroza	et	

al.,	 2020).	 The	 characteristics	 of	 VSMC	 and	 fibroblasts	 were	 thus	 described	

together	in	this	section.	

As	depicted	 in	Figure	5D,	 cluster	6,	8,	and	12	corresponded	to	“VSMC	and	

fibroblasts”,	which	characterized	by	the	expression	of	markers	like	ACTA2,	TAGLN,	

PI16,	FBLN1,	DCN	and	C11orf96	(Figure	8A).	The	top	10	markers	of	cluster	6,	8,	

and	12	can	be	 found	 in	Table	S2.	 Since	previous	studies	 reported	a	previously	

underestimated	 complexity	 of	 VSMC	 and	 fibroblasts	 transcriptional	 landscape	

(Wirka	et	al.,	2019;	Pedroza	et	al.,	2020),	unsupervised	clustering	from	cluster	6,	

8	and	12	was	performed	and	seven	distinct	subpopulations	popped	up,	as	depicted	

in	Figure	8B-C.	Top	DEGs	(avg_logFC>0	&	p_val_adj	<0.05)	of	each	subcluster	were	

then	compared	with	the	remaining	6	subclusters,	as	shown	in	Figure	8D.	Basing	

on	these	markers,	subclusters	VF3,	VF5,	and	VF7	were	labeled	as	VSMC,	while	VF	

1,	VF2,	and	VF4	were	considered	as	fibroblasts.	

Interestingly,	 a	 previously	 reported	 gene	 expression	 signature	 identifying	

‘modulated’	VSMC	(FN1,	TNFRSF11B,	COL1A1,	LUM,	SERPINE1,	LGALS3)(Wirka	

et	al.,	2019;	Pedroza	et	al.,	2020),	was	also	detected	in	this	dataset,	with	higher	

expression	in	VF3	compared	to	VF5	and	VF7	(Figure	8E).	Moreover,	other	genes	

like	TIMP1,	DCN	and	POSTN	were	upregulated	in	VF3	compared	to	VF7	(Figure	

8F	and	8H).	DEGs	 in	non-dilated	vs	dilated	 samples	 relative	 to	 cluster	VF3	are	

shown	 in	 Figure	 8G.	 Furthermore,	 VF3	 cell	 cluster	 also	 expressed	 genes	 like	

VCAM1,	one	of	the	markers	defining	the	“VSMC	intermediate	cell	state”	(SEM	cells)	

(Pan	 et	 al.,	 2020),	 as	 well	 as	 COL1A1	 and	 COL3A1,	 characterizing	

fibrochondrocytes.	VCAM1	positive	cells	in	VF3	accounted	for	28.1%,	while	they	

were	not	detected	in	VF5	and	VF7	clusters	(Figure	8I).	Of	notice,	loss	of	markers	
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of	MSC	NT5E	and	ENG,	expected	in	VSMC-derived	SEM	cells	(Pan	et	al.,	2020),	was	

not	observed	in	VF3	(Figure	8I).	

Subpopulation	 VF7	 included	 ‘contractile’	 VSMC,	 expressing	MYH11	 (Leeper	

and	Maegdefessel,	2018),	COL4A1,	COL18A1.	Interestingly,	one	of	the	top	markers	

in	VF7,	MALAT1,	was	reported	to	be	part	of	a	ternary	complex	that	can	repress	

expression	 of	 genes	 coding	 for	 contractile	 protein	 in	 thoracic	 aortic	 aneurysm	

progression	(Wu	et	al.,	2020).	Expression	of	TIMP1,	a	classical	metalloproteinase	

inhibitor,	involved	in	remodeling	of	the	extracellular	matrix	(Busch	et	al.,	2016),	

was	 remarkably	 high	 in	 cluster	 V5.	 However,	 these	 populations	 accounted	 for	

about	0-5%	in	each	group	(Figure	8J),	deviating	from	what	expected	in	vascular	

wall.	 	

Adventitial	 fibroblasts	 (AFs)	 play	 a	 crucial	 role	 in	 vascular	 remodeling	

(Tinajero	and	Gotlieb,	2020).	As	the	most	enriched	cell	type	in	the	adventitia,	AFs	

present	numerous	subtypes	with	different	behavior	and	morphology	(Coen	et	al.,	

2011).	In	line	with	this	observations,	different	AFs	subpopulations	(VF1,	VF2,	and	

VF4	clusters)	were	identified	in	this	study	(Figure	8C-E).	Currently,	no	markers	

are	 available	 to	 specifically	 identify	 AF;	 however,	 expression	 of	 THY1,	 PI16,	

COL14A1,	MMP3,	 CXCL14	 (LeBleu	 and	Neilson,	 2020)	 and	 SFRP2	 (Tabib	 et	 al.,	

2018)	 (Figure	 8K),	 which	 participate	 in	 matrix	 production	 and	 inflammatory	

process,	strongly	suggests	AFs	identity.	 	

The	last	interesting	subset	in	this	cohort,	VF6,	was	considered	as	“neuron-like”,	

basing	on	the	expression	genes	like	SCN7A	(García-Villegas	et	al.,	2009),	HBEGF	

(Kushwaha	et	al.,	2019),	HMOX1	(Nitti	et	al.,	2018),	CRLF1	(Looyenga	et	al.,	2013),	

GPC3	 (Oikari	 et	 al.,	 2016),	 NR2F1(Zhang	 et	 al.,	 2020)	 (Figure	 8E,	 Figure	 8L).	

Importantly,	 these	 cells	 were	 exclusively	 present	 in	 the	 sample	 of	 “Non-

dilated_Self	group”,	as	shown	in	Figure	5C	and	Figure8B-C.	
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Figure	 8.	 Characterization	 of	 VSMC	 and	 fibroblasts	 in	 human	 AAA.	 A.	 Classical	 markers	
confirmed	in	Cluster	6,	8,	and	12;	B-C.	UMAP	revealed	the	heterogeneity	among	Cluster	6,	8	and	12	
(B).	 Unsupervised	 specific	 clustering	 on	 these	 three	 clusters	 identified	 7	 subclusters	 (C)	 with	
different	 functions;	D.	 Top	differentially	 expressed	 genes	 among	 the	 7	 subclusters;	 E.	Markers	
defining	 ‘modulated’	VSMC	(Wirka	et	 al.,	 2019;	Pedroza	et	 al.,	 2020);	F.	 Scatter	plot	 shows	 the	
average	expression	of	genes	characterizing	subcluster	VF3	and	VF7;	G.	ACTA2,	TAGLN,	COL4A2,	
MYH9	decreased	 from	NDP	 to	DP;	H-I.	 dot	plot	 revealed	 the	 cell	percentage	among	 clusters;	 J.	
altered	 percentage	 of	 each	 subcluster	 in	 NDP	 vs	 DP;	 K-L.	 Violin	 plot	 representing	markers	 in	
adventitial	 fibroblasts	 (K,	 subcluster	 1,	 2,	 4)	 and	 in	 neurons	 (L,	 subcluster	 6).	 Notes:	 Pct.exp,	
percentage	 of	 positive	 cells	 in	 each	 cluster;	 feature.plot,	 genes	 to	 plot.VF3,	 5	 and	 7,	 three	
subpopulations	of	vascular	smooth	muscle	cell.	NDP,non-dilated	part.	DP,	dilated	part.	
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4.5 Two	Distinct	Gene	Expression	Profiles	in	ECs	

Two	clusters	(cluster	10	and	14)	were	identified	as	ECs	(Figure	5D),	characterized	

by	 high	 expression	 levels	 of	 VWF	 and	 PECAM1	 (Figure	 9A).	 Interestingly,	

canonical	ECs	marker	CDH5,	previously	identified	to	be	equally	expressed	by	all	

ECs	clusters	in	a	mouse	study	(Kalluri	et	al.,	2019),	was	predominantly	expressed	

in	 cluster	 10	 (Figure	 9A).	 Other	 canonical	 EC-specific	markers,	 like	 FLT1	 and	

angiogenesis-related	SDPR,	PTPRB	and	ECSCR,	followed	the	same	pattern	(Figure	

9A).	 	

