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Abstract

We consider Lagrangian coherent structures (LCSs) as the boundaries of material sub-
sets whose advective evolution is metastable under weak diffusion. For their detection,
we first transform the Eulerian advection—diffusion equation to Lagrangian coordi-
nates, in which it takes the form of a time-dependent diffusion or heat equation. By this
coordinate transformation, the reversible effects of advection are separated from the
irreversible joint effects of advection and diffusion. In this framework, LCSs express
themselves as (boundaries of) metastable sets under the Lagrangian diffusion process.
In the case of spatially homogeneous isotropic diffusion, averaging the time-dependent
family of Lagrangian diffusion operators yields Froyland’s dynamic Laplacian. In the
associated geometric heat equation, the distribution of heat is governed by the dynam-
ically induced intrinsic geometry on the material manifold, to which we refer as the
geometry of mixing. We study and visualize this geometry in detail, and discuss con-
nections between geometric features and LCSs viewed as diffusion barriers in two
numerical examples. Our approach facilitates the discovery of connections between
some prominent methods for coherent structure detection: the dynamic isoperimetry
methodology, the variational geometric approaches to elliptic LCSs, a class of graph
Laplacian-based methods and the effective diffusivity framework used in physical
oceanography.
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1 Introduction

Understanding the distribution of physical quantities by advection—diffusion is of fun-
damental importance in many scientific disciplines, including turbulent (geophysical)
fluid dynamics and molecular dynamics. Of particular interest are coherent structures,
for which there exist many phenomenological descriptions, visual diagnostics and
mathematical approaches; see Hadjighasem et al. (2017) for a recent review. In fluid
dynamics, coherent structures are often thought of as rotating islands of particles with
regular motion, which move in an otherwise turbulent background (McWilliams 1984;
Fazle Hussain 1986; Provenzale 1999; Haller and Beron-Vera 2013). In molecular
dynamics, coherent structures (or almost-invariant sets) are thought of as conforma-
tions, i.e., sets of configurations of the molecule which are stable on time scales much
larger than those of molecular oscillations (Schiitte 1999, 2003).

In the last years, there has been an explosion of coherent structure detection meth-
ods based on flow information. Relying on flow information appears to be a necessary
step in non-autonomous/unsteady velocity fields, since instantaneous velocity snap-
shots and their streamlines are no longer conclusive for material motion, in contrast
to the autonomous/steady case. Nevertheless, the appearance of these methods is very
different at first sight: In the category of variational approaches, some methods require
preservation of boundary length (Haller and Beron-Vera 2013), minimization of mix-
ing under the flow (Froyland et al. 2010; Froyland 2013) or surface-to-volume ratio
(Froyland 2015; Froyland and Junge 2015). A different class of methods considers
averages of observables along trajectories (Mezic et al. 2010; BudiSi¢ and Mezi¢ 2012;
Mancho et al. 2013; Mundel et al. 2014; Haller et al. 2016; AIMomani and Bollt 2018)
and seeks coherent structures as sets with similar statistics. Recent (graph) clustering
approaches (Froyland and Padberg-Gehle 2015; Hadjighasem et al. 2016; Banisch and
Koltai 2017; Padberg-Gehle and Schneide 2017) assess coherence based on mutual
trajectory distances. Besides, there exist geometric and topological approaches to
coherence; see Ma and Bollt (2014, 2015b) and Allshouse and Thiffeault (2012),
respectively. Comparison studies of these methods have been restricted to simulation
case studies (Allshouse and Peacock 2015; Ma and Bollt 2015a; Hadjighasem et al.
2017) so far.

Even though many of the above-mentioned approaches focus on different phe-
nomenological features of coherent structures, often the underlying motivation is that
Lagrangian coherent structures are expected to be material sets which are the least
vulnerable to (weak) diffusion. By material or Lagrangian sets, we mean—as usual
in continuum mechanics—flow invariant sets, or, equivalently, fixed sets of particles.
The invulnerability to diffusion is often modeled via some requirement on boundary
deformation under the flow, see, for instance, Haller and Beron-Vera (2012), Haller and
Beron-Vera (2013), Ma and Bollt (2014), Froyland (2015). Despite the intuitive refer-
ence to diffusion, all these methods assume a purely advective transport process. In this
work, we develop a unifying framework for the study of coherence from the Lagrangian
viewpoint on advection—diffusion and provide new mathematical connections between
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Fig.1 Schematic representation of the connections between different methods for coherent structure detec-
tion

Cauchy—Green tensor-based methods developed by Haller and coworkers (Haller and
Beron-Vera 2012, 2013; Farazmand et al. 2014), the dynamic Laplacian methodology
by Froyland (2015) and Froyland and Kwok (2017) and Nakamura’s effective diffu-
sivity framework, adding to the previously found connection between the dynamic
Laplacian and the probabilistic transfer operator approach (Froyland 2015); see Fig. 1
for a schematic overview and more details in Sect.5.

The intuition of Lagrangian coherence as persistence to diffusion leads us to the
incompressible advection—diffusion equation (ADE) in Lagrangian coordinates, which
is of diffusion-only type; see also Press and Rybicki (1981), Krol (1991), Knobloch
and Merryfield (1992), Thiffeault (2003) and Fyrillas and Nomura (2007) for earlier
related approaches. In the Lagrangian frame, we view Lagrangian coherent sets or
structures (LCSs) as metastable sets under the Lagrangian ADE. It turns out that the
deformation by advection (in the Eulerian frame) is equivalent to a deformation of the
geometry of the (initial) material manifold, i.e., in the Lagrangian frame. This change
of perspective from space (Eulerian frame) to material (Lagrangian frame) solves, by
the way, the problem of separating the reversible effects of pure advection from the
irreversible effects of advection and diffusion acting together, see Nakamura (1996)
and Shuckburgh and Haynes (2003). Time averaging of the Lagrangian ADE yields
an autonomous diffusion-type equation, whose generator coincides—in the case of
spatially isotropic diffusion—with Froyland’s recently introduced dynamic Laplacian
(Froyland 2015). Froyland’s approach is motivated by a dynamic analogue to the
isoperimetry problem, i.e., the optimal bisection of a manifold, where optimality is
measured with respect to the ratio between the area of the bisection surface and the
volume of the smaller of the two parts. Our independent and physical advection—
diffusion-based derivation of the self-adjoint dynamic Laplacian establishes a link
to symmetric Markov processes and their metastable decomposition of state space
(Davies 1982a,b; Deuflhard et al. 2000; Huisinga and Schmidt 2006).

The Lagrangian averaged diffusion tensor field generates an intrinsic Riemannian
geometry on the material manifold, which we refer to as geometry of mixing; cf. also
Giona et al. (2000) for the use of this terminology, however, not in an averaging
sense. The self-adjoint Laplace operator associated with the geometry of mixing can
be investigated in detail by methods from semigroup and operator theory (Davies
1982b, 1995b), Riemannian and spectral geometry (Cheeger 1970; Lablée 2015) and
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visualization, i.e., diffusion tensor imaging (DTI). The technical requirements on the
flow are volume preservation and smoothness and on the original material manifold are
compactness and boundary regularity that permits the formulation of (homogeneous)
Neumann boundary conditions. Since we are working in a Riemannian geometry
setting, we benefit from the rich intuition about the role of eigenfunctions gathered in
applied and computational harmonic analysis (Coifman and Lafon 2006; Dsilva et al.
2015).

While our theory as presented in the current paper is of continuous type and theoret-
ically requires arbitrary fine dynamic information, it is strongly related to the diffusion
maps methodology (Coifman and Lafon 2006); cf. also Banisch and Koltai (2017).
The classic, albeit not exclusive, application case there is that of manifold learning,
i.e., the computation of topological and geometric features (such as intrinsic coordi-
nates) of manifolds embedded in a Euclidean, usually high-dimensional space. The
situation is thus one of a static manifold. Recently, these ideas have been extended
toward including dynamics (Giannakis and Majda 2012; Shnitzer et al. 2017; Marshall
and Hirn 2018), taking different approaches than ours.

Another contribution of ours is the following conceptual clarification. Lagrangian
coherent structures (LCSs) are commonly referred to as transport barriers. With its
reference to advection through the term “transport,” this translates then to sets with
(near-)zero advective flux. It has been pointed out earlier (Nakamura 1996; Haller
and Beron-Vera 2012) that in purely advective flows any material surface constitutes
a transport barrier by flow invariance. Our approach, and its consistency with many
existing LCS methods, clarifies the role of LCSs as diffusion or mixing barriers;
cf. Froyland (2013) for an Eulerian analogue.

The paper is organized as follows. We start in Sect. 2 by recalling some fundamental
concepts from Riemannian geometry, the Laplace operator, its induced heat flow and
metastability. Section 3 is devoted to the derivation and discussion of the Lagrangian
version of the advection—diffusion equation (ADE), the definition of Lagrangian coher-
ent structures in this framework and the derivation of the geometry of mixing. In Sect. 4,
we study and visualize the geometry of mixing in search for signatures of diffusion
barriers. We close with a discussion of relations to previously developed methods and
future directions in Sect.5. In particular, readers interested in applications in atmo-
spheric and oceanic fluid dynamics may find the discussion of connections to the
effective diffusivity framework in Sect. 5.5 of particular interest.

Notation Throughout this paper, we use the following notations.

First, for the symmetric positive-definite matrix representation G € RY*? of a
Riemannian metric g on M (in local coordinates), we denote its ordered eigenvalues
by 0 < umin(G) < -+ < umax(G), and the corresponding eigenvectors (in those
coordinates) by vmin (G), . . ., Umax (G).

Second, for any time-dependent map [0, 7] > ¢ — y(¢) € X, with X some linear
space, we define the time average of y by

T 1 T
][ y(t)dt::—/ y(t)dt.
0 T Jo

@ Springer



Journal of Nonlinear Science (2020) 30:1849-1888 1853

2 Preliminaries

For general references on (weighted) Riemannian manifolds with emphasis on
Laplace operators, heat flows and heat kernels, see Chavel (1984), Rosenberg (1997),
Grigor’yan (2009), Jost (2011) and Lablée (2015).

