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Abstract
We derive integral tests for the existence and absence of arbitrage in a financial market with
one risky asset which is eithermodeled as stochastic exponential of an Itô process or a positive
diffusion with Markov switching. In particular, we derive conditions for the existence of the
minimal martingale measure. We also show that for Markov switching models the minimal
martingale measure preserves the independence of the noise and we study how the minimal
martingale measure can be modified to change the structure of the switching mechanism.
Our main mathematical tools are new criteria for the martingale and strict local martingale
property of certain stochastic exponentials.
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1 Introduction

The absence of arbitrage is of fundamental interest in many areas of financial mathematics.
Our goal is to provide a systematic discussion for a financial market with one risky asset
modeled via its discounted price process P = (Pt )t∈[0,T ], which we assume to be either the
stochastic exponential of an Itô process, i.e. to have dynamics

dPt = Pt (btdt + σt dWt ), (1.1)

or to be a positive diffusion with Markov switching, i.e. to have dynamics

dPt = b(Pt , ξt )dt + σ(Pt , ξt )dWt , (1.2)

where ξ = (ξt )t∈[0,T ] is a continuous-timeMarkov chain andW = (Wt )t∈[0,T ] is a Brownian
motion.
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For semimartingalemarkets the classical concepts of no arbitrage are the notions of no free
lunch with vanishing risk (NFLVR) as defined by Delbaen and Schachermayer [15,16] and
no feasible free lunch with vanishing risk (NFFLVR) as defined by Sin [52]. The difference
between (NFLVR) and (NFFLVR) is captured by the concept of a financial bubble in the
sense of Cox and Hobson [9]. For our market it is well-known that (NFLVR) is equivalent
to the existence of an equivalent local martingale measure (ELMM), see [16], and that
(NFFLVR) is equivalent to the existence of an equivalent martingale measure (EMM), see
[6,52,55]. The no arbitrage condition used in the stochastic portfolio theory of Fernholz [22]
is no relative arbitrage (NRA). In complete markets Fernholz and Karatzas [21] showed that
(NRA) is equivalent to the existence of a strict martingale density (SMD). A weaker concept
is no unbounded profit with bounded risk (NUPBR), which is known to be equivalent to the
existence of a strict local martingale density (SLMD), see [7]. (NUPBR) is considered to be
the minimal notion needed for portfolio optimization, see [35].

The first findings of this article are integral tests for the existence and non-existence of
SMDs, ELMMs and EMMs. For (1.1) the tests are formulated in terms of Markovian upper
and lower bounds on the volatility coefficient σ and for (1.2) the tests depend on x �→ σ(x, j)
with j in the state space of the Markov chain ξ . The main novelty of our results is that they
apply in the presence of multiple sources of risk. Beside the Markov switching framework,
this is for instance the case in diffusion models with a change point, which represents a
change of the economical situation caused for instance by a sudden adjustment in the interest
rates or a default of a major financial institution. In general, the question whether (NFLVR)
and/or (NFFLVR) hold for a model with a change point is difficult, see [24] for some results
in this direction. Our integral tests provide explicit criteria, which are easy to verify. For
many applications of the Markov switching model (1.2) it is important to know how the
change to an ELMM affects the dynamics of the Markov chain ξ . As a second contribution,
we study this question form a general perspective for independent sources of risk modeled
via martingale problems. In particular, we show that the minimal local martingale measure
(MLMM), see [25], preserves the independence and the laws of the sources of risk. To our
knowledge, this property has not been reported in the literature. A third contribution of this
article are integral tests for the martingale property of certain stochastic exponentials driven
by Itô processes or switching diffusions. These characterizations are our key tools to study
the absence of arbitrage.

We comment on related literature. For continuous semimartingale models the absence
of arbitrage has been studied by Criens [11], Delbaen and Shirakawa [17], Lyasoff [40] and
Mijatović andUrusov [43]. Criens, Delbaen and Shirakawa andMijatović andUrusov proved
integral tests for the existence of SMDs, ELMMs and EMMs in diffusion frameworks. Our
results can be viewed as generalizations to an Itô process orMarkov switching framework. For
a model comparable to (1.1), Lyasoff proved that the existence of an ELMM is determined
by the equivalence of a probability measure to the Wiener measure. The structure of this
characterization is very different from our results. In Sect. 3.3 below we comment in more
detail on the results in [11,17,40,43]. The martingale property of stochastic exponentials is
under frequent investigation. At this point we mention the articles of Blanchet and Ruf [3],
Cheridito et al. [5], Criens [11] and Kallsen and Muhle-Karbe [34]. Criens used arguments
based on Lyapunov functions and contradictions to verify the martingale property of certain
stochastic exponential in a multi-dimensional diffusion setting. We transfer these techniques
to a general Itô process setting. Cheridito et al. and Kallsen and Muhle-Karbe related the
martingale property of a stochastic exponential to an explosion probability via a method
based on the concept of local uniqueness as defined in [30]. This technique traces back to
work of Jacod andMémin [29] and Kabanov et al. [31,32]. We use a similar argument for the

123



Mathematics and Financial Economics (2020) 14:461–506 463

Markov switching setting. The main difficulties are the proofs of explosion criteria and local
uniqueness. Both approaches have a close relation to the work of Blanchet and Ruf, where
a tightness criterion for the martingale property of non-negative local martingales has been
proven. The connection between Lyapunov functions, explosion and tightness is for instance
explained in [12].

Let us also comment on consecutive problems and extensions of our results: In case the
discounted price process P is a positive Itô process of the type

dPt = btdt + σt dWt ,

our results on the martingale property of stochastic exponentials can be used to obtain char-
acterizations for no arbitrage with a similar structure as for the model (1.2). Moreover, in
case P is the stochastic exponential of a diffusion with Markovian switching, i.e.

dPt = PtdSt ,

dSt = b(St , ξt )dt + σ(St , ξt )dWt ,

our martingale criteria yield conditions for no arbitrage with a similar structure as for (1.1).
It is also interesting to ask about multi-dimensional models. In this case, results in the spirit
of [11] can be proven by similar arguments as used in this article. However, the conditions
are rather complicated to formulate and space consuming. Therefore, we restrict ourselves
to the one-dimensional case.

The article is structured as follows. In Sect. 2 we give conditions for the martingale and
strict local martingale property of certain stochastic exponentials. In Sect. 3.1 we study the
model (1.1) and in Sect. 3.2 we study the model (1.2). In Sect. 4 we show that the MLMM
preserves independence and laws for sources of risk and we explain how the MLMM can
be modified to affect the law of an additional source of risk. The proofs are collected in the
remaining sections.

2 Martingale property of stochastic exponentials

Fix a finite time horizon 0 < T < ∞ and let (�,F,F,P) be a complete filtered probability
space with right-continuous and complete filtration F = (Ft )t∈[0,T ]. Moreover, fix a state
space I � (l, r) with −∞ ≤ l < r ≤ +∞.

In the following two sections we provide conditions for the martingale and strict local
martingale property of certain stochastic exponentials.

2.1 The general case

Assume that S = (St )t∈[0,T ] is an I -valued Itô process with deterministic initial value S0 ∈ I
and dynamics

dSt = btdt + σt dWt ,

where W = (Wt )t∈[0,T ] is a one-dimensional Brownian motion and b = (bt )t∈[0,T ] and
σ = (σt )t∈[0,T ] are real-valued progressively measurable processes. It is implicit that b and
σ are such that the integrals are well-defined, i.e. a.s.

∫ T

0

(|bs | + σ 2
s

)
ds < ∞.
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We assume that λ\ ⊗ P-a.e. σ �= 0, which latter will correspond to the assumption that
we consider an asset price process with a non-vanishing volatility.

Let c = (ct )t∈[0,T ] be a real-valued progressively measurable process such that a.s.
∫ T

0
c2s ds < ∞,

and let N = (Nt )t∈[0,T ] be a local martingale such that a.s. �N ≥ −1 and [N ,W ] = 0. We
ask for conditions under which the non-negative local martingale

Z � E
(
N +

∫ ·

0
csdWs

)
, (2.1)

is a true or a strict local martingale. Here, E denotes the stochastic exponential. The structure
of Z is very important in mathematical finance, because Z is the prototype of a strict local
martingale density, see Lemma 3.2 below.

Let a, a : I → (0,∞), u, u : I → R and ζ : [0, T ] → R+ be Borel functions such that

1

a
+ 1

a
+ |u| + |u| ∈ L1

loc(I ), ζ ∈ L1([0, T ]).

In case ( f , g) is one of the pairs (u, a), (u, a), . . . we set

v( f , g)(x) �
∫ x

x0
exp

(
−

∫ y

x0
2 f (z)dz

) ∫ y

x0

2 exp
( ∫ u

x0
2 f (z)dz

)
g(u)

dudy, x ∈ I , (2.2)

where x0 ∈ I is fixed. Let ln ↘ l, rn ↗ r be sequences such that l < ln+1 < ln < rn <

rn+1 < r .
The first main result of this section is the following:

Theorem 2.1 Assume the following:

(M1) The sequence

τn � inf(t ∈ [0, T ] : St /∈ (ln, rn)), n ∈ N,

is a localizing sequence for Z, i.e. Z ·∧τn is a martingale for every n ∈ N. We use the
convention that inf(∅) � ∞.

(M2) For λ\ ⊗ P-a.a. (t, ω) ∈ [0, T ] × �

σ 2
t (ω) ≤ ζ(t)a(St (ω)),

u(St (ω))σ 2
t (ω) ≤ bt (ω) + ct (ω)σt (ω),

u(St (ω))σ 2
t (ω) ≥ bt (ω) + ct (ω)σt (ω).

(M3) limx↗r v(u, a)(x) = limx↘l v(u, a)(x) = ∞.

Then, Z is a martingale.

The proof of this theorem is given in Sect. 5.

Remark 2.2 (M3) is independent of the choice of x0, see [36, Problem 5.5.28].

Next, we provide a counterpart to Theorem 2.1. Let H be the set of all Borel functions
h : R+ → R+ which are starting at zero, are strictly increasing and satisfy∫ ε

0

dz

h2(z)
= ∞ for all ε > 0,
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and let K be the set of all Borel functions κ : R+ → R+, which are starting at zero, are
strictly increasing and concave and satisfy∫ ε

0

dz

κ(z)
= ∞ for all ε > 0.

In case ( f , g) is one of the pairs (u, a), (u, a), . . . we say that ( f , g) satisfies the Yamada–
Watanabe (YW) conditions, if for every n ∈ N there exist hn ∈ H and κn ∈ K such that
and for all x, y ∈ [ln, rn]

|g 1
2 (x) − g

1
2 (y)| ≤ hn(|x − y|),

|g(x) f (x) − g(y) f (y)| ≤ κn(|x − y|).
The second main result of this section is the following:

Theorem 2.3 Assume one of the following conditions:

(SL1) The pair (u, a) satisfies the YW conditions, for λ\ ⊗ P-a.a. (t, ω) ∈ [0, T ] × �

a(St (ω)) ≤ σ 2
t (ω),

u(St (ω))σ 2
t (ω) ≤ bt (ω) + ct (ω)σt (ω),

(2.3)

and limx↗r v(u, a)(x) < ∞.

(SL2) The pair (u, a) satisfies the YW conditions, for λ\ ⊗ P-a.a. (t, ω) ∈ [0, T ] × �

a(St (ω)) ≤ σ 2
t (ω),

u(St (ω))σ 2
t (ω) ≥ bt (ω) + ct (ω)σt (ω),

and limx↘l v(u, a)(x) < ∞.

Then, Z is a strict local martingale.

The proof of this theorem is given in Sect. 5. In Sect. 2.3 below we comment on the assump-
tions of Theorems 2.1 and 2.3 and related literature.

2.2 Markov switching case

In this section we consider a special case of the setting from Sect. 2.1 and assume that S is
a switching diffusion. Before we introduce the setting in detail, we clarify terminology: A
process is called a Feller–Markov chain if it is aMarkov chain which is a Feller process in the
sense that the corresponding transition semigroup is a self-map on the space of continuous
functions vanishing at infinity. For conditions implying that aMarkov chain is Feller–Markov
we refer to [2]. It is also important to stress that whenever we have fixed a filtration and a
Markov chain, we presume that the Markov chain is Markovian for the given filtration. All
non-explained terminology for Markov chains, such as irreducible, recurrent, etc., can be
found in [44].

We assume that S = (St )t∈[0,T ] is an I -valued Itô process with deterministic initial value
S0 ∈ I and dynamics

dSt = b(St , ξt )dt + σ(St , ξt )dWt , (2.4)

where W = (Wt )t∈[0,T ] is a one-dimensional Brownian motion, ξ = (ξt )t∈[0,T ] is a
continuous-time irreducible Feller–Markov chain with state space J � {1, . . . , N }, 1 ≤
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N ≤ ∞, and deterministic initial value j0 ∈ J , and b : I × J → R and σ : I × J → R\{0}
are Borel functions such that

1 + |b(·, j)|
σ 2(·, j) ∈ L1

loc(I ) for all j ∈ J . (2.5)

It is implicit that the integrals in (2.4) are well-defined. We allow N = ∞ in which case
J = N. A process of the type (2.4) is called a switching diffusion and the elements of J are
called regimes.

Let c : I × J → R be a Borel function such that

c(·, j)
σ (·, j) ∈ L2

loc(I ) for all j ∈ J . (2.6)

Lemma 2.4 Almost surely
∫ T
0 c2(Ss, ξs)ds < ∞.

Proof Set F � {ξs : s ∈ [0, T ]}, m � mins∈[0,T ] Ss and M � maxs∈[0,T ] Ss . Using that
ξ only makes finitely many jumps in the finite time interval [0, T ], the occupation times
formula for continuous semimartingales and (2.6), we obtain a.s.

∫ T

0
c2(Ss, ξs)ds =

∫ T

0

( c(Ss, ξs)

σ (Ss, ξs)

)2
d[S, S]s

≤
∑
j∈F

∫ T

0

( c(Ss, j)

σ (Ss, j)

)2
d[S, S]s

=
∑
j∈F

∫ M

m

( c(x, j)

σ (x, j)

)2
2LS

T (x)dx

≤ max
y∈[m,M] 2L

S
T (y)

∑
j∈F

∫ M

m

( c(x, j)

σ (x, j)

)2
dx < ∞,

where LS denotes the local time of S. The lemma is proven. ��
We are interested in the martingale property of the non-negative local martingale

Z � E
( ∫ ·

0
c(Ss, ξs)dWs

)
.

This definition coincides with (3.3) for the choices c = c(S, ξ) and N = 0.
Before we state the main result of this section, we fix some notation. Because L2

loc(I ) ⊂
L1
loc(I ), (2.5) and (2.6) imply that

|b(·, j) + c(·, j)σ (·, j)|
σ 2(·, j) ∈ L1

loc(I ) for all j ∈ J .

