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This study is performed with the aim of gaining insights into the possible applicability of the quark-
hadron continuity concept, not only in the idealized case of three-flavor symmetric quark matter, but also
for the transition from neutron matter to two-flavor quark matter. A key issue is the continuity between
neutron superfluidity and a corresponding superfluid quark phase produced by d-quark pairing. Symmetry
arguments are developed and relevant dynamical mechanisms are analyzed. It is pointed out that the 3P2

superfluidity in dense neutron matter has a direct analog in the 3P2 pairing of d-quarks in two-flavor quark
matter. This observation supports the idea that the quark-hadron continuity hypothesis may be valid for
such systems. Possible implications for neutron stars are briefly discussed.
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I. INTRODUCTION

Two decades ago a conceptual framework for a con-
tinuous connection between hadronic and quark phases
of dense matter described by quantum chromodynamics
(QCD) was suggested in Ref. [1], based on the exact
matching of symmetry breaking patterns and low-lying
excitations in both domains. In a similar context, for three-
flavor matter, correspondences between condensates of
pairs of hadrons and quarks have been discussed in
Ref. [2]. These are the foundations for what is called the
“quark-hadron continuity” of matter at high baryon density.
A Ginzburg-Landau analysis shows that matter at suffi-
ciently low temperature goes through a smooth crossover
from the hadronic to the quark phase as one increases the
baryon density [3]. Such a continuous crossover is also
realized in a three-flavor Nambu–Jona-Lasinio (NJL)
model [4]. These features are further borne out by the
spectral continuity of Nambu-Goldstone (NG) modes [5]
and vector mesons [6]. Recently the continuity of topo-
logical defects such as superfluid vortices that appear both
in the hadronic phase and the color-flavor locked (CFL)

phases have been under discussion [7–9]. A state-of-the-art
result based on emergent higher-form symmetry gives a
plausible explanation for the quark-hadron vortex continu-
ity to hold even beyond the Ginzburg-Landau regime [10].
Some supplemental arguments for the continuity can be
found also in the large-NC limit (with NC being the color
number) where the color-superconducting gap is sup-
pressed: quarkyonic matter [11] refers to such continuity
or duality between nuclear and quark matter. Implications
of quarkyonic matter to neutron star physics have been
discussed in Ref. [12]. For phenomenology in favor of
quarkyonic matter, see recent works [13,14].
Inspired by these theoretical developments, the continu-

ity scenario is now also being considered in the context of
neutron stars. Particular examples are the phenomenologi-
cal constructions of the dense matter equation of state
(EoS), with quark-hadron continuity taken into account
[15–18]. Conversely, recent attempts to extract the neutron
star EoS directly from astrophysical observations, using
different methods such as machine learning and Bayesian
inference [19–22], may provide a basis for judging the
continuity hypothesis.
The above-mentioned continuity concept is so far

primarily based on idealized SU(3) flavor symmetric
settings. In reality, the strange (s) quark in QCD is much
heavier than the up (u) and the down (d) quarks, with a
mass ratio ms=mu;d ∼ 30. It is therefore more natural to
consider isospin-symmetric two-flavor systems rather than
starting from three-flavor symmetry.
A prototype example of dense baryonic matter is

realized in the interior of neutron stars. Their composition
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is dominated by neutrons, accompanied by a few percent of
protons in β-equilibrium. In the present work we focus on
superfluidity in neutron stars (see, e.g., Refs. [23,24] for a
review). Under the aspect of quark-hadron continuity, the
following issue arises: as one proceeds to high baryon
densities, does neutron superfluidity have a corresponding
analog at the quark level? The neutrons undergo BCS
pairing in a 1S0 state at low baryon densities, i.e., nB <
0.5n0 (with n0 ≃ 0.16 fm−3, the saturation density of
normal nuclear matter). This type of superfluid is believed
to exist in the inner crust of neutron stars. With increasing
baryon density, neutron pairing in the 3P2 state starts to
develop and becomes the dominant pairing mechanism for
nB > n0, inward bound towards the neutron star core region.
This realization of 3P2 superfluidity is based on the observed
pattern of nucleon-nucleon (NN) scattering phase shifts
[25,26]. The phase shift of the 1S0 partial wave changes
sign from positive to negative with increasing energy of the
two nucleons, indicating that the pairing interaction turns
from attractive to repulsive with increasing Fermi energy.
Consequently, pairing in the 1S0 channel is disfavored at high
densities and taken over by pairing in the 3P2 channel. This
property is attributed to the significant attraction selectively
generated by the spin-orbit interaction in the triplet P-wave
with total angular momentum J ¼ 2. All other isospin I ¼ 1
S- and P-wave NN phase shifts are smaller or repulsive in
matter dominated by neutrons. Various aspects and proper-
ties of 3P2 superfluidity inside neutron stars, from its role in
neutron star cooling to pulsar glitches, are subject to
continuing explorations (see, e.g., Refs. [27–29]). A recent
advanced analysis of pairing in neutron matter based on
chiral effective theory (EFT) interactions including three-
body forces can be found in Ref. [30].
Our aim in this work is to investigate the continuity

between superfluid neutron matter and two-flavor quark
matter with 1S0 and 3P2 superfluidity. Related two-flavor
NJL model studies have been reported in Refs. [31,32].
Here our point is to collect and discuss the arguments
which do indeed suggest that the continuity concept applies
to superfluid pairing when passing from neutron matter to
u-d-quark matter with a surplus of d-quarks, as schemati-
cally illustrated in Figs. 1 and 2.

We emphasize that our continuity concept does not
exclude rapid but continuous changes in relevant degrees
of freedom. Our focus here is on the logical possibility
of a smooth crossover from neutron matter to quark matter.
The presumed pattern of phases is as follows. Broken chiral
symmetry approaches restoration in highly compressed
baryonic matter. As the baryon density increases, the chiral
order parameter (i.e., the pion decay constant or, equiv-
alently, the magnitude of the chiral condensate) decreases.
Chiral symmetry breaking becomes small in the density
region of continuity between nuclear and quark matter but
remains nonzero as we discuss the latter: chiral symmetry
continues to be spontaneously broken. Eventually, at still
higher densities, chiral symmetry breaking would be
enhanced again once the CFL condensates form.
This paper is organized as follows. In Sec. II we describe

some general physical properties of dense neutron star
matter and motivate the continuity between hadronic
matter and quark matter from a dynamical point of view.
Section III recalls the conventional quark-hadron continuity
scenario based on symmetry breaking pattern considerations
(see Fig. 1). In Sec. IV, we show how the order parameter of
3P2 neutron superfluidity can be rearranged into two-flavor
superconducting (2SC) hudi and superfluid hddi diquark
condensates (see Fig. 2). Section V clarifies the microscopic
mechanism that induces the hddi condensate in the 3P2 state.
In Sec. VI A, we demonstrate that the 3P2hddi diquark
condensate can be related to a macroscopic observable,
namely the pressure component of the energy-momentum
tensor. This in turn is an important ingredient in neutron star
theories. For an isolated nucleon it is also a key subject of
deeply virtual Compton scattering measurements at JLab
[33]. In Sec. VI B, discussions are followed by a suggestive
observation for the necessity of “2SCþ X” to fit the cooling
pattern, where X may well be identified with the d-quark
pairing. Finally, Sec. VII summarizes our findings.