2.1 Weighted Manifolds and the Laplace Operator

Let (M, g, v) be a weighted manifold: M a compact, complete, smooth, connected d-
dimensional Riemannian manifold, possibly with sufficiently regular boundary d M;' g
a smooth Riemannian metric (tensor field); and v a measure on M given by integrating
indicator functions of measurable sets A with respect to dv = p dx, i.e.,

v(A)=/ XA(X)dV(x)Z/de~
M A

Here, dx is the unique (Riemannian) volume form induced by g and p is some smooth
positive density (Grigor’yan 2006)> . This gives rise to corresponding L”-spaces over
M, and in particular to the Hilbert space L2(M, v).

For any smooth real-valued function f € C° (M), its exterior derivative d f is a
one-form on M, invariantly defined by

_

_dx!
ox!

df
in local coordinates, where we make use of Einstein’s summation convention. Thus,
when viewed as a vector in local coordinates, d f comprises the partial derivatives of
f in the coordinate directions.’ The metric tensor gy (-, -) defines a scalar product on
each tangent space Tx M, which allows to identify the cotangent space 7,* M with the
tangent space T, M via the canonical/musical isomorphism, see Lee (2012, p. 342).
In local coordinates, this isomorphism is given by the inverse Gramian matrix G,
G the matrix representation of the tensor g. In particular, one has

Gldf = grad,f,
the gradient of f w.r.t. the metric g. Moreover, the divergence of a vector field V may

be defined implicitly via the Lie derivative of the volume form dv in the direction of
Vv,

1 Boundary regularity is generally a delicate matter in PDE theory. For our purposes, the validity of the
divergence theorem on M is most relevant. This theorem is an easy consequence of Stokes’s theorem (Lee
2012, Thm. 16.31), which can be proven to hold on smooth manifolds with corners (Lee 2012, Thm. 16.25)
in the sense of Lee (2012, p. 415). Throughout, we assume that the manifold M has the so-called extension
property, which allows for a rigorous formulation of Neumann boundary conditions, see Davies (1995b,
Chap. 7), Jost (2013, Sect. 11.5).

2 At times, we will use dg for the Riemannian volume form induced by g.

3 This is often denoted by V f in the applied literature.
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Ly (dv) = div ,(V)dv.

Intuitively, the divergence measures the rate of expansion of volume along the flow
induced by V. In particular, if div (V) = 0, volume is preserved by the flow of V.
Finally, the Laplace operator A ), is defined by

Agyfi=div, gradf = div, Ddf, D:=G~'.

Its weak formulation takes the form (Grigor’yan 2006, 2009)

(f. divvgradgh>0’v = —/Mgfl(df,dh)dv = —/Mg(gradgf, grad gh) dv,
(1)

where Eq. (1.1) is known as Green’s formula. Here, f, h need to satisfy homogeneous
Dirichlet or Neumann boundary conditions (Grigor’yan 2006), and g~! denotes the
dual metric (to g), which is the pullback of g by the canonical isomorphism. By
construction, the isomorphism is an isometry and, hence, one has || grad o f (x) ||, =
ldf(x)llg-1 for any x € M and any smooth f.

It is well known (Grigor’yan 2006) that —Ag ,, can be represented in local coordi-
nates as 3

i ; d
ij i
8 ()55 TO (o7 +e),

where g'/, b', ¢ are smooth (real) coefficients and (gi-/ )l.j = G~ ! is symmetric and

uniformly positive definite. That is, the principal symbol g/ (x)&; & jof —A, , satisfies
gl (g = yIELL . (x.§) eT*M,

for some y > 0. In fact, one even has g'/ x)&&; = |E|§,X by definition. As a conse-
quence, A, , is a (uniformly) elliptic second-order differential operator on M.

One important property of the Laplace operator is its invariance under (volume-
preserving) isometries, see Grigor’yan (2006, Sect. 4.2): We call T: N — M an
isometry between two weighted manifolds (N, g, v) and (M, g, v) if T is a diffeo-
morphism and g = T*g (g is the pullback metric) and v = T,V (v is the pushforward
measure). For such isometries, one has

AgiT* =T*Agy, orexplicitly Azs(foT)=(Agvf)oT, (2

for f € C*>(M). This directly implies the coordinate independence of eigenvalues
and eigenfunctions of A, ,,, when interpreting N as a global reparametrization of M.

Following a well-established procedure, see Jost (2011, Chap. 3) for the case when
dv = dx and Grigor’yan (2006, Theorem 2.2), A ,—defined on smooth functions—
can be uniquely extended to a self-adjoint non-positive definite operator on L>(M, v)
by the Friedrichs extension. Indeed, Green’s formula, Eq. 1, implies that Ag ,, is L2-
symmetric on the domain of classically smooth functions C°° (M). Density of C*° (M)
in L2(M, v) follows directly from the observation that L?>(M, v) and L*(M, dx) are
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isometric via the unitary transformation U N/ f = /pf, which leaves C>®(M)
invariant; cf. Davies (1989, Sect. 4.2). As a negative semi-definite, self-adjoint ellip-
tic second-order differential operator, A, , has the following well-known spectral
properties.

Proposition 1 (Grigor’yan (2006, Sect. 2.2), see also Jost (2011, Thm. 3.2.1)). The
operator Ay, has

(i) purely discrete, non-positive spectrum 0 = A1 > io > ..., and eigenvalues
accumulate only at —oo;
(ii) pairwise L*(M, v)-orthogonal eigenspaces;
(iii) C*°-smooth eigenfunctions, which form a complete basis of L*>(M, v).

The harmonic functions, i.e., eigenfunctions corresponding to the 0-eigenvalue, are
constant. Hence, there are as many linearly independent harmonic functions as M has
connected components.

The last means that the multiplicity of the 0-eigenvalue equals the number of con-
nected components of M, if one allowed M to have multiple connected components;
we come back to this issue in Sect.2.3.

2.2 Heat Flows

Given an elliptic, non-positive second-order differential operator H (equipped with
zero Neumann boundary condition if M has boundary) such as the Laplace operator on
M, the (infinitesimal) generator, (exp(t H)),( is an analytic semigroup of bounded
operators defined on L?(M, v) (Davies 1982a, 1995a), and u(r) = exp(tH)ug, uo €
L%(M), is the unique solution of the generalized heat equation

j_tu(;) = Hu(t), u(0) = uo;

see, e.g., Davies (1989, Chap. 5, Sect. 1.4), and Grigor’yan (2006, Sect. 3). The semi-
group (exp(t H));>o is called the heat flow generated by H. By the spectral mapping
theorem, we have

o (exp(tH)) = exp (t[o (H)]),

with corresponding eigenprojections. In other words, it suffices to study the spectrum
and the eigenprojections of the generator H to determine subspaces which are invariant
under the heat flow (exp(t H)),>. For H = A, ,, the heat flow maps L? functions to
C® functions, the heat kernel is symmetric and, hence, the heat flow is a family of self-
adjoint operators on L>(M, v), exp(t A ¢.v) 1y = 1y, which are positivity preserving
(Grigor’yan 2006, Thms. 3.1, 3.3).

If we consider a Holder-continuous curve ¢t +— H (¢) of elliptic second-order dif-
ferential operators, the unique solution of

j—tu(l) =H@Ou(),  u0) = uo,
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is given by u(t) = Upn(t, 0)ug, where the generalized heat process {Up (t, $)};>5>0
is the non-autonomous parabolic solution operator generated by H, see Amann
(1995, Chap. II). In particular, it satisfies

Ug(t,t) = Isz(M),and Uy, t)Ugy(z,s) =Ug(t,s), fors <t <t,

and one has Uy (t, s) = exp((t — s)H) if H is time-translation invariant. The integral
kernel ug(t,s; -, -) of Uy(t,s),

UH(t,S)I/f(X)=/ ug (t,s; x, y)y(y)dx,

M

is called the heat kernel of H.

2.3 Metastability and Metastable Decompositions

In the literature, it is usually assumed that the manifold under consideration is con-
nected, as one may otherwise study each connected component individually. In the
spirit of spectral geometry, however, i.e., the study of geometric properties of Rieman-
nian manifolds by means of spectral properties of the Laplace operator and its induced
heat flow, one important question is the recognition of manifolds that are connected
but “nearly decomposable.” Such a phenomenon is closely related to the concept of
metastability, which we recall in the following.

First, we recall the seminal work by Davies (1982a,b) on metastable states in
positivity-preserving contraction semigroups (exp(tH)),~q. The prototype example
is given by H = A, i.e., a heat flow on a Riemannian manifold, equipped with homo-
geneous Neumann boundary condition if M has a non-empty boundary, as discussed
in Sect.2.2. Such operators H have real, non-positive spectrum 0 = Ay > Ap > ...
with a non-degenerate eigenvalue 0, accumulating only at —oo.

For reference, let us formulate some statements:

1. the first non-trivial eigenvalue A, of H is much smaller than the second A3;

2. there exists a subset M1 C M such that the eigenfunction u associated with A1 is
close (in L?) to some linear combination of the two indicator functions 1 M, and
Lamys

3. there exists a subset M| C M such that [lexp(t H)1y, — 1p (11 is small, i.e., the
indicator function 14, is slowly evolving away from itself under the heat flow
(exp(tH));, where the distance is measured in L.

Now, Davies (1982b, Thm. 7) and Davies (1982a, Thms. 3 and 5) show that, assuming
(1), then (2) and (3) follow, and conversely, assuming (3), then (1) and (2) follow.
Hence, statements (1) and (3) are “qualitatively equivalent” (Davies 1982a,p. 139).
Notably, Davies does not give a direct, explicit definition of metastable sets, but rather
justifies to call M| a metastable set due to the estimates underlying (1)—(3). Therefore,
metastable sets are directly linked to spectral properties of the generator of the sym-
metric Markov semigroup. Davies also points out that, having a candidate metastable
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set My, any other set sufficiently close to M| would admit the same properties, and
hence metastable sets are invariably non-unique.

In Davies (1982b), the above analysis is extended to the physically relevant case,
which is of interest in classic LCS applications, when the generator H has n very small
eigenvalues, followed by a significant gap to the next eigenvalue:

O=A1> - > ==&, App1=0().

Similarly to the above, the corresponding first n eigenfunctions are then roughly given
as the linear combination of n indicator functions 1y, ..., 1y, , where the sets M;
decompose M.

In the context of reversible Markov chains on finite state spaces (e.g., space—time
discretizations of the Markov semigroup above), Davies work has been adopted and
extended as follows.