Thus, we can set

v(x, j) �
∫ x

x0
exp

(
−

∫ y

x0

2(b + cσ)(z, j)

σ 2(z, j)
dz

) ∫ y

x0

2 exp
( ∫ s

x0
2(b+cσ)(z, j)

σ 2(z, j)
dz

)
σ 2(s, j)

dsdy

for (x, j) ∈ I × J and a fixed x0 ∈ I .
We say that σ satisfies the Engelbert–Schmidt (ES) conditions for j ∈ J if one of the

following two conditions holds:
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(ES1) For every compact set K ⊂ I there are Borel functions f : K → [0,∞] and h : R →
[0,∞] and a constant c > 0 such that the following properties are satisfied:

(i) f
σ 2(·, j) ∈ L1(K ).

(ii) For every neighborhood U of the origin∫
U

dy

h(y)
= ∞.

(iii) For all x, x + y ∈ K , y ∈ (−c, c)

|σ(x + y, j) − σ(x, j)|2 ≤ f (x)h(y).

(ES2) For every compact set K ⊂ I there are Borel functions g : K → R and h : R →
[0,∞] and a constant c > 0 such that the following properties are satisfied:

(i) g is increasing.
(ii) For every neighborhood U of the origin∫

U

dy

h(y)
= ∞.

(iii) For all x, x + y ∈ K , y ∈ (−c, c)\{0}

|σ(x + y, j) − σ(x, j)|2 ≤ h(y)
|g(x + y) − g(x)|

|y| .

(iv) infx∈K σ(x, j) > 0.

We say that theMarkov chain ξ is recurrent if it is a recurrentMarkov chainwhen extended
to the infinite time interval R+.

The following theorem gives an almost complete answer to the question when Z is a true
or strict local martingale. A proof is given in Sect. 6.

Theorem 2.5 (i) Suppose that c is bounded on compact subsets of I × J , that σ satisfies the
ES conditions for all j ∈ J and that

lim
x↗r

v(x, j) = lim
x↘l

v(x, j) = ∞ for all j ∈ J . (2.7)

Then, Z is a martingale.
(ii) Assume that ξ is recurrent and that there exists a j ∈ J such that σ satisfies the ES

conditions for j and

lim
x↗r

v(x, j) < ∞ or lim
x↘l

v(x, j) < ∞. (2.8)

Then, Z is a strict local martingale.

Remark 2.6 The proof of Theorem 2.5 (ii) is based on a contradiction argument. In case (2.8)
holds and Z is a martingale there exists an I -valued switching diffusion with an explosive
regime j . The recurrence of ξ simplifies the proof that this switching diffusion reaches the
regime j ,which leads to a contradiction. In case the initial regime j0 is already explosive,more
precisely ifσ satisfies theESconditions for j0 and limx↗r v(x, j0) < ∞or limx↘l v(x, j0) <

∞, the proof needs no change even without the assumption that ξ is recurrent.

Noting that ξ is recurrent in case N < ∞, we obtain the following:
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Corollary 2.7 Suppose that c is bounded on compact subsets of I × J , that σ satisfies the ES
conditions for all j ∈ J and that N < ∞. Then, Z is a martingale if and only if (2.7) holds.

Proof If N < ∞, the recurrence of ξ follows from [44, Theorems 1.5.6, 3.4.1]. Now, the
claim is due to Theorem 2.5. ��

In financial applications, N can be interpreted as the number of states of the business cycle
and therefore N < ∞ is a reasonable assumption.

2.3 Comments on related literature

The martingale property of non-negative local martingales is under frequent investigation.
We mention a few related works: A general semimartingale setting has been considered in
[13,27,30] and a diffusion and/or jump-diffusion setting has been studied in [5,34,39,43,50,
53].

To the best of our knowledge, for a general Itô process or Markov switching setting
Theorems 2.1, 2.3 and 2.5 are the first results which provide integral tests for the martingale
property of certain stochastic exponentials.

For the diffusion case

dSt = b(St )dt + σ(St )dWt ,

a complete characterization of the martingale property of the non-negative local martingale

Z = E
( ∫ ·

0
c(Ss)dWs

)

has been proven in [43]. We stress that in [43] the diffusion S is allowed to explode, which
is a feature not included in our framework. Provided S is non-explosive, the main theorem
of [43] shows that Z is a martingale if and only if

lim
x↗r

v(u, σ 2)(x) = lim
x↘l

v(u, σ 2)(x) = ∞,

where u � b+cσ
σ 2 and v is defined as in (2.2). The same condition is implied by either

Theorems 2.1 and 2.3, or Corollary 2.7. For the strict local martingale property we require
that σ satisfies the ES conditions, which are not imposed in [43].

The key idea underlying Theorems 2.1, 2.3 and 2.5 is a local change of measure combined
with either a Lyapunov-type argument (in case of Theorem 2.1), a comparison with one-
dimensional diffusions (in case of Theorem 2.3) or a local uniqueness property (in case of
Theorem 2.5).

The idea of using a local change of measure is not new. It has for instance been used in
[5,11,13,50,53]. The Lyapunov and comparison arguments were inspired by [11], where a
multi-dimensional diffusions has been studied. To use the ideas in our general setting, we
prove a newLyapunov condition for Itô processes andwe transport the comparison arguments
from a multi-dimensional diffusion setting to a one-dimensional Itô process framework, see
Sect. 5 below. The idea of relating local uniqueness to the martingale property of a stochastic
exponential traces back to [29,31,32]. More recently, the method was used in [5,11,34,53].
Although the terminology suggests the converse, local uniqueness is a strong version of
uniqueness in law. In the proof of Theorem 2.5 we deduce local uniqueness from pathwise
uniqueness by a Yamada–Watanabe-type argument.
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3 On the absence and existence of arbitrage

Let 0 < T < ∞be afinite timehorizon and let (�,F,F,P)be a complete filtered probability
space with right-continuous and complete filtration F = (Ft )t∈[0,T ]. We consider a financial
market consisting of one risky asset with discounted price process P = (Pt )t∈[0,T ], which is
assumed to be a positive continuous semimartingale with deterministic initial value.

Recall the following classical terminology:AprobabilitymeasureQ is called an equivalent
(local) martingale measure (E(L)MM) if Q ∼ P and P is a (local) Q-martingale. A strictly
positive localP-martingale Z = (Zt )t∈[0,T ] with Z0 = 1 is called a strict (local) martingale
density (S(L)MD) if Z P is a (local) P-martingale.

In the following we study existence and non-existence of SMDs, ELMMs and EMMs in
case P is either the stochastic exponential of an Itô process or a positive switching diffusion.
In case P is a positive Itô process or the stochastic exponential of a real-valued switching
diffusion similar results can be deduced from the martingale criteria in Sect. 2.

3.1 Stochastic exponential model

Suppose that P is the stochastic exponential of the real-valued Itô process S = (St )t∈[0,T ]
with deterministic initial value S0 ∈ R and dynamics

dSt = btdt + σt dWt , (3.1)

where W = (Wt )t∈[0,T ] is a one-dimensional Brownian motion and b = (bt )t∈[0,T ] and
σ = (σt )t∈[0,T ] are real-valued progressively measurable processes such that the stochastic
integrals in (3.1) are well-defined. We assume that λ\ ⊗P-a.e. σ �= 0, which corresponds to
the assumption that P has a non-vanishing volatility.

3.1.1 Absence of arbitrage

In the following we study when a SMD, ELMM or EMM exists. As a minimal condition
we assume that (NUPBR) holds. This is equivalent to the existence of a market price of risk
θ = (θt )t∈[0,T ], i.e. a real-valued progressively measurable process such that a.s.

∫ T

0
θ2s ds < ∞

and

λ\ ⊗ P-a.e. b − θσ = 0. (3.2)

We define the continuous local martingale

Z � E
(

−
∫ ·

0
θsdWs

)
. (3.3)

Integration by parts and (3.2) yield that

dZt Pt = Zt Pt (σt − θt )dWt , (3.4)

which shows that Z P is a local martingale or, equivalently, that Z is a SLMD. We observe
the following:

(O1) If Z P is a martingale, then Z is a SMD by definition.
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(O2) If Z is a martingale, we can define a probability measure Q by the Radon–Nikodym
derivative dQ

dP � ZT and Q is an ELMM by (3.4) and [30, Proposition III.3.8].
(O3) If Z P and Z are martingales, thenQ as defined in (O2) is an EMM by [30, Proposition

III.3.8].

In summary, to prove the existenceof aSMD,ELMMandEMMwehave to identify conditions
for the martingale property of Z P and Z . The following is the main result of this section:

Theorem 3.1 Suppose the following:

(L1) The sequence

τn � inf(t ∈ [0, T ] : |St | ≥ n), n ∈ N, (3.5)

is a localizing sequence for Z.
(L2) There are Borel functions a : R → (0,∞) and ζ : [0, T ] → R+ such that

1

a
∈ L1

loc(R), ζ ∈ L1([0, T ]),

and σ 2
t (ω) ≤ ζ(t)a(St (ω)) for λ\ ⊗ P-a.a. (t, ω) ∈ [0, T ] × �.

Then, Z is a martingale, Q defined by dQ
dP � ZT is an ELMM and

B = W +
∫ ·

0
θt dt (3.6)

is a Q-Brownian motion such that

S = S0 +
∫ ·

0
σt d Bt .

If in addition
∫ ∞

1

dz

a(z)
= ∞, (3.7)

then Q is an EMM and Z is a SMD.

Proof We apply Theorem 2.1 with I � R, ln � −n, rn � n and c � −θ . Note that (L1)
equals (M1). Furthermore, set u(x) ≡ u(x) � 0. Then, (L2) implies (M2), because (3.2)
implies λ\ ⊗ P-a.e. b + cσ = 0. Finally, note that

∫ ±∞

x0
exp

(
− 2

∫ x

x0
u(y)dy

)
dx =

∫ ±∞

x0
exp

(
− 2

∫ x

x0
u(y)dy

)
dx = ±∞,

which shows that (M3) holds due to [36, Problem 5.5.27]. We conclude that Z is a martingale
and that Q is an ELMM by (O2).

Next, we assume that (3.7) holds. We apply Theorem 2.1 with I � R, ln � −n, rn � n
and c � σ − θ to show that the local martingale

Z ′ � Z P

P0
= E

( ∫ ·

0
(σs − θs)dWs

)

is a martingale. In this case, Q is an EMM and Z is a SMD by (O1) and (O3). By (L1), the
set {ZT∧γ∧τn : γ stopping time} is uniformly integrable (see [30, Proposition I.1.47]). Thus,
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sup
γ

EP
[
Z ′

γ∧τn
1{Z ′

γ∧τn≥K }
]

≤ e|S0|+n sup
γ

EP
[
Zγ∧τn1{Zγ∧τn≥e−|S0 |−n K }

] → 0 as K → ∞,

where the supγ is meant to be the supremum over all stopping times γ ≤ T . Due to [30,
Proposition I.1.47], we conclude that (M1) holds for Z ′. Note that (3.2) implies that λ\ ⊗P-
a.e. b + cσ = σ 2. Thus, we set u(x) ≡ u(x) � 1 and note that (L2) implies (M2) for Z ′.
Using Fubini’s theorem and (3.7), we obtain that

lim
x↗∞ v(1, a)(x) = 2

∫ ∞

x0
e−2y

∫ y

x0

e2u

a(u)
dudy

= 2
∫ ∞

x0

e2u

a(u)

∫ ∞

u
e−2ydydu

=
∫ ∞

x0

du

a(u)
= ∞.

Because ∫ −∞

x0
exp

(
− 2

∫ x

x0
dy

)
dx = −∞,

[36, Problem 5.5.27] yields that limx↘−∞ v(1, a)(x) = ∞. Hence, (M3) holds for Z ′. We
conclude that Z ′ is a martingale and the proof is complete. ��
In our setting there might exist several ELMMs and it is an important question which ELMM
should be chosen for applications. The ELMM from Theorem 3.1 is the minimal local mar-
tingale measure (MLMM) as defined in [25].1 For financial interpretations of the MLMM
we refer to [25] and for a general overview on possible applications we refer to [23]. In
Theorem 4.3 below we discover a new property of the MLMM: The MLMM preserves
independence and laws of sources of risk.

In the following paragraph we relate the assumptions (L1) and (L2) to so-called weakly
equivalent local martingale measures (WELMM) as introduced in [37]. We explain the con-
nection from a general point of view under the assumptions that F = FT and that (NUPBR)
holds.With slight abuse of notation, let Z = (Zt )t∈[0,T ] be a SLMDwith localizing sequence
(τn)n∈N. For every n ∈ N we can define a probability measure Qn by the Radon–Nikodym
derivative dQn

dP � ZT∧τn . It is easy to see thatQ
n is an ELMM for the stopped process P·∧τn .

In other words, for every n ∈ N the notion (NFLVR) holds for all admissible strategies which
invest riskfree after τn . Roughly speaking, this observation suggests that (NFLVR) holds in
case we can take the limit n → ∞. As explained in Section 2.4.2 of [37], Alaoglu’s theorem
yields that (Qn)n∈N has an accumulation point Q for the weak∗ topology on the dual of
L∞(�,F,P), which is a finitely additive probability such thatQ(A) = 0 for all A ∈ F with
P(A) = 0, see the “Appendix” of [14]. We use the sans-serif typeface to highlight that Q is
not necessarily a probability measure, because it may fail to be countably additive. Note that
Q = Qn on Fτn for every n ∈ N. Using this fact, it follows that for all A ∈ F with Q(A) = 0
we also have P(A) = 0, which shows that Q and P have the same null-sets. Indeed, if
A ∈ F = FT is such that Q(A) = 0, we have A ∩ {τn > T } ∈ Fτn and consequently

Qn(A ∩ {τn > T }) = Q(A ∩ {τn > T }) = 0

1 In [25] the MLMM has been called minimal martingale measure. Because we distinguish between ELMMs
and EMMs we adjust the terminology.
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for all n ∈ N. This implies P(A ∩ {τn > T }) = 0 and, because P-a.s. τn ↗ ∞ as n → ∞,
we conclude that P(A) = 0. Following [37], we call Q a WELMM. The main difference
between WELMMs and ELMMs, and therefore between (NUPBR) and (NFLVR), is that a
WELMM is not necessarily a measure.

The idea of condition (L1) is to identify a WELMM, which, as explained above, is a
natural candidate for an ELMM. Assuming that (τn)n∈N is given by (3.5) means controlling
theMPR via the size of the asset. This assumption is reasonable from amodeling perspective,
because, as explained by Lyasoff [40, p. 488], “excessively large expected instantaneous net
returns from risky securities entail excessively large demands for money (to invest in such
securities), which, in turn, means higher and higher interest rates, which, in turn, means lower
and lower market price of risk”. In the diffusion settings of Mijatović and Urusov [42], (L1)
is implied by the local integrability condition [42, Eq. 3.2] on theMPR, see [43, Lemma 6.3].