II. ABUNDANCE OF NEUTRONS AND DOWN
QUARKS IN NEUTRON STAR MATTER

In the extreme environment realized inside neutron
stars, the conditions of β-equilibrium and electric charge

FIG. 1. Schematic picture of quark-hadron continuity between
neutron superfluid and color superconductor. Cooper pairing of
neutrons (indicated by dashed line) continuously connects to
pairing of quarks in diquark condensates.

FIG. 2. Schematic picture of quark-hadron continuity
between the 3P2 neutron superfluid and the 2SCþ hddi color
superconductor.
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neutrality must be satisfied. A crude but qualitatively
acceptable picture is that of a degenerate Fermi gas of
protons/neutrons and u, d quarks. Interaction effects will be
taken into account later, but let us first consider free
particles and briefly overview the qualitative character of
the matter under consideration. Here, we assume matter at
densities around the onset of u, d quarks where the onset of
strangeness degrees of freedom may not occur yet. This
assumption is in accordance with the current two-solar-
mass pulsar constraints [34].
The β-equilibrium imposes a condition on the chemical

potentials of participating particles:

μn ¼ μp þ μe; μd ¼ μu þ μe; ð1Þ

for the hadronic and the quark phases, respectively.
Here μe is the chemical potential of the (negatively charged)
electrons. Neutrinos decouple and do not contribute to the
chemical potential balance. For a given baryon number
density, nB, in the hadronic phase, we have two more
conditions for the baryon number density and the electric
charge neutrality, namely,

np þ nn ¼ nB; np ¼ ne: ð2Þ

For noninteracting particles the density is related to the
chemical potential through

ni ¼
ðμ2i −m2

i Þ3=2
3π2

; ð3Þ

where i stands for p, n, e in the hadronic phase and for u, d,
e in the quark phase. Equations (1)–(3) can then be solved
for the three variables, μp, μn, μe, as functions of baryon
density nB.
In a relativistic mean-field picture of strongly interacting

matter the interaction effects are incorporated in terms
of scalar and vector condensates. The scalar mean field
changes the nucleon mass from its vacuum value to a
(reduced) in-medium effective mass. The vector mean field
shifts the chemical potentials. Here we are not interested in
fine-tuning parameters but rather in qualitative features of
the Fermi surface mismatch between different particle
species. With inclusion of interactions, Eq. (3) is modified
with μi replaced by the shifted chemical potentials andmp=n
by the in-medium masses:

μ�p ¼ μp − ðGv þ GτÞnp − ðGv − GτÞnn; ð4Þ

μ�n ¼ μn − ðGv þ GτÞnn − ðGv − GτÞnp; ð5Þ

m�
p=n ¼ mp=nhσi=fπ; ð6Þ

where Gv and Gτ denote the coupling strength parameters
of isoscalar and isovector vector fields. For guidance we

use typical couplings as they emerge in a chiral meson-
nucleon field theory combined with functional renormal-
ization group methods, applied to dense nuclear and
neutron matter [35]:

Gv ∼ 4 fm2; Gτ ∼ 1 fm2: ð7Þ

The scalar mean field hσi is normalized to the pion decay
constant fπ ≃ 92 MeV in vacuum and decreases with
increasing baryon density. Its detailed density dependence
is nonlinear, but for the present discussion it is sufficient to
realize that hσi drops to about half of its vacuum value at
nB ∼ 5n0 (see Fig. 25 of Ref. [35]). So we parametrize the
density dependence of the scalar condensate as

hσiμ ≃ hσi0
�
1 − 0.1

nB
n0

�
: ð8Þ

Next we determine μp, μn, μe as functions of nB. The energy
dispersion relations are characterized by the in-medium
quantities μ�i and m�

i . The shifted chemical potentials are
shown in Fig. 3. Solid lines represent results with inclusion
of the interaction effects using the parameters mentioned.
The dashed lines are the results with interactions turned off,
i.e., using vacuum masses and no shifts on the chemical
potentials. In the neutron star environment, μ�n is naturally
larger than μ�p: neutrons dominate the state of matter.
Interestingly, the Fermi surface mismatch between neutrons
and protons is quite stable with respect to interaction
effects, while μe is significantly modified.
For quark matter, the corresponding quark chemical

potentials are determined by an analogous set of three
conditions. Apart from binding energy effects which
we neglect here for simplicity, we use constituent quark
masses,

FIG. 3. Nucleon chemical potentials, μp, μn, μ�p, and μ�n as
functions of the baryon number density nB normalized by the
normal nuclear density n0. The solid and dashed lines represent
results with and without the interaction effects, respectively.
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mu ¼ 312.3 MeV; md ¼ 313.6 MeV; ð9Þ

fixed to reproduce physical proton and neutron masses,
mp ¼ 2mu þmd and mn ¼ 2md þmu. We note that the
vector couplings gv and gτ in the quark sector should be
smaller than Gv and Gτ by 1=9 because of the difference
by a factor NC ¼ 3 between baryon and quark number. It
is an interesting observation that our input, gv∼Gv=9¼
0.44 fm2, is suggestively close to a recent estimate
[36]: gv ∼ παs=ð3p2

FÞ ∼ 0.5 fm2 (an additional factor of
2 appears here because of a different convention in
Ref. [36]). For the density-dependent constituent quark
masses we assume the same scaling with hσi as for the
nucleon mass. In-medium chemical potentials and quark
masses are then incorporated as

μ�u ¼ μu − ðgv þ gτÞnu − ðgv − gτÞnd; ð10Þ

μ�d ¼ μd − ðgv þ gτÞnd − ðgv − gτÞnu; ð11Þ

m�
u=d ¼ mu=dhσi=fπ: ð12Þ

Figure 4 shows the shifted quark chemical potentials
as functions of nB. In this case again, μ�d is naturally
larger than μ�u for neutron-rich matter in β-equilibrium
and under the electric neutrality condition. At high
baryon densities this Fermi surface mismatch between
d and u quarks shows a correspondence to the mismatch
between neutrons and protons in neutron star matter.
It suggests the possibility of pairing in the I ¼ 1 dd
channel analogous to the superfluid neutron pairing
mentioned previously.

III. SYMMETRY ARGUMENTS FOR
QUARK-HADRON CONTINUITY

Here we give a brief overview of quark-hadron con-
tinuity from the symmetry point of view. If the pattern of
spontaneous symmetry breaking features a discontinuity
between two states or compositions of matter, there must be
at least one phase transition separating these two states.
This implies that, if two such states are smoothly connected
without a phase transition, the symmetry breaking pattern
must be identical on both sides. We describe in the
following how this symmetry argument works for quark-
hadron continuity, first in the three-flavor case and next in
the two-flavor case. While the former is well established
through the pioneering work of Ref. [1], the latter is a novel
scenario that we are proposing in the present work.