First, Deuflhard et al. (2000) and Deuflhard and Weber (2005) have studied weak
perturbations of reducible Markov chains. In a geometric heat-flow context, the latter
correspond to multiple connected components, and the weak perturbations introduce
weak coupling between them. In this framework, a perturbation analysis in terms of an
explicit small perturbation parameter ¢ on the dominant eigenvalues and their eigen-
functions is performed and a cluster extraction algorithm called PCCA (or PCCA+) is
devised. In the continuous state space setting as considered by Davies, a correspond-
ing construction of a perturbation M, that turns a disconnected reference manifold
M into a single manifold with “weakly connected” components [as done for finite
reversible Markov chains in Deuflhard et al. (2000)] appears to be a very challenging
research problem, since both the coupled and the decoupled configurations of M,>¢
need to be embedded into a single ambient manifold, on which the Laplace operators
and their spectra can be compared.

Another important contribution is Huisinga and Schmidt (2006), adopting the
approach of Dellnitz and Junge (1999) of addressing metastability (called almost-
invariance there) of sets via having high internal transition probability (or, equivalently,
low exit probability) as measured by the (almost) invariance ratio

p(My1, My) = (Plag, Lagy)2/ gy 113

Here, P is a Perron—Frobenius/transfer operator, which can be thought of as exp(t H)
for some ¢ > 0 in Davies’s framework. In a different line of research, this approach
has been used to detect almost-invariant behavior in deterministic, finite-dimensional
dynamical systems (Froyland and Dellnitz 2003; Froyland 2005). The metastability
quality of an arbitrary state space decomposition into M1, ..., M}, is then assessed via
> i p(M;, M;). Specifically, an upper bound is given in terms of ), A;, A; the eigen-
values of P, and a lower bound in terms of the weighted sum of eigenvalues, where the
weights are determined by the norm of the orthogonal projection of the eigenfunctions
onto the space spanned by the indicator functions 1, . Roughly speaking, if the eigen-
functions appear to be almost constant on the M;, then the lower bound on metastability
is close to the upper bound. In this approach, there is no a priori assumption on the
proximity of dominant eigenvalues to 1. The provable metastability measure, however,
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decreases when including eigenfunctions associated with non-small eigenvalues. For
another quantification approach to metastability in terms of exit times, see Schiitte
(2003).

It is generally extremely difficult to optimize the almost-invariance objective func-
tion under the constraint of searching among characteristic functions which decompose
state space. For this reason, the optimization problem is relaxed toward general densi-
ties in L2, and the decomposition constraint is relaxed to L2-orthogonality of densities.
In this form, the optimization problem takes the form of Courant—Fischer min—-max
type and is therefore solved by eigenvalues and eigenfunctions of the (symmetrized)
transfer operator. For the extraction of metastable/almost-invariant sets, the theory and
methods developed in Davies (1982b), Deuflhard et al. (2000), Huisinga and Schmidt
(2006) can then be applied.

In practice, it is common to use heuristic clustering algorithms such as k-means
or fuzzy c-means to extract state-space decompositions from eigenfunctions, besides
the aforementioned (Dellnitz and Junge 1999; Deuflhard et al. 2000; Deuflhard and
Weber 2005). On the one hand, there is theoretical justification for using k-means
(Lafon and Lee 2006) by interpreting the values (wg (x))¢—1.._, of leading eigenfunc-
tions (wg)g=1,.. . as a quasi-isometric embedding into some Euclidean space. In this
feature space, k-means then effectively optimizes cluster attribution with respect to
the intrinsic distance of the data. On the other hand, these clustering algorithms do not
address the original optimization problem.

2.4 Laplace Operator, Heat Flow and Local Averaging

There exist many tight connections between a Riemannian geometry on a manifold
(as modeled by a Riemannian metric and its induced Laplace operator) on the one
hand, and the heat flow and heat kernel (induced by the Laplace operator) on the other
hand; see, for instance, Grigor’yan (2009) and Lablée (2015). Here, we want to recall
one very intuitive connection between short-time heat flows and local averaging.

To this end, consider a Riemannian manifold (M, g) without boundary and with
Riemannian measure. Denote the diffusion operator defined by averaging over g-
geodesic e-balls Bf (x) = {y € M; dist 4 (x, y) < €} of radius ¢ by T8, ie.,

udx
(ng”) (x) = fng(x) = 1g / udx.
Js2co dx Volg (BE(0)) ¢

Then, the results from Lebeau and Michel (2010, Thms. 1 and 2) show that
TS = Isz(M’g)+2(j—j_2)Ag+0<s4>, fore — 0, 3)

(almost) in the norm-resolvent sense; see Lebeau and Michel (2010) for technical
details. In particular, the dominant eigenvalues and their eigenprojections of &2 A ¢
converge to the eigenvalues and eigenprojections of 2(d + 2)(7f — Id) as ¢ — 0+,
respecting multiplicity. This strong result can be interpreted in two ways.
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Spectral approximation of the short-time heat flow

Asrecalled in Sect. 2.3, metastable sets for the heat flow are detected by eigenfunctions
of the heat flow U, A . Now, the right-hand side of Eq. 3 can be read as the second-order
operator expansion of the heat flow Uga (¢/(2d + 4)), i.e., for short time intervals of
length O(¢e). An understanding of this short-time heat flow is already instructive for
the general heat flow, since Eq. 7 is autonomous and the long-time heat flow is nothing
but an iteration of the short-time heat flow. Equation 3, i.e., the approximation of the
short-time heat flow by the local geodesic averaging operator, then states that it is
instructive to look at the shape distribution of small geodesic neighborhoods to form
an intuition on the action of the short-time heat flow and thereby, possibly, on dominant
metastable sets as identified from Laplace eigenfunctions; cf. Sect.2.3. We make use
of this correspondence in a visual exploration of a non-trivial geometry in Sect.4.1.

Approximation of local geodesic averaging by diffusion

Alternatively, Eq. 3 may be interpreted from left to right. On the left-hand side, we
have the compact integral smoothing operator 7,°. This operator is expanded in (non-
compact) differential smoothing operators. To zeroth order, i.e., sending ¢ — 0, the
integral kernel of 78 becomes the Dirac delta distribution, whose action is given
simply by point evaluation, or, on the operator level, by the identity operator. At the
second-order level, local averaging is represented by the differential diffusion operator
A.

3 Advection-Diffusion in Eulerian and Lagrangian Frames

Let (M, g, dx) be a weighted Riemannian d-manifold and M C M, the fluid domain
or material manifold, an embedded d-dimensional submanifold equipped with the
induced metric, again denoted by g. We regard g and the (volume) measure dx as
universal objects, in the sense that they do not depend on the physical transport and
mixing process that we are going to study. In particular, dx may be the Riemannian
measure induced by g, which is what we assume henceforth. Thus, (M, g, dx) is a
Riemannian manifold, and the reader may simply think of the physical space with
physical length and volume.

We consider the transport equation/conservation law for the scalar quantity ¢ asso-
ciated with the (in general non-autonomous) divergence-free vector field V on M:

d¢ + div(pV) =0,  ¢(0,) = do. “

Here and throughout, the divergence is the one induced by the physical volume form
dx. As is well known, Eq. 4 may be solved for ¢ by means of the flow map, i.e., the
solution to the ordinary differential equation

x =V, x),
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a smooth one-parametric family of diffeomorphisms @', ¢ € [0, T, over M,

M —> D [MIEM te[0,T], &°=Idy.

Indeed, the solution may be represented pointwise by ¢ (¢, x) = ¢ (0, (CD’ ) ! (x)) ,or

globally ¢(z,-) = P'(¢(0, -)), where (P'), is the time-dependent family of Perron—
Frobenius operators associated with Eq. 4.

3.1 Eulerian Advection-Diffusion Equation

As a starting point, consider the spatial evolution of a scalar density ¢ as it is carried
by an incompressible fluid and subject to diffusion, the classic Eulerian advection—
diffusion equation (ADE)

%‘f =09+ div(¢V) =ediv Dd¢p,  ¢(0,-) = ¢o. (%)

Here, D/ Dt denotes the material/substantial/advective time derivative used in the
fluid dynamics literature, and D is the smooth space—time-dependent diffusion tensor
field, pointwise symmetric and uniformly positive-definite. The diffusion tensor field
is supposed to model only the directional dependence of diffusivity, whereas ¢ > 0
models the diffusion strength and can be interpreted as the inverse of the dimensionless
Péclet number, which quantifies the strength of advection relative to the strength of
diffusion. The problem of LCS detection is typically considered in purely advective
flows, which we relax here to advection-dominated, weakly diffusive flow regimes,
i.e., associated with a large Péclet number.

Note that we do not require the spatial metric g in the formulation of Eq. 5. It is
well known that the above ADE captures also anisotropic diffusion, i.e., diffusion with
direction-dependent diffusivity. Isotropic diffusion corresponds to a diffusion tensor
D, which is represented by (a multiple of) the identity tensor in physical units, i.e., in
Riemannian normal coordinates induced by g.

Nevertheless, we may actually use the diffusion tensor field D to define a diffusion-
adapted metric. This is a classic, but little-known procedure, which seems to go back
to Kolmogoroff (1937), see also Masoliver et al. (1987) and Cohen de Lara (1995).
It builds on the duality of the Riemannian and the dual metrics, using the fact that D
transforms like a dual metric tensor, see Sect.2.1. Assume D has components D"/ in
local coordinates; then, we define a metric tensor field g by the symmetric, positive-
definite matrix field G:=D~! = (D; 7)ij. It seems appropriate to refer to (geodesic)
length measured by g as effective length: In effective length units, the D-diffusion is
isotropic by construction, i.e., in g-normal coordinates D is represented by the identity
tensor. This is achieved by downscaling/upscaling effective length units (relative to
physical length units) in directions of larger/smaller diffusivity, respectively. Note
that we do not alter the notion of volume as modeled by dx. By definition, D is the
inverse of the metric Gramian G and therefore may be interpreted as the canonical
isomorphism. Thus, Dd¢ = grad ¢¢ models the diffusive flux in physical units, and
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finally Eq. 5 may be rewritten in the form

%f = ¢+ div(pV) = ediv grad g = cAg arp,  $(0,-) = ¢o.

By the uniform definiteness assumption on the diffusion tensor field D, the Laplace
operator Ag gy is uniformly elliptic. Using local coordinate representations, it is easy
to see that the physical volume measure dx has a density 4/det(D) det(®) w.r.t. the
volume measure induced by g, where & is the Gramian of g.