Condition (L2) takes care on the countable additivity of the candidate WELMM, which
corresponds to problems arising when n → ∞. Indeed, Q is countably additive if and only if

lim sup
n→∞

Q(τn > T ) = lim sup
n→∞

Qn(τn > T ) = 1, (3.8)

which is also the condition we check in the proof of Theorem 2.1. If Q is countably additive,
then (3.8) follows from the monotone convergence theorem and the fact thatP-a.s. τn ↗ ∞
as n → ∞. Conversely, assume that (3.8) holds. Let (Ek)k∈N ⊂ F be a decreasing sequence
with

⋂
k∈N Ek = ∅. Then, because Ek ∈ F = FT , we have Ek ∩ {τn > T } ∈ Fτn , which

yields that

lim sup
k→∞

Q(Ek) ≤ Q(τn ≤ T ) + lim sup
k→∞

Q(Ek ∩ {τn > T })
= Q(τn ≤ T ) + lim sup

k→∞
Qn(Ek ∩ {τn > T })

= Q(τn ≤ T ) → 0 with n → ∞.

Thus, Q is continuous at zero, which implies that it is countably additive.

3.1.2 Existence of a financial bubble

In Theorem 3.1 we gave conditions for the existence of an ELMM. In this section, we derive
a counterpart to (3.7), which implies the existence of a financial bubble in the sense of [9].

Aswe explain next, the questionwhen no SMDexists is strongly connected to the question
when a non-negative local martingale is a strict local martingale. We recall the following:

Lemma 3.2 If Z is a SLMD, then there exists a market price of risk θ = (θt )t∈[0,T ] and a
local martingale N = (Nt )t∈[0,T ] such that a.s. �N > −1, [N ,W ] = 0 and

Z = E
(
N −

∫ ·

0
θsdWs

)
. (3.9)

Proof See [51, Theorem 1]. ��
In case Z is a SMD, (3.9) holds and

Z P = P0E
(
N +

∫ ·

0
(σs − θs)dWs

)
(3.10)

is a martingale by definition. If this is not the case, we have a contradiction and no SMD
exists.

The following is the main result of this section:
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Theorem 3.3 Suppose there exists a Borel function a : R → (0,∞) such that (1, a) satisfies
the YW conditions (see Sect. 2.1 for this terminology), a(St (ω)) ≤ σ 2

t (ω) for λ\ ⊗ P-a.a.
(t, ω) ∈ [0, T ] × � and

∫ ∞

1

dz

a(z)
< ∞. (3.11)

Then, no SMD exists.

Proof We use Theorem 2.3 with I � R and u � 1 to show that Z P as defined in (3.10) is
a strict local martingale. Because θ is a MPR, λ\ ⊗ P-a.e. b + (σ − θ)σ = σ 2 = u(S)σ 2.
Furthermore, Fubini’s theorem and (3.11) yield that

lim
x↗∞ v(1, a)(x) =

∫ ∞

x0

dz

a(z)
< ∞.

Thus, the conditions from part (ii) of Theorem 2.3 hold and we conclude that Z P is a strict
local martingale. Consequently, as explained above, no SMD exists. ��

The conditions (3.7) and (3.11) provide a test for the MLMM to be an EMM or not. In
a diffusion setting the conditions boil down to a single sufficient and necessary condition,
which is also given in [11, Proposition 5.2].

3.1.3 Example: diffusion models with a change point

Fontana et al. [24] study (NUPBR) and (NFLVR) for amodelwith a change point. The authors
are interested in the influence of filtrations, which represent different levels of information.
Under a weak form of the H′-hypothesis the model can be included into our framework.
More precisely, in this case S is of the form

dSt = μt dt + (
σ (1)(t, St )1{t≤τ } + σ (2)(t, St )1{t>τ }

)
dWt ,

where τ is a stopping time. The coefficient σ (i) is assumed to be positive, continuous and
Lipschitz continuous in the second variable uniformly in the first, see [24, Condition I].
Theorem 3.1 provides local conditions for (NFLVR). In particular, for the special cases
described in [24, Section 3.3], Theorem 3.1 yields that (NFLVR) always holds, because

μt = μ(1)(t, St )1{t≤τ } + μ(2)(t, St )1{t>τ }, (3.12)

where μ(i) is locally bounded. This extends the observation from [24] that (NUPBR) holds
in these cases. Furthermore, if in addition to (3.12) for i = 1, 2

(
σ (i)(t, x)

)2 ≤ const. x, (t, x) ∈ [0, T ] × [1,∞),

then even (NFFLVR) holds. The notion (NFFLVR) has not been studied in [24].

3.2 Diffusionmodel with Markov switching

In this section, we assume that P is a positive continuous semimartingale with deterministic
initial value P0 ∈ (0,∞) and dynamics

dPt = b(Pt , ξt )dt + σ(Pt , ξt )dWt ,
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where W = (Wt )t∈[0,T ] is a one-dimensional Brownian motion, ξ = (ξt )t∈[0,T ] is
a continuous-time irreducible Feller–Markov chain with state space J � {1, . . . , N },
1 ≤ N ≤ ∞, and deterministic initial value j0 ∈ J , and b : (0,∞) × J → R and
σ : (0,∞) × J → R\{0} are Borel functions such that

1 + |b(·, j)|
σ 2(·, j) ∈ L1

loc((0,∞)) for all j ∈ J .

We can interpret N as the number of all possible states of the business cycle. The assump-
tion of irreducibilily means that we exclude all states of the business cycle which are not
attainable from the initial state. We assume ξ to be a Feller process for technical reasons. In
case N < ∞ any Markov chain with values in J is a Feller process, because all real-valued
functions on J are continuous and vanishing at infinity. Due to LemmaA.1 in the “Appendix”,
the sources of risk ξ and W are independent. The lemma even shows that it is not possible
to model ξ and W as Markov processes for a superordinate filtration without their indepen-
dence. This observation gives a novel interpretation for the independence assumption, which
is typically interpreted as the price process being influenced by the business cycle and an
additional independent source of risk represented by the driving Brownian motion.

3.2.1 Absence and existence of arbitrage

We impose the following two assumptions: The coefficient b is bounded on compact subsets
of (0,∞) × J , σ 2 is bounded away from zero on compact subsets of (0,∞) × J and σ

satisfies the ES conditions for all j ∈ J , see Sect. 2.2 for this terminology.
We define

θ(x, j) � b(x, j)

σ (x, j)
,

which is a Borel map bounded on compact subsets of (0,∞)× J . The process θt � θ(Pt , ξt )
is a MPR.We define the continuous local martingale Z as in (3.3). Note that the observations
(O1) – (O3) in Sect. 3.1 also hold in this setting. We call the E(L)MM Q with Radon–
Nikodym derivative dQ

dP = ZT the minimal (local) martingale measure (M(L)MM). The
following theorem provides conditions for the existence of the M(L)MM and for Z to be a
SMD.

Theorem 3.4 (i) Assume that
∫ 1

0

z

σ 2(z, j)
dz = ∞ for all j ∈ J . (3.13)

Then, Z is a martingale and the probability measureQ defined by the Radon–Nikodym
derivative dQ

dP � ZT is an ELMM. Moreover, B as defined in (3.6) is a Q-Brownian
motion such that

P = P0 +
∫ ·

0
σ(Pt , ξt )dBt .

If in addition ∫ ∞

1

z

σ 2(z, j)
dz = ∞ for all j ∈ J , (3.14)

then Q is an EMM.
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(ii) If (3.14) holds, then Z is a SMD.

Proof The claim follows similar to the proof of Theorem 3.1 when Theorem 2.5 is used
instead of Theorem 2.1. ��
Theorem 2.5 suggests that in case ξ is recurrent, the conditions in Theorem 3.4 are sufficient
and necessary. The following theorem makes this precise.

Theorem 3.5 Suppose that ξ is recurrent.

(i) If there exists a j ∈ J such that
∫ 1

0

z

σ 2(z, j)
dz < ∞, (3.15)

then Z is a strict local martingale and the MLMM does not exist.
(ii) If there exists a j ∈ J such that∫ ∞

1

z

σ 2(z, j)
dz < ∞, (3.16)

then Z is no SMD. In particular, the MMM does not exist.

Proof The claim follows similar to the proof of Theorem 3.3 when Theorem 2.5 is used
instead of Theorem 2.3. ��
Recalling that in case N < ∞ the Markov chain ξ is recurrent, we obtain the following:

Corollary 3.6 Suppose that N < ∞.

(a) The MLMM exists if and only if (3.13) holds.
(b) The MMM exists if and only if (3.13) and (3.14) hold.
(c) Z is a SMD if and only if (3.14) holds.

With N = 1 we recover [42, Corollary 3.4, Theorems 3.6 and 3.11]. Corollary 3.6 means that
the M(L)MM exists if and only if the M(L)MM exists for all markets with fixed regimes. We
will see in the next section that in case one of the frozen markets allows arbitrage, it is not
possible to find a risk-neutral market in which the business cycle has Markovian dynamics.

3.2.2 Non-existence of structure preserving ELMMs and EMMs

Let Lsp the set of all ELMMsQ such that ξ is an irreducible recurrent Feller–Markov chain
on (�,F,F,Q) and let Msp be the set of all EMMs in Lsp. The main result of this section
is the following:

Theorem 3.7 (i) Suppose there exists a j ∈ J such that (3.15) holds and σ satisfies the ES
conditions for j . Then, Lsp = ∅.

(ii) Suppose there exists a j ∈ J such that (3.16) holds and σ satisfies the ES conditions for
j . Then, Msp = ∅.

Proof The result follows from the contradiction argument used in the proof of Theorem 2.3,
where Theorem 6.1 has to be used instead of Theorem 5.3. ��
In Sect. 4 we show that an equivalent change to the MLMM does not affect the Markov chain
ξ . Thus, Theorem 3.7 generalizes Theorem 3.5.
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3.2.3 Example: Markov switching CEVmodel

We consider a version of the CEV model (see [10]) with Markov switching. Take β : J →
(0,∞) and assume that

σ(x, j) = xβ( j), (x, j) ∈ (0,∞) × J .

Furthermore, assume that b : (0,∞) × J → R is locally bounded such that

∫ ∞

1

∫ y

1

exp(− ∫ y
s

2b(z, j)
z2β( j) dz)

s2β( j)
dsdy =

∫ 1

0

∫ 1

y

exp(− ∫ y
s

2b(z, j)
z2β( j) dz)

s2β( j)
dsdy = ∞

for all j ∈ J . Then, the discounted asset price process P exists due to Theorem 6.1 below.
Let Z be defined as in (3.3) with θt = b(St ,ξt )

σ (St ,ξt )
. In case N < ∞, Corollary 3.6 shows the

following:

(a) The MLMM exists if and only if β( j) ≥ 1 for all j ∈ J .
(b) The MMM exists if and only if β( j) = 1 for all j ∈ J .
(c) Z is a SMD if and only if β( j) ≤ 1 for all j ∈ J .

3.3 Comments on related literature

For continuous semimartingale markets the existence and non-existence of SMDs, ELMMs
and EMMs has been studied in [11,17,40,43]. We comment on these works in more detail.

In [17,43] a one-dimensional diffusion framework has been considered. We discuss the
results from [43] and refer to [43, Remark 3.2] for comments on the relation between [17]
and [43]. In [43] it is assumed that the price process P = (Pt )t∈[0,T ] is a [0,∞)-valued
diffusion such that

dPt = b(Pt )dt + σ(Pt )dWt , P0 ∈ (0,∞),

where b : (0,∞) → R and σ : (0,∞) → R\{0} are Borel functions satisfying
1 + |b|

σ 2 ∈ L1
loc((0,∞)),

see also [36, Definition 5.5.20]. In the following we assume that P cannot explode to zero.
In [43] the notions (NFLVR) and (NFFLVR) are also studied in case P can explode to zero
and (NFLVR), (NFFLVR) and (NRA) are further studied for the infinite time horizon. For
the non-explosive case the results from [43] are as follows:

(a) (NFLVR) ⇔ b
σ

∈ L2
loc((0,∞)) and

∫ 1
0

x
σ(x)dx = ∞, see [43, Corollary 3.4].

(b) (NFFLVR) ⇔ b
σ

∈ L2
loc((0,∞)) and

∫ 1
0

x
σ(x)dx = ∫ ∞

1
x

σ(x)dx = ∞, see [43, Theorem
3.6].

(c) If b
σ

∈ L2
loc((0,∞)), then (NRA) ⇔ ∫ ∞

1
x

σ(x)dx = ∞, see [43, Theorem 3.11].

Applying Corollary 3.14 with N = 1 shows versions of (a) – (c) under slightly more restric-
tive regularity assumptions on b and σ . The novelty of Corollary 3.14 or more generally
Theorems 3.4 and 3.5 is their scope of application.

A multi-dimensional diffusion setting has been studied in [11]. We explain the one-
dimensional version: Assume that the price process P = (Pt )t∈[0,T ] is the stochastic
exponential of

dSt = b(St )dt + σ(St )dWt ,
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where b, σ : R → R are locally bounded Borel functions such that σ 2 is locally bounded
away from zero. In this setting, [11, Propositions 5.1] shows that (NFLVR) always holds
and [11, Proposition 5.2] implies that (NFFLVR) ⇔ (NRA) ⇔ ∫ ∞

1
dx

σ 2(x)
= ∞. Under

slightly different regularity assumptions on b and σ , the same observation follows from
Theorems 3.1 and 3.3. The novelty of Theorems 3.1 and 3.3 is that no diffusion structure
is needed. In particular, the coefficients b and σ are allowed to depend on the path of S or
several sources of risk. In [11] the main interest lies in the multi-dimensional setting. We
stress that it is possible to extend our results to a multi-dimensional framework. The structure
of the conditions will be similar as in [11].

In [40] the price process P = (Pt )t∈[0,T ] is assumed to be the stochastic exponential of

dSt = −α(t, S, X)θt dt + α(t, S, X)dWt ,

where X = (Xt )t∈[0,T ] is a continuous process, α and θ are suitable processes such that
the integrals are well-defined and λ\ ⊗ P-a.e. α �= 0. The process X is called information
process. This setting is closely related to those from Sect. 3.1. LetW be the Wiener measure
and let ν be the law of − ∫ ·

0 θsds + W . The main result from [40] is the following: If a.s.∫ T
0 θ2s ds < ∞, then (NFLVR) ⇔ W ∼ ν, see [40, Proposition 2.3]. This result is very
different from ours, which are intended to give easy to verify conditions for a large class of
models.

4 Modifyingminimal local martingale measures

In Sect. 3.2.1 we proved conditions for the existence of the minimal (local) martingale
measure in a Markov switching framework. We ask the following consecutive questions:

1. Does the MLMM change the dynamics of the Markov chain?
2. Is it possible to modify the MLMM such that the dynamics of the Markov chain are

changed in a tractable manner?

In this section we answer these questions from a general perspective under an independence
assumption, which holds in our Markov switching framework.

4.1 Martingale problems

To characterize additional sources of risk in our financial market, we introduce a martingale
problem.