A. Three-flavor case

The ground state of three-flavor symmetric quark matter
at high density supposedly accommodates diquark con-
densates featuring a CFL phase. It has been demonstrated
that the CFL phase is characterized by the same symmetry
breaking pattern as the hadronic phase with a superfluid [1].
Here, diquarks in the color-antitriplet, the flavor-triplet, and
the scalar channel, which are often called the “good”
diquarks in the context of exotic hadrons (see, e.g.,
Ref. [37]), play an essential role for the symmetry argu-
ment. We thus introduce the corresponding good diquark
operator as

Φ̂αA ≡N ϵαβγϵABCq̂⊤βBCγ5q̂γC; ð13Þ

where N is a normalization [38]. In the present study
numerical values of superconducting gaps are not essential,
so we often omit the normalization factor for simplicity.
The charge conjugation matrix, C≡ iγ0γ2, is inserted to
form a Lorentz scalar. In the expression above the spin or
Dirac indices are all contracted implicitly. Greek indices
(α, β, γ) and capital indices (A, B, C) represent color and
flavor, respectively.
In terms of left-handed and right-handed fermions, the

diquark operator can be decomposed into Φ̂αA
L and Φ̂αA

R ,
respectively. Because diquark condensation in the scalar
channel is favored by the axial anomaly, the left- and right-
handed condensates, ΦαA

L ≡ hΦ̂αA
L i and ΦαA

R ≡ hΦ̂αA
R i, in

the CFL phase have the property

ΦαA
L ¼ −ΦαA

R ¼ δαAΔ; ð14Þ

where gauge fixing is assumed so that the color direction
aligns with flavor as δαA, and Δ is a gap parameter.
Clearly ΦαA

L breaks both flavor SUð3ÞL and color
SUð3ÞC, but a simultaneous color-flavor rotation can leave
ΦαA

L unchanged. In the same way ΦαA
R breaks both flavor

SUð3ÞR and color SUð3ÞC down to their vectorial

FIG. 4. Quark chemical potentials, μu, μd, μ�u, and μ�d as
functions of the baryon number density nB normalized by the
normal nuclear density n0. The solid and dashed lines represent
results with and without the interaction effects, respectively.
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combination. This unbroken vectorial symmetry is com-
monly denoted as SUð3ÞCþLþR. Hence the symmetry
breaking pattern can be summarized as G → H with

G ¼ ½SUð3ÞC� × SUð3ÞL × SUð3ÞR × Uð1ÞB;
H ¼ SUð3ÞCþLþR; ð15Þ

apart from redundant discrete symmetries. Here ½SUð3ÞC�
represents the global part of color symmetry (while local
gauge symmetry is never broken). The spontaneous break-
ing of global color symmetry makes all eight gluons
massive due to the Anderson-Higgs mechanism. It is
important to note that Uð1ÞB corresponding to baryon
number conservation is spontaneously broken, so that
the CFL state can be regarded as a superfluid. A more
detailed discussion on nontrivial realization of the Uð1ÞB
breaking will be given when we consider the two-flavor
case in what follows.
The crucial point is now that chiral symmetry breaking

(15) in the CFL phase is identical to the familiar scenario
in the hadronic phase. The low-energy properties of matter
are governed by NG bosons, which implies that chiral
EFT can be systematically formulated for the CFL state
[39,40]. Therefore the theoretical descriptions of hadronic
and CFL matter are analogous by construction. This is the
basic message of Ref. [1] which pointed out the important
possibility that hadronic and CFL matter can be continu-
ously and indistinguishably connected.
Continuity is a strong hypothesis, requiring a one-to-one

correspondence between physical degrees of freedom in
hadronic and quark matter. The CFL phase works with
quarks, gluons and chiral NG bosons. The spectrum of their
excitations can be translated into the relevant composite
degrees of freedom in the hadronic phase: nonet baryons,
octet vector mesons, and the octet of pseudoscalar NG
bosons. Further steps have recently been made investigat-
ing the issue of vortex continuity but some controversies
still remain.
From the discussions so far one may have thought that

Uð1ÞB is not necessarily broken in the hadronic phase.
Surely, on the one hand, the hadronic vacuum at zero
density does not break Uð1ÞB. On the other hand, it is
known that nuclear matter can have a superfluid component
generated by the pairing interaction of nucleons. It is thus
conceivable that superfluidity also develops in idealized
three-flavor symmetric baryonic matter. We shall return to
related considerations in Sec. IV where a superfluid
operator for baryons will be explicitly identified.

B. Two-flavor case

The color-flavor-locked configurations assign a special
significance to NF ¼ NC ¼ 3: quark-hadron continuity is
usually not postulated for the two-flavor case. In this
subsection we point out, however, that such a continuity

scenario is also possible for two-flavor nuclear and quark
matter. In order for the two-flavor continuity scenario to
make sense, the requirements at the quark matter side are:
(1) strangeness is negligible; (2) quarks are deconfined and
the chiral symmetry is still broken; and (3) baryon super-
fluidity occurs.

1. 2SC phase

The ground state of two-flavor symmetric quark matter at
high density is considered to be the 2SC phase with the
following condensates:

ΦαA
L ¼ −ΦαA

R ¼ δα3δA3Δ: ð16Þ

The color direction, δα3, is a gauge choice consistent with
Eq. (14). These condensates imply a symmetry breaking
pattern, G → H, with

G ¼ ½SUð3ÞC� × SUð2ÞL × SUð2ÞR × Uð1ÞB;
H ¼ ½SUð2ÞC� × SUð2ÞL × SUð2ÞR × Uð1ÞCþB: ð17Þ

The 2SC condensates partially break the global color
symmetry: five out of eight gluons become massive. Since
the flavor structure of Eq. (16) is a singlet in the two-flavor
sector, chiral symmetry remains intact. Moreover, a modi-
fied version of Uð1ÞB survives unbroken.
To exemplify the unbroken Uð1ÞCþB, consider the color-

flavor combinations of the pairing underlying Eq. (16). The
2SC phase has nonzero condensates,

hðruÞðgdÞi; hðrdÞðguÞi; ð18Þ

where ðruÞ denotes a red u quark, etc. Under the
Uð1ÞB transformation, q̂ → eiθ=3q̂, these two pairs receive
a phase e2iθ=3 which can be canceled by a color rotation,
q̂ → e−ið2=

ffiffi
3

p ÞθT8 q̂, with T8 ¼ 1

2
ffiffi
3

p diagð1; 1;−2Þ. In the

same way we see that the 2SC phase is not an electro-
magnetic superconductor. The original Uð1Þem symmetry
generated by Qe ¼ diagð2

3
;− 1

3
Þe is broken, but modified

Uð1Þeem remains unbroken which is generated by a mixture
of Qe and T8,

Q̃e ¼ Qe −
effiffiffi
3

p T8: ð19Þ

It is therefore evident that the pure 2SC phase itself cannot
be smoothly connected to the hadronic phase: symmetry
breaking patterns are different. Nevertheless, a coexisting
phase is not excluded, in which a chiral condensate
hq̄qi and diquark condensates (16) are simultaneously
nonzero. Coexistence has been confirmed in the preceding
model calculations in Refs. [41,42]. Hereafter we assume
hq̄qi ≠ 0 in our following discussions. In this way the
chiral symmetry breaking part is trivially matched to the
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hadronic phase. Below we see that this assumption can be
relaxed by an additional condensate.
In contrast to chiral symmetry broken by hq̄qi, super-

fluidity is a nontrivial issue. As previously mentioned, the
hadronic phase has a superfluid component generated by
pairing interactions between nucleons. The quark matter
analog should therefore likewise break Uð1ÞB in order for
the continuity scenario to be consistently valid.