The Eulerian perspective comes with a couple of challenges. First, if one is interested
in the evolution of material localized in some non-invariant region M, one needs to
solve Eq. 5 on a sufficiently large spatial domain in M in order to cover the entire
evolution ®' (M) of material initialized in M. This can be challenging in applications to
open dynamical systems such as ocean surface flows. Second, coherent sets computed
in this framework—as done in Denner et al. (2016), cf. also Froyland and Koltai
(2017)—are conceptually of Eulerian, i.e., space—time, kind, and are not material by
construction. This lack of materiality is not, as sometimes stated, due to the addition
of diffusion in phase space, as we show by our theory here. In particular, such Eulerian
structures generally have both diffusive and advective fluxes through their boundary.
It is therefore of interest to study weakly diffusive flows from a material perspective,
i.e., in Lagrangian coordinates.

3.2 Lagrangian Advection-Diffusion Equation

Next, let us take a look at Eq. 5 from the Lagrangian viewpoint, cf. Press and Rybicki
(1981), Krol (1991), Knobloch and Merryfield (1992), Thiffeault (2003), Fyrillas and
Nomura (2007). Formally, this means that we interpret the scalar density as a function
of particles by pulling it back to time ¢ = 0 through composition with the flow map
®. This yields a Lagrangian scalar density ¢ = ®*¢ = ¢ o ®. Additionally, we need
to pull back Eq. 5 to the material manifold, and thus arrive at its Lagrangian form

3¢ = ¢ div <D<I>(t)_1 D ch(z)—T) do,  9(0,-) = . (6)

Here, the scalar density ¢ is no longer subjected to an advective drift—in the
Lagrangian perspective, we are following trajectories—but is subject to diffusion
generated by the time-dependent family of pullback diffusion tensors. Specifically,
denote by G() " h:=D®@)"'-D-D®(1)" T the diffusion tensor in Lagrangian coor-
dinates. Then, by duality, the matrix field G(¢) determines a time-dependent family
of diffusion-adapted pullback metrics g(#) on M, and we may rewrite Eq. 6 as

00 = eAgny,axp,  ¢(0,-) = ¢,
where the Laplace operators (A g(,),dx) , are induced by the pullback metric
g(t):=(®")*g and the physical volume. On an abstract level, this change of nota-

tion corresponds exactly to the transformation behavior of Laplace operators (Eq. 2).
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Equation 6 can thus be viewed as an inhomogeneous, i.e., time-dependent, diffusion
equation for Lagrangian scalar densities ¢ on M.

Remark 1 (Pullback metrics) The pullback metric g(z) is well known in the theory of
kinematics of deforming continua by the name (right) Cauchy—Green strain tensor;
see, for instance, Abraham et al. (1988, p. 356). In the typical case, when the space M
is Euclidean and parameterized by the canonical coordinates xb o0 x4 the pullback
metric g(¢) has the matrix representation G (¢) = (DCID(t))—r -D®(t), where DD (1) is
the linearized flow map with entries (9 oly; ;- In general coordinates, one has G (t) =
(D®(1))" -G - D®(t), where G is the matrix representation of g in local coordinates
on ®'(M).

Remark 2 We stress that—according to our Lagrangian viewpoint—Eq. 6 is an evo-
lution equation on M, even if the flow does not keep M invariant, i.e., ® (M) # M.

We are now in the position to define our main object of interest.

Definition 1 Lagrangian coherent sets U C M are material sets that are metastable
under the time-inhomogeneous heat flow (6), i.e., the advection—diffusion equation in
Lagrangian coordinates. By Lagrangian coherent structure we mean the boundary of
a Lagrangian coherent set. Since both notions define each other unambiguously, we
will abbreviate both simply by LCS and use them mostly synonymously.

The metric g(z) is different from g = g(0) unless ®’ is an isometry, or, in physical
terms, unless ®’ corresponds to a solid body motion. Therefore, the Lagrangian diffu-
sion is not isotropic with respect to g, even if the Eulerian diffusion was. This reflects
the fact that the flow deformation may have pushed two particles apart or together, and
thus, their material exchange by diffusion at some later time point is, respectively, less
and more likely (Fig. 2). These intuitive heuristics have been formalized and exploited
in Thiffeault (2003) to reduce the full-dimensional ADE to a one-dimensional ADE
along the most contracting direction.

Since —Ag(y),ax is elliptic for all € [0, T'] (each is just an isometric representative
of the elliptic Laplace operator —Ag 4, on the flow image), the solution of Eq. 6 in
L*(M) is given by the generalized heat flow Uga associated with (s Ag(z),dx)
cf. Sect.2.2.

By construction and as a consequence of volume preservation by ®, we have the
following result.

8(1),dx t’

Proposition 2 For each t € [0, T], the operator Ag),dx = divay grad 4(;) is self-
adjoint on L*(M, dx) and admits the spectral properties stated in Proposition 1.

We see that time dependence enters the definition of A, qx only through the
pullback metric/diffusion tensor field, the physical volume dx remains unaltered. For
this reason, we henceforth omit the measure in the notation of the Laplace operator.

Remark 3 From a geometric viewpoint, one may consider the heat flow as a tool to
study the geometry of manifolds. Then, Eq. 6 may be interpreted as the heat flow on
a time-evolving manifold. This setting has been studied recently from the diffusion
maps point of view in Marshall and Hirn (2018).
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Pullback material geometry Spatial geometry

Fig.2 Schematic visualization of the pullback geometry and the induced diffusion. The spatial Euclidean
geometry (right) is pulled back to the material manifold from time r = 0.05 (left) by the flow map <1>8'05 for
the rotating double gyre (Example 1). A spatial diffusion with variance ¢ = 0.1 (red circle on the right) is
pulled back to the red curve on the left, visualizing diffusion in the pullback metric g(0.05) on the material
manifold of equal variance. As can be seen, the red curve reaches further out than material diffusion with
same variance in the original metric g(0) (visualized by the green circle) in some directions, while it does
not reach as far in others. This is due to the deformation by the flow. Note also the duality to the Eulerian
deformation perspective presented in Welander’s classic work on two-dimensional turbulence (Welander
1955, Fig. 2) (Color figure online)

3.3 Metastability in Time-Dependent Processes and Its Approximation

For two reasons, our definition of LCSs given above does not provide a precise math-
ematical definition, but rather merely invokes the intuition underlying metastability.
First, as recalled in Sect. 2.3, metastability of Markov processes comes with an intrinsic
vagueness, and second, as pointed out in Koltai et al. (2016, p. 1), “a straightforward
definition of a metastable set in the non-stationary, non-equilibrium case may only be
given case by case.”

In Koltai et al. (2016), the authors build on previous work by Froyland (2013)
and extract metastable sets [defined as coherent sets in the terminology of Froyland
(2013)] from features of the singular vectors of the solution operator associated with
the time-dependent process; cf. also Marshall and Hirn (2018). In our case, this would
correspond to the singular vectors of the generalized heat flow Uga,, 4, introduced
earlier. Note, however, that features of singular vectors—Iike connected regions of
uniformly high absolute value—are generally not expected to be invariant under the
generalized heat flow. While this is conceptually unproblematic in Eulerian approaches
to coherence which do not request flow invariance of the sets of interest, it is problem-
atic in a Lagrangian approach, where one seeks Lagrangian structures. Those ought
to be, by definition, invariant in Lagrangian coordinates.

To enforce invariance, one may consider extracting LCSs from features of the
eigenfunctions of the generalized heat flow. The issue with this approach then is that
the generalized heat flow is a family of non-self-adjoint operators, whose eigenval-
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ues therefore are not necessarily real. It remains unclear how to interpret complex
eigenvalues of modulus almost 1, and their associated eigenfunctions, in a finite-time
context.

Another, simplifying ad hoc approach is to approximate the generalized heat flow
by an autonomous heat flow, whose generator is obtained from averaging the time-
dependent generators (Press and Rybicki 1981; Krol 1991; Knobloch and Merryfield

1992), i.e.,
o T
AIZ][ Ag(;) dr.
0

We defer a rigorous convergence study of the two heat flows in the vanishing diffusivity
limit, ¢ — 0, to the forthcoming (Karrasch and Schilling 2020); see Krol (1991) for
related work.

By the linearity of the divergence and with the time average of the pullback diffusion
tensors,

T
g,—l:][ g(n~tdr,
0

‘A takes the form of a Laplace operator on M, i.e.,

A = divg, grad; = Ag gy = Ag,

where g denotes the metric tensor induced by g ~1. A g 1s then a volume-based diffusion
operator again.

Following a different line of reasoning, Froyland introduced the operator A recently
in Froyland (2015) and coined it dynamic Laplacian; cf. also Froyland and Kwok
(2017). From our ADE point of view, the dynamic Laplacian of Froyland (2015) can
be obtained as the time average of pullbacks of isotropic Eulerian Laplace operators;
cf. (2).

The following proposition holds due to the fact that A is the Laplace operator A F
associated with the weighted manifold (M, g, dx). Notably, ellipticity follows from
uniform bounds on the continuously differentiable flow map defined on a compact
space—time manifold M x [0, T'].

Proposition 3 (cf. Froyland (2015, Thm. 4.1)) The operator A is self-adjoint on
L%(M, dx) and admits the spectral properties stated in Proposition 1.

In the case when M has non-empty boundary, the operator is—as before—equipped
with the natural (w.r.t. g¢) Neumann boundary condition. This can be interpreted as the
average of pullbacks of zero Neumann boundary conditions, see Froyland (2015) and
Froyland and Kwok (2017).

The metric g endows the material manifold M with a Riemannian metric, that
encodes—in an averaged sense—the diffusion as it is observed from a Lagrangian
perspective. This allows for (i) a static visualization and exploration and (ii) the appli-
cation of many well-established techniques and tools from geometric spectral analysis
and spectral geometry (Jost 2011; Lablée 2015), as well as harmonic analysis.
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Finally, we propose to approximate LCSs, i.e., metastable sets of the non-
autonomous Lagrangian ADE (6) by metastable sets for the autonomous Lagrangian
evolution equation

0o = eAzo. (7N

By the spectral relation between heat flow and generator, cf. Sect. 2.2, this boils down
to a spectral analysis of the generating Laplace operator Ag. Extracting metastable sets
from eigenfunctions of the heat flow/generator as described in Sect. 2.3 then coincides
with the procedure put forward in Froyland and Junge (2018), where a couple of
example flows are analyzed.