Distinct	 gene	 expression	 patterns	 between	 cluster	 10	 and	 14	 were	 thus	

explored	and	top	markers	for	each	cluster	plotted	in	Figure	9B.	Cluster	10	was	

mostly	characterized	by	the	expression	of	genes	related	to	lipid	transport	(FABP4),	

inflammatory	 state	 (ETS2	 (Cheng	 et	 al.,	 2011))	 and	 angiogenesis	 or	

vasculogenesis	 (MMRN2	 (Pellicani	 et	 al.,	 2020),	 AKAP12	 (Benz	 et	 al.,	 2020),	

IGFBP3	(Dallinga	et	al.,	2020),	ADAMTS1	(Lambert	et	al.,	2020),	ACKR3	(Wei	et	al.,	

2020)).	 Top	 markers	 in	 cluster	 14	 were	 instead	 involved	 in	 regulation	 of	

coagulation	 (GIMAP4,	 GIMAP7	 (Sabater-Lleal	 et	 al.,	 2019),	 RHOB	 (Pronk	 et	 al.,	

2019)),	cholesterol	binding	(TSPO(Biswas	et	al.,	2018))	and	metabolism	(TXNIP	

(Domingues	et	al.,	2020)).	Functional	role	of	other	top	markers	in	cluster	14,	like	

GLT8D1,	LRRC28,	STX8	and	FKBP4,	remains	so	far	undefined.	
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Figure	 9.	 Characterization	 of	 two	 distinct	 ECs	 clusters.	 A.	 Featureplots	 point	 out	 highly	
expressed	VWF	and	PECAM1	in	cluster	10	and	14,	indicating	that	both	are	ECs;	B.	Top	markers	
relative	to	cluster	10	and	14,	identified	with	FindAllmarkers	in	Seurat	package.	
	

	
	 	

A	

B	



	 -	34	-	

4.6 T	cell	and	B	cell	Increased	from	the	Non-dilated	Part	to	the	Dilated	Part	

T	cells	(TC)	were	detected	in	cluster	4	and	7,	as	shown	in	Figure	5E	and	Figure	

10A.	In	particular,	cluster	4	and	7	were	respectively	identified	as	CD4+	TC	(CD4,	

CCR7,	Figure	10A)	and	CD8+TC	(CD8,	GZMA,	Figure	10A).	Overall,	TC	percentage	

increased	from	non-dilated	(10.69%)	to	dilated	AAA	tract	(18.4%)	(both	CD4+	TC	

and	CD8+	TC,	from	6.58%	to	10.67%	and	from	4.11%	to	7.73%,	Figure	10B.	

CD79A	and	MS4A1-highly	expressing	B	cells	(BC)	were	identified	in	cluster	

11,	as	shown	in	Figure	10C.	Furthermore,	plasma	cells	were	detected	in	cluster	5	

(Figure	10D).	Both	TC	and	BC	occupied	more	proportions	in	the	dilated	part	than	

those	in	the	non-dilated	part	(Figure	10B),	 indicating	their	contributor	roles	in	

the	process	of	AAA	formation.	

	

A	
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Figure	10.	Markers	of	T	cell	and	B	cell.	A.	Featureplots	for	markers	of	TC	(CD2,	CD3E),	CD4+	TC	
(CD4,	CCR7)	and	CD8+	TC	(CD8A,	GZMA);	B.	Altered	proportions	of	TC,	BC	and	plasma	cells.	Cluster	
4	(CD4+	T	cells),	cluster	7	(CD8+	T	cells)	cluster	5	(plasma	cells)	and	cluster	11	(BC);	C.	Featureplots	
for	markers	of	BC	in	cluster	11	(CD79A	and	MS4A1);	D.	Markers	of	plasma	BC.	Notes:	TC,T	cells;	
BC,	B	cells.	
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5. DISCUSSION	

5.1	The	Study-Control	Group	Setting	in	the	AAA	

Although	 AAA	 is	 one	 of	 the	 most	 life-threatening	 cardiovascular	 diseases,	

mechanistic	insights	on	its	development	and	progression	are	still	lacking	and,	as	a	

consequence	of	 this,	 targeted	pharmacological	 treatment	 is	still	unavailable.	To	

delineate	the	mechanism	underlying	AAA	pathophysiology,	both	animal	models	

and	ex	vivo/in	vitro	human	samples	have	been	utilized.	Regarding	animal	models,	

the	 selection	 of	 a	 control	 group	 for	 AAA	 studies	 usually	 directs	 to	 strains	 like	

C57BL/6J	mice	or	Yucatan	mini-pigs	(Maegdefessel	et	al.,	2014;	Li	et	al.,	2018).	In	

human	 studies,	 the	 control	 samples	 are	 mostly	 collected	 either	 from	 OSR	 for	

ruptured	AAA	(Gäbel	et	al.,	2017)	or	from	organ	donors	(Biros	et	al.,	2014).	From	

this	 point	 of	 view,	 the	 study-control	 group	 setting	 (AAA	 specimens	 versus	 the	

healthy	 aortic	 fragments	 or	 elective	 AAA	 versus	 rupture	 AAA)	 prevents	 from	

exploring	the	molecular	differences	within	different	sites	of	the	individuals	with	

AAA,	 especially	 the	 more	 upstream	 non-dilated	 aneurysm	 neck	 and	 the	

downstream	dilated	part	of	AAA.	The	non-dilated	aortic	neck	of	AAA	may	serve	as	

an	internal	control.	Thus,	another	pattern	of	study-control	group	setting	can	refer	

to	the	two	parts	of	AAA,	similar	to	a	previous	PVAT	transcriptomic	study	where	

the	researchers	compared	gene	expression	patterns	of	adipose	tissue	around	the	

dilated	AAA	with	that	of	the	non-dilated	aortic	neck(Piacentini	et	al.,	2019).	 	 	

In	this	study,	gene	expression	patterns	of	non-dilated	aortic	neck	with	the	most	

dilated	portion	at	the	very	site	of	AAA	were	compared	(Figure	1).	Such	a	strategy	

allows	to	set	an	internal	control	from	the	same	individual,	thus	disregarding	the	

genetic	background	“noise”	arising	from	inter-individual	variability.	However,	the	

anatomical	 structures	 of	 the	 aneurysmal	 aorta	 can	 sometimes	 pose	 technical	

challenges	 to	 surgeons,	 making	 it	 difficult	 to	 excide	 the	 non-dilated	 fragment.	

Furthermore,	other	situations	in	which	the	internal	control	samples	may	not	be	

considered	as	the	ideal	ones	are	when	the	maximum	diameter	is	too	large	(like	

11cm)	or	if	it	is	believed	to	be	an	infectious	AAA.	
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5.2	Digestion	Protocol	Matters	in	the	scRNA-seq	Study	

An	 optimal	 digestion	 protocol	 enables	 reliable	 data.	 It	 requires	 neither	 over-

digestion	 nor	 under-digestion	 (Chavkin	 and	 Hirschi,	 2020),	 but	 the	 best	

combination	of	different	enzymes,	concentrations,	and	digestion	times.	A	recent	

publication	about	VSMC	in	aortic	aneurysm	of	Marfan’s	syndrome	(Pedroza	et	al.,	

2020)	 set	 Liberase	 TM	 and	 elastase	 as	 the	 main	 component	 of	 the	 digestion	

solution.	 Another	 study	 adopted	 collagenase,	 hyaluronidase,	 and	 DNase	 as	

cocktails	in	the	enzymatic	digestion	for	mouse	normal	aorta	(Kalluri	et	al.,	2019).	 	