2. 2SC+ hddi phase
As discussed in Sec. II, neutron matter with its maximal

isospin asymmetry has an abundance of d quarks which
are not paired with u quarks. One can therefore anticipate
the formation of a hddi diquark condensate at high baryon
densities. The microscopic structure of hddi will be
clarified later; for the moment let us consider the simplest
case, namely, scalar hddi in the color-sextet channel. On
first sight such a condensate appears not to be favored
because the one-gluon exchange interaction in the color-
sextet channel is repulsive. But it will turn out as we
proceed that this repulsive short-distance force is important
for the microscopic structure of hddi.
Now, if a nonzero hddi in the color-sextet channel

coexists in the 2SC phase which may well be called the
2SCþ hddi phase, we can confirm that Uð1ÞB symmetry or
its modified variants do not survive. The possible color-
flavor combinations are

hðαdÞðβdÞi; ð20Þ

where the color pairs are symmetric: ðα; βÞ ¼ ðr; rÞ, ðg; gÞ,
ðb; bÞ, ðr; gÞ, ðg; bÞ, ðb; rÞ. Under the transformation,
q̂ → eiθe−i2

ffiffi
3

p
θT8 q̂, the pairs ðα; βÞ ¼ ðr; rÞ, ðg; gÞ, ðr; gÞ

are invariant, but the remaining three combinations change
nontrivially. If we consider continuity from neutron matter,
ðα; βÞ ¼ ðb; bÞ is favored since ud diquarks are chosen as
Eq. (16) in a gauge-fixed description of the 2SC phase.
Thus, the 2SCþ hddi phase breaks Uð1ÞB and exhibits
superfluidity. Also, hddi induces the chiral symmetry
breaking even without the chiral condensate. This hddi
fulfills the desired properties for the quark-hadron con-
tinuity to be valid, which are lacking in the pure 2SC phase.
The dynamical aspect of the chiral symmetry breaking in a
certain model deserves further consideration as a future
work. Here we note that the single-color and single-flavor
pairing such as hðbdÞðbdÞi has been studied in the
preceding work [43].
Finally, before closing our symmetry argument for

quark-hadron continuity, we note that modified electro-
magnetic Uð1Þeem remains unbroken, so the 2SCþhddi
phase cannot be an electromagnetic superconductor. To
confirm this, the quickest way is that ðbdÞ quarks,
dominant constituents in hddi, are neutral with respect
to Q̃e. Therefore, hddi does not affect the Uð1Þ ˜em

symmetry. The charge properties of the ðbuÞ and ðbdÞ
quarks in the 2SC were explicitly given in Ref. [44].
In the CFL phase, ðbuÞ and ðbdÞ quarks are identified

with protons and neutrons, respectively [2], thus it is also
natural to expect the neutron condensate hnni maps to
hðbdÞðbdÞi condensate in the 2SC phase. It is also worth
mentioning that hðbuÞðbuÞi breaks the Uð1Þeem symmetry,
which is consonant with the fact that the hppi condensate
induces the proton superconductivity.
Even with hddi condensation, there remain unpaired

quarks in the 2SCþhddi phase. These unpaired quarks do
not affect the continuity but may dominate low energy
excitations, which may eventually be suppressed by
dynamical symmetry breaking.

IV. REARRANGEMENT OF THE
ORDER-PARAMETER OPERATORS

The following exercise is to formally demonstrate quark-
hadron continuity using gauge-invariant order parameters.
An essential observation for the intuitive understanding of
quark-hadron continuity lies in the fact that no physical or
gauge-invariant quantity can discriminate nuclear and
quark matter. This observation is traced back to the absence
of any order parameter for deconfinement of dynamical
quarks in the color fundamental representation.
Throughout this work we describe the low-lying baryons

in terms of a quark-diquark structure; for our purpose
matching of the right quantum number is sufficient. In this
picture the colorless spin-1

2
baryon operators, with flavor

indices A, B shown explicitly, are given by

B̂AB
σ ¼ Φ̂αAq̂Bασ; ð21Þ

where σ denotes the spin index. We note again that the
normalization is dropped for notational brevity. This
baryon interpolating operator may well have the largest
overlap with the physical state, so such a combination of
quark-diquark can be regarded as a reasonable approxima-
tion for baryon wave functions. In any case, as long as we
consider the quark-hadron continuity, what really matters is
the quantum number only.

A. Three-flavor symmetric case

Here we start with the order parameters in the CFL phase
which are then translated into the hadronic representation.
The gauge-invariant order parameters are the mesonic and
the baryonic condensates defined as

MAB ¼ hM̂ABi ¼ hΦ̂†AαΦ̂αBi; ð22Þ

ϒABC ¼ hϒ̂ABC
CFL i ¼ hϵαβγΦ̂αAΦ̂βBΦ̂γCi; ð23Þ

respectively. We are primarily interested in superfluidity
aspects and hence focus on ϒ̂ABC. Decomposing Φ̂αA into
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quarks and combining the quark operators with the
remaining Φ̂βB and Φ̂γC to form two-baryon operators,
one arrives at

ϒ̂ABC ¼ 2ϵAMNB̂BM
σ ðCγ5Þσσ0 B̂CN

σ0 : ð24Þ

Let us now limit ourselves to the octet baryons:

BAB
8 ¼

0
BBB@

1ffiffi
2

p Σ0þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCCA

AB

; ð25Þ

where ðCγ5Þ⊤ ¼ −Cγ5 is used with ⊤ denoting the trans-
pose. Thus, the flavor-singlet CFL order parameter, ϒð0Þ≡
ϵABCϒABC, is smoothly connected to superfluid strange
baryonic matter, explicitly represented as

ϒð0Þ ¼ 2ðCγ5Þσσ0 hB̂AA
8σ B̂

BB
8σ0 − B̂AB

8σ B̂
BA
8σ0 i

∝ ðCγ5Þσσ0
�
1

2
ΛσΛσ0 þ

1

2
Σ0
σΣ0

σ0 þ Σþ
σ Σ−

σ0

þ pσΞ−
σ0 þ nσΞ0

σ0

�
: ð26Þ

At this point we consider the nonrelativistic reduction of the
dibaryonic condensates. Conventionally the 3P2 neutron
superfluidity has been discussed in the nonrelativistic
regime, so it is useful to see what the relativistic counterpart
of the nonrelativistic condensates is. The term hΛΛi may
serve as a specific example. The generalization to other
terms is straightforward. Using a solution of the Dirac
equation with γμ in the Dirac representation, the four-
component spinor of the Λ is expressed as

Λ ¼
� φΛ

σ·p
EpþmΛ

φΛ

�
; ð27Þ

with two-component spinors φΛ. The lower components
are negligible in the limit mΛ ≫ jpj and one finds

ðCγ5Þσσ0 hΛσΛσ0 i ¼ hφ⊤
Λiσ

2φΛi; ð28Þ

in terms of the nonrelativistic wave function φΛ whose two
components correspond to the spin degrees of freedom.