4 Geometry of Mixing

Animportant outcome of the time averaging of the pullback Laplacians is the geometric
structure on the material manifold M given by the harmonic mean metric g. This is
a material geometry typically different from all material geometries induced by the
configuration of the material in space, i.e., its embedding in space as a submanifold.
The aim of this section is to study this new weighted (Riemannian) manifold as well
as the properties of the induced Laplace operator Az and its heat flow. We will refer to
this geometry as the geometry of mixing, thereby reviving and generalizing an earlier
related approach by Giona et al. (2000), which refers to the (single) pullback geometry
under one flow map of (typically chaotic) flows.

More specifically, we wish to find signatures of coherent and incoherent dynamics,
and of the boundary between them, in the static geometry of mixing. We do so by
comparing characteristics of the diffusion tensor field relative to the physical geometry
(M, g) and in g-orthonormal coordinates x. In the Euclidean setting, these are the
canonical x!-coordinates.

By choosing a reference geometry relative to which we study the deformed g-
geometry our analysis appears to be somewhat reference dependent. An analogous
approach, however, is common in continuum mechanics, where deformed configu-
rations are analyzed relative to a reference configuration (Truesdell and Noll 2004).
Eventually, the spectrum and the eigenprojections of Az—the basis of our coherent
structure detection method—are intrinsic and independent of representations w.r.t. the
reference configuration. Notably, our geometric construction is observer independent,
or, equivalently, objective, since Euclidean changes of observer do not change the
notions of length and volume, and the diffusion tensor field D is given intrinsically.

4.1 Lagrangian Averaged Diffusion Tensor Imaging

In this section, we explore visually the averaged diffusion tensor field in search of
signatures of Lagrangian coherent structures. The visualization of second-order tensor
fields, and diffusion tensor fields in particular, is referred to as diffusion tensor imaging
(DTI) and is a well established and active field of research in scientific visualization;
see, for instance, Le Bihan et al. (2001) for a brief review. We denote the Lagrangian
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averaged diffusion tensor by D. Two diffusion phenomena that are of interest in DTI
are (i) anisotropy and (ii) some scalar measure of diffusivity.

4.1.1 Anisotropy and Barriers to Diffusion

For anisotropy, several scalar measures have been proposed in the diffusion tensor
imaging (DTI) literature, for instance the volume ratio, given by

[1{ ui (D)

7D

where & denotes the arithmetic mean of the eigenvalues. This quantifies the volume
of the diffusion ellipsoid relative to the volume of the sphere with radius . It takes
values between 0 and 1, where 1 corresponds to isotropy and O corresponds to a
lower-dimensional, degenerate ellipsoid and hence strong anisotropy. Recall that both
measures are not intrinsic quantities of g, but are determined by viewing the D—
diffusion tensor in g—orthonormal coordinates.

Generally, forapoint p € M and a g-unit direction v, the g-norm of v corresponds to
the inverse effective D-diffusivity in v-direction. We are now looking for a canonical,
i.e., diagonalized representation of the diffusion tensor D in physical g-unit directions.
This can be achieved simply by computing the eigendecomposition of D, assuming that
the matrix representation of g in the chosen coordinates is the identity. The eigenvalues
of D then correspond to the characteristic diffusivities, attained in the directions of
the eigenvectors. In other words, the direction vmax (m associated with pmax (m
corresponds to the direction of strongest (or fastest) diffusion, and, by duality, to
Umin @), i.e., the direction which is most strongly compressed under the change
of metric from g to g (Fig.3). The connection between short-time heat flows and
averaging on small geodesic balls (w.r.t. the intrinsic geometry, here given by g)—
recalled in Sect. 2.4—indicates that this visualization procedure may be indicative for
the action of the heat flow and the location of metastable states as identified from
spectral information.

4.1.2 (Mean) Diffusivity: Lagrangian Effective Diffusivity and Mixing Regions

Another quantity of interest in the exploration of diffusion tensor fields is a scalar
measure of total (or, mean) diffusivity. It is common to use the trace of the diffusion
tensor in the DTI community, i.e., the sum of eigenvalues. For the mean diffusivity, the
trace is additionally normalized, i.e., divided by the dimension. In two-dimensional
flows, the trace as a measure of absolute diffusivity (in contrast to the relative strength
as measured by anisotropy) at a point is strongly dominated by the maximal eigenvalue
Mmax- It is natural to interpret regions where the scalar diffusivity field attains high
values as mixing regions, in which localized scalar densities are expected to diffuse
very quickly, following preferentially the directions of fastest diffusion, as discussed
in Sect.4.1.1. In the literature, the method of trajectory encounter volume (Rypina and
Pratt 2017), cf. also Padberg-Gehle and Schneide (2017), and Nakamura’s effective
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Fig.3 Schematic visualization
of the g- and g-unit circles
(black and red, resp.) in
g-orthonormal coordinates, cf.
Fig.2. Note that g-diffusion is
fastest in the direction of

Umin (G) because the g-distance
is the shortest on g-circles. The
corresponding diffusion
coefficient in that direction is >
HMmax (D) = 1/lmin (6) Note pmax (G)=fmin (G)=1
also that g-unit spheres have
typically much smaller volume
than g-unit spheres because
Hmin (G) = Hmax (E) < lin
large regions of M, and
consequently g-unit volumes
have g-volume smaller than one
there, see Sect.4.1.3 (Color
figure online)

Umax (é)

diffusivity methodology, see Sect.5.5, have been proposed as a way to compute a
Lagrangian diffusivity.

4.1.3 Density

Throughout, we are working in a weighted manifold setting here, in which the
volume measure dx generally does not coincide with the volume induced by the
diffusion-adapted metric g. It is therefore of interest to study the deviation of the
diffusion-adapted intrinsic volume from the physical volume measure. This amounts
to determining the density of dx w.r.t. the Riemannian volume measure in the geometry
of mixing.

However, since intuition is based on the physical notion of volume, we visualize
the inverse problem, i.e., the volume density in the geometry of mixing w.r.t. dx:

T — 1
dg =+VdetG dx = —_dx.
vdet D

4.1.4 Numerical Examples

For simplicity, we assume that the Eulerian diffusion tensor field in the following
examples is given by the identity tensor in the canonical coordinates. The inclusion
of a space—time-dependent, anisotropic diffusion tensor field is straightforward, see
Remark 1. We are going to visualize the geometry of mixing for two commonly studied
flow examples. For an LCS analysis based on spectral data of the dynamic Laplacian
for these examples, see Froyland and Junge (2018).

Example 1 [Rotating double-gyre flow (Mosovsky and Meiss 2011)] We consider
the transient double-gyre flow on the unit square [0, 1] x [0, 1], as introduced
in Mosovsky and Meiss (2011). It is given by a time-dependent stream function
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Fig.4 Rotating double-gyre flow: the three-clustering obtained from the second and third eigenfunction of
A at initial (left) and final time (right)

W(r, x,y) = (1 —s(t)) sin(2Qx) sin(ry) +s() sin(7rx) sin(2Qw y), s (1) = 1>(3 —21),
defining the velocity field via

v

ay’ YT

The integration time interval is [0, 1] and the computational grid is 500x500 points.
The flow is designed to interpolate in time an instantaneously horizontal (at# = 0) and
an instantaneously vertical (at + = 1) double-gyre vector field. For our metric compu-
tations, we average over 21 pullback metrics from equidistant time instances with time
step 0.05. The LCSs as computed from a clustering of the dominant eigenfunctions
of the dynamic Laplacian A are shown in Fig.4; see Froyland and Junge (2018) for
details. For a visual proof of coherence, we provide an advection movie showing the
evolution of the Lagrangian coherent structures as Supplementary Material 1.

Example 2 [Bickley jet flow (Rypina et al. 2007)] We consider the Bickley jet flow,
as introduced in Rypina et al. (2007), which is determined by the stream function

W(th’ y) = I/IO(y) + llll(t»x7 y)’ where

Yo(y) = —UpLotanh (y/Lo) ,

3
Y12, x, y) = UpLo sech*(y/Lo)ht (Z Ja (1) exp (iknx)> .

n=1

with functions and parameters as in Rypina et al. (2007) and Hadjighasem et al.
(2016): f,(t) = €, exp (—ikycpt), Ug = 62.66ms~ ', Ly = 1770km, k, = 2n/ro,
ro = 6.371km, ¢; = 0.1446U, co = 0.205Up, c¢3 = 0.461Up, € = 0.0075,
€2 = 0.15,e3 = 0.3; x and y have units of 1000 km and  has units. The integration time
interval is [0, 40] days and the computational grid is 800 x 240 points. We approximate
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Fig.5 Bickley jet flow: the eight-clustering obtained from the second to eighth eigenfunctions of A

g by 81 pullback metrics from equidistant time instances with time step 0.5 days. The
LCSs as computed from a clustering of the dominant eigenfunctions of the dynamic
Laplacian A are shown in Fig. 5; see Froyland and Junge (2018) again for details. As
for the previous example, we provide an advection movie showing the evolution of the
detected sets as Supplementary Material 2 for a visual confirmation of the coherent
motion.

Next, we visualize the Lagrangian averaged diffusion tensor field for the two exam-
ple flows described in Examples 1 and 2. In Figs. 6a and 7a, we show the respective
volume ratio fields. In Figs. 6b and 7b, the scalar field shown is the decimal logarithm
of the mean diffusivity and it is overlaid by a grayscale texture whose features are
aligned with the dominant diffusion direction field vy,x (5) In the orthogonal direc-
tion, diffusion is weaker typically by several orders of magnitudes. Finally, in Figs. 6¢

. . ——1/2
and 7c we plot the respective densities (det D) .

In both Figs. 6 and 7, two phenomena are clearly visible. First, the g-diffusion gets
closest to isotropic diffusion (volume ratio values close to 1) around the cores of the
two LCSs at roughly (0.5 £ 0.25, 0.5) (see Figs.6a and 7a). The further away from
the structure centers, the more quasi-one-dimensional the diffusion becomes (volume
ratio values close to 0), cf. also Thiffeault and Boozer (2001) and Thiffeault (2003).
In particular, in Figs. 6b and 7b there are strongly diffusive yellowish filaments almost
enclosing the bluish regions. Second, the direction normal to the LCS boundaries cor-
responds to the subdominant diffusion direction, which is several orders of magnitudes
weaker than the dominant diffusion and therefore significantly slower. To leverage the
correspondence between local geodesic averaging and short-time heat flow, imagine
a small geodesic radius ¢ > 0 and a geodesic ball (in the geometry of mixing) of
radius ¢ attached to points on some dense grid. With the shape and orientation of these
geodesic balls as described in Sect.4.1.1, one may guess that the geodesic averaging
operator leaves characteristic functions localized on the LCSs almost invariant, much
more than characteristic functions localized on smaller subsets thereof, or on material
sets outside the LCSs.