In	this	study,	we	applied	two	digestion	protocols	as	described	in	the	methods,	

resulting	 in	 similar	 cell	 clusters.	 Unexpectedly,	 VSMCs,	 one	 of	 the	 main	

components	in	the	vascular	wall,	turned	out	way	fewer	than	predicted.	A	possible	

reason	may	 be	 the	 suboptimal	 digestion	 protocol.	 One	 neglected	 source	 is	 the	

lengthy	manual	processing	time	of	mincing	samples	for	digestion(Williams	et	al.,	

2020a).	 Another	 potential	 reason	 is	 the	 40-µm	 strainer	 we	 used	 during	 the	

preparation	stage	which	may	not	be	wide	enough	for	the	VSMCs	to	pass	through	

and	may	preclude	them	for	following	‘water-in-oil’	steps.	 	

	

5.3	Two	Ways	to	Annotate	the	Cell	Clusters	

Clusters	to	labeling	with	cell	type	identities	is	one	of	the	most	critical	steps	in	the	

analysis	of	scRNA-seq	data.	Currently,	manual	and	automatic	labeling	are	the	two	

major	ways	to	annotate	the	clusters	with	cell	type	identities.	Manual	annotation	

requires	abundant	knowledge	about	the	cell	types	of	interest	and	substantial	time.	

Hence,	 to	 facilitate	 this	 step,	 the	 automatic	 annotation	 is	 then	 introduced	 to	

determine	 potential	 cellular	 identities.	 However,	 it	 has	 to	 be	 addressed	 that	

efficiency	of	automatic	annotation	is	strongly	affected	by	the	reference	databases.	

These	 automatic	methods	mainly	 include	 scMap	 (Kiselev	 et	 al.,	 2018),	 SingleR	

(Aran	et	al.,	2019),	Garnett	(Pliner	et	al.,	2019),	CellAssign	(Zhang	et	al.,	2019a),	

CHETAH	(de	Kanter	et	al.,	2019)	and	scCATH	(Shao	et	al.,	2020).	 	

In	 this	 study,	 cell	 clusters	 or	 cell	 subpopulations	 were	 labeled	 by	 manual	

annotation,	as	the	automatic	method	resulted	in	either	too	many	subpopulations	
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or	 some	 subpopulations	presenting	without	 specific	 biological	 insights	 (results	

not	shown	in	this	thesis).	

	

5.4.	Innate	Immune	and	Adaptive	immune	May	Differ	in	the	Non-dilated	Part	

and	the	Dilated	Part	of	the	AAA	

Based	 on	 the	 human	 and	 animal	 research	 studies,	 current	 theories	 on	 the	

pathogenesis	of	AAA	are	mainly	composed	of	four	aspects:	(1)	Immune-driven;	(2)	

Consequence	 of	 atherosclerosis	 and	 thrombosis;	 (3)	 Inherited	 and	 (4)	

biomechanical	 factors	 (Golledge,	 2019).	 In	 this	 context,	 this	 study	 provides	 a	

‘snapshot’	of	cell	populations	characterizing	human	AAA	at	single	cell	level,	thus	

contributing	to	further	global	mechanistic	hints	on	AAA	formation.	

Among	immune	cells,	Mφ	were	the	largest	population	in	both,	the	non-dilated	

part	as	well	as	the	dilated	part.	These	are	involved	in	inflammatory	responses	(IL-

17,	 TNF,	 NFkB	 signaling	 pathway,	 etc.),	 antigen	 presentation	 and	 cholesterol	

metabolism,	etc.,	which	were	in	agreement	with	previous	studies	(Williams	et	al.,	

2018).	One	of	these	phenotypes,	resident	Mφ,	expressing	markers	like	SELENOP,	

FOLR	 (Willemsen	 and	 de	 Winther,	 2020)	 was	 also	 detected	 in	 this	 study,	

accounting	for	around	9%	of	the	total	cells.	For	a	long	time,	local	proliferation	has	

represented	the	main	model	of	Mφ	accumulation	in	the	process	of	atherosclerosis	

(Robbins	et	al.,	2013).	However,	a	recent	lineage	study	revealed	that	resident	Mφ	

in	the	intima	partly	originated	from	recruited	monocytes	during	the	early	process	

(Williams	et	al.,	2020b).	However,	whether	this	phenomenon	also	occurs	in	the	

early	 stage	 of	 AAA	 requires	 further	 experiments.	 Furthermore,	 loss	 of	 spatial	

information	 leaves	 a	 question	 mark	 on	 the	 precise	 localization	 of	 these	 cell	

population	in	the	aortic	wall.	This	population	also	shared	the	function	of	‘antigen	

processing	 and	 presentation’	 with	 DCs,	 which	 was	 one	 of	 the	 confirmed	

characteristics	among	resident	Mφ	(Williams	et	al.,	2020b).	

In	contrast	to	the	scRNA-seq	study	of	murine	AAA	models	(Zhao	et	al.,	2020),	

we	detected	a	cluster	corresponding	to	‘fibroblast-like	Mφ’	in	this	cohort.	These	

cells	are	mainly	related	 to	 the	extracellular	matrix	organization	or	degradation	
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(markers:	MMP9,	COL6A1).	The	origin	of	such	cluster	(fibroblast-derived?	VSMC-

derived?	Mφ-derived?	or	other	cell	types?)	remains	to	be	elucidated.	

The	significant	percentage	reduction	of	Mφ	in	dilated	AAA	compared	to	the	

non-dilated	 internal	 control	 represents	 another	 intriguing	 difference	 with	 the	

murine	 AAA	 study	 (Zhao	 et	 al.,	 2020)	 where	 the	 Mφ	 increased	 in	 AAA.	 This	

difference	can	be	due	to	the	different	nature	of	controls.	So	far,	to	the	best	of	my	

knowledge,	no	studies	have	yet	compared	these	two	parts	from	one	individual’s	

AAA	at	the	single	cell	level.	A	similar	approach	was	employed	in	the	transcriptomic	

study	of	PVAT	(Piacentini	et	al.,	2019),	supporting	the	reliability	of	the	results.	

Another	debated	issue	is	the	role	of	MMPs	in	AAA,	that	if	the	MMPs	serve	as	

a	cause	or	are	an	effect.	MMPs	(like	MMP3)	were	downregulated	in	dilated	AAA	in	

this	 study.	 While	 MMPs	 were	 previously	 demonstrated	 to	 be	 upregulated	 in	

diseased	 ones	 (Maegdefessel	 et	 al.,	 2013;	 Maguire	 et	 al.,	 2019).	 Further	

investigations	are	needed	to	unveil	the	reasons	underlying	these	opposing	results.	

T	cells,	B	cells,	and	plasma	cell	percentages	were	found	to	be	augmented	in	

dilated	AAA,	indicating	a	possible	role	in	AAA	formation.	 	

Based	 on	 these	 observations,	we	 hypothesize	 that	 the	 non-dilated	 neck	 of	

AAA	may	 represent	 the	 early	 stage	of	AAA	disease,	while	 the	dilated	part	may	

reflect	the	late	stages,	ultimately	ending	in	rupture.	Macrophages	and	monocytes	

may	be	more	active	in	non-dilated	part,	while	T	cells,	B	cells,	and	plasma	cells	may	

undergo	 strong	 activation	 in	 the	 dilated	 part.	 This	 hypothesis	 requires	 more	

robust	experimental	validation	and	support	of	scRNA-seq	data	from	other	labs.	