B. Two-flavor 1S0 superfluid matter

The preceding subsection started by identifying the
ground state as quark matter in the CFL phase followed
by the rearrangement of order parameters in terms of
baryonic operators. For the two-flavor case we follow an
inverse sequence of steps: the starting point is now neutron
matter with a superfluid component and we investigate the

possibility of a continuous transition to superfluid quark
matter with an excess of d-quarks.
As long as the baryon density is below the onset of

P-wave superfluidity, the neutron superfluid occurs in the
1S0 channel. In this case the superfluid order parameter in
neutron matter is given by hφ⊤

n iσ2φni in the nonrelativistic
representation [see Eq. (28)], which can be generalized into
a relativistic expression as

hφ⊤
n iσ2φni → hϒ̂Si≡ hn̂σðCγ5Þσσ0 n̂σ0 i: ð29Þ

The relativistic neutron operator, n̂, can be written in terms
of its composition of udd quarks, i.e.,

n̂σ ¼ ϵαβγðû⊤α Cγ5d̂βÞd̂γσ ¼ Φ̂γ
udd̂γσ; ð30Þ

where we have introduced the good two-flavor diquark
operator, Φ̂γ

ud ≡ ϵαβγû⊤α Cγ5d̂β [cf. Eqs. (13) and (16)].
It is then straightforward to rearrange the indices and

factorize ϒS ≡ hϒ̂Si into diquark condensates as

ϒS ¼ hΦ̂α
udΦ̂

β
udd̂

⊤
α Cγ5d̂βi ≈Φα

udΦ
β
udhd̂⊤α Cγ5d̂βi: ð31Þ

At high densities where the physical degrees of freedom are
dominated by quarks and the antitriplet diquark condensate
develops,ϒS should be largely given by the right-hand side
in a sense of a standard mean-field approximation; we
transform the gauge-variant diquark field by introducing
the fluctuation from its mean value, and neglect the higher
order fluctuation term. Here, we assumed unitary gauge
fixing to make our discussion clear. From the expression
(31) we see that a scalar hddi condensate is induced in a
scenario that smoothly connects superfluid neutron matter
to quark matter. The condensate hddi is symmetric in flavor
and antisymmetric in spin, and hence symmetric in the
color indices α, β. This means that the permitted color
structure belongs to the sextet representation. As previously
argued in Sec. III, hddi breaks Uð1ÞB and therefore exhibits
S-wave superfluidity. In essence, the neutron superfluid is
transformed continuously into the d-quark superfluid.

C. Two-flavor 3P2 superfluid matter

For P-wave superfluidity the quark-hadron continuity
argument proceeds in a similar way. We start by writing
down the pairing operator of two neutrons in the S ¼ 1 and
L ¼ 1 channel as

φ⊤
n σ

2σi∇jφn; ð32Þ

where the indices i and j run over spatial coordinates
x, y, and z.
Now, to address continuity from neutron matter to quark

matter, we need to generalize the pairing operator into a
relativistic form. This generalization may not be unique;
some part of the spatial derivative can emerge from the
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lower component of the spinor (27). The only boundary
condition is to recover Eq. (32) in the nonrelativistic limit,
and it is of course desirable to adopt expressions that are as
simple as possible. One such candidate is

φ⊤
n σ

2σi∇jφn → ϒ̂ij
P ≡ n̂⊤Cγi∇jn̂: ð33Þ

With this operator, the index structures for the 3P0, 3P1, and
3P2 channels can be further classified as follows:

3P0∶ϒ̂P0
¼ ϒ̂ii

P; ð34Þ
3P1∶ϒ̂i

P1
¼ ϵijkϒ̂jk

P ; ð35Þ

3P2∶ϒ̂
ij
P2

¼ ϒ̂ij
P −

1

3
δijϒ̂P0

: ð36Þ

The expression of the 3P2 operator above is in consonance
with the general form of the gap matrix for J ¼ 2 pairing
[45]. As we argued before, at sufficiently high baryon
density the 3P2 state is favored.
Simple algebra as in the previous subsection then leads

to the rearrangement of the operators from neutrons to
diquarks as follows:

ϒij
P ¼hϒ̂ij

Pi
≈Φα

udð∇jΦβ
udÞhd̂⊤α Cγid̂βiþΦα

udΦ
β
udhd̂⊤α Cγi∇jd̂βi: ð37Þ

Here the first term proportional to ∇Φβ
ud can be nonzero if

the ground state develops a crystalline color-superconduct-
ing phase in which the Cooper pair carries a finite net
momentum. It is an interesting problem how to optimize a
possible interplay between the crystalline profile and the
spin-1 condensate hdγidi, but we postpone this discussion
and leave such a possibility for a future study.
In this work we concentrate on the second term involving

hdγi∇jdi. It is now evident that the 3P2 nature of neutron
superfluidity is translated to that of d quarks with their
color configuration coupled to the scalar diquark conden-
sates in Eq. (37). As in the case of 1S0 superfluidity, this
tensorial hdγi∇jdi condensate would also retain the baryon
superfluidity. The symmetry breaking patterns on both
sides of neutron and quark matter become exactly the same.
The remaining step is now to understand the dynamics that
favors 3P2 over 1S0 pairing with increasing baryon density.

V. DYNAMICAL PROPERTIES FAVORING
TRIPLET P-WAVE PAIRING

Next we analyze dynamical mechanisms for 3P2 pairing
in the dd channel. This dynamical consideration is aimed to
establish the quark-hadron continuity and to match the
quantum number of angular momentum to the neutron
superfluid, which also carries the 3P2 angular momentum
quantum number. We first discuss why P-wave pairing is

preferred instead of S-wave pairing. Then the role of the
spin-orbit interaction in favoring the J ¼ 2 state among the
3PJ¼0;1;2 channels will be clarified.

A. Short-range repulsive core favoring L= 1

Dense neutron matter is strongly affected by the short-
distance dynamics of the NN interaction. At low densities,
the attractive 1S0 interaction dominates, while the P-wave
(L ¼ 1) interaction takes over at higher densities. The
short-range repulsion in the 1S0 channel acts to change the
sign of the effective nn interaction at the Fermi surface,
from attractive to repulsive at densities nB ≳ 0.5n0. The 1S0
pairing becomes disfavored as compared to P-wave pair-
ing. The question is now whether an analogous short-
distance repulsive mechanism can be identified in the
interaction between two d-quarks.
At very high densities where a perturbative QCD treat-

ment is feasible, the quark scattering amplitude is well
described by one-gluon exchange with the following color
structure:

X8
A¼1

TA
αα0T

A
ββ0 ¼ −

1

3
ðδαα0δββ0 − δαβ0δα0βÞ

þ 1

6
ðδαα0δββ0 þ δαβ0δα0βÞ; ð38Þ

where TA’s are the color SU(3) generators (A ¼ 1;…; 8).
The first term corresponds to the attractive 3̄A channel,
whereas the second term corresponds to the repulsive 6S
channel. The color structure of our dd condensate is in fact
in the symmetric color sextet representation. Therefore, in
the perturbative region, the short-range part of the inter-
action between d quarks is repulsive and naturally disfavors
S-wave pairing.
In the confined phase, a short-distance repulsive inter-

action between quarks can be thought of as emerging from
quark-gluon exchange in a nonrelativistic quark model
picture (cf. the sketch in the middle of Fig. 1). Indeed it has
been shown that the short-range repulsive core in the 1S0
channel of the nucleon-nucleon interaction arises from the
combined action of the Pauli principle and the spin-spin
force between quarks [46,47]. Using the resonating group
method, the scattering phase shifts between two nucleons in
S-wave were calculated and turned out to be negative (see
Fig. 2 of Ref. [46]). We show now that this mechanism
correctly accounts for the short-distance repulsive behavior
of the interaction between two d-quarks.
In the nonrelativistic quark model analysis of the

interaction between two nucleons, one needs to consider
only single quark exchange with spin-spin correlation.
Two- or three-quark exchange processes are redundant
modulo exchange of the two nucleons. For two interacting
neutrons, assuming hudi pairing in 2SC configurations (see
Sec. III B), one can therefore focus on the exchange
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interaction between the two d-quarks and construct the dd
potential as illustrated in Fig. 5: two d quarks cross their
lines in the presence of an exchanged gluon. Direct gluon
exchange without quark exchange is not allowed because of
color selection rules. The one-gluon exchange (OGE)
potential reads [48]

VOGE
12 ¼

�X
A

TA
1 T

A
2

�
αs
4

�
1

r12
−

2π

3m2
q
ðs1 ·s2Þδ3ðr12Þ

�
; ð39Þ

omitting the tensor term in this expression. Here r12 denotes
the distance between quarks 1 and 2. Their spin operators
are denoted by s1 and s2. The color structure in front of the
potential is exactly the same as the representation in
Eq. (38). In close analogy with the nn interaction, short-
range repulsion appears in the dd potential. Therefore
pairing in L ¼ 0 is disfavored and superfluidity appears
predominantly in the L ¼ 1 state.