Let J be a Polish space, define D(R+, J ) to be the space of all càdlàg functionsR+ → J
andD to be the σ -field generated by the coordinate process X = (Xt )t≥0, i.e. Xt (ω) = ω(t)
for ω ∈ D(R+, J ) and t ∈ R+. We equip D(R+, J ) with the Skorokhod topology, which
renders it into a Polish space. It is well-known that D is the Borel σ -field on D(R+, J ).
We refer to [20,30] for more details. Let Do � (Do

t )t≥0 be the filtration induced by X ,
i.e. Do

t � σ(Xs, s ∈ [0, t]), and let D � (Dt )t≥0 be its right-continuous version, i.e.
Dt �

⋂
s>t Do

s for all t ∈ R+.
Let (Bn)n∈N be an increasing sequence of nonempty open sets in J such that

⋃
n∈N Bn = J

and define

ρn(ω) � inf
(
t ∈ R+ : ω(t) /∈ Bn or ω(t−) /∈ Bn

)
, ω ∈ D(R+, J ), n ∈ N. (4.1)
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Due to [20, Proposition 2.1.5], ρn is a Do-stopping time and, due to [20, Problem 4.27],
ρn ↗ ∞ as n → ∞. We will use the sequence (ρn)n∈N as a localizing sequence for test
martingales of our martingale problem. We fix this sequence, because for some arguments
we need a common localizing sequence consisting of Do-stopping times.

The input data for our martingale problem is the following:

(i) A set A ⊆ C(J ,R), where C(J ,R) denotes the space of continuous functions J → R.
(ii) A map L : A → PM such that for all f ∈ A, t ∈ R+ and ω ∈ D(R+, J )∫ t

0

∣∣L f (ω, s)
∣∣ds < ∞,

where PM denotes the space of all D-progressively measurable processes.
(iii) An initial value j0 ∈ J .
(iv) A time horizon 0 < T ≤ ∞.

We use the convention that in case T = ∞ the interval [0, T ] is identified with R+.

Definition 4.1 (i) Let (�o,Fo,Fo,Po)be afiltered probability spacewith right-continuous
filtration Fo = (Fo

t )t∈[0,T ], supporting a càdlàg, adapted, J -valued process ξ =
(ξt )t∈[0,T ]. We say that ξ is a solution process to the martingale problem (A, L, j0, T ),
if for all f ∈ A and n ∈ N the process

M f ,n � f (ξ·∧ρn(ξ)) − f (ξ0) −
∫ ·∧ρn(ξ)

0
L f (ξ, s)ds (4.2)

is a martingale, Po(ξ0 = j0) = 1 and for all t ∈ [0, T ] there exists a constant C =
C( f , n, t) > 0 such that a.s. sups∈[0,t] |M f ,n

s | ≤ C .
(ii) We say that the martingale problem has a solution if there exists a filtered probability

space which supports a solution process.
(iii) We say that the martingale problem satisfies uniqueness if the laws (seen as Borel

probability measures on D(R+, J )) of any two solution processes, possibly defined on
different filtered probability spaces, coincide.

(iv) If for all j0 ∈ J the martingale problem (A, L, j0, T ) has a solution and satisfied
uniqueness, we call the martingale problem (A, L, T ) well-posed.

Martingale problems were introduced by Stroock and Varadhan [54] in a diffusion setting.
Martingale problems for semimartingales were studied in [27] and Markovian martingale
problems with a Polish state space were studied in [20]. Our definition is unifying in the
sense that it deals with non-Markovian processes and a Polish state space. Most of the
conditions for existence and uniqueness given in [20,27,54] also apply to our setting.

Example 4.2 (Martingale problem for Markov chains) Suppose that J = {1, . . . , N } with
1 ≤ N ≤ ∞. We equip J with the discrete topology. Let ξ = (ξt )t≥0 be a Feller–Markov
chain with initial value j0 ∈ J and Q-matrix Q. Due to [46, Theorem 5], the generator
(L, D(L)) of ξ is given by L = Q and D(L) = { f ∈ C0(J ) : Q f ∈ C0(J )}, where
C0(J ) denotes the space of all continuous functions J → R which are vanishing at infinity.
Due to Dynkin’s formula (see [47, Proposition VII.1.6]) the process ξ solves the martingale
problem (D(L),L, j0,∞) and, due to [38, Theorem 3.33], the martingale problem satisfies
uniqueness.

Conversely, in case ξ is a solution process to the martingale problem (L, D(L), j0,∞),
where (L, D(L)) given as above is the generator of a Feller process, ξ is a Feller–Markov
chain with Q-matrix Q, see [20, Theorem 3.4.2] and [38, Theorem 3.33].
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4.2 How tomodify theMLMM

Fix a finite time horizon 0 < T < ∞ and let (�,F,F,P) be a complete filtered probability
space with right-continuous and complete filtration F = (Ft )t∈[0,T ], which supports a solu-
tion process ξ = (ξt )t∈[0,T ] to the martingale problem (A, L, j0, T ). Let W = (Wt )t∈[0,T ]
be a one-dimensional Brownian motion such that σ(Wt , t ∈ [0, T ]) and σ(ξt , t ∈ [0, T ]) are
independent. We think ofW and ξ as two independent sources of risk influencing the market.
The independence assumption is satisfied when ξ is a Feller–Markov chain, see Lemma A.1
in the “Appendix”.

In the following theorem we find a new property of the MLMM. To wit, we show that
the MLMM preserves the independence of the sources of risk and their laws. Because the
M(L)MM is often used for pricing, this observation is important for analytical and numerical
computations. We prove the following theorem in Sect. 7.

Theorem 4.3 Let c = (ct )t∈[0,T ] be a real-valued progressively measurable process such
that a.s. ∫ T

0
c2s ds < ∞

and define

Z � E
( ∫ ·

0
csdWs

)
, B � W −

∫ ·

0
csds.

Suppose further that Z is amartingale and that themartingale problem (A, L, j0, T ) satisfies
uniqueness. Define Q by the Radon–Nikodym derivative dQ

dP � ZT . Then, σ(Bt , t ∈ [0, T ])
and σ(ξt , t ∈ [0, T ]) are Q-independent, B is a Q-Brownian motion and ξ is a solution
process to the martingale problem (A, L, j0, T ) on (�,F,F,Q).

Let us outline an important consequence of Theorem4.3: If theMLMMexists, then its density
is of the same type as Z in Theorem 4.3 and it follows that the joint law of the sources of
risk remains unchanged by an equivalent change to the MLMM. In particular, in the setting
of Sect. 2.2 this means that ξ stays a Markov chain after a change to the MLMM.

We ask further whether it is possible to modify the MLMM such that the law of ξ can be
affected in a tractable manner. An answer to this question is provided by the next theorem.
A proof can be found in Sect. 8.

Theorem 4.4 Let f ∈ A be strictly positive and suppose that the process

Z � f (ξ)

f ( j0)
exp

(
−

∫ ·

0

L f (ξ, s)

f (ξs)
ds

)
(4.3)

is a martingale. Set

A∗ �
{
g ∈ A : f g ∈ A

}
,

and

L∗g � L( f g) − gL f

f
.

Suppose that for every g ∈ A∗ and n ∈ N there exists a constant C = C(g, n) > 0 such that
a.s.

sup
t∈[0,T ]

∣∣∣g(ξt∧ρn(ξ)) − g(ξ0) −
∫ t∧ρn(ξ)

0
L∗g(ξ, s)ds

∣∣∣ ≤ C .
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Define the probability measure Q by the Radon–Nikodym derivative dQ
dP � ZT . Then,

σ(ξt , t ∈ [0, T ]) and σ(Wt , t ∈ [0, T ]) are Q-independent, W is a Q-Brownian motion
and ξ is a solution process for the martingale problem (A∗, L∗, j0, T ) on (�,F,F,Q).

Remark 4.5 (i) For all ω ∈ D(R+, J ) and g ∈ A∗

∫ T

0

(∣∣∣ L f (ω, s)

f (ω(s))

∣∣∣ + ∣∣L∗g(ω, s)
∣∣)ds < ∞,

because f and g are continuous and the set {ω(t) : t ∈ [0, T ]} ⊆ J is relatively compact,
see [20, Problem16, p. 152].Consequently, Z and themartingale problem (A∗, L∗, j0, T )

are well-defined.
(ii) In view of [20, Corollary 2.3.3], the process (4.3) is always a local martingale by the

definition of the martingale problem.

We explain an application of Theorem 4.4: Suppose that the MLMM exists. Then, using the
change of measure described in Theorem 4.4, the MLMM can be changed further such that
the law of ξ gets affected as described in the theorem, while the local martingale property
of the price process is preserved. We stress that in this manner the MLMM induces a family
of ELMMs, which is often infinite. In a Markov switching framework with N < ∞ the
following proposition explains how the Q-matrix of the driving Feller–Markov chain can be
changed.

Proposition 4.6 Suppose that J = {1, . . . , N } with N < ∞ and

L f (ω, s) = Q f (ω(s)), ω ∈ D(R+, J ), s ∈ R+,

for a Q-matrix Q = (qi j )i, j∈J and f ∈ A � R
N . Let f ∈ (0,∞)N and A∗, L∗ as in

Theorem 4.4. Then, A∗ = R
N and

L∗ f (ω, s) = Q∗ f (ω(s)), f ∈ R
N , ω ∈ D(R+, J ), s ∈ R+,

for Q∗ = (q∗
i j )i, j∈J with

q∗
i j �

{
qi j

f ( j)
f (i) , i �= j,

−∑
k �=i qik

f (k)
f (i) , i = j .

Proof See [45, Proposition 5.1]. ��

A useful criterion for the martingale property of (4.3) is given by Theorem 4.9 below. We
consider it as an extension of results from [5,27,54]. In the following X = (Xt )t≥0 denotes
the coordinate process on D(R+, J ).

Definition 4.7 A set Ã ⊆ A is called a determining set for the martingale problem (A, L,∞)

if for all j0 ∈ J a Borel probability measure μ on D(R+, J ) is the law of a solution process
to the martingale problem (A, L, j0,∞) if and only if for all f ∈ Ã and n ∈ N the process

f (X ·∧ρn ) − f (X0) −
∫ ·∧ρn

0
L f (X , s)ds

is a μ-martingale and μ(X0 = j0) = 1.
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Example 4.8 (Determining set for Feller–Markov chains)Let J , A and L be as inExample 4.2.
Note that

G �
{
( f , Q f ) : f ∈ A

} ⊂ C0(J ) × C0(J ).

BecauseC0(J ) equippedwith the uniformmetric is a separablemetric space,G is a separable
metric space when equipped with the taxicap uniform metric. Hence, we find a countable set
Ã ⊆ A such that for each ( f , g) ∈ G there exists a sequence ( fn)n∈N ⊂ Ã with

‖ fn − f ‖∞ + ‖Q fn − g‖∞ → 0 as n → ∞.

Due to [20, Proposition 4.3.1], Ã is a determining set for the martingale problem (A, L,∞).

A proof for the following theorem can be found in Sect. 8.

Theorem 4.9 Let f , A∗ and L∗ be as in Theorem 4.4. Moreover, assume there exists a count-
able determining set for the martingale problem (A∗, L∗,∞) and that

L∗g(ξ, t) = Kg(ξt ), f ∈ A∗, t ∈ R+,

where K maps A∗ into the space of Borel functions J → R. Finally, assume that the
martingale problem (A∗, L∗,∞) is well-posed and that (ρn(ξ))n∈N is a localizing sequence
for the local martingale (4.3), see Remark 4.5. Then, the process (4.3) is a martingale.

Roughly speaking, this theorem shows that in Markovian settings we can modify the law of
ξ whenever the martingale problem (A∗, L∗,∞) is well-posed.

Remark 4.10 The existence of a solution to the martingale problem (A∗, L∗, j0, T ) is often
necessary for the martingale property of Z , see Theorem 4.4.

5 Proof of Theorems 2.1 and 2.3

The following section is divided into three parts. In the first part we prove Lyapunov-type
conditions for non-explosion of Itô processes, in the second part we prove non-existence
conditions for Itô processes and in the third part we deduce Theorems 2.1 and 2.3.

5.1 Criteria for non-explosion

In this section we pose ourselves into a version of the setting from Sect. 2.1. Let I = (l, r) be
as in Sect. 2.1 and (�,F) be a measurable space which supports three real-valued processes
S = (St )t∈[0,T ], b = (bt )t∈[0,T ] and σ = (σt )t∈[0,T ]. For every n ∈ N we fix a probability
measureQn and a right-continuousQn-complete filtration Fn = (Fn

t )t∈[0,T ] on (�,F) such
that S, b and σ are Fn-progressively measurable. We set τn as in Theorem 2.1, i.e.

τn = inf(t ∈ [0, T ] : St /∈ (ln, rn)),

where ln ↘ l, rn ↗ r are sequences such that l < ln+1 < ln < rn < rn+1 < r . Moreover,
suppose that Qn-a.s.

dSt∧τn = bt1{t≤τn}dt + σt1{t≤τn}dWn
t , S0 ∈ I ,

where Wn = (Wn
t )t∈[0,T ] is a Brownian motion on (�,F,Fn,Qn). It is implicit that the

integrals are well-defined. We also assume that
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λ\ ⊗ Qn-a.e. σ �= 0 for all n ∈ N (5.1)

and we fix a Borel function ζ : [0, T ] → R+ such that ζ ∈ L1([0, T ]).

5.1.1 A Lyapunov criterion

In this section we give a Lyapunov-type condition for

lim sup
n→∞

Qn(τn = ∞) = 1. (5.2)

For f ∈ C1(I ,R) with locally absolutely continuous derivative, it is well-known that there
exists a λ\-null set N f ⊂ I such that f has a second derivative f ′′ on I\N f . In this case, we
set

L f � f ′(S)b + 1
2 f ′′(S)1I\N f (S)σ 2.

Theorem 5.1 Let V : I → (0,∞)bedifferentiablewith locally absolutely continuousderiva-
tive such that

lim sup
n→∞

V (ln) ∧ V (rn) = ∞. (5.3)

Suppose there exists a λ\-null set N ⊂ I such that

LV (t)(ω)1I\N (St (ω)) ≤ ζ(t)V (St (ω))1I\N (St (ω))

for λ\ ⊗ Qn-a.a. (t, ω) ∈ [0, T ] × �, n ∈ N.
(5.4)

Then, (5.2) holds.

Proof Let LS be the local time of the continuous Qn-semimartingale S·∧τn . The occupation
times formula yields that Qn-a.s.

∫ τn∧T

0
1N (Ss)σ

2
s ds = 2

∫ ∞

−∞
1N (x)LS

T (x)dx = 0,

which implies that Qn-a.s λ\({t ∈ [0, τn ∧ T ] : St ∈ N }) = 0. We will use this fact in the
following without further reference.

Set

Un � exp
(

−
∫ ·∧τn

0
ζ(s)ds

)
V (S·∧τn ).

Using a generalized version of Itô’s formula (see [49, Lemma IV.45.9]), we obtain that the
process

Un +
∫ ·∧τn

0
exp

(
−

∫ s

0
ζ(z)dz

)(
ζ(s)V (Ss) − LV (s)

)
ds

is a local Qn-martingale. We deduce from (5.4) and the fact that non-negative local martin-
gales are supermartingales, that Qn-a.s.