	

5.5	Structural	Cells	Involve	in	AAA	Development	

VSMCs	and	 fibroblasts,	 as	 structural	 cells	 in	 charge	of	maintenance	of	 vascular	

structure	 and	 integrity,	 can	 contribute	 to	 vascular	 remodeling	 (Kuwabara	 and	

Tallquist,	 2017;	Wu	et	 al.,	 2020).	 In	 particular,	 VSMC	may	undergo	 ‘phenotype	

switching’	through	the	course	of	aortic	aneurysm	and	atherosclerosis	(Wu	et	al.,	

2020).	During	this	process,	TGFβ	signaling	was	demonstrated	to	play	a	key	role,	

as	reported	by	a	recent	murine	Marfan	Syndrome	study	(Pedroza	et	al.,	2020).	 	
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Our	dataset	 showed	 that	only	a	minor	percentage	of	 sequenced	cells	were	

actually	 VSMCs	 (5.5%,	 54/983)	 which	 were	 further	 identified	 as	 three	

subpopulations	(VF3,	VF5,	and	VF7).	VF7	showed	high	expressions	of	canonical	

markers	of	contractile	VSMC	like	MYH11,	etc.,	while	VF3	was	the	newly	named	

‘modulated	VSMC’	or	‘fibromyocytes’	(Wirka	et	al.,	2019;	Pedroza	et	al.,	2020)	for	

their	 defining	 markers	 (like	 FN1,	 TNFRSF11B,	 SERPINE1,	 and	 LGALS3).	 In	

particular,	 canonical	 markers	 (ACTA2,	 TAGLN)	 characterizing	 VF7	 were	 less	

expressed	in	VF3.	Furthermore,	we	observed	a	gradient	towards	down-regulation	

of	contractile	genes	expressed	by	VF3	cluster	from	the	non-dilated	to	the	dilated	

AAA	fragment,	which	may	support	a	loss	of	contractility	of	VSMC	residing	at	the	

dilated	 site	 of	AAA.	Another	 interesting	observation	 in	 subpopulation	VF3	was	

that,	the	‘modulated	VSMC’	contained	both	the	cell	types	of	intermediate	cell	state	

of	VSMCs	and	fibrochondrocytes,	which	was	in	alignment	with	a	recent	study	(Pan	

et	 al.,	 2020).	 Importantly,	 markers	 that	 defined	 the	 intermediate	 cell	 state	 of	

VSMCs	 (VCAM1(Pan	et	 al.,	 2020))	were	not	 expressed	 in	VF5	and	VF7,	 further	

corroborating	the	peculiarity	of	this	cluster.	The	intermediate	cell	state	of	VSMCs	

were	also	described	in	a	cardiac	outflow	tract	study	(Liu	et	al.,	2019).	Increasing	

sample	 size	 and	 integrating	human	 results	with	data	 from	AAA	animal	models	

represent	 crucial	 point	 in	 collecting	 further	 information	on	 the	 contribution	of	

VSMC	phenotype	to	AAA	progression.	 	

A	 major	 concept	 in	 the	 ‘inside-to-outside’	 theory	 model,	 is	 that	 vascular	

inflammation	 initiates	 in	 ECs	 in	 the	 intimal	 layer,	 to	 ultimately	 spread	 to	 the	

adventitia	 (Lin	 et	 al.,	 2019).	 This	 was	 also	 observed	 from	 the	 top-expressed	

markers	 in	 the	ECs	 as	 shown	 in	 this	 study.	On	 the	other	hand,	 the	 ‘outside-to-

inside’	theory	model	claims	that	inflammation	starts	from	the	PVAT	to	the	intima.	

During	 this	process,	 inflammatory	cytokines	 IL-18	 is	 induced	by	 the	 leptin	and	

FABP4	from	the	PVAT,	contributing	to	AAA	formation	(Liu	et	al.,	2020).	A	recent	

scRNA-seq	study	has	revealed	the	role	of	PVAT-derived	mesenchymal	stem	cells	

in	vascular	regeneration(Gu	et	al.,	2019),	though,	it	would	also	be	interesting	to	
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test	 this	 hypothesis	 in	 AAA	 development	 by	 profiling	 PVAT	 transcriptional	

landscape	at	single	cell	level.	

In	either	 ‘inside-to-outside’	theory	or	 ‘outside-to-inside’	model,	our	dataset	

showed	 that	 adventitial	 fibroblasts	 suffered	 a	 significant	 loss	 along	 with	 AAA	

progression.	Similarly	to	other	single-cell	studies	(Wirka	et	al.,	2019;	Pedroza	et	

al.,	2020;	Tillie	et	al.,	2020),	heterogeneities	of	fibroblasts	were	also	observed	here,	

one	of	which	may	also	serve	as	contributors	to	immune	responses	(Krausgruber	

et	al.,	2020).	 	

	

5.6	Limitations	in	this	Study	and	in	General	scRNA-seq	Studies	

The	 main	 limitation	 of	 this	 study	 is	 represented	 by	 the	 reduced	 number	 of	

sequenced	cells	available	for	downstream	analysis,	leading	to	a	potential	bias	on	

cluster	 annotation	 and,	 thus	 interpretation	 of	 results.	 However,	 the	 study	

presented	in	this	thesis	represents	only	the	starting	point	towards	creation	of	a	

more	comprehensive	scRNA-seq	dataset	on	huan	AAA.	In	the	future,	more	samples	

and	more	 cells	will	 be	 included,	 thus	allowing	deeper	 investigation	of	 rare	 cell	

types.	 Another	 drawback	 is	 that	 the	 results	 here	 are	 based	 on	 computational	

analysis	 and	 literature	 search,	 lacking	 experimental	 validation	 with	 a	 more	

functional	perspective	(cluster	localization,	functions	or	mechanistic	insights	on	

AAA).	As	previously	discussed,	dissociation	protocols	could	significantly	affect	the	

throughput(quality/number/type)	of	sequenced	cells,	especially	for	VSMCs	which	

resulted	to	be	way	fewer	than	expected	in	this	study.	

From	a	broader	perspective,	previous	reviews	have	listed	several	limitations	

of	scRNA-seq	studies(Williams	et	al.,	2020a;	Zernecke	et	al.,	2020).	Technically,	

transcripts	cannot	be	entirely	covered	because	the	results	represent	a	‘snapshot’	

during	 sampling	 (Zernecke	 et	 al.,	 2020).	 Moreover,	 the	 reads	 obtained	 from	

scRNA-seq	 are	 much	 fewer	 than	 the	 ones	 from	 bulk-sequencing.	 Another	

limitation	 is	 the	 loss	 of	 spatial	 information	 in	 scRNA-seq	 analysis,	 leaving	 the	

question	of	cluster	localization	yet	open.	 	
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6. SUMMARY	AND	PERSPECTIVES	

In	summary,	this	study	provided	direct	insights	into	human	AAA	cell	composition	

at	 the	 single	 cell	 level.	 In	 particular,	 the	 analysis	 of	 scRNA-seq	 dissected	 the	

cellular	heterogeneities	among	various	 cell	 types	 characterizing	human	AAA.	A	

bioinformatic	pipeline	has	been	established	for	cluster	identification	and	labelling.	

This	study	firstly	described	and	compared	the	different	expression	profiles/cell	

clusters	 in	 the	 non-dilated	 aortic	 neck	 versus	 the	 dilated	 part	 of	 AAA,	 thus	

providing	novel	insights	in	AAA	development	and	progression.	