Figures 6¢ and 7c demonstrate that the material manifolds equipped with the respec-
tive geometry of mixing may be regarded as consisting of two and six massive
components, respectively, connected by an almost massless background.
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T xT

(a) Lagrangian averaged diffusion anisotropy (b) Lagrangian effective diffusivity
1
: m i
0
0 0.5 1

T
(C) Volume density
Fig. 6 Averaged Lagrangian diffusion tensor field imaging for the transient double-gyre flow. a Volume
ratio as a measure of anisotropy. High values correspond to isotropic diffusion. b The texture corresponds
to integral curves of the dominant diffusion direction field; the scalar field corresponds to the logarithmic

trace of the diffusion tensor, the Lagrangian effective diffusivity. ¢ Density of the diffusion-induced volume
relative to physical volume

In other words, a uniform heat distribution localized close to the isotropic core of
the LCSs diffuses both radially and circularly on comparable time scales. A uniform
heat distribution localized on the whole LCS will diffuse to the exterior on extremely
long time scales and is therefore expected to be extremely slowly decaying, or, in other
words, metastable. We demonstrate that our expectations built from the diffusion tensor
analysis are indeed satisfied by the heat flow animations provided in Supplementary
Materials 3 and 4 and discussed in Sect.4.3.

4.2 Variational Characterization of Eigenvalues

We continue our study of the geometry of mixing by interpreting the eigenvalues of the
Laplace operator from the variational viewpoint, in light of the preceding visualizations
of the averaged diffusion tensor field and the density. This establishes some rather
explicit connections between the Lagrangian averaged diffusion tensor field D on the
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Fig. 7 Averaged Lagrangian diffusion tensor field imaging for the Bickley jet flow; see Fig.6 for the
interpretation

one hand and the topography of low eigenfunctions of the dynamic Laplacian on the
other hand.

According to the Courant—Fischer—Weyl min—max principle, the eigenvalues of
any Laplace operator can be characterized as follows: For k € N, let Wy, =
span {wiy, ..., wi} C LZ(M ,dx) be the k-dimensional subspace spanned by the
eigenfunctions corresponding to the k£ dominant eigenvalues and WkJ- its orthogonal
complement. Then the kth eigenvalue is given by
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5—1
dw,dw)d
Ak = — inf Ju? (u; w)dx
weWi Jyy w?dx

The infimum is attained exactly by the eigenfunctions corresponding to Ax. For a
smooth function w, the simplest way to minimize the Rayleigh quotient is to be
non-vanishing and constant. On connected manifolds, globally constant functions are
captured by the eigenspace of the zero eigenvalue, and functions in the orthogonal
complement must necessarily (i) have variation and (ii) be sign-indefinite. From an
“eigenfunction-engineering” perspective, two questions arise for dominant eigenfunc-
tions: (i) where to change values and where to remain (almost) constant; and (ii) if
changing values locally then in which direction the most? Of course, the overall con-
straint is to have as little variation as possible.

Clearly, it is generally favorable to have variation in regions where any variation
does not come at a high cost. Pointwise, the maximal cost is determined by the maximal
eigenvalue tmax (D) of the averaged diffusion tensor, which also dominates the trace of
D. Thus, one would expect variation in regions with low trace, or, in our terminology
above, with low Lagrangian effective diffusivity. As for the direction of strongest
variation, it is pointwise optimal to have the differential dw point in the direction of
Vmin(D), i.e., orthogonal to the textured structures shown in Figs. 6a and 7a.

So far, one may think that it is favorable for a low eigenfunction to take some,
say, positive value in the very LCS center, where effective diffusivity is very low,
and some negative value everywhere else (except for a smooth transition). Due to
the orthogonality constraint (w, 1), this would introduce a very steep gradient in the
transition zone, which may outbalance the low cost due to low pmax (5). Thus, it is
advantageous to push the transition zone outward, thereby increasing the size of the
region with low-variation and positive values, which allows for a less steep transition
between the vortex-like LCS region and its surrounding. Pushing the transition zone
further outward into the high diffusivity region increases the Rayleigh quotient again,
and the low eigenfunctions find an optimal balance in this geometry of mixing.

4.3 Geometric Heat Flow

In support of the decomposition of the fluid domain M into regular/coherent and
mixing regions, we look at the action of the geometric heat flow induced by Az on
two different initial scalar distributions in the context of Example 1, the transient
double gyre. To this end, we provide two video animations of the geometric heat
flow in Supplementary Materials 3 and 4. In the third Supplementary Material, we
consider the geometry of mixing and initialize a scalar quantity in the interior of the
left LCS (Fig.8a). The scalar quantity is slowly distributed over the LCS, and only
very little leaks out (Fig. 8b). In the fourth Supplementary Material, we initialize the
same amount of some scalar quantity between the two LCSs in the mixing region
(Fig. 8c). Here, the scalar mixes fast all over the mixing region, but only very little
enters into the two LCSs (Fig. 8d). This demonstrates both the mixing behavior and
the diffusion barrier property of the LCS boundaries.
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Fig.8 Initial (left) and final (right) scalar densities for an initial condition localized in the center of an LCS
(top) and in the mixing region (bottom)

4.4 Diffusive Flux Form

Another interesting geometric object related to a weighted manifold is its induced
surface area form. Such forms assign a (d — 1)-volume, which we will simply refer to as
area, to (d — 1)-dimensional parallelepipeds in tangent space. We restrict our attention
to parallelepipeds with unit g-area, whose corresponding g-area can be interpreted as
the “g-diffusive flux.” To compute the g-area of parallelepipeds of interest, we recall a
result from linear algebra (Froyland 2015, App. A, Lemma 1): For an invertible matrix
AeGL (]Rd) and an orthonormal basis (vy, ..., vg), one has

1A @1 A ... Avg )| = det(A) HA—Tvd” .
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In our context, given some tangent space T, M, (vi, ..., vg) shall be an orthonor-

mal basis with respect to g. The transformation given by A::E‘/ z corresponds to
the basis transformation in 7, M to Riemannian normal coordinates, cf. Karrasch
(2015, Appendix). Therefore, in the new coordinates, G takes the canonic Euclidean
form, and area, determinant as well as volume are computed as in the Euclidean case.
In other words, on the left-hand side we have the g-area of the parallelepiped spanned
by (vy, ..., vg—1)—our object of interest—and on the right-hand side we have the

density det (6)1/2 = /g discussed in Sect.4.1.3 and the g~!-norm of the normal
(co-)vector vy.

Given a point p in M, what is the orientation of a (d — 1)-parallelepiped of unit
g-area in the tangent space T, M with the least g-area? Physically speaking, what is
the orientation of a surface element attached to p that admits the least diffusive flux?
Looking at the left-hand side, we find directly that the parallelepiped spanned by the
eigenvectors of G corresponding to the lowest eigenvalues has minimal g-area. This
is consistent with the right-hand side in that the normal vector v, is the eigenvector
corresponding to Upin (5) in that case, and therefore has minimal dual norm.

The area form induced by the geometry of mixing features prominently in asymp-
totics of diffusive flux through material surfaces in the vanishing diffusivity limit
(Karrasch and Schilling 2020), see also Haller et al. (2018, 2019).

5 Discussion
5.1 Generalization to Compressible Flows

The geometric heat-flow approach generalizes by analogy to the setting when advec-
tion is due to a compressible flow. In such contexts, advection—diffusion of a scalar
density ¢ as it is carried by a (compressible) fluid with conserved mass density p is
modeled by the mass-based equations (Landau and Lifshitz 1966), cf. also Thiffeault
(2003),

% =0;¢ + div (¢V) = ediv, Ddp,  ¢(0, ) = ¢o, (8a)
Dp .
Dr =90 + div(pV) =0, p(0, ) = po. (8b)

Here, the (time-dependent) spatial measure v corresponds to the fluid’s mass dv(t) =
p(t)dx, i.e., it has density p w.r.t. the physical volume. Equation 8b is easily recog-
nized as the continuity equation (or, mass conservation) for p and implies that v(z) is
the pushforward measure of vy under the flow; cf. the corresponding construction in
Froyland and Kwok (2017). Moreover, div, Dd¢ = A, , for the diffusion-adapted
metric g whose coordinate representation is G = D!,
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When we represent Eq. 8 in Lagrangian coordinates, see Thiffeault (2003), we
obtain

010 = eAg(t),n()®> ¢(0, ) = ¢o,
do=—0®"(div(V)),  0(0,-) = po.

Analogously to the incompressible case, the scalar density ¢ is subject to diffu-
sion generated by the time-dependent family of Laplace operators (A g(t),u(t)) ;> With
g(t):=(®")*g the pullback metric, and du(t) = o(t)dx = (®')*dv(¢) the pullback
measure. Conservation of mass yields

du(t) = du(0) = ppdx = dvy,

such that—fully analogously to the incompressible case—time dependence enters the
pullback Laplace operators only in the diffusion tensor term. Finally, time averaging
yields the dynamic Laplacian operator A; ,, defined in Froyland and Kwok (2017)
for compressible flows. In summary, both dynamic Laplacian constructions given in
Froyland (2015) and Froyland and Kwok (2017) can be derived from a Lagrangian
advection—diffusion viewpoint.

5.2 Spectral Analysis and the Role of Eigenfunctions
In our framework, we consider solutions of the self-adjoint elliptic eigenproblem
Agw, = Aywy,

possibly with natural Neumann boundary conditions on oM. As summarized in
Sect. 2.3, metastable sets are identified by separating the dominant part of the spectrum
from the rest via an eigengap. Subsequently, a metastable decomposition is extracted
from the associated eigenfunctions.