Un ≤ Qn-supermartingale starting at U0 = V (S0).

W.l.o.g. we assume that S0 ∈ (l1, r1). Note that for all n ∈ N we have Qn-a.s. Sτn ∈ {ln, rn}
on {τn ≤ T }. We conclude that for all n ∈ N
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Qn(τn ≤ T ) exp
(

−
∫ T

0
ζ(s)ds

)
(V (ln) ∧ V (rn)) ≤ EQn [

Un
τn
1{τn≤T }

]

≤ EQn [
Un
T

] ≤ V (S0).

By (5.3) there exists a sequence (nk)k∈N ⊂ N with nk → ∞ as k → ∞ such that V (lnk ) ∧
V (rnk ) > 0 for all k ∈ N and limk→∞ V (lnk ) ∧ V (rnk ) = ∞. We deduce from

0 ≤ Qnk (τnk ≤ T ) ≤ V (S0) exp
( ∫ T

0
ζ(s)ds

) 1

V (lnk ) ∧ V (rnk )

that

lim
k→∞Qnk (τnk ≤ T ) = 0.

Because {τn ≤ T }c = {τn = ∞}, we obtain
1 = lim

k→∞Qnk (τnk = ∞) ≤ lim sup
n→∞

Qn(τn = ∞) ≤ 1,

which implies (5.2). The proof is complete. ��

5.1.2 An integral test

Let a : I → (0,∞) and u, u : I → R be Borel functions such that

1

a
+ |u| + |u| ∈ L1

loc(I ).

Recall from Sect. 2 that in case ( f , g) is one of the pairs (u, a), (u, a) we set

v( f , g)(x) =
∫ x

x0
exp

(
−

∫ y

x0
2 f (z)dz

) ∫ y

x0

2 exp(
∫ u
x0
2 f (z)dz)

g(u)
dudy, x ∈ I , (5.5)

for a fixed x0 ∈ I . The main result of this section is the following:

Theorem 5.2 Suppose that

lim
x↗r

v (u, a) (x) = lim
x↘l

v(u, a)(x) = ∞. (5.6)

Moreover, for all n ∈ N assume that for λ\ ⊗ Qn-a.a. (t, ω) ∈ [0, T ] × �

σ 2
t (ω) ≤ ζ(t)a(St (ω)),

bt (ω) ≤ σ 2
t (ω)u(St (ω)),

bt (ω) ≥ σ 2
t (ω)u(St (ω)).

(5.7)

Then, (5.2) holds.

Proof Due to [36, Lemma 5.5.26], there are differentiable functions U1 : [x0, r) → [1,∞)

and U2 : (l, x0] → [1,∞) with locally absolutely continuous derivatives and a λ\-null set
N ′ ⊂ I such that U1 is increasing, U2 is decreasing, U1(x0) = U2(x0) = 1,U ′

1(x0) =
U ′
2(x0) = 0, for all x ∈ [x0, r)\N ′ and for all y ∈ (l, x0]\N ′

a(x)
( 1
2U

′′
1 (x) + uU ′

1(x)
) = U1(x) and a(y)

( 1
2U

′′
2 (y) + uU ′

2(y)
) = U2(y),

123



484 Mathematics and Financial Economics (2020) 14:461–506

1 + v(u, a) ≤ U1 and 1 + v(u, a) ≤ U2. We define

V �
{
U1, on [x0, r),
U2, on (l, x0],

which is a differentiable function with locally absolutely continuous derivative. In particular,
V ′ ≥ 0 on [x0, r), V ′ ≤ 0 on (l, x0], 1

2V
′′ + uV ′ ≥ 0 on (l, x0]\N ′ and 1

2V
′′ + uV ′ ≥ 0 on

[x0, r)\N ′. Furthermore,

lim
x↗r

V (x) = lim
x↘l

V (x) = ∞,

due to the assumption (5.6). Let Ñ be the set of all (t, ω) ∈ [0, T ] × � such that (5.7) holds.
For all (t, ω) ∈ Ñ : St (ω) ∈ [x0, r)\N ′

LV (t)(ω) = 1
2σ

2
t (ω)V ′′(St (ω)) + bt (ω)V ′(St (ω))

≤ σ 2
t (ω)

( 1
2V

′′(St (ω)) + u(St (ω))V ′(St (ω))
)

≤ ζ(t)a(St (ω))
( 1
2V

′′(St (ω)) + u(St (ω))V ′(St (ω))
) = ζ(t)V (St (ω)).

In the same manner we see that for all (t, ω) ∈ Ñ : St (ω) ∈ (l, x0]\N ′

LV (t)(ω) ≤ ζ(t)V (St (ω)).

We conclude that (5.4) holds for N = N ′. The claim follows from Theorem 5.1. ��

5.2 Criteria for non-existence

In this section we give a converse to Theorem 5.2. As in Sect. 2, let I = (l, r) with −∞ ≤
l < r ≤ +∞ and let a : I → (0,∞) and u, u : I → R be Borel functions such that

1

a
+ |u| + |u| ∈ L1

loc(I ).

If ( f , g) is one of the pairs (u, a), (u, a), we set v( f , g) as in (5.5).
Let 0 < T < ∞, (�,F) be a measurable space with right-continuous filtration F =

(Ft )t∈[0,T ] and s0 ∈ I . Suppose that (�,F,F) supports three progressively measurable
processes S = (St )t∈[0,T ], b = (bt )t∈[0,T ] and σ = (σt )t∈[0,T ]. We define I be the set of
all pairs (Q, B) consisting of a probability measure Q on (�,F) and an (F,Q)-Brownian
motion B = (Bt )t∈[0,T ] with the properties that S is Q-a.s. I -valued and

dSt = btdt + σt d Bt , S0 = s0,

where it is implicit that the integrals are well-defined.

Theorem 5.3 (i) Suppose that the pair (u, a) satisfies the YW conditions (see Sect. 2.1 for
this terminology) and

lim
x↗r

v(u, a)(x) < ∞.

Then, there exists no pair (Q, B) ∈ I such that for λ\ ⊗ Q-a.a. (t, ω) ∈ [0, T ] × �

a(St (ω)) ≤ σ 2
t (ω),

u(St (ω))σ 2
t (ω) ≤ bt (ω).

(5.8)
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(ii) Suppose that the pair (u, a) satisfies the YW conditions and

lim
x↘l

v(u, a)(x) < ∞.

Then, there exists no pair (Q, B) ∈ I such that for λ\ ⊗ Q-a.a. (t, ω) ∈ [0, T ] × �

a(St (ω)) ≤ σ 2
t (ω),

u(St (ω))σ 2
t (ω) ≥ bt (ω).

(5.9)

Proof (i).We use a comparison and contradiction argument as in the proof of [11, Theorem
4.1]. For contradiction, assume that (Q, B) ∈ I is such that (5.8) holds. W.l.o.g. we assume
that F is Q-complete. In the following we work on (�,F,F,Q). Because a is positive and
continuous and a.s

λ\({t ∈ [0, T ] : a(St ) > σ 2
t }) = 0,

∫ T

0
σ 2
s ds < ∞,

the function

[0, T ] � t �→
∫ t

0

σ 2
s

a(Ss)
ds

is a.s. finite, continuous and strictly increasing, which implies that the same holds for the
function

φt � inf
(
s ∈ [0, T ] :

∫ s

0

σ 2
r

a(Sr )
dr ≥ t

)
, t ∈ [0, T ],

see [47, pp. 179 – 180]. Furthermore, we have a.s. φt ≤ t for all t ∈ [0, T ]. We redefine
φt to be zero on the null sets where the previously mentioned properties fail. Because F is
complete, this modification of (φt )t∈[0,T ] is an increasing and continuous sequence of finite
stopping times.

Next, we set Fφ � (Fφt )t∈[0,T ]. The following lemma follows from [47, Proposi-
tions V.1.4, V.1.5].

Lemma 5.4 Suppose that (Ht )t∈[0,T ] is progressively measurable. Then, the time-changed
process (Hφt )t∈[0,T ] is Fφ-progressively measurable and a.s.

∫ t

0
Hφs ds =

∫ φt

0

Hsσ
2
s

a(Ss)
ds, t ∈ [0, T ],

provided the integrals are well-defined. Moreover, the process Bφ = (Bφt )t∈[0,T ] is a contin-
uous local Fφ-martingale with a.s. [Bφ, Bφ] = φ, and if a.s.

∫ T
0 H2

s ds < ∞ then also a.s.∫ T
0 H2

φs
dφs < ∞ and a.s.

∫ t

0
Hφs d Bφs =

∫ φt

0
HsdBs, t ∈ [0, T ].

We deduce from Lemma 5.4 that a.s.

λ\
({
t ∈ [0, T ] : a(Sφt ) > σ 2

φt
or u(Sφt )σ

2
φt

> bφt

})

=
∫ φT

0

1{a(Ss )>σ 2
s }∪{u(Ss )σ 2

s >bs }σ
2
s

a(Ss)
ds = 0.
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We will use this observation in the following without further reference.
Applying Lemma 5.4 with

Ht � a(St )

σ 2
t

1{σ 2
t >0}, t ∈ [0, T ],

yields that a.s.

dφt = a(Sφt )

σ 2
φt

dt . (5.10)

Using again Lemma 5.4, we obtain that a.s. for all t ∈ [0, T ]

Sφt = Sφ0 +
∫ φt

0
bsds +

∫ φt

0
σsd Bs

= s0 +
∫ t

0

bφs a(Sφs )

σ 2
φs

ds +
∫ t

0
σφs d Bφs

= s0 +
∫ t

0

bφs a(Sφs )

σ 2
φs

ds +
∫ t

0
a

1
2 (Sφs )dB

′
s,

where

B ′ �
∫ ·

0

σφs d Bφs

a
1
2 (Sφs )

.

Due to Lemma 5.4 and (5.10), we obtain that a.s. for all t ∈ [0, T ]

[B ′, B ′]t =
∫ t

0

σ 2
φs

a(Sφs )
d[Bφ, Bφ]s

=
∫ t

0

σ 2
φs

a(Sφs )
dφs

=
∫ t

0

σ 2
φs

a(Sφs )

a(Sφs )

σ 2
φs

ds = t .

Consequently, B ′ is a continuous local Fφ-martingale with a.s. [B ′, B ′]t = t for t ∈ [0, T ],
i.e. an Fφ-Brownian motion due to Lévy’s characterization. We summarize that

dSφt = a(Sφt )
bφt

σ 2
φt

dt + a
1
2 (Sφt )dB

′
t , Sφ0 = s0.

Using a standard extension of (�,F,Fφ,Q)we can extend (B ′
t )t∈[0,T ] to a Brownianmotion

(B ′
t )t≥0, see, e.g., the proof of [47, Theorem V.1.7].
We will use the following terminology: When we say that (Vt )t≥0 is a continuous [l, r ]-

valued process we mean that all its paths are continuous in the [l, r ]-topology and absorbed
in {l, r}, i.e. that Vt = Vτ(V ) for all t ≥ τ(V ) � inf(t ∈ R+ : Vt /∈ I ). This convention is in
line with [36, Definition 5.5.20].

Definition 5.5 Let μ : I → R and v : I → R be Borel functions. We say that an SDE

dVt = μ(Vt )dt + v(Yt )dB
∗
t , (5.11)

where (B∗
t )t≥0 is a one-dimensional Brownian motion, satisfies strong existence and unique-

ness up to explosion, if on any complete probability space (�o,Fo,Po) with complete
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right-continuous filtration Fo = (Fo
t )t≥0, which supports a Brownian motion (B∗

t )t≥0 and
an I -valuedFo

0 -measurable randomvariableψ , there exists a up to indistinguishability unique
adapted continuous [l, r ]-valued process (Vt )t≥0 such that a.s.

Vt∧θn = ψ +
∫ t∧θn

0
μ(Vs)ds +

∫ t∧θn

0
v(Vs)dB

∗
s , t ∈ R+, n ∈ N,

where

θn � inf(t ∈ R+ : Vt /∈ (ln, rn)), n ∈ N.

It is implicit that the integrals are well-defined. The process (Vt )t≥0 is called the solution
process to (5.11) with driver (B∗

t )t≥0.

Due to [19, Remark 4.50 (2), Theorem 4.53], the SDE

dVt = a(Vt )u(Vt )dt + a
1
2 (Vt )dB

∗
t (5.12)

satisfies strong existence and uniqueness up to explosion.
Consequently, there exists a solution process (Yt )t≥0 to (5.12) with driver (B ′

t )t≥0. The
following lemma is proven after the proof of Theorem 5.3 is complete.

Lemma 5.6 Almost surely Yt ≤ Sφt for all t ≤ T ∧ τ(Y ).

Because (Yt )t≥0 is regular due to [41, Proposition 2.2] and limx↗r v(u, a)(x) < ∞, we
deduce from [41, Proposition 2.12] and [4, Theorem 1.1] that (Yt )t∈[0,T ] reaches r with
positive probability. Consequently, due to Lemma 5.6, (St )t∈[0,T ] reaches r with positive
probability. This is a contradiction.

(ii). For contradiction, assume that (Q, B) ∈ I is such that (5.9) holds. By the same
arguments as in part (i), there exists a process (Yt )t≥0 such that

dYt = a(Yt )u(Yt )dt + a
1
2 (Yt )dB

′
t , Y0 = s0,

and a.s. Sφt ≤ Yt for all t ≤ T ∧ τ(Y ). Because limx↘l v(u, a)(x) < ∞, the process
(Yt )t∈[0,T ] reaches l with positive probability and again the pathwise ordering gives a con-
tradiction. ��
Proof of Lemma 5.6 There are functions hn ∈ H and κn ∈ K such that for all x, y ∈ [ln, rn]

|a 1
2 (x) − a

1
2 (y)| ≤ hn(|x − y|), |a(x)u(x) − a(y)u(y)| ≤ κn(|x − y|).

We set

ρn � inf(t ∈ [0, T ] : Sφt /∈ (ln, rn) or Yt /∈ (ln, rn)).

Note that for all t ∈ (0, T ] we have
∫ t∧ρn

0

d[Y − Sφ, Y − Sφ]s
h2n(|Ys − Sφs |)

=
∫ t∧ρn

0

(
a

1
2 (Ys) − a

1
2 (Sφs )

)2
h2n(|Ys − Sφs |)

ds ≤
∫ t

0
ds = t .

Thus, [47, Lemma IX.3.3] implies that the local time of Y·∧ρn − Sφ·∧ρn
in the origin is a.s.

zero. We deduce from Tanaka’s formula that a.s.