ScRNA-seq	is	a	robust	tool	to	measure	changes	in	gene	expression,	even	if	the	

gene’s	 spatial	 context	 drops	 out	 during	 cell	 separation.	 Spatial	 solved	

transcriptomics	 is	 thus	 a	 complementary	 method	 to	 fill	 this	 gap.	 Two	

complementary	spatial	solved	transcriptomics	methods,	the	seqFISH+	(Eng	et	al.,	

2019)	and	the	Slide-seq	(Rodriques	et	al.,	2019),	have	paved	the	way	closer	to	the	

spatial	transcriptome-wide	data	at	single	cell	level	(Burgess,	2019).	Besides,	the	

commercialization	of	spatial	transcriptomics	(Ståhl	et	al.,	2016)	by	10X	Genomics	

Chromium	 company,	 also	 called	 VISIUM,	 provides	 possibilities	 to	 obtain	 both	

transcriptomic	and	spatial	information	at	the	same	time.	Furthermore,	many	other	

state-of-art	 methods	 like	 multi-omics	 (Krausgruber	 et	 al.,	 2020),	 CyTOF	

(Fernandez	et	al.,	2019)	can	also	be	utilized	to	dissect	the	insights	of	AAA.	
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8. SUPPLEMENT	TABLES	
	 	

	
Table	S2.	Top	ten	markers	in	each	cluster	among	the	15	clusters	of	all	cells	
Gene	 p_val	 avg_logFC	 pct.1	 pct.2	 p_val_adj	 cluster	
MMP9	 6.44E-29	 1.673	 	 0.308	 0.034	 9.37E-25	 0	
MMP12	 4.70E-21	 1.624	 	 0.327	 0.059	 6.84E-17	 0	
FBP1	 1.50E-15	 1.617	 	 0.271	 0.058	 2.19E-11	 0	
SPP1	 8.68E-33	 1.578	 	 0.785	 0.282	 1.26E-28	 0	
AC020656.1	 8.37E-12	 1.507	 	 0.299	 0.094	 1.22E-07	 0	
MT1G	 8.73E-19	 1.497	 	 0.271	 0.047	 1.27E-14	 0	
LYZ	 4.15E-22	 1.471	 	 0.72	 0.323	 6.04E-18	 0	
APOC1	 3.09E-20	 1.379	 	 0.645	 0.269	 4.50E-16	 0	
MT1H	 1.61E-15	 1.294	 	 0.215	 0.034	 2.34E-11	 0	
HK2	 1.23E-13	 1.260	 	 0.262	 0.062	 1.79E-09	 0	
TNF	 3.72E-27	 2.404	 	 0.414	 0.071	 5.41E-23	 1	
CCL20	 1.28E-59	 2.230	 	 0.632	 0.064	 1.87E-55	 1	
IL1B	 8.14E-50	 1.995	 	 0.69	 0.104	 1.18E-45	 1	
CXCL3	 1.51E-52	 1.973	 	 0.77	 0.134	 2.20E-48	 1	
CD163	 2.31E-35	 1.774	 	 0.667	 0.158	 3.36E-31	 1	
PHLDA1	 8.07E-38	 1.731	 	 0.678	 0.154	 1.17E-33	 1	
TGFBI	 5.13E-27	 1.705	 	 0.552	 0.138	 7.46E-23	 1	
EREG	 2.33E-35	 1.647	 	 0.586	 0.104	 3.39E-31	 1	
LGMN	 4.26E-23	 1.604	 	 0.575	 0.167	 6.20E-19	 1	
RRAD	 7.35E-32	 1.588	 	 0.264	 0.016	 1.07E-27	 1	
SELENOP	 1.60E-41	 2.348	 	 0.553	 0.08	 2.33E-37	 2	
C1QB	 3.07E-42	 1.997	 	 0.718	 0.149	 4.47E-38	 2	
C1QC	 1.39E-44	 1.904	 	 0.647	 0.108	 2.02E-40	 2	
C1QA	 4.58E-30	 1.728	 	 0.659	 0.168	 6.67E-26	 2	
PLTP	 6.35E-22	 1.695	 	 0.541	 0.157	 9.24E-18	 2	
FOLR2	 9.81E-26	 1.543	 	 0.282	 0.028	 1.43E-21	 2	

Table	S1.	Estimation	of	the	cell-barcode	and	UMIs	in	each	library	
	 Non-dilated	 Dilated	