B. Spin-orbit interaction favoring J = 2

The previous discussion has pointed to dd quark pairing
in 3PJ states. While the spin triplet necessarily follows in
L ¼ 1 states from the statistics of the wave function, the
total angular momentum J is still left unspecified.
In neutron star matter, 3P2 neutron superfluidity occurs

because of the strong spin-orbit interaction between neu-
trons. The matrix elements of

L · S ¼ 1

2
½JðJ þ 1Þ − LðLþ 1Þ − SðSþ 1Þ� ð40Þ

are −2;−1 and þ1 in 3P0, 3P1 and 3P2 states, respectively.
With an extra minus sign in the spin-orbit potential, there is
attraction in 3P2 and repulsion in 3PJ¼0;1 channels. These
features are also reflected in the empirical triplet P-wave
phase shifts. The tensor force in 3P2 is relatively weak: 10
times smaller than the one in the 3P0 channel. In the
absence of the spin-orbit force, superfluidity would in fact
appear in 3P0.
The neutron-neutron spin-orbit interaction is generated

by Lorentz scalar and vector couplings of the neutrons.

In chiral theories, such couplings involve two- and three-
pion exchange mechanisms. Phenomenological boson
exchange models [49,50] associate these interactions with
scalar and vector boson fields, σðxÞ and vμðxÞ. The vector
field includes isoscalar and isovector terms (sometimes
identified with ω and ρmesons, but ultimately representing
multipion exchange mechanisms together with short-
distance dynamics). In the neutron-neutron interaction
the isoscalar and isovector terms have the same weight
(the extra factor in the isovector part is τ1 · τ2 ¼ 1).
We start from the following boson-nucleon vertex

Lagrangians:

LS ¼ −gSψ̄ðxÞψðxÞσðxÞ;
LV ¼ −gV ψ̄ðxÞγμψðxÞvμðxÞ

þ gT
2mN

ψ̄ðxÞσμνψðxÞ∂νvμðxÞ; ð41Þ

where mN is the nucleon mass. Scalar and vector boson
masses will be denoted by mS and mV . Next, consider the
momentum space matrix elements of nucleon-nucleon
t-channel Born terms generated by these vertices and
identify their spin-orbit pieces. In the NN center-of-mass
frame, introduce initial and final state momenta, p and p0,
and total spin S ¼ s1 þ s2. Furthermore,

P ¼ 1

2
ðpþ p0Þ; q ¼ p0 − p: ð42Þ

The spin-orbit interaction matrix element deduced from
interactions in Eq. (41) to (leading) order p2=m2

N is

hp0jVLSjpi¼−
i

2m2
N

�
g2S

q2þm2
S
þ3g2V þ4gVgT

q2þm2
V

�
S · ðP×qÞ:

ð43Þ

We note that upon Fourier transformation, Eq. (43) turns
into the r-space spin-orbit potential,

VLSðrÞ ¼
1

2m2
Nr

dfðrÞ
dr

L · S;

fðrÞ ¼ g2S
4π

e−mSr

r
þ g2V
4π

�
3þ 4gT

gV

�
e−mVr

r
; ð44Þ

with L ¼ r × P. For hL · Si ¼ þ1 in the 3P2 channel, the
spin-orbit potential is attractive since d=drðe−mr=rÞ ¼
−ð1þmrÞe−mr=r2 < 0.
Let us make a quick estimate of the magnitude of the

L · S force at a distance r ∼ 1 fm between two nucleons.
The isoscalar coupling parameters are, roughly, g2S=4π ∼ 8

together with gV ≃ gS and gT ≃ 0. The isovector vector
interaction has g2V=4π ≃ 0.5 and gT=gV ≃ 6 (with contri-
butions from isoscalar and isovector vector interactions to

FIG. 5. Short-range interaction between neutrons mediated by
quark-gluon exchange.
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be added in I ¼ 1 states such as two neutrons). Using
boson massesmS ∼ 0.5 GeV andmV ∼ 0.8 GeV, this gives
in the neutron-neutron 3P2 channel

Vnn
LSðr ∼ 1 fmÞ ≃ −24 MeV; ð45Þ

which is a characteristic order-of-magnitude documented
by nuclear phenomenology. Recall that an average distance
of about 1 fm between nucleons corresponds to densities
5–6 times the density of normal nuclear matter, so it is
already representative of the situation in neutron star cores.
Now consider by analogy a corresponding scenario in

terms of quarks, i.e., we wish to examine 3P2 superfluidity
in the context of hadron-quark continuity. We seek possible
mechanisms that generate an L · S force at the quark level.
The spin-orbit interaction between quarks can be pro-

duced by one-gluon exchange:

hp0jVLSjpi ¼
−i
2m2

q

�X
A

TA
1 T

A
2

�
12παs
q2

S · ðP × qÞ: ð46Þ

Fourier transforming this amplitude, one obtains the spin-
orbit potential:

VOGE
LS ðrÞ ¼ −

αs
2m2

qr3
L · S; ð47Þ

where we have taken color 6 channel whose color prefactor
is
P

A TA
1 T

A
2 ¼ 1=3. In a 3P2 state, the order of magnitude

of a spin-orbit attraction between two quarks exchanging a
gluon is

VOGE
LS ðrÞ ¼ −42.5αs

�
r
fm

�
−3
�

mq

300 MeV

�
−2

MeV: ð48Þ

With αs ∼ 0.5 we see that VOGE
LS ðr ∼ 1 fmÞ is comparable to

the aforementioned value of Eq. (45).
Alternatively, consider NJL-type models that describe

the quasiparticle nature of quarks in the presence of
spontaneously broken chiral symmetry. Such models have
frequently been used in extrapolations to high density
matter. We refer to a recent version that includes scalar and
vector couplings together with diquark correlations [18,36]:

Lint ¼ Gðq̄qÞ2 þHðq̄ q̄ÞðqqÞ −GVðq̄γμqÞ2: ð49Þ

This model is guided by the quark-hadron continuity
hypothesis and designed to meet the stiffness conditions
on the EoS of dense matter imposed by the existence of
heavy (two-solar-mass) neutron stars and gravitational
wave signals from neutron star merger events. It features
a strongly repulsive vector interaction with a coupling
strength GV comparable in magnitude to the scalar cou-
pling G which in turn produces a “constituent” quark mass
of about 0.3 GeV starting from almost massless u and d
quarks. Typical values of coupling strengths are

G≃2Λ−2; Λ≃0.6GeV; GV ¼ð0.6−1.3ÞG: ð50Þ

In the following we shall use GV ≃G for guidance.
The scalar and vector interactions in Eq. (49) generate

spin-orbit forces between quarks. In order to compare with
the previous discussion for neutrons, it is useful to associate
the characteristic NJL cutoff Λ with a mass scale in a
bosonized version of Eq. (49) involving scalar and vector
boson fields, σðxÞ and vμðxÞ:

LS ¼ −g̃Sq̄ðxÞqðxÞσðxÞ;
LV ¼ −g̃Vq̄ðxÞγμqðxÞvμðxÞ: ð51Þ

For example, the scalar field satisfies

ð∇2 − Λ2ÞσðxÞ ¼ g̃Sq̄ðxÞqðxÞ; ð52Þ

so that σ ¼ −ðg̃S=Λ2Þq̄q and G ¼ g̃2S=Λ2 in the long-
wavelength limit. Writing the scalar field as an expecta-
tion value plus a fluctuating part, σðxÞ ¼ hσi þ sðxÞ, it is
the expectation value hσi ¼ −ðg̃S=Λ2Þhq̄qi that determines
the constituent quark mass through the NJL gap
equation, mq ¼ −2Ghq̄qi, while the fluctuating part sðxÞ
propagates between quark sources and generates exchange
interactions.
The spin-orbit interaction between quarks produced by

the scalar and vector couplings (51) is

hp0jVLSjpi ¼ −
i

2m2
q

�
g̃2S þ 3g̃2V
q2 þ Λ2

�
S · ðP × qÞ: ð53Þ

By comparison with Eq. (43) it becomes evident that the
spin-orbit forces between two neutrons and between two
d-quarks are of the same order of magnitude: with inclusion
of the isoscalar vector coupling in the neutron case (i.e.,
omitting the isovector vector interaction for which there is
no obvious NJL counterpart) we have, roughly,

g̃2S þ 3g̃2V
m2

qΛ2
∼
g2S þ 3g2V
m2

Nm
2
V

: ð54Þ

This correspondence can be further illustrated by con-
verting Eq. (53) into an equivalent spin-orbit potential in
r-space, now operating between constituent quarks:

Vqq
LSðrÞ ¼

1

2m2
qr

dfðrÞ
dr

L · S;

fðrÞ ¼ ðg̃2S þ 3g̃2VÞe−Λr
4πr

: ð55Þ

For example, two d-quarks in a 3P2 state and at a distance
r ∼ 0.8 fm experience a spin-orbit attraction of
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Vdd
LSðr ∼ 0.8 fmÞ ≃ −16 MeV; ð56Þ

to be compared with Eq. (45). The values in the 3P0

and 3P1 channels are þ32 and þ16 MeV, respectively.
Correspondingly larger magnitudes for the spin-orbit
potential result if one takes the stronger vector coupling,
GV ¼ 1.3G instead of GV ¼ G.
We can conclude that spin-orbit interactions between

nucleons have a close correspondence to spin-orbit inter-
actions between quark quasiparticles emerging from NJL-
type models with strong vector couplings. One can also see
that spin-orbit interactions between quarks arising from
one-gluon exchange reach a comparable magnitude. As a
consequence, the 3P2 neutron superfluidity scenario in
neutron star matter has an analog in a similarly favored
3P2 superfluid pairing of d-quarks at high baryon densities.

VI. SUPPORTING ARGUMENTS

We are proposing a novel phase, 2SCþhddi, which
inevitably arises from the viewpoint of continuity to
superfluid neutron matter. The existence of such an
additional component hddi is suggested by further inde-
pendent arguments. Here we discuss the rearrangement of
diquark interaction terms and the neutron star cooling
phenomenology.

A. Coupling to the energy-momentum tensor

In the context of previous mean-field calculations of
color-superconducting quark matter in an NJL-type model
(see, e.g., Refs. [51,52] for a review), a four-fermion
coupling in the 3P2 channel has so far been missing. It
would then be instructive to see how the interaction in this
channel could be enlarged through the coupling to the
energy-momentum tensor in an explicit manner. Let us
consider the four-fermion coupling in the 3P2 diquark
channel, i.e.,

ÎP ¼ ðψ̄γi∇jCψ̄⊤Þðψ⊤Cγi∇jψÞ
¼ ðγiCÞσσ0 ðCγiÞτ0τψ̄σð∇jψÞτð∇jψ̄Þσ0ψτ0 ; ð57Þ

where σ; τ;… are spin indices.
Using the Fierz transformation matrix given explicitly in

Appendix, the Fierz-rearranged four-fermion coupling is
found in the form

ÎP ¼ −
3

4
ðψ̄∇jψÞ2 − 3

4
ðψ̄γ0∇jψÞ2 − 1

4
ðψ̄γi∇jψÞ2

þ 1

4
ðψ̄σi0∇jψÞ2 − 1

8
ðψ̄σij∇kψÞ2 þ 3

4
ðψ̄γ0γ5∇jψÞ2

þ 1

4
ðψ̄γiγ5∇jψÞ2 − 3

4
ðψ̄iγ5∇jψÞ2; ð58Þ

where we have introduced the compact notation ðψ̄Γ∇jψÞ2
for ðψ̄Γ∇⃗j

ψÞðψ̄∇⃖jΓψÞ in each of the terms on the right-
hand side.
Notably, this Fierz transformed ÎP has a direct

correspondence to the energy-momentum tensor in the
fermionic sector, Tμν ¼ ψ̄iγμ∂νψ . For matter in equilib-
rium, Tμν ¼ diag½ε;−p;−p;−p�, with the energy density ε
and the pressure p of fermionic matter. The tree-level
expectation value of ÎP in Eq. (58) thus becomes

hÎPi ≈
3

4
p2: ð59Þ

It is evident from this algebraic exercise that the 3P2

diquark interaction couples to the pressure which is a
macroscopic quantity. Even if the direct mixing between
the quark-antiquark (hole) and the diquark sectors may not
be large, the superfluid energy gap can be enhanced by the
macroscopic expectation value of the energy-momentum
tensor as given in Eq. (59). Here, we also make a remark
about a gauge-invariant description of the 3P2 diquark
condensate. To form a gauge-invariant quantity the color
indices are saturated, and as long as hÎPi ≠ 0 as in Eq. (59)
and the quark-hadron continuity is postulated, the 3P2

diquark condensate squared is always mixed with the
energy-momentum tensor squared through hÎPi ≠ 0.

B. Aspects of neutron star cooling phenomenology

The temperature of a neutron star and its time evolution
(cooling), which can be read off from the thermal radiation
from the stellar surface, provides information about proc-
esses occurring in the interior. A salient feature of the
mechanisms behind neutron star cooling is their sensitivity
to possible quark degrees of freedom inside the stellar core.
In attempts to describe the actual neutron star cooling

data, pure 2SC quark matter turns out not to work [53].
This is due to the onset of the quark direct Urca process,
which strongly affects the cooling curve of the star. If we
assume pure 2SC matter only, some u- and d-quarks are not
paired and remain as a normal component as mentioned in
Sec. III B. Thus these residual quarks in the normal phase
emit neutrinos via the direct Urca process and efficiently
induce cooling of the star. Once the stellar mass exceeds a
critical value for which the quark direct Urca process sets
in, the star cools too fast.
This too fast cooling can be avoided by the formation