(Yt∧ρn − Sφt∧ρn
)+ =

∫ t∧ρn

0
1{Ys−Sφs >0}d(Ys − Sφs ), t ∈ [0, T ].
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Taking expectation, using the martingale property of the Brownian part of Y·∧ρn − Sφ·∧ρn
and

Jensen’s inequality yields that for all t ∈ [0, T ]

EQ
[
(Yt∧ρn − Sφt∧ρn

)+
] = EQ

[ ∫ t∧ρn

0
1{Ys−Sφs >0}

(
a(Ys)u(Ys) − a(Sφs )

bφs

σ 2
φs

)
ds

]

≤ EQ
[ ∫ t∧ρn

0
1{Ys−Sφs >0}

∣∣a(Ys)u(Ys) − a(Sφs )u(Sφs )
∣∣ds]

≤ EQ
[ ∫ t∧ρn

0
1{Ys−Sφs >0}κn(|Ys − Sφs |)ds

]

≤
∫ t

0
EQ

[
κn((Ys∧ρn − Sφs∧ρn

)+)
]
ds

≤
∫ t

0
κn

(
EQ

[
(Ys∧ρn − Sφs∧ρn

)+
])
ds.

Finally, Bihari’s lemma (see [11, Lemma E.2]) yields that for all t ∈ [0, T ]
EQ

[
(Yt∧ρn − Sφt∧ρn

)+
] = 0.

Consequently, due to the continuous paths of Y and Sφ , the claim follows. ��

5.3 Proof of Theorem 2.1

Because non-negative local martingales are supermartingales, Z is a martingale if and only if
EP[ZT ] = 1. By (M1), we can defineQn by the Radon–Nikodym derivative dQn

dP = ZT∧τn .
We note that the assumption λ\ ⊗ P-a.e. σ �= 0 implies (5.1). Due to Girsanov’s theorem,
there exists a Qn-Brownian motion Bn = (Bn

t )t∈[0,T ] such that

dSt∧τn = (bt + ctσt )1{t≤τn}dt + σt1{t≤τn}dBn
t .

The monotone convergence theorem yields that

EP
[
ZT

] = lim sup
n→∞

EP
[
ZT1{τn=∞}

]

= lim sup
n→∞

Qn(τn = ∞).

In view of (M2) and (M3), Theorem 5.2 yields that

lim sup
n→∞

Qn(τn = ∞) = 1.

Thus, EP[ZT ] = 1 and the proof is complete. ��

5.4 Proof of Theorem 2.3

For contradiction, assume that (Zt )t∈[0,T ] is a martingale. Define a probability measureQ by
theRadon–Nikodymderivative dQ

dP � ZT . ByGirsanov’s theorem, there exists aQ-Brownian
motion B = (Bt )t∈[0,T ] such that

dSt = (bt + ctσt )dt + σt d Bt .
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Consequently, in case (SL1) holds we obtain a contradiction to part (i) of Theorem 5.3 and
in case (SL2) holds we obtain a contradiction to part (ii) of Theorem 5.3. The proof is
complete. ��

6 Proof of Theorem 2.5

The section is split into two parts: First, we prove existence, non-existence and local unique-
ness for switching diffusions and second, we deduce Theorem 2.5.

6.1 Existence and non-existence criteria

As in Sect. 2.2, let I = (l, r) with −∞ ≤ l < r ≤ +∞ and J = {1, . . . , N } with
1 ≤ N ≤ ∞. Moreover, let u : I × J → R and σ : I × J → R\{0} be Borel functions such
that

1 + u(·, j)
σ 2(·, j) ∈ L1

loc(I ) for all j ∈ J . (6.1)

We fix x0 ∈ I and set

v(x, j) �
∫ x

x0
exp

(
−

∫ y

x0

2u(z, j)

σ 2(z, j)
dz

) ∫ y

x0

2 exp(
∫ s
x0

2u(z, j)
σ 2(z, j)

dz)

σ 2(s, j)
dsdy

for (x, j) ∈ I × J . Let (�,F,F,P) be a filtered complete probability space with a right-
continuous and complete filtration F = (Ft )t≥0, which supports a Brownian motion W =
(Wt )t≥0, a J -valued irreducible continuous-time Feller–Markov chain ξ = (ξt )t≥0 and an
I -valued F0-measurable random variable φ. The main result of this section is the following:

Theorem 6.1 (i) Suppose that σ satisfies the ES conditions for all j ∈ J (see Sect. 2.2 for
this terminology) and that

lim
x↘l

v(x, j) = lim
x↗r

v(x, j) = ∞ for all j ∈ J . (6.2)

Then, there exists an adapted I -valued continuous process (Yt )t≥0 such that

Y = φ +
∫ ·

0
u(Ys, ξs)ds +

∫ ·

0
σ(Ys, ξs)dWs, (6.3)

where it is implicit that the integrals are well-defined.
(ii) Assume there exists a j ∈ J such that σ satisfies the ES conditions for j and

lim
x↘l

v(x, j) < ∞ or lim
x↗r

v(x, j) < ∞.

Let 0 < T ≤ ∞ be a time horizon. If ξ is recurrent, then there exists no adapted I -valued
continuous process Y = (Yt )t∈[0,T ] such that (6.3) holds.

Proof The case N = 1 concerns classical diffusions for which all claims are known, see
[4,19,36] for details. We prove the claim under the assumption N ≥ 2.

(i). We define the jump times of ξ inductively by

γ0 � 0, γn � inf(t ≥ γn−1 : ξt �= ξγn−1), n ∈ N.
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Because ξ is irreducible, we have a.s. γn < ∞ (see [33, Theorem 10.19]) and a.s. γn−γn−1 >

0 for all n ∈ N.
We follow the idea from the proof of [26, Theorem IV.9.1] and construct the process Y

explicitly from solutions to the SDEs

dX j
t = u(X j

t , j)dt + σ(X j
t , j)dW

′
t , (6.4)

whereW ′ = (W ′
t )t≥0 is aBrownianmotion. For the constructionwe require a strong existence

and uniqueness property, which we explain next.
Fix j ∈ J . It follows from [19, Remark 4.50 (2), Theorem 4.53] and Feller’s test for

explosion (see [36, Theorem 5.5.29]) that the SDE (6.4) has a weak solution and that it
satisfies pathwise uniqueness for all deterministic initial values. We conclude from [33,
Theorem 18.14] that there exists a Borel function F j : I ×C(R+,R) → C(R+, I ) such that
for any one-dimensional Brownian motionW ′ = (W ′

t )t≥0 and any I -valued random variable
ψ , which is independent of σ(W ′

t , t ∈ R+), the process X j = F j (ψ,W ′) is a solution

process to (6.4) with X j
0 = ψ , which is adapted to the completion of the natural filtration of

W ′ and ψ , see [36, Definition 5.2.1]. The function F j is independent of the law of ψ and
universally adapted (see [33, p. 346] for a definition).

Set Wn � W·+γn − Wγn . Due to [47, Proposition V.1.5] and Lévy’s characterization, W
n

is a Brownian motion for the filtration Fn � (Ft+γn )t≥0. In particular, Wn is independent of
Fγn . By induction, define

Y 0 �
∑
j∈J

F j (φ,W )1{ξ0= j},

Yn �
∑
j∈J

F j (Yn−1
γn−γn−1

,Wn)1{ξγn= j}, n ∈ N.

Moreover, set

Yt �
∞∑
n=0

Yn
t−γn

1{γn≤t<γn+1}, t ∈ R+.

The process Y is I -valued and continuous and, as we explain next, it is alsoF-adapted. Define
Ht � Yn

t−γn
1{γn<t}. We claim that (Ht )t≥0 is F-progressively measurable. Because t �→

Yn
t−γn

1{γn<t} is left-continuous and s �→ Y n
t−s1{s<t} is right-continuous, an approximation

argument shows that is suffices to explain that (ht )t≥0 � (Yn
t−ζ1{ζ<t})t≥0 is F-adapted for

any F-stopping time ζ which takes values in the countable set 2−m
N for some m ∈ N and

satisfies ζ ≥ γn . Let G ∈ B(R) and set Nm,t � 2−m
N ∩ [0, t). We have

{ht ∈ G} =
( ⋃
k∈Nm,t

({ht ∈ G} ∩ {ζ = k})) ∪ ({0 ∈ G} ∩ {ζ ≥ t}) ∈ Ft .

Here, we use that {Yn
t−k ∈ G} ∈ Ft−k+γn ⊆ Ft−k+ζ and that Ft−k+ζ ∩ {ζ = k} ∈ Ft . Thus,

(Ht )t≥0 is F-progressively measurable and consequently (Yt )t≥0 is F-adapted.
We note that

γn − γn−1 = inf(t ∈ R+ : ξt+γn−1 �= ξγn−1),

which is anFn−1-stopping time. Thus, Yn−1
γn−γn−1

isFγn -measurable and therefore independent

of σ(Wn
t , t ∈ R+). This yields that the process Xn, j � F j (Yn−1

γn−γn−1
,Wn) satisfies

dXn, j
t = u(Xn, j

t , j)dt + σ(Xn, j
t , j)dWn

t , Xn, j
0 = Yn−1

γn−γn−1
.
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Thus, due to classical rules for time-changed stochastic integrals (see [47, Propositions V.1.4,
V.1.5]), a.s. for t ∈ [γn, γn+1] on {ξγn = j} we have

Yn
t−γn

= Yn−1
γn−γn−1

+
∫ t−γn

0
u(Xn, j

s , j)ds +
∫ t−γn

0
σ(Xn, j

s , j)dWn
s

= Yn−1
γn−γn−1

+
∫ t

γn

u(Yn
s−γn

, j)ds +
∫ t

γn

σ(Yn
s−γn

, j)dWs

= Yn−1
γn−γn−1

+
∫ t

γn

u(Ys, ξs)ds +
∫ t

γn

σ(Ys, ξs)dWs .

By induction, a.s. for t ∈ [γn, γn+1]

Yn
t−γn

= φ +
∫ t

0
u(Ys, ξs)ds +

∫ t

0
σ(Ys, ξs)dWs .

Therefore, the process Y satisfies the SDE

dYt = u(Yt , ξt )dt + σ(Yt , ξt )dWt , S0 = φ,

and the proof of (i) is complete.
(ii). For contradiction, assume that Y satisfies (6.3). Let j ∈ J be such that

limx↘l v(x, j) < ∞ or limx↗r v(x, j) < ∞. We define

δ � inf(t ∈ R+ : ξt = j), ζ � inf(t ≥ δ : ξt �= j).

Because ξ is recurrent, we have a.s. δ < ∞, see [44, Theorem 1.5.7]. Due to the strong
Markov property of ξ and [33, Lemma 10.18], for all G ∈ B(R+) it holds that

P(ζ − δ ∈ G) = −
∫
G
q j j e

q j j x dx, (6.5)

where q j j < 0 is the j-th diagonal element of the Q-matrix of ξ .
Recall our convention that we call a process V = (Vt )t≥0 to be continuous and [l, r ]-

valued in case all paths are continuous in the [l, r ]-topology and absorbed in {l, r}, i.e. that
Vt = Vτ(V ) for all t ≥ τ(V ) � inf(t ∈ R+ : Vt /∈ I ).

It follows from [19, Remark 4.50 (2), Theorem 4.53] that the SDE (6.4) satisfies strong
existence and uniqueness up to explosion in the sense of Definition 5.5.

Consequently, there exists a continuous [l, r ]-valued process X = (Xt )t≥0 such that

dXt = u(Xt , j)dt + σ(Xt , j)dW
δ
t , X0 = Yδ∧T , (6.6)

where W δ � W·+δ∧T − Wδ∧T is a Brownian motion for the filtration Fδ � (Ft+δ∧T )t≥0.
We prove the following lemma after the proof of (ii) is complete.

Lemma 6.2 Almost surely Yt+δ = Xt for all 0 ≤ t ≤ ζ − δ on {ζ ≤ T }.
Because on {τ(X) < ∞} we have Xτ(X) /∈ I , Lemma 6.2 implies that

P(τ (X) ≤ ζ − δ, ζ ≤ T ) = 0. (6.7)

The proof of the following lemma is given after the proof of (ii) is complete.

Lemma 6.3 Suppose that the SDE (5.11) satisfies strong existence and uniqueness up to
explosion. Let ψ be an I -valued F0-measurable random variable and let (Vt )t≥0 be the
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solution process to (5.11) with driver W and initial value ψ and let τ be a stopping time.
Then, all adapted I -valued continuous processes (Ut )t≥0 with

dUt = μ(Ut )1{t≤τ }dt + v(Ut )1{t≤τ }dWt , U0 = ψ,

are indistinguishable from (Vt∧τ )t≥0.

Let ln ↘ l, rn ↗ r be sequences such that l < ln+1 < ln < rn < rn+1 < r and set for a
function α : R+ → [l, r ]

τn(α) � inf(t ∈ R+ : α(t) /∈ (ln, rn)).

We conclude from Lemma 6.3 and Galmarino’s test (see [30, Lemma III.2.43]) that for all
n ∈ N the SDE

dX j
t = u(X j

t , j)1{t≤τn(X j )}dt + σ(X j
t , j)1{t≤τn(X j )}dWt , (6.8)

satisfiesweak existence and pathwise uniqueness in the usual sense, see [36,Definitions 5.3.1,
5.3.2]. Thus, due to [33, Theorem 18.14], there exists a Borel function Fn : R×C(R+,R) →
C(R+, I ) such that whenever X j solves (6.8) with driver W = (Wt )t≥0 and (possibly
stochastic) initial value X j

0 , then a.s. X j = Fn(X j
0 ,W ).

Lemma 6.3 and Galmarino’s test yield that a.s.

τn(X) = τn(F
n(Yδ∧T ,W δ)). (6.9)

Because strong existence and uniqueness up to explosion holds for the SDE (6.4), for a.a.
ω ∈ � there exists an Fδ-adapted continuous [l, r ]-valued process Yω = (Yω

t )t≥0 such that

dYω
t = u(Yω

t , j)dt + σ(Yω
t , j)dW δ

t , Yω
0 = Yδ(ω)∧T (ω) ∈ I .

We stress that the initial value Yδ(ω)∧T (ω) is deterministic. Lemma 6.3 and Galmarino’s test
yield that a.s.

τn(Y
ω) = τn(F

n(Yδ(ω)∧T (ω),W δ)). (6.10)

We prove the following lemma after the proof of (ii) is complete.

Lemma 6.4 For all G ∈ B(R+) we have a.s.

P(ζ − δ ∈ G|Fδ∧T , σ (W δ
t , t ∈ R+)) = −

∫
G
q j j e

q j j x dx .

Using (6.7), the monotone convergence theorem and then (6.9), we obtain that

0 = lim
n→∞P(τn(X) ≤ ζ − δ, ζ ≤ T )

= lim
n→∞P(τn(F

n(Yδ∧T ,W δ)) ≤ ζ − δ, ζ − δ + δ ≤ T ),

using [33, Theorem 5.4] and Lemma 6.4 we further obtain that

= lim
n→∞

∫ T

0
P(τn(F

n(Yδ∧T ,W δ)) ≤ s, s + δ ≤ T )(−q j j )e
q j j sds

= lim
n→∞

∫ T

0
EP

[
P(τn(F

n(Yδ∧T ,W δ)) ≤ s|Fδ∧T )1{s+δ≤T }
]
(−q j j )e

q j j sds,

which, due to [33, Theorem 5.4] and the independence of W δ and Fδ∧T , equals

= lim
n→∞

∫ T

0

∫
�

P(τn(F
n(Yδ(ω)∧T (ω),W δ)) ≤ s)1{s+δ(ω)≤T }P(dω)(−q j j )e

q j j sds,
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and finally, with (6.10) and the monotone convergence theorem, we obtain

= lim
n→∞

∫ T

0

∫
�

P(τn(Y
ω) ≤ s)1{s+δ(ω)≤T }P(dω)(−q j j )e

q j j sds

=
∫ T

0

∫
�

P(τ (Yω) ≤ s)1{s+δ(ω)≤T }P(dω)(−q j j )e
q j j sds.