In our Riemannian manifold framework here, there is an additional spectral inter-
pretation method that comes into consideration.* It has been developed in the field
of manifold learning in the realm of diffusion maps (Belkin and Niyogi 2003; Coif-
man and Lafon 2006). The typical problem considered there is the following: Given
a sample from a connected manifold, that is low-dimensional but embedded in some
high-dimensional Euclidean space, one seeks coordinates that parameterize the mani-
fold intrinsically, without resorting to the high-dimensional coordinates in the ambient
space. This can be achieved by analyzing the eigenvectors of some graph Laplacian.
As discussed in detail in Dsilva et al. (2015), one observes the following phenomena
as one scans through the sequence of eigenvectors: The first non-trivial eigenvector
[called unique eigendirections in Dsilva et al. (2015)] defines a coordinate direction. It

4 This interpretation is put forward in the recent coherent structure literature: Froyland is alluding to this
interpretation in the motivating examples given in Froyland (2015), and Banisch and Koltai (2017) use
eigenfunctions to define transport coordinates in the style of diffusion coordinates of Coifman and Lafon
(2006).
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Fig.9 Spectral structure in the decoupled (a) and perturbed (b) cases. The quasi-components indicate con-
nected coherent sets corresponding to almost invariant sets and arise from the unperturbed zero eigenvalues
associated with connected components. The coordinates and higher harmonics correspond to first- and
higher-order Laplace—Beltrami eigenfunctions associated with one or a superposition of the components or
quasi-components

may be followed either by an eigenvector inducing the same coordinate direction, how-
ever, with a higher frequency of variation [called repeated eigendirections in Dsilva
et al. (2015)], or another unique eigendirection. The purpose of Dsilva et al. (2015) is
to propose an algorithm that distinguishes unique from repeated eigendirections.

The manifold learning problem, however, is different in two aspects to the metasta-
bility problem. First, there is no expectation on smallness of associated eigenvalues nor
an expectation of the existence of a spectral gap in manifold learning. That implies that
one is interested exclusively in consecutive, dominant eigenfunctions in the metasta-
bility analysis (Davies 1982b), whereas the coordinate-inducing eigenfunctions may
be scattered (Dsilva et al. 2015). Second, one is interested in plateaus of eigenfunctions
in the metastability analysis, whereas one is interested in their variation in manifold
learning.

These two dichotomous approaches to the interpretation of Laplacian spectra are
potentially reconciled as follows: In the dominant spectrum close to zero, one expects
to find information on the metastable sets, and subsequently coordinate-inducing
eigenfunctions and higher (mixed) harmonics thereof on the almost-disconnected,
metastable sets. Figure 9 schematically illustrates the role of different eigenfunctions
in the ideal decoupled and the weakly coupled manifold cases. The distinction of eigen-
functions and their interpretation in terms of metastable sets or coordinates remains a
challenging research question.

As a demonstration, consider the rotating double-gyre flow (Example 1). We used
the eigenfunctions u#» and u3 to extract a metastable decomposition into the two
LCSs and the surrounding mixing region in Sect.4.1.4; see also Fig. 10 for a typical
diffusion—coordinate plot of these. Eigenfunctions related to eigenvalues following
the first two non-trivial ones can now be interpreted as inducing the radial and some
“angular” coordinates on the two LCSs by tracing across the level sets from low to
high values (Fig. 11).

5.3 Discretization Aspects

In this section, we collect some thoughts regarding discretization aspects of the con-
tinuous averaged Lagrangian diffusion framework, provide relations to previously
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Fig. 10 Dominant diffusion coordinates for the rotating double-gyre flow. Shown are the second and third
eigenfunctions, the flat first eigenfunction has been omitted. Each point corresponds to a sample point in
the flow domain. The coloring corresponds to the coloring of the K- MEANS clustering result in Fig. 4 (Color

figure online)
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Fig. 11 Rotating double-gyre flow. Fourth (a) and fifth (b) eigenfunctions, which can be interpreted as
inducing radial (a) and angular (b) coordinates on the left LCS

o

published trajectory-based computational approaches and indicate future research
prospects.

Regarding the discretization of the dynamic Laplacian, there exist two approaches:
(i) start from the continuous formulation and consider different discretizations or (ii)
start from discrete approaches and target for the dynamic Laplacian in some infinite-
sample limit.

As for the first, this refers to the classic and broad field of numerics for partial
differential equations (PDEs). The problem at hand is to discretize the second-order
differential operator A, and classic approaches that have been employed include the
finite-difference discretization (Froyland 2015; Froyland and Kwok 2017), the projec-
tion on a finite-dimensional subspace of admissible functions spanned by radial basis
functions with compact support (Froyland and Junge 2015), and the finite-element
method (FEM) (Froyland and Junge 2018). In most practical cases, one will work

@ Springer



1878 Journal of Nonlinear Science (2020) 30:1849-1888

on a domain with boundary and hence has to ensure that (homogeneous) boundary
conditions are satisfied. Moreover, one would want to preserve a crucial feature of Az,
namely its self-adjointness. Out of the afore-mentioned discretization schemes, only
the FEM approach (Froyland and Junge 2018) manages to fulfill both these require-
ments exactly and in addition admits an implementation suitable to handle sparse and
incomplete data.

As for the second, this leads to the well-established field of diffusion maps. The cen-
tral result is, roughly speaking, that a graph Laplacian matrix built from a sample from
some Riemannian manifold converges toward the classic Laplace operator on the man-
ifold. There is an abundance of varieties here: which graph Laplacian (normalized or
unnormalized) to consider, which kernel function to use (fixed- or variable-bandwidth)
and which manifolds (with or without boundary, compact or not) to allow, and finally,
what kind of convergence to obtain (Coifman and Lafon 2006; von Luxburg et al.
2008; Berry and Sauer 2016a).

Briefly, let (x;); denote the samples from the manifold M, then define the entries w;;
of the weight matrix W associated with the pair (x;, x;) via a kernel k: R>g — Rx¢
and the distance dist (x;, x;), i.e., w;; = k(dist (x;, x;)), where k may additionally
depend on x; and x ;. A classic choice is given by the Gaussian k(w) = exp(—w?/c?),
but the exact design of the kernel turns out to be a powerful tool on its own (Berry
and Sauer 2016b). From the weight matrix W = (wj;), one constructs the diagonal
degree matrix D, with diagonal entries d; = »_  Wijs and finally / — D~'W is the
normalized graph Laplacian, an approximation to the negative Laplace operator. This
goes back to the normalized spectral clustering in Shi and Malik (2000) and admits a
plethora of modifications and extensions (Coifman and Lafon 2006).

In this spirit, several suggestions from the recent literature admit an interpretation
as approximations of averaged Lagrangian diffusion. Since the dynamic Laplacian
is defined as the average of pullback Laplace operators, it is natural to consider its
approximation via the average of graph Laplacian approximations of the pullback
Laplace operators (Banisch and Koltai 2017). This has the advantage that one can
use distances between trajectories at different times (usually Euclidean distances) for
the construction of the graph Laplacians, but has the drawback that the final matrix
representation of Az (Banisch and Koltai 2017, Q; in Eq. (19)) does not preserve self-
adjointness (Banisch and Koltai 2017, p. 8, comment (a)). However, it approximates
the pointwise action of A ; on functions in the infinite-sample limit (Banisch and Koltai
2017, Thm. 3).

A—challenging—alternative might be to operate directly on the intrinsic geom-
etry induced by g. In the spirit of graph Laplacians, this requires the computa-
tion/approximation of geodesic distances in the g-metric. If the tensor field can be
evaluated on a rather fine grid, this would allow the computation of geodesic distances
by solving the (anisotropic) eikonal equation. For this purpose, very efficient algo-
rithms such as the fast-marching algorithm or, more generally level set methods, are,
in principle, available. Alternatively, one may approximate geodesic distances to the
immediate grid neighbors from the metric tensors computed on the grid and extend
the distance metric to the whole grid by computing lengths of shortest paths.

Another line of research has suggested to define notions of distance, or,
even weaker, of adjacency (in a graph sense) between trajectories; cf. Froyland and
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Padberg-Gehle (2015) for an approach that introduces a metric on the extended state
space, which is then applied to compute distances between trajectories and cluster
centers as required by the k-means algorithm.

On the one hand, Hadjighasem et al. (2016) proposed to use time averages of
pairwise distances, dynamical distances, as dist -function in the graph Laplacian con-
struction. Thereby, pairs of trajectories with large dynamical distance get a low weight
which makes it unlikely that they are diagnosed as members of the same cluster/LCS.
On the other hand, Padberg-Gehle and Schneide (2017) proposed a complementary
approach: regard two trajectories as adjacent in a graph whose nodes correspond
to trajectories if they ever get closer than a specified distance threshold. Roughly
speaking, while (Hadjighasem et al. 2016) specifically punishes large dynamic dis-
tances, Padberg-Gehle and Schneide (2017) rewards close distances. Notably, the
degree field derived from the graph adjacency matrix in Padberg-Gehle and Schneide
(2017) has been independently proposed as a measure for mixing potential called
trajectory encounter volume (Rypina and Pratt 2017). As discussed earlier, one may
interpret this equally as a measure of Lagrangian effective diffusivity. While this corre-
spondence to physical quantities is appealing, the graph constructed in Padberg-Gehle
and Schneide (2017) is merely an unweighted and undirected graph. For mathematical
analysis, more structure such as an underlying metric or even a Riemannian geometry
generating adjacency would be desirable. In any case, for the methods discussed in
this paragraph it remains unclear what a continuous infinite-sample limit could look
like and whether it carries a nice mathematical structure. Ignoring such convergence
aspects, there remains a high degree of analogy between the dynamic Laplacian and
its associated geodesic distance in the geometry of mixing on the one hand, and ad hoc
dynamic distances which enter classic Laplace operator discretizations on the other
hand; see also Froyland and Junge (2018, Sect. 3.4) for an interpretation of an FEM
discretization of the dynamic Laplacian as a graph Laplacian matrix.

One common feature of the above-listed methods is that they embed each trajec-
tory in some neighborhood via distances, taking into account the dynamics. This is in
contrast to an independent set of coherent structure detection methods, for instance
(Mezic et al. 2010; Mancho et al. 2013; Mundel et al. 2014; Haller et al. 2016; Fabregat
2016). These methods retrieve information from time averages of observables along
trajectories, which are viewed individually, without an immediate neighborhood rela-
tionship. The expectation then is that coherent structures reveal themselves as sets of
material points showing similar statistics within the structure, and different statistics
compared to the exterior. In other words, a neighborhood relationship is built only
after observing trajectory statistics.