Self	 Milt	 Self	 Milt	
Estimated	Number	of	Cells	 559	 414	 280	 437	
Fraction	Reads	in	Cells	 71.3%	 63.2%	 74.2%	 75.8%	
Mean	Reads	per	Cell	 519,569	 380,227	 350,477	 548,165	
Median	Genes	per	Cell	 576	 472	 375	 386	
Total	Genes	Detected	 23,768	 18,984	 17,356	 21,678	
Median	UMI	Counts	per	Cell	 1,468	 1,132	 1,266	 1,671	
Sequencing	Saturation	 95.9%	 93.7%	 95.5%	 96.4%	
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LGMN	 6.64E-19	 1.428	 	 0.541	 0.171	 9.67E-15	 2	
CCL18	 3.01E-14	 1.413	 	 0.224	 0.036	 4.38E-10	 2	
RGS1	 3.46E-14	 1.372	 	 0.506	 0.189	 5.03E-10	 2	
GPNMB	 1.15E-17	 1.359	 	 0.624	 0.237	 1.67E-13	 2	
SPP1	 6.09E-52	 2.166	 	 0.963	 0.28	 8.86E-48	 3	
MMP12	 2.94E-66	 1.829	 	 0.617	 0.041	 4.28E-62	 3	
CTSB	 4.16E-45	 1.691	 	 1	 0.437	 6.05E-41	 3	
RNASE1	 9.86E-45	 1.615	 	 0.988	 0.334	 1.43E-40	 3	
SCD	 3.64E-42	 1.585	 	 0.469	 0.044	 5.29E-38	 3	
CD36	 3.61E-34	 1.504	 	 0.642	 0.124	 5.26E-30	 3	
FABP4	 2.89E-34	 1.439	 	 0.432	 0.047	 4.20E-30	 3	
CSTB	 6.56E-38	 1.399	 	 0.938	 0.349	 9.54E-34	 3	
CTSD	 2.04E-36	 1.370	 	 0.951	 0.336	 2.97E-32	 3	
FTL	 4.62E-34	 1.339	 	 1	 0.929	 6.72E-30	 3	
IL7R	 5.80E-83	 2.166	 	 0.85	 0.081	 8.44E-79	 4	
CD2	 6.85E-72	 1.697	 	 0.662	 0.047	 9.96E-68	 4	
CRYBG1	 3.41E-76	 1.691	 	 0.788	 0.075	 4.97E-72	 4	
BCL11B	 1.35E-87	 1.622	 	 0.788	 0.052	 1.96E-83	 4	
CNOT6L	 5.69E-58	 1.617	 	 0.825	 0.126	 8.28E-54	 4	
SARAF	 5.29E-40	 1.521	 	 0.912	 0.3	 7.69E-36	 4	
ITK	 1.02E-92	 1.504	 	 0.625	 0.021	 1.48E-88	 4	
TSC22D3	 3.22E-23	 1.439	 	 0.788	 0.296	 4.69E-19	 4	
TRBC2	 1.41E-58	 1.412	 	 0.638	 0.06	 2.06E-54	 4	
TNFAIP3	 2.58E-34	 1.394	 	 0.912	 0.271	 3.75E-30	 4	
IGKC	 6.79E-20	 6.243	 	 0.646	 0.246	 9.88E-16	 5	
IGLC2	 5.22E-09	 5.709	 	 0.443	 0.207	 7.59E-05	 5	
IGHG1	 1.50E-38	 5.702	 	 0.38	 0.031	 2.18E-34	 5	
IGLC3	 5.49E-20	 5.605	 	 0.405	 0.085	 7.99E-16	 5	
IGHG4	 5.37E-16	 5.526	 	 0.329	 0.067	 7.82E-12	 5	
IGHG3	 6.80E-40	 5.522	 	 0.519	 0.069	 9.89E-36	 5	
HBA1	 3.28E-07	 4.976	 	 0.291	 0.106	 0.00476851	 5	
IGHG2	 2.09E-47	 4.656	 	 0.354	 0.015	 3.04E-43	 5	
JCHAIN	 2.65E-73	 3.486	 	 0.557	 0.027	 3.85E-69	 5	
IGHGP	 2.23E-24	 2.759	 	 0.114	 0	 3.25E-20	 5	
CXCL14	 1.31E-141	 3.623	 	 0.955	 0.032	 1.90E-137	 6	
FBLN1	 1.24E-116	 3.302	 	 0.909	 0.045	 1.80E-112	 6	
PLA2G2A	 3.52E-138	 3.282	 	 0.848	 0.019	 5.12E-134	 6	
C3	 1.56E-115	 2.980	 	 0.97	 0.058	 2.27E-111	 6	
CCL2	 6.41E-76	 2.812	 	 0.985	 0.143	 9.33E-72	 6	
HAS1	 1.29E-96	 2.708	 	 0.636	 0.017	 1.88E-92	 6	
PI16	 3.66E-106	 2.632	 	 0.697	 0.019	 5.33E-102	 6	
DCN	 3.08E-88	 2.583	 	 1	 0.101	 4.48E-84	 6	
SFRP2	 1.51E-105	 2.507	 	 0.924	 0.052	 2.19E-101	 6	
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MGP	 7.21E-63	 2.430	 	 0.985	 0.188	 1.05E-58	 6	
GNLY	 9.19E-50	 2.701	 	 0.333	 0.008	 1.34E-45	 7	
CCL5	 1.61E-95	 2.617	 	 0.944	 0.062	 2.35E-91	 7	
NKG7	 8.83E-140	 2.590	 	 0.889	 0.018	 1.28E-135	 7	
GZMA	 2.33E-149	 2.395	 	 0.926	 0.017	 3.38E-145	 7	
CST7	 1.13E-127	 2.089	 	 0.944	 0.032	 1.65E-123	 7	
GZMK	 5.81E-93	 2.073	 	 0.722	 0.025	 8.46E-89	 7	
IL32	 2.05E-72	 1.985	 	 0.907	 0.082	 2.98E-68	 7	
GZMB	 3.31E-99	 1.902	 	 0.537	 0.004	 4.82E-95	 7	
CD8A	 1.37E-104	 1.871	 	 0.704	 0.017	 1.99E-100	 7	
CD3D	 2.85E-83	 1.745	 	 0.796	 0.046	 4.15E-79	 7	
TIMP1	 2.93E-29	 3.325	 	 0.963	 0.425	 4.26E-25	 8	
TAGLN	 1.55E-55	 3.002	 	 0.833	 0.111	 2.25E-51	 8	
TPM2	 1.48E-110	 2.969	 	 0.796	 0.025	 2.15E-106	 8	
NDUFA4L2	 9.12E-92	 2.753	 	 0.63	 0.016	 1.33E-87	 8	
CCND1	 1.09E-59	 2.695	 	 0.574	 0.032	 1.58E-55	 8	
IGFBP2	 1.56E-71	 2.674	 	 0.593	 0.025	 2.26E-67	 8	
ACTA2	 3.56E-56	 2.617	 	 0.519	 0.027	 5.19E-52	 8	
POSTN	 1.34E-54	 2.614	 	 0.537	 0.031	 1.96E-50	 8	
SPARC	 4.58E-53	 2.505	 	 0.944	 0.167	 6.67E-49	 8	
MYL9	 3.80E-97	 2.437	 	 0.87	 0.044	 5.52E-93	 8	
HLA-DQA1	 9.34E-44	 2.639	 	 0.63	 0.072	 1.36E-39	 9	
HLA-DPA1	 1.85E-38	 2.366	 	 0.981	 0.367	 2.69E-34	 9	
HLA-DPB1	 4.68E-33	 2.309	 	 0.907	 0.31	 6.80E-29	 9	
HLA-DQB1	 3.90E-24	 1.932	 	 0.63	 0.144	 5.67E-20	 9	
HLA-DRA	 2.68E-33	 1.915	 	 0.981	 0.442	 3.90E-29	 9	
CLEC10A	 5.18E-44	 1.740	 	 0.333	 0.011	 7.54E-40	 9	
CD74	 2.85E-27	 1.737	 	 1	 0.605	 4.14E-23	 9	
CST3	 3.96E-15	 1.698	 	 0.889	 0.478	 5.76E-11	 9	
CPVL	 4.20E-23	 1.653	 	 0.519	 0.093	 6.10E-19	 9	
HLA-DRB1	 1.68E-10	 1.527	 	 0.463	 0.155	 2.45E-06	 9	
STC1	 1.14E-111	 3.281	 	 0.648	 0.009	 1.66E-107	 10	
TM4SF1	 2.99E-90	 2.957	 	 0.981	 0.076	 4.35E-86	 10	