Due to Feller’s test for explosion (see [36, Theorem 5.5.29]), Yω reaches l or r in finite
time with positive probability. In fact, because Yω is regular due to [41, Proposition 2.2], [4,
Theorem 1.1] implies that Yω even reaches l or r arbitrarily fast with positive probability,
i.e. P(τ (Yω) ≤ ε) > 0 for all ε > 0. Consequently, the identity

∫ T

0

∫
�

P(τ (Yω) ≤ s)1{s+δ(ω)≤T }P(dω)(−q j j )e
q j j sds = 0

implies that for λ\-a.a. s ∈ (0, T ) we have P(δ ≤ T − s) = 0. However, because ξ is
irreducible, we have P(ξt = j) > 0 for all t > 0. This is a contradiction and the proof of
(ii) is complete. ��

Proof of Lemma 6.2 Define ι � ζ ∧ T − δ ∧ T . Note that for all t ∈ R+

{ι ≤ t} = {ζ ≤ t + δ ∧ T } ∈ Ft+δ∧T ,

which shows that ι is an Fδ-stopping time. Moreover, we have for all s, t ∈ R+

{s ∧ ι + δ ∧ T ≤ t} = ({s + δ ∧ T ≤ t} ∩
∈Fs+δ∧T︷ ︸︸ ︷

{s + δ ∧ T ≤ ζ ∧ T } )
∪ ({ζ ∧ T ≤ t} ∩ {s + δ ∧ T > ζ ∧ T }︸ ︷︷ ︸

∈Fζ∧T

) ∈ Ft .

Thus, the random time s ∧ ι + δ ∧ T is an F-stopping time. We deduce from classical rules
for time-changed stochastic integrals that a.s. for all t ∈ R+

Yt∧ι+δ∧T = φ +
∫ t∧ι+δ∧T

0
u(Ys, ξs)ds +

∫ t∧ι+δ∧T

0
σ(Ys, ξs)dWs

= Yδ∧T +
∫ t

0
u(Ys∧ι+δ∧T , j)1{s≤ι}ds +

∫ t

0
σ(Ys∧ι+δ∧T , j)1{s≤ι}dW δ

s .

Because the SDE (6.4) satisfies strong existence and uniqueness up to explosion, Lemma 6.3
implies that a.s. Yt∧ι+δ∧T = Xt∧ι for all t ∈ R+. On {ζ ≤ T } ⊆ {δ ≤ T } we have ι = ζ − δ

and the claim follows. ��

Proof of Lemma 6.3 Due to localization, we can assume that τ is finite. By [47, Proposition
V.1.5] and Lévy’s characterization, the process

Ŵt � Wt+τ − Wτ , t ∈ R+,

is an (Ft+τ )t≥0-Brownian motion. Due to the strong existence and uniqueness hypothesis,
there exists a solution process O = (Ot )t≥0 to the SDE

dOt = μ(Ot )dt + v(Ot )dŴt , O0 = Uτ .
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We set

Zt �
{
Ut , t ≤ τ,

Ot−τ , t > τ.

The process Z has continuous paths and similar arguments as used in the proof of Theorem6.1
(i) show that it is F-adapted. Let

θ Z
n � inf(t ∈ R+ : Zt /∈ (ln, rn)).

On {τ ≥ t ∧ θ Z
n } we have a.s.

Zt∧θ Z
n

= ψ +
∫ t∧θ Z

n

0
μ(Zs)ds +

∫ t∧θ Z
n

0
v(Zs)dWs .

Next, we discuss what happens on the set {τ < t ∧ θ Z
n }. Set

θO
n � inf(t ∈ R+ : Ot /∈ (ln, rn)).

On {τ < θ Z
n } we have a.s. θ Z

n = θO
n + τ. Moreover, note that

t ∧ (θO
n + τ) − τ =

{
θO
n , if θO

n + τ ≤ t,

t − τ, if t ≤ θO
n + τ.

Thus, t ∧ (θO
n + τ) − τ ≤ θO

n . Classical rules for time-changed stochastic integrals yield
that on {τ < t ∧ θ Z

n } a.s.

Zt∧θ Z
n

= Zτ +
∫ t∧θ Z

n −τ

0
μ(Os)ds +

∫ t∧θ Z
n −τ

0
v(Os)dŴs

= Zτ +
∫ t∧θ Z

n

τ

μ(Os−τ )ds +
∫ t∧θ Z

n

τ

v(Os−τ )dWs

= ψ +
∫ t∧θ Z

n

0
μ(Zs)ds +

∫ t∧θ Z
n

0
v(Zs)dWs .

We conclude that Z is a solution process of the SDE (5.11) with driver W and initial value
ψ . By the strong existence and uniqueness hypothesis, we conclude that a.s. Z = V . The
definition of Z implies the claim. ��
Proof of Lemma 6.4 Denote theWiener measure with initial value x ∈ R byWx and byμ j the
law of a Feller–Markov chain with the same Q-matrix as ξ and initial value j ∈ J . Let C be
the σ -field onC(R+,R) generated by the coordinate process.We deduce fromLemmaA.1 in
the “Appendix”, [20, Proposition 4.1.5, Theorems 4.4.2, 4.4.6] that ( j, x) �→ (μ j ⊗Wx )(F)

is Borel for every F ∈ D ⊗ C and that the process (ξ,W ) is a strong Markov process in the
following sense: For all F ∈ D ⊗ C and every a.s. finite stopping time θ we have a.s.

P((ξ·+θ ,W·+θ ) ∈ F |Fθ ) = (μξθ ⊗ WWθ )(F).

For all A ∈ D and F ∈ C the strong Markov properties of ξ,W and (ξ,W ) imply that a.s.

P(ξ·+δ∧T ∈ A,W·+δ∧T ∈ F |Fδ∧T )

= μξδ∧T (A) WWδ∧T (F)

= P(ξ·+δ∧T ∈ A|Fδ∧T )P(W·+δ∧T ∈ F |Fδ∧T ).
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This implies that σ(ζ − δ) and σ(W δ
t , t ∈ R+) are independent given Fδ∧T . Now, [33,

Proposition 5.6] yields that a.s.

P(ζ − δ ∈ G|Fδ∧T , σ (W δ
t , t ∈ R+)) = P(ζ − δ ∈ G|Fδ∧T ).

By the strong Markov property of ξ and (6.5), we have for F ∈ Fδ

P(ζ − δ ∈ G, F) = −
∫
G
q j j e

q j j x dx P(F).

The proof is complete. ��

6.2 Local uniqueness

For the space of continuous functions from R+ into I or R, we denote by C the σ -field
generated by the coordinate process. Moreover, we denote by Co � (Cot )t≥0 the filtration
generated by the corresponding coordinate process and by C � (Ct )t≥0 its right-continuous
version. The image space will be clear from the context. Let

ρ : C(R+, I ) × D(R+, J ) → [0,∞]
be a Co ⊗ Do-stopping time. An example for ρ is

τ(α, ω) � inf(t ∈ R+ : α(t) /∈ U or ω(t) /∈ V ),

where U ⊆ I and V ⊆ J are open:

Lemma 6.5 τ is a Co ⊗ Do-stopping time.

Proof See [47, Proposition I.4.5] and [20, Proposition 2.1.5]. ��
Let u : I × J → R and σ : I × J → R\{0} be Borel functions such that (6.1) holds,

σ satisfies (6.2) and the ES conditions for all j ∈ J (see Sect. 2.2 for this terminology). In
other words, we ask that the conditions from part (i) of Theorem 6.1 hold.

For i = 1, 2, let (�i ,F i ,Fi ,Pi ) be a filtered probability space with right-continuous
complete filtrationFi = (F i

t )t≥0. LetWi = (Wi
t )t≥0 be a one-dimensionalBrownianmotion,

ξ i = (ξ it )t≥0 be a J -valued irreducible Feller–Markov chain with Q-matrix Q and ξ i0 = j0 ∈
J , and let Xi = (Xi

t )t≥0 be an adapted continuous I -valued process such that

dXi
t∧ρ(Xi ,ξ i )

= u(Xi
t , ξ

i
t )1{t≤ρ(Xi ,ξ i )}dt + σ(Xi

t , ξ
i
t )1{t≤ρ(Xi ,ξ i )}dWi

t , Xi
0 = y0 ∈ I .

It is implicit that the stochastic integrals are well-defined. We stress that ξ1 and ξ2 have the
same law, because they have the same Q-matrix, see Example 4.2.

The main observation of this section is the following:

Theorem 6.6 P1 ◦ (X1
·∧ρ(X1,ξ1)

, ξ1)−1 = P2 ◦ (X2
·∧ρ(X2,ξ2)

, ξ2)−1.

Proof We follow the Yamada–Watanabe-type idea used in [28]. Define

�∗ � C(R+, I ) × C(R+, I ) × D(R+, J ) × C(R+,R),

F∗ � C ⊗ C ⊗ D ⊗ C,

and for i = 1, 2

Y i : �∗ → C(R+, I ), Y i (ω1, ω2, ω3, ω4) = ωi ,
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Z1 : �∗ → D(R+, J ), Z1(ω1, ω2, ω3, ω4) = ω3,

Z2 : �∗ → C(R+,R), Z2(ω1, ω2, ω3, ω4) = ω4.

Denote the Wiener measure byW and denote the unique law of ξ i by μ. Due to Lemma A.1
in the “Appendix”, we have

Pi ◦ (ξ i ,Wi )−1 = μ ⊗ W .

When the space of continuous functions is equipped with the local uniform topology it is
a Polish space and the corresponding Borel σ -field is generated by the coordinate process.
Thus, there exist regular conditional probabilities

Qi : D(R+, J ) × C(R+,R) × C → [0, 1]
such that

Pi (Xi ∈ dω1, ξ i ∈ dω2,Wi ∈ dω3) = Qi (ω2, ω3, dω1)μ(dω2)W (dω3).

We define a probability measure Q on (�∗,F∗) by

Q(dω1 × dω2 × dω3 × dω4) � Q1(ω3, ω4, dω1)Q2(ω3, ω4, dω2)μ(dω3)W (dω4).

With abuse of notation, denote the Q-completion of F∗ again by F∗ and denote by F∗
t the

Q-completion of
⋂
s>t

(Cs ⊗ Cs ⊗ Ds ⊗ Cs) , t ∈ R+.

From now on we consider (�∗,F∗,F∗ = (F∗
t )t≥0,Q) as underlying filtered probability

space. In view of [28, Propositions 4.6, 5.6], for all A ∈ Ct the map ω �→ Qi (ω, A) is
measurable w.r.t. the μ ⊗ W -completion of

⋂
s>t (Do

s ⊗ Cos ). In other words, [27, Hypothe-
sis 10.43] is satisfied and we deduce from [28, Lemmata 2.7, 2.9], [27, Proposition 10.46]
and Lévy’s characterization that Z1 is a Markov chain with Q-matrix Q, Z2 is a Brownian
motion and

dY i
t∧ρ(Y i ,Z1)

= u(Y i
t , Z

1
t )1{t≤ρ(Y i ,Z1)}dt + σ(Y i

t , Z
1
t )1{t≤ρ(Y i ,Z1)}dZ2

t , Y i
0 = y0.

The proof of the following lemma is given after the proof of Theorem 6.6 is complete.

Lemma 6.7 Almost surely Y 1
·∧ρ(Y 1,Z1)∧ρ(Y 2,Z1)

= Y 2
·∧ρ(Y 1,Z1)∧ρ(Y 2,Z1)

.

Due to Galmarino’s test, this implies a.s. ρ(Y 1, Z1) = ρ(Y 2, Z1). Thus, a.s. Y 1
·∧ρ(Y 1,Z1)

=
Y 2

·∧ρ(Y 2,Z1)
and the claim follows from the definition of Q. ��

Proof of Lemma 6.7 Step 1Due to localization, we can assume that ρ(Y 1, Z1)∧ρ(Y 2, Z1) is
finite. Recall the following fact (see [47, Proposition III.3.5]): If (Zt )t≥0 is a Feller–Markov
chain for the right-continuous filtration G = (Gt )t≥0 and γ is a finite G-stopping time, then
(Zt+γ )t≥0 is a Feller–Markov chain for a filtration (Gt+γ )t≥0 and both chains have the same
Q-matrix. Due to Theorem 4.4 (i), for i = 1, 2 there exists a process (Oi

t )t≥0 defined by

dOi
t = u(Oi

t , Z
1
t+ρ(Y 1,Z1)∧ρ(Y 2,Z1)

)dt + σ(Oi
t , Z

1
t+ρ(Y 1,Z1)∧ρ(Y 2,Z1)

)dW ρ
t ,

where

W ρ
t � Z2

t+ρ(Y 1,Z1)∧ρ(Y 2,Z1)
− Z2

ρ(Y 1,Z1)∧ρ(Y 2,Z1)
, t ∈ R+,
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with initial value Oi
0 = Y i

ρ(Y 1,Z1)∧ρ(Y 2,Z1)
. Now, set

V i
t �

{
Y i
t , t ≤ ρ(Y 1, Z1) ∧ ρ(Y 2, Z1),

Oi
t−ρ(Y 1,Z1)∧ρ(Y 2,Z1)

, t > ρ(Y 1, Z1) ∧ ρ(Y 2, Z1).

As in the proof of Lemma 6.3, we deduce from classical rules for time-changed stochastic
integrals that

dV i
t = u(V i

t , Z1
t )dt + σ(V i

t , Z1
t )dZ

2
t , V i

0 = y0, (6.11)

i.e. that V 1 and V 2 are global solutions. Thus, it remains to show a version of pathwise
uniqueness for the global equation (6.11).

Step 2 We use induction. Let (ζn)n∈N be the stopping times

ζ1 � inf(t ∈ R+ : Z1
t �= Z1

0), ζn � inf(t ≥ ζn−1 : Z1
t �= Z1

ζn−1
), n ≥ 2.

We stress that ζn ↗ ∞ as n → ∞. Almost surely on {t ≤ ζ1} we have

V i
t = y0 +

∫ t

0
u(V i

s , j0)ds +
∫ t

0
σ(V i

s , j0)dZ
2
s , i = 1, 2.