of a condensate in the ungapped modes, here, a hddi-
condensate. The existence of the superfluid gap Δ sup-
presses either direct or modified Urca process by the factor
∝ e−Δ=T . Still, there remain unpaired u-quarks, but these
also turn out not to contribute dominantly to the cooling:
these unpaired quarks can in principle undergo the quark
modified Urca process, via the charged-current interaction,
and the quark bremsstrahlung process, with emission of
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neutrino-antineutrino pairs, via the neutral-current inter-
action. However, while the former mechanism is suppres-
sed by the superfluid gap as mentioned above, the latter
process is also parametrically suppressed by the factor
∝ ðT=μÞ2. Therefore, the formation of hddi suppresses the
fast cooling induced by the emergence of quarks inside
stars.
This trend is in accord with Ref. [53] introducing ad hoc

an additional species X with a hypothetical density-
dependent pairing gap, ΔX, so that “2SC þ X” matter fits
the empirically observed cooling data (at the status of
2005). This additional weak pairing channel needs to have
a small gap ΔX ranging between 10 keV and 1 MeV.
One can speculate that 1S0 or 3P2 superfluidity of

d-quarks with its gap proportional to hddi might be a
natural candidate to substitute for the unknown X. The
typical magnitude of the neutron 3P2 gap isΔnn ∼ 0.1 MeV
[54,55] (see also the recent review [24]). As we have
pointed out in Sec. V B, the attractive components of spin-
orbit forces between two neutrons or two d-quarks are of
similar magnitude, so that one can expect a gap, Δdd of
order 10–100 keV, also for d-quark pairing. This would be
in accordance with the postulated properties of X. Further
justification by calculating Δdd microscopically is left for
future studies.

VII. SUMMARY AND CONCLUSIONS

Quark-hadron continuity postulates a soft crossover from
hadronic to quark degrees of freedom in cold and dense
baryonic matter if the symmetry-breaking patterns in the
hadronic and quark domains are identical. Under these
conditions there is no phase transition from hadrons to
quarks. This scenario has been rigorously formulated for
the idealized case of matter composed of three massless
ðu; d; sÞ quark flavors. The special situation with NF ¼
NC ¼ 3 implies color-flavor locked (CFL) configurations
of diquark condensates. The CFL phase of quark matter has
the same symmetry-breaking pattern as the corresponding
three-flavor hadronic phase with a baryonic superfluid. As
part of this joint pattern, chiral symmetry is spontaneously
broken in both hadronic and quark phases.
Explicit chiral symmetry breaking by the nonzero quark

masses in QCD separates the heavier strange quark from
the light u and d quarks. The composition of cold matter in
the real world is therefore governed by u and d quarks with
their approximate isospin symmetry. Matter exists in the
form of nuclei, and in the form of neutron stars at higher
baryon densities. Idealized three-flavor matter is not the
preferred ground state. The strange matter hypothesis is not
ruled out here, but given the empirical stiffness constraints
for the neutron star equation-of-state, we relegate its
possibility to even higher density scales. One can then
raise the question whether matter with two-flavor sym-
metry is still characterized by quark-hadron continuity, or
whether the symmetry breaking patterns in hadronic matter

versus quark matter are fundamentally different so that they
are separated by a phase transition.
The present work addresses this issue for the case of

neutron matter and comes to the conclusion that quark-
hadron continuity can indeed be realized in such a two-
flavor system. The key to this conclusion comes from a
detailed investigation of superfluidity in both hadronic and
quark phases. Dense matter in the core of neutron stars
serves as a prototype example.
In neutron matter at low densities, the attractive S-wave

interaction between neutrons at the Fermi surface generates
1S0 superfluidity. At higher densities the S-wave interaction
turns repulsive and 3P2 neutron superfluidity takes over,
driven by the attractive spin-orbit interaction in this
channel. The prime question from the viewpoint of
quark-hadron continuity is whether, at even higher den-
sities, 3P2 superfluidity has an analog in quark matter such
that the associated order parameter can be translated
continuously from one phase of matter to the other. In
the preceding sections of this paper we have explored
symmetry aspects and dynamical mechanisms related to
this issue. The basic results are the following:

(i) Formal rearrangements including all relevant
symmetries permit a systematic translation from
dibaryonic operators to diquark operators and their
respective condensates, for both two- and three-
flavor symmetric matter.

(ii) For the interesting case of neutron matter, it is shown
that superfluidity involving neutron pairs, hnni,
transforms into the superfluid pairing of d-quarks,
hddi, together with the formation of hudi diquark
condensates.

(iii) The strong short-range repulsion in the interaction of
two neutrons has an analog in the repulsive short-
distance force between two d-quarks. This mecha-
nism disfavors S-wave superfluidity of d-quarks at
high density, in the same way as it disfavors 1S0
neutron superfluidity at baryon densities larger than
about half the density of normal nuclear matter.

(iv) The strong spin-orbit interaction between nucleons
has an analogous counterpart in a corresponding L ·
S force in the quark sector, generated by one-gluon
exchange or by vector couplings of quarks as they
appear, for example, in extended Nambu–Jona-
Lasinio models. The spin-orbit forces between
two neutrons as well as between two d-quarks are
attractive in the triplet P-wave channel with total
angular momentum J ¼ 2. Therefore 3P2 superflu-
idity in neutron matter finds its direct correspon-
dence in 3P2 superfluidity produced by d-quark
pairing in quark matter.

Altogether these findings suggest the presence of iden-
tical symmetry breaking patterns, and hence quark-hadron
continuity, in the transition from neutron matter to two-
flavor quark matter. The new element in this case is the
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continuity of 3P2 superfluidity between the hadronic and
the quark phase. The associated order parameter involves a
tensor combination of spin and momentum. The corre-
sponding 3P2 four-fermion coupling has not been consid-
ered in previous quark matter studies. It offers novel
perspectives, such as its close connection to the pressure
component of the energy-momentum tensor, a macroscopic
quantity. The 3P2 superfluidity is also of interest in the
context of neutron star cooling. It would be important to
study how our continuity scenario fits within the QCD
phase diagram. An interesting possibility would be a
continuity scenario between the 3P2 superfluidity and
crystalline color-superconducting states. These and related
topics are to be explored in future studies.
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APPENDIX: FIERZ TRANSFORMATION

The Fierz transformation matrix used in the derivations
of relations in Sec. VI A is displayed here in its explicit
form for the convenience of readers. For further details,
readers can consult Appendix A of Ref. [51].
The relevant Fierz identity is given in a matrix

form as
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where the diquark and the quark-antiquark (hole) inter-
action channels are

D¼

0
BBBBBBBBBBBBBBB@

Cσσ0Cτ0τ
ðγ0CÞσσ0 ðCγ0Þτ0τ
ðγiCÞσσ0 ðCγiÞτ0τ
ðσi0CÞσσ0 ðCσi0Þτ0τ
1
2
ðσijCÞσσ0 ðCσijÞτ0τ

ðγ0γ5CÞσσ0 ðCγ0γ5Þτ0τ
ðγiγ5CÞσσ0 ðCγiγ5Þτ0τ
ðiγ5CÞσσ0 ðiCγ5Þτ0τ

1
CCCCCCCCCCCCCCCA

; Γ¼

0
BBBBBBBBBBBBBBB@

ð1Þστð1Þσ0τ0
ðγ0Þστðγ0Þσ0τ0
ðγiÞστðγiÞσ0τ0
ðσi0Þστðσi0Þσ0τ0
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2
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1
CCCCCCCCCCCCCCCA

:

ðA2Þ
Taking the inverse of the above matrix, we can immediately
derive an identity to reexpress the diquark interaction in
terms of the quark-antiquark (hole) interaction. In this way
we can read the matrix elements to derive a translation from
Eq. (57) to Eq. (58).
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