ACKR1	 1.60E-68	 2.696	 	 0.556	 0.022	 2.33E-64	 10	
ADAMTS9	 2.37E-128	 2.537	 	 0.815	 0.016	 3.45E-124	 10	
SELE	 5.69E-75	 2.377	 	 0.5	 0.011	 8.28E-71	 10	
AQP1	 2.08E-80	 2.314	 	 0.648	 0.025	 3.02E-76	 10	
GJA1	 9.46E-104	 2.298	 	 0.741	 0.022	 1.38E-99	 10	
IGFBP3	 1.88E-31	 2.294	 	 0.352	 0.025	 2.74E-27	 10	
IL6	 2.07E-33	 2.259	 	 0.574	 0.075	 3.01E-29	 10	
VWF	 1.56E-89	 2.225	 	 0.722	 0.027	 2.27E-85	 10	
TNFRSF13C	 3.09E-150	 2.177	 	 0.918	 0.015	 4.50E-146	 11	
CD79A	 8.11E-101	 2.094	 	 0.816	 0.03	 1.18E-96	 11	
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BANK1	 1.06E-145	 1.780	 	 0.837	 0.01	 1.55E-141	 11	
EZR	 1.43E-37	 1.774	 	 0.959	 0.237	 2.09E-33	 11	
MS4A1	 7.36E-158	 1.748	 	 0.816	 0.004	 1.07E-153	 11	
CD37	 1.06E-46	 1.747	 	 0.98	 0.188	 1.54E-42	 11	
NFKBID	 9.32E-39	 1.714	 	 0.735	 0.102	 1.36E-34	 11	
CCR7	 2.11E-59	 1.654	 	 0.714	 0.052	 3.08E-55	 11	
CD83	 4.52E-32	 1.588	 	 0.878	 0.186	 6.57E-28	 11	
ADAM28	 1.80E-77	 1.571	 	 0.796	 0.045	 2.61E-73	 11	
APOD	 1.18E-10	 3.784	 	 0.347	 0.084	 1.72E-06	 12	
CCN1	 4.33E-36	 2.389	 	 0.653	 0.088	 6.30E-32	 12	
LUM	 4.25E-37	 2.339	 	 0.714	 0.103	 6.18E-33	 12	
SFRP4	 1.58E-44	 2.250	 	 0.673	 0.069	 2.30E-40	 12	
DCN	 1.18E-50	 2.237	 	 0.898	 0.123	 1.72E-46	 12	
CCN2	 2.35E-29	 2.132	 	 0.633	 0.104	 3.41E-25	 12	
C11orf96	 2.24E-33	 2.096	 	 0.673	 0.101	 3.26E-29	 12	
INHBA	 1.83E-34	 2.034	 	 0.469	 0.043	 2.66E-30	 12	
SFRP2	 1.84E-27	 1.991	 	 0.571	 0.087	 2.68E-23	 12	
COL1A2	 3.44E-35	 1.926	 	 0.673	 0.095	 5.01E-31	 12	
S100A8	 1.17E-41	 2.915	 	 0.762	 0.092	 1.71E-37	 13	
CXCL8	 1.96E-38	 2.621	 	 0.976	 0.227	 2.85E-34	 13	
EREG	 2.04E-53	 2.425	 	 0.952	 0.111	 2.96E-49	 13	
LUCAT1	 2.62E-52	 2.413	 	 0.833	 0.084	 3.81E-48	 13	
G0S2	 2.20E-41	 2.412	 	 0.881	 0.138	 3.20E-37	 13	
IL1B	 1.76E-45	 2.316	 	 0.905	 0.122	 2.57E-41	 13	
S100A9	 9.37E-19	 2.298	 	 0.738	 0.196	 1.36E-14	 13	
SERPINB2	 5.28E-36	 2.205	 	 0.238	 0.004	 7.68E-32	 13	
AREG	 8.92E-25	 2.162	 	 0.738	 0.162	 1.30E-20	 13	
PTGS2	 2.36E-32	 2.158	 	 0.548	 0.057	 3.43E-28	 13	
GNG11	 8.25E-32	 2.140	 	 0.524	 0.054	 1.20E-27	 14	
RAMP2	 4.85E-45	 2.112	 	 0.524	 0.033	 7.06E-41	 14	
ID1	 5.23E-14	 2.028	 	 0.286	 0.038	 7.61E-10	 14	
IFI27	 5.28E-23	 2.006	 	 0.595	 0.108	 7.68E-19	 14	
HSPG2	 1.31E-19	 1.904	 	 0.429	 0.063	 1.91E-15	 14	
TM4SF1	 8.24E-33	 1.813	 	 0.714	 0.1	 1.20E-28	 14	
CRIP2	 1.87E-13	 1.754	 	 0.381	 0.074	 2.72E-09	 14	
GIMAP7	 2.11E-17	 1.707	 	 0.381	 0.057	 3.06E-13	 14	
VWF	 6.56E-26	 1.699	 	 0.452	 0.048	 9.54E-22	 14	
GIMAP4	 2.38E-13	 1.646	 	 0.31	 0.049	 3.46E-09	 14	
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Table	S3.	Top	markers	in	each	cluster	among	the	Mono/Mφ	
Gene	 p_val	 avg_logFC	 pct.1	 pct.2	 p_val_adj	 cluster	
FN1	 3.85E-07	 1.186	 	 0.505	 0.33	 0.00560061	 0	
MMP9	 5.51E-10	 1.464	 	 0.308	 0.086	 8.02E-06	 0	
COL6A1	 2.57E-16	 1.832	 	 0.28	 0.029	 3.73E-12	 0	
MT1G	 1.45E-06	 1.194	 	 0.271	 0.103	 0.0210867	 0	
H4C3	 5.99E-09	 1.420	 	 0.196	 0.034	 8.72E-05	 0	
COL6A2	 5.50E-10	 1.469	 	 0.187	 0.023	 8.00E-06	 0	
CHI3L1	 8.02E-08	 1.111	 	 0.15	 0.02	 0.00116739	 0	
CKS1B	 2.35E-07	 1.157	 	 0.14	 0.02	 0.00341616	 0	
TOP2A	 6.49E-10	 1.210	 	 0.131	 0.006	 9.45E-06	 0	
PCLAF	 5.27E-07	 1.085	 	 0.121	 0.014	 0.00767431	 0	
SPP1	 9.62E-08	 0.685	 	 0.785	 0.596	 0.00139972	 0	
RPS8	 7.17E-07	 0.681	 	 0.766	 0.713	 0.01042588	 0	
PTMA	 2.64E-07	 0.480	 	 0.888	 0.805	 0.00384077	 0	
TMSB10	 1.25E-06	 0.374	 	 0.963	 0.948	 0.01822972	 0	
TNF.1	 1.27E-21	 2.460	 	 0.414	 0.054	 1.85E-17	 1	
RRAD	 1.65E-15	 1.731	 	 0.264	 0.024	 2.40E-11	 1	
CCL20.1	 7.22E-24	 1.576	 	 0.632	 0.144	 1.05E-19	 1	
PHLDA1.1	 2.46E-21	 1.458	 	 0.678	 0.211	 3.58E-17	 1	
CXCL5	 1.36E-09	 1.389	 	 0.172	 0.019	 1.98E-05	 1	
AC092069.1	 1.19E-06	 1.354	 	 0.276	 0.095	 0.01733222	 1	
CXCL3.1	 9.54E-22	 1.303	 	 0.77	 0.268	 1.39E-17	 1	
TGFBI	 1.59E-10	 1.287	 	 0.552	 0.279	 2.31E-06	 1	
IL1B.1	 2.12E-18	 1.268	 	 0.69	 0.23	 3.08E-14	 1	
CD163.1	 4.09E-12	 1.163	 	 0.667	 0.366	 5.95E-08	 1	
ACKR3.1	 1.98E-09	 1.112	 	 0.402	 0.141	 2.88E-05	 1	
LGMN.1	 2.02E-08	 1.008	 	 0.575	 0.298	 0.00029455	 1	
TFRC.1	 5.43E-07	 0.983	 	 0.517	 0.29	 0.00789779	 1	
CCL4.1	 2.46E-11	 0.966	 	 0.575	 0.233	 3.57E-07	 1	
MGLL	 2.81E-06	 0.938	 	 0.184	 0.043	 0.04092451	 1	
EREG.1	 3.49E-11	 0.908	 	 0.586	 0.238	 5.08E-07	 1	
CTSL.1	 3.19E-13	 0.807	 	 0.885	 0.547	 4.65E-09	 1	
RGCC	 2.21E-08	 0.806	 	 0.586	 0.341	 0.00032186	 1	