5.4 Connections to Geodesic LCS Approaches

There is another group of methods for finding boundaries of coherent structures in
purely advective flows, developed by Haller and co-workers (Haller 2015; Haller
and Beron-Vera 2013; Karrasch et al. 2015; Farazmand et al. 2014). These build on
global variational principles formulated in terms of the stretching or shear of material
boundaries. These approaches naturally involve the Cauchy—Green (CG) strain tensor
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field C:=D®(T) " D®(T), which we interpret here as the pullback metric ®(7")*g,
see Remark 1. These methods evaluate the dynamics at two time instances, an initial
t = 0and a final one t = T'. Earlier LCS methods have only used the logarithm of the
maximal eigenvalue of C, well known as the finite-time Lyapunov exponent (FTLE),
for visual inference of coherent structures.

First, observe the following tight relation between the Cauchy—Green strain tensor C
and the two-point averaged, diffusion-adapted metric tensor G in physical g-normal
coordinates at some pomt p € M. Then G has the coordinate representation G =

(G(O) Ly Gy~ ) = ( +C~ )7 , where [ is the identity matrix. Clearly,
C has eigenvalues Umin = Umin(C) < Umax(C) = Umax With eigenvectors5 VUmin (C)
and vmax(C) if and only if D = G ! has eigenvalues fimin (D) = (1 + umax) <

(1 + umm = fmax (D) with eigenvectors vmin (D) = vmax(C) and vmax (D) =
vmm(C ). In other words, the minor CG-eigendirection vy, (C) corresponds to the
dominant G—diffusion direction. Moreover, in the volume-preserving case, one has
Mmin = Uiy, and therefore the anisotropy ratio for D

is equal to the dominant CG-eigenvalue. Thus, the logarithm of the anisotropy ratio
shown in the figures in Sect. 4.1 corresponds to an accordingly defined multiple-time-
step FTLE up to rescaling.

Next, let us briefly recall the variational formulations for elliptic (coherent vor-
tex boundaries) and parabolic (jet cores) Lagrangian coherent structures (LCSs) in
two-dimensional flows, using our notation. Following Haller and Beron-Vera (2013),
boundaries of elliptic LCSs are sought as the outermost closed stationary curves of
the averaged strain functional

by, N
o) = [ Dy,
IO

where r is a parameterization of a material curve y C M. The integrand compares
pointwise the magnitude of curve velocity r/(s) after push forward by D® with its orig-
inal magnitude. Equivalently, by equipping M with the pullback metric C = ®(T)*g,
the domain M is geometrically deformed, in principle as we do in our approach here
with g. In these terms, the length of 7/ (s) in the deformed geometry (M, C) is compared
with its length in the original geometry (M, g). By applying Noether’s theorem, one
obtains that stationary curves necessarily obey a conservation law, which corresponds
exactly to the integrand, i.e.,

Ir')lomys  1r'()lgm)
F$)le 1))

= A = const.,

5 Haller and co-workers usually employ the notation (1;, &;) for eigenpairs.
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from which one may deduce tangent line fields 7, . Among the orbits of these line fields
one looks for closed ones. Closed orbits typically come in continuous one-parameter
families, out of which one picks the outermost. Analogously to index theory for vector
fields, one may employ index theory for line fields to deduce that any closed orbit of a
piecewise differentiable line field must necessarily enclose at least two singularities® of
the line fields, and all enclosed singularities obey a topological rule, see Karrasch et al.
(2015) for more details. In most cases, relevant closed orbits have been found to enclose
exactly two singularities of wedge type (Karrasch et al. 2015). These singularities can
be visualized (and numerically detected) by phase portraits of the eigendirections of
the pullback metric C, or, analogously, by the dominant diffusion direction field of D
as in Sect.4.1.

In practice, the outermost closed stationary curve travels through regions of high
FTLE/anisotropy values. There, the tangent direction field is almost collinear with
Umin (C). From the discussion in Sects.4.1.1 and 4.1.4, we conclude that such closed
curves are pointwise very close to the optimal direction for blocking g-diffusion. Their
deviation from the optimal direction is not very costly in terms of diffusive flux, but
still allows them to close up smoothly under the conditions of the variational principle.
Our ad hoc considerations here have been formalized and made rigorous in recent work
by Haller et al. (2018, 2019), who provide a variational theory for detecting material
transport barriers to diffusive transport in the original, time-dependent advection—
diffusion process (Egs. 5 and 6).

For a simple numerical test, we have overlaid the final clustering result as well as the
second eigenfunction of Az for a two-time-point approximation of g with all closed
n,.-orbits in Fig. 12. We find that the eigenvector clustering procedure yields smaller
structures (Fig. 12a). A close inspection of the level sets of the second eigenfunction,
however, reveals a nice, albeit not perfect, visual matching of some level sets with the
geodesic LCS results (Fig. 12b).

In summary, its dimension-independent formulation and its high degree of consis-
tency with the two-dimensional variational principles suggest our methodology as a
natural extension of these approaches to higher dimensions. It has proven to be noto-
riously challenging to extend the variational ideas to three dimensions by restricting
oneself to variational principles on curves (Blazevski and Haller 2014; Oettinger et al.
2016).

5.5 Applications to Geophysical Fluid Dynamics

In this section, we compare our methodology to Nakamura’s effective diffusivity frame-
work (Nakamura 1996; Shuckburgh and Haynes 2003), which is widely used in the
geophysical fluid dynamics community.

Both methods consider advection—diffusion processes in possibly turbulent fluid
flows, i.e., the advection—diffusion equation (ADE) in the physical domain with a

6 Singularities of line fields are points at which the line field is not continuously defined, see Spivak
(1999, Chap. 4, Addendum 2) and Delmarcelle and Hesselink (1994). Wedge-type singularities are char-
acterized by a sector of integral curves running into the singularity, complemented by a sector of integral
curves flowing around the singularity.
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Fig. 12 Rotating double-gyre flow (evaluated at initial and final time points only). Closed 7 -lines (black)
on top of a the final clustering result from the Ag-analysis, and b the second eigenfunction wy of Ag

constant diffusion coefficient «.” In a second step, the ADE is transformed to a
different set of coordinates: In Nakamura (1996), an almost Lagrangian coordinate
system based on the area inside concentration level sets of a given tracer density ¢
of interest is constructed. This transformation is considered as advantageous, for it
separates “the reversible effects of advection from the irreversible effects of advection
and diffusion acting together” (Shuckburgh and Haynes 2003). In our context, this is
achieved by passing to Lagrangian coordinates as in Press and Rybicki (1981), Thif-
feault (2003), Fyrillas and Nomura (2007)—and therefore literally to a tracer-based
coordinate system—which factors out the advective motion, but keeps the joint action
of advection and diffusion through tracking deformation and its effect on diffusion in
the form of the pullback metric.

In the Nakamura framework, the coordinates are then given by the one-dimensional
area coordinate A and (d — 1)-dimensional coordinates on concentration level sets.
Clearly, the instantaneous local action of diffusion on the concentration is in the A-
direction only, since there is no ¢-gradient along the level set coordinates. Averaging
over contours allows to reduce the d-dimensional advection—diffusion equation to
a one-dimensional (along the area coordinate) pure diffusion equation (Nakamura
1996):

0r¢p = 94 (Keir(A, 1)9a ), ©)

and the scalar K¢ is coined effective diffusivity.

In our context, the Eulerian ADE is turned into a pure diffusion equation as well,
Eq. 6, however, of full dimension d again. Moreover, we arrive at a diffusion tensor
induced by the pullback metric. We comment on the reason and the benefit of this
increased complexity later.

The next important concept in Nakamura’s framework is that of equivalent length
Leg (in 2D) and equivalent area Aeq (in 3D). For simplicity, we focus on Leq hence-

7 The assumption of constant diffusion coefficient is delicate in a differential geometry context. We view
it as an assumption on the chosen coordinate system.
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forth, but all arguments apply analogously to higher-dimensional flows. And so, the
equivalent length of a concentration level set corresponding to the area coordinate A
can be obtained from a comparison of the spatial scalar diffusivity « (from the Eule-
rian ADE) and the effective diffusivity K¢ (from Eq. 9), cf. Shuckburgh and Haynes
(2003, eq. (6)):

Keff(A» t) _

Kes(A, t) = kL2 A, t), or equivalent] —— =k
Cﬁ( ) eq( ) q y qu(A, t)

(10)

It can be shown that qu is at least (the square of) the physical length of the corre-
sponding concentration level set.

Equation 10 can be interpreted as answering the following question: How would
one have to rescale units or, more generally, deform the local geometry in order to
observe—in the new units/deformed geometry—the original diffusivity «? Concep-
tually, this procedure is completely analogous to the duality of the diffusion tensor
and the induced metric tensor (with respect to which anisotropic diffusion is isotropic;
cf. Sect.3.1), but also to the perspective that we took throughout Sect.4.1: How do
length, diffusivity, and volume in the geometry of mixing relate to the corresponding
entities in the original spatial geometry?

How do we see in the geometry of mixing whether diffusion is effectively enhanced
or suppressed (relative to the pure spatial diffusion) via its interaction with advection?
As an early indicator of mixing efficiency, Nakamura (1996) suggested to look at
the equivalent length, for a large L.y implies a large effective diffusivity, which is
then related to the mixing region. By analogy, the Lagrangian effective diffusivity
1/d - trace (m, d the dimension of space, plays the role of K¢ and serves as an
indicator for the mixing region.

The effective diffusivity framework is tied to a specific tracer concentration field.
For instance, the fact that diffusion is one-dimensional and the orientation of that
single coordinate in physical space is determined by the concrete concentration field
at hand. A concentration field with a different initial level set topology may yield
different results. To obtain physically relevant mixing information, it is assumed that
a “suitable tracer field” is considered; cf. the effort taken in Nakamura (1996) and
Shuckburgh and Haynes (2003) to generate those. Suitability there means, roughly
speaking, that its level set topology is already reasonably “equilibrated” w.r.t. the
mixing geometry induced by the flow, but at the same time has sufficiently strong
gradients to allow for a computationally robust transformation to area coordinates. In
other words, concentration gradients are roughly aligned with the direction of slowest
diffusion, which is of greatest interest.

In contrast, our geometry of mixing provides information about the “mixing ability”
(Shuckburgh and Haynes 2003) or “mixing potential” (Rypina and Pratt 2017) of the
flow, independently from a concrete concentration field. The Lagrangian ADE remains
of full dimension and invokes an effective diffusion tensor to account for all possible
level set topologies. Moreover, this diffusion tensor field and its corresponding Laplace
operator are obtained computationally from purely advective ODE simulations, there
is no need to solve the advection—diffusion PDE.
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