FABP5	 6.60E-10	 0.773	 	 0.793	 0.493	 9.61E-06	 1	
G0S2	 5.03E-07	 0.766	 	 0.506	 0.26	 0.00732349	 1	
SELENOP.2	 1.21E-27	 2.244	 	 0.553	 0.078	 1.76E-23	 2	
FOLR2.1	 1.40E-10	 1.550	 	 0.282	 0.059	 2.04E-06	 2	
PDK4	 1.34E-06	 1.430	 	 0.224	 0.062	 0.01955275	 2	
C1QC.1	 4.49E-17	 1.368	 	 0.647	 0.248	 6.54E-13	 2	
C1QB.1	 9.27E-16	 1.330	 	 0.718	 0.332	 1.35E-11	 2	
CTSC.1	 5.09E-07	 1.138	 	 0.447	 0.232	 0.0074031	 2	
PLTP.1	 1.86E-07	 1.138	 	 0.541	 0.321	 0.00269964	 2	
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SLC40A1	 2.38E-09	 1.127	 	 0.153	 0.013	 3.46E-05	 2	
C1QA.1	 1.50E-08	 1.024	 	 0.659	 0.394	 0.00021807	 2	
RGS1	 4.13E-07	 1.012	 	 0.506	 0.256	 0.00600504	 2	
LGMN.2	 1.93E-06	 0.811	 	 0.541	 0.307	 0.02804195	 2	
ITM2B.1	 2.01E-08	 0.811	 	 0.706	 0.464	 0.0002928	 2	
HLA-DPB1.2	 1.22E-09	 0.689	 	 0.718	 0.423	 1.78E-05	 2	
CD74.1	 2.49E-12	 0.660	 	 0.953	 0.79	 3.62E-08	 2	
SAT1.1	 1.04E-06	 0.524	 	 0.882	 0.736	 0.0150633	 2	
HLA-DPA1.2	 1.10E-08	 0.516	 	 0.788	 0.531	 0.00016068	 2	
FTL	 3.84E-08	 0.446	 	 1	 0.992	 0.00055936	 2	
B2M.1	 1.79E-08	 0.420	 	 0.988	 0.968	 0.00026115	 2	
FABP4.1	 2.46E-26	 1.708	 	 0.432	 0.032	 3.58E-22	 3	
SCD	 2.90E-17	 1.394	 	 0.469	 0.091	 4.22E-13	 3	
NRP1.2	 2.09E-22	 1.363	 	 0.556	 0.096	 3.05E-18	 3	
SPP1.2	 8.74E-25	 1.320	 	 0.963	 0.571	 1.27E-20	 3	
MMP12.3	 1.19E-24	 1.295	 	 0.617	 0.099	 1.73E-20	 3	
COLEC12.1	 3.37E-16	 1.200	 	 0.407	 0.072	 4.91E-12	 3	
ERRFI1	 1.27E-15	 1.138	 	 0.358	 0.053	 1.84E-11	 3	
SPOCD1	 1.58E-11	 1.054	 	 0.148	 0.005	 2.30E-07	 3	
SDC3	 7.15E-14	 1.005	 	 0.42	 0.091	 1.04E-09	 3	
MT1E.2	 3.81E-13	 0.975	 	 0.321	 0.051	 5.54E-09	 3	
PCOLCE2	 3.28E-10	 0.959	 	 0.21	 0.027	 4.78E-06	 3	
OGFRL1.2	 1.46E-10	 0.951	 	 0.457	 0.147	 2.13E-06	 3	
MMP19.1	 1.08E-11	 0.940	 	 0.457	 0.128	 1.58E-07	 3	
CTSB.2	 7.38E-24	 0.931	 	 1	 0.771	 1.07E-19	 3	
SLC6A8	 9.43E-14	 0.929	 	 0.198	 0.011	 1.37E-09	 3	
LSP1.1	 4.88E-10	 0.929	 	 0.617	 0.28	 7.11E-06	 3	
CD36.3	 1.57E-10	 0.924	 	 0.642	 0.28	 2.29E-06	 3	
IL7R	 3.59E-10	 0.919	 	 0.247	 0.04	 5.23E-06	 3	
ACE	 1.33E-11	 0.906	 	 0.148	 0.005	 1.93E-07	 3	
RND3	 7.13E-10	 0.903	 	 0.198	 0.024	 1.04E-05	 3	
HLA-DQA1.3	 5.42E-33	 2.470	 	 0.63	 0.062	 7.88E-29	 9	
CLEC10A	 3.78E-20	 1.996	 	 0.333	 0.022	 5.50E-16	 9	
HLA-DPA1.3	 2.15E-27	 1.833	 	 0.981	 0.525	 3.12E-23	 9	
FCER1A	 2.70E-23	 1.817	 	 0.259	 0.002	 3.93E-19	 9	
HLA-DPB1.3	 8.81E-22	 1.791	 	 0.907	 0.42	 1.28E-17	 9	
NAPSB	 1.54E-16	 1.699	 	 0.204	 0.005	 2.23E-12	 9	
HLA-DQB1.3	 4.56E-16	 1.661	 	 0.63	 0.172	 6.64E-12	 9	
CST3	 3.12E-11	 1.626	 	 0.889	 0.609	 4.54E-07	 9	
FGL2.2	 2.93E-17	 1.573	 	 0.5	 0.09	 4.26E-13	 9	
HLA-DRB1.1	 2.33E-08	 1.428	 	 0.463	 0.159	 0.00033964	 9	
TCOF1	 2.89E-08	 1.394	 	 0.204	 0.03	 0.00042034	 9	
ATP1B3.1	 4.95E-10	 1.389	 	 0.667	 0.311	 7.21E-06	 9	
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SYAP1.1	 5.82E-07	 1.387	 	 0.426	 0.174	 0.00846276	 9	
IFITM3.3	 2.49E-09	 1.333	 	 0.463	 0.144	 3.62E-05	 9	
HLA-DRA.3	 1.04E-22	 1.323	 	 0.981	 0.721	 1.51E-18	 9	
GPAT3	 2.73E-07	 1.305	 	 0.241	 0.052	 0.00397018	 9	
TUBA1A.1	 1.15E-09	 1.259	 	 0.537	 0.199	 1.68E-05	 9	
CD74.2	 7.87E-19	 1.249	 	 1	 0.796	 1.15E-14	 9	
CPVL.2	 3.33E-08	 1.243	 	 0.519	 0.211	 0.00048477	 9	
PPA1	 2.05E-09	 1.212	 	 0.296	 0.057	 2.98E-05	 9	
S100A8.2	 2.03E-18	 2.497	 	 0.762	 0.198	 2.95E-14	 13	
SERPINB2	 2.38E-19	 2.452	 	 0.238	 0.005	 3.46E-15	 13	
PTGS2.1	 1.15E-21	 2.277	 	 0.548	 0.07	 1.67E-17	 13	
VCAN.2	 1.90E-21	 2.101	 	 0.857	 0.249	 2.76E-17	 13	
LUCAT1.1	 8.77E-26	 2.095	 	 0.833	 0.155	 1.28E-21	 13	
G0S2.3	 6.72E-22	 1.942	 	 0.881	 0.249	 9.78E-18	 13	
CXCL8.4	 3.38E-21	 1.892	 	 0.976	 0.461	 4.92E-17	 13	
AREG.2	 3.19E-18	 1.821	 	 0.738	 0.179	 4.65E-14	 13	
TIMP1.1	 9.46E-19	 1.775	 	 0.976	 0.365	 1.38E-14	 13	
EREG.4	 7.30E-23	 1.763	 	 0.952	 0.239	 1.06E-18	 13	
PPIF.1	 3.84E-23	 1.647	 	 0.905	 0.222	 5.58E-19	 13	
FCN1.3	 2.30E-29	 1.646	 	 0.643	 0.058	 3.35E-25	 13	
IL1B.3	 1.16E-19	 1.634	 	 0.905	 0.258	 1.69E-15	 13	
BCL2A1.2	 2.95E-16	 1.627	 	 0.714	 0.191	 4.30E-12	 13	
MCEMP1	 2.10E-18	 1.563	 	 0.262	 0.01	 3.06E-14	 13	
SERPINB9.4	 6.48E-12	 1.552	 	 0.524	 0.121	 9.43E-08	 13	
OLR1.3	 3.46E-17	 1.451	 	 0.881	 0.285	 5.03E-13	 13	
AZIN1-AS1	 7.92E-11	 1.449	 	 0.262	 0.029	 1.15E-06	 13	
ATP2B1-AS1.2	 6.50E-23	 1.435	 	 0.5	 0.046	 9.46E-19	 13	
EHD1.1	 1.33E-23	 1.392	 	 0.619	 0.072	 1.94E-19	 13	
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