Recalling that under the assumptions from Theorem 6.1 (i) the SDE (6.4) satisfies strong
existence and uniqueness (up to explosion), we deduce from Lemma 6.3 that a.s. V 1

t = V 2
t

for all t ≤ ζ1. In case N = 1, we have ζ1 = ∞ and the proof is complete. In the following,
we assume that N ≥ 2 in which case a.s. ζn < ∞ for all n ∈ N. Suppose that n ∈ N is such
that a.s. V 1

t = V 2
t for all t ≤ ζn . Using classical rules for time-changed stochastic integrals,

we obtain that a.s. on {t ≤ ζn+1 − ζn} ∩ {Z1
ζn

= j}

V i
t+ζn

= V i
ζn

+
∫ t+ζn

ζn

u(V i
s , j)ds +

∫ t+ζn

ζn

σ(V i
s , j)dZ2

s

= V i
ζn

+
∫ t

0
u(V i

s+ζn
, j)ds +

∫ t

0
σ(V i

s+ζn
, j)dWn

s ,

where

Wn
t � Z2

t+ζn
− Z2

ζn
, t ∈ R+.

We conclude again from Lemma 6.3 that a.s. V 1
t+ζn

= V 2
t+ζn

for all t ≤ ζn+1 − ζn . Conse-

quently, a.s. V 1
t = V 2

t for all t ≤ ζn+1 and our claim follows. ��

6.3 Proof of Theorem 2.5

(i). Recall that J = {1, . . . , N } with 1 ≤ N ≤ ∞. For n ∈ N define

τn � inf(t ∈ [0, T ] : St /∈ (ln, rn) or ξt ≥ n ∧ N ).

Because c is assumed to be bounded on compact subsets of I × J , Novikov’s condition
implies that (τn)n∈N is a localizing sequence for Z . We define Qn by the Radon–Nikodym
derivative dQn

dP � ZT∧τn . By Girsanov’s theorem,

Bn � W −
∫ ·∧τn

0
c(Ss, ξs)ds
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is a Qn-Brownian motion such that

dSt∧τn = (b(St , ξt ) + c(St , ξt )σ (St , ξt ))1{t≤τn}dt + σ(St , ξt )1{t≤τn}dBn
t .

We deduce from Lemma A.1, Example 4.2 and Theorem 4.3 that under Qn the process ξ

remains a Feller–Markov chain with unchanged Q-matrix. W.l.o.g. we extend W , ξ and F
to the infinite time interval R+. Applying Theorem 6.1 with u � b + cσ yields that on
(�,F,F,P) there exists an adapted continuous I -valued process X = (Xt )t≥0 such that

dXt = (b(Xt , ξt ) + c(Xt , ξt )σ (Xt , ξt ))dt + σ(Xt , ξt )dWt , X0 = S0.

We set

ρn � inf(t ∈ [0, T ] : Xt /∈ (ln, rn) or ξt ≥ n ∧ N ).

It follows from Lemma 6.5 and Theorem 6.6 that

P ◦ (X ·∧ρn , ξ)−1 = Qn ◦ (S·∧τn , ξ)−1.

Consequently, using Galmarino’s test, we obtain that

lim
n→∞Qn(τn = ∞) = lim

n→∞P(ρn = ∞) = 1.

Now, it follows as in the proof of Theorem 2.1 that Z is a martingale.
(ii). This result follows similar as Theorem 2.3, where Theorem 6.1 has to be used instead

of Theorem 5.3. We omit the details. ��

7 Proof of Theorem 4.3

Step 1 Let g ∈ A and set

Mg
t � g(ξt ) − g(ξ0) −

∫ t

0
Lg(ξ, s)ds, t ∈ [0, T ]. (7.1)

Due to the definition of themartingale problem (A, L, T ), the processMg is a localmartingale
with localizing sequence (ρn(ξ))n∈N. Thus, the quadratic variation process [Mg,W ] is well-
defined. Our first step is to show that a.s. [Mg,W ] = 0. We explain that WMg is a local
martingale for the completed right-continuous version of the natural filtration of ξ and W .
Let 0 ≤ s < t ≤ T , G ∈ σ(Wr , r ∈ [0, s]) � Ws and F ∈ σ(ξr , r ∈ [0, s]) � Es . The
independence assumption yields that

EP
[
WtM

g
t∧ρm (ξ)1G∩F

] = EP
[
Wt1G

]
EP

[
Mg

t∧ρm (ξ)1F
]

= EP
[
Ws1G

]
EP

[
Mg

s∧ρm (ξ)1F
]

= EP
[
WsM

g
s∧ρm (ξ)1G∩F

]
.

By a monotone class argument, we have

EP
[
WtM

g
t∧ρm (ξ)1B

] = EP
[
WsM

g
s∧ρm (ξ)1B

]

for all B ∈ Ws ∨Es . Due to the downwards theorem (see [48, Theorem II.51.1]), the process
WMg

·∧ρm (ξ) is a martingale for the completed right-continuous version G � (Gt )t∈[0,T ] of
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(Wt ∨ Et )t∈[0,T ]. Consequently, because ρm(ξ) ↗ ∞ as m → ∞, WMg is a local G-
martingale. By the tower rule, also W and Mg are local G-martingales. Integration by parts
implies that

[W , Mg] = WMg −
∫ ·

0
WsdM

g
s −

∫ ·

0
Mg

s−dWs,

where the stochastic integrals are defined as localG-martingales. Here, we use that [W , Mg]
can be defined independently of the filtration. We deduce that the process [W , Mg] is a
continuous local G-martingale of finite variation and hence a.s. [W , Mg] = 0.

Step 2 In this step we identify the laws of B and ξ under Q. Clearly, B is a Q-Brownian
motion due to Girsanov’s theorem. Next, we show that on (�,F,F,Q) the process ξ is a
solution process for themartingale problem (A, L, j0, T ). By Step 1 andGirsanov’s theorem,
the process

Mg −
∫ t

0

d[Z , Mg]s
Zs

= Mg −
∫ ·

0
θsd [W , Mg]s = Mg

is a local Q-martingale. The equivalence Q ∼ P implies that Q(ξ0 = j0) = 1 and that
Mg

·∧ρn(ξ) is Q-a.s. bounded. Thus, the claim follows.

Step 3We proveQ-independence of B and ξ borrowing an idea from [20, Theorem 4.10.1].
We defineC2

b (R) to be the set of all bounded twice continuously differentiable functionsR →
R with bounded first and second derivative. Suppose that f ∈ C2

b (R) with inf x∈R f (x) > 0
and define

K f
t � f (Bt ) exp

(
− 1

2

∫ t

0

f ′′(Bs)

f (Bs)
ds

)
, t ∈ [0, T ].

By Itô’s formula, we have

dK f
t = exp

(
− 1

2

∫ t

0

f ′′(Bs)

f (Bs)
ds

)(
d f (Bt ) − 1

2 f ′′(Bt )dt
)

= exp
(

− 1

2

∫ t

0

f ′′(Bs)

f (Bs)
ds

)
f ′(Bt )dBt .

Thus, K f is aQ-martingale, as it is a bounded localQ-martingale. Recall that the quadratic
variation process is not affected by an equivalent change of measure. By Step 1, Q-a.s.
[B, Mg] = 0. Due to integration by parts, we obtain that

dK f
t Mg

t = K f
t dM

g
t + Mg

t−dK
f
t + d[K f , Mg]t

= K f
t dM

g
t + Mg

t−dK
f
t ,

which implies that K f Mg
·∧ρm (ξ) is a Q-martingale, as it is a bounded local Q-martingale.

Let ζ be a stopping time such that ζ ≤ T and set

Q̃(G) �
EQ

[
1GK

f
ζ

]
EQ

[
K f

ζ

] , G ∈ F .
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Because K f Mg
·∧ρm (ξ), K

f and M f
·∧ρm (ξ) are Q-martingales (see also Step 2), the optional

stopping theorem implies that for all stopping times ψ ≤ T

EQ̃
[
Mg

ψ∧ρm (ξ)

] = EQ
[
Mg

ψ∧ρm (ξ)K
f
ζ

]
EQ

[
K f

ζ

] = 0.

Consequently, by [47, Proposition II.1.4], Mg
·∧ρm (ξ) is a Q̃-martingale. Because Q̃ ∼ Q, this

implies that on (�,F,F, Q̃) the process ξ is a solution process for the martingale problem
(A, L, j0, T ). The uniqueness assumption for the martingale problem (A, L, j0, T ) implies
that

Q̃(�) = Q(�) (7.2)

for all

� �
{
ξt1 ∈ G1, . . . , ξtn ∈ Gn

}
,

where G1, . . . ,Gn ∈ B(J ) and 0 ≤ t1 < · · · < tn ≤ T . We fix � such that Q(�) > 0 and
define

Q̂(F) �
EQ

[
1F1�

]
Q(�)

, F ∈ F .

Using the definition of Q̃, (7.2), the fact that K f is aQ-martingale and the optional stopping
theorem, we obtain

EQ̂
[
K f

ζ

] = EQ
[
K f

ζ 1�

]
Q(�)

= Q̃(�)EQ
[
K f

ζ

]
Q(�)

= EQ
[
K f

ζ

] = f (0).

Because ζ was arbitrary, we conclude that K f is a Q̂-martingale. Furthermore, Q̂(B0 =
0) = 1 follows from the fact that B is aQ-Brownian motion. Finally, due to [20, Proposition
4.3.3], the process B is a Q̂-Brownian motion. We conclude that

Q̂
(
Bs1 ∈ F1, . . . , Bsk ∈ Fk

) = Q
(
Bs1 ∈ F1, . . . , Bsk ∈ Fk

)
,

for all F1, . . . , Fk ∈ B(R) and 0 ≤ s1 < · · · < sk ≤ T . By the definition of Q̂, we have
proven that

Q
(
Bs1 ∈ F1, . . . , Bsk ∈ Fk, ξt1 ∈ G1, . . . , ξtm ∈ Gm

)
= Q

(
Bs1 ∈ F1, . . . , Bsk ∈ Fk

)
Q

(
ξt1 ∈ G1, . . . , ξtm ∈ Gn

)
,

which implies that the σ -fields σ(ξt , t ∈ [0, T ]) and σ(Bt , t ∈ [0, T ]) are Q-independent.
The proof is complete. ��

8 Proof of Theorem 4.4

Because σ(ξt , t ∈ [0, T ]) and σ(Wt , t ∈ [0, T ]) are assumed to beP-independent, it follows
as in the proof of Theorem 4.3 that a.s. [Z ,W ] = 0. Thus, Girsanov’s theorem implies that
W is a Q-Brownian motion.

Take 0 ≤ s1 < · · · < sm ≤ T , 0 ≤ t1 < · · · < tn ≤ T ,(Gk)k≤m ⊂ B(J ) and
(Fk)k≤n ⊂ B(R), and set
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�1 �
{
ξs1 ∈ G1, . . . , ξsm ∈ Gm

}
,

�2 �
{
Wt1 ∈ F1, . . . ,Wtn ∈ Fn

}
.

The P-independence of σ(ξt , t ∈ [0, T ]) and σ(Wt , t ∈ [0, T ]) and the uniqueness of the
Wiener measure yield that

Q(�1 ∩ �2) = EP
[
ZT1�1∩�2

]
= EP

[
ZT1�1

]
P(�2)

= Q(�1)Q(�2).

We conclude that σ(ξt , t ∈ [0, T ]) and σ(Wt , t ∈ [0, T ]) are Q-independent.
For g ∈ A∗ we set

Mg
t � g(ξt ) − g(ξ0) −

∫ t

0
L∗g(ξ, s)ds, t ∈ [0, T ],

K f
t � f (ξt ) − f (ξ0) −

∫ t

0
L f (ξ, s)ds, t ∈ [0, T ],

K f g
t � f (ξt )g(ξt ) − f (ξ0)g(ξ0) −

∫ t

0
L( f g)(ξ, s)ds, t ∈ [0, T ].

The processes K f and K f g are local P-martingales. We set

Vt � 1

f (ξ0)
exp

(
−

∫ t

0

L f (ξ, s)

f (ξs)
ds

)
, t ∈ [0, T ].

Integration by parts implies that

dZt = Vt
(
d f (ξt ) − f (ξt )

L(ξ, t)

f (ξt )
dt

)
= VtdK

f
t .

Using again integration by parts and the identity L∗g = 1
f (L( f g) − gL f ) yields

dZt M
g
t = Zt−dMg

t + Mg
t−dZt + d[Z , Mg]t

= Vt
(
f (ξt−)dMg

t + Mg
t−dK

f
t + d[ f (ξ), g(ξ)]t

)

= Vt
(
f (ξt−)dg(ξt ) − f (ξt−)L∗g(ξ, t)dt + g(ξt−)d f (ξt )

− g(ξt−)L f (ξ, t)dt −
(
g(ξ0) +

∫ t

0
L∗g(ξ, s)ds

)
dK f

t + d[ f (ξ), g(ξ)]t
)

= Vt
(
d
(
( f g)(ξt )

) − L( f g)(ξ, t)dt −
(
g(ξ0) +

∫ t

0
L∗g(ξ, s)ds

)
dK f

t

)

= Vt
(
dK f g

t −
(
g(ξ0) +

∫ t

0
L∗g(ξ, s)ds

)
dK f

t

)
.

We conclude that ZMg is a local P-martingale and it follows from [30, Proposition III.3.8]
that Mg is a local Q-martingale. Due to the equivalence Q ∼ P, we conclude that on
(�,F,F,Q) the process ξ is a solution process to the martingale problem (A∗, L∗, j0, T ).
This completes the proof. ��
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9 Proof of Theorem 4.9

Let (Xt )t≥0 be the coordinate process on D(R+, J ) and denote

M f
t � f (Xt )

f ( j0)
exp

(
−

∫ t

0

L f (X , s)

f (Xs)
ds

)
, t ∈ [0, T ].

Define by μ � P ◦ ξ−1 a Borel probability measure on D(R+, J ). We have to show that

Eμ
[
M f

T

] = 1.

It follows from [27, Lemma 2.9] that M f is a local μ-martingale with localizing sequence
(ρn)n∈N. For all n ∈ N, define a Borel probability measure μn on D(R+, J ) via the Radon–
Nikodym derivative

dμn

dμ
= M f

T∧ρn
.

The following lemma is proven after the proof of Theorem 4.9 is complete.

Lemma 9.1 Let μ∗ be the unique law of a solution process to the martingale problem
(A∗, L∗, j0,∞). For all n ∈ N we have μn = μ∗ on Do

T∧ρn
.

Recalling that {ρn > T } ∈ Do
T∧ρn

, Lemma 9.1 implies that

Eμ
[
M f

T

] = lim
n→∞Eμ

[
M f

T∧ρn
1{ρn>T }

] = lim
n→∞ μ∗(ρn > T ) = 1.

This completes the proof. ��
Proof of Lemma 9.1 We adapt the proof of [30, Theorem III.2.40]. To simplify our notation,
we set T ∧ ρn � ρ. We denote by μ j the unique law of a solution process to the martingale
problem (A∗, L∗, j,∞).

Step 1 We show that j �→ μ j (G) is Borel for all G ∈ D, following the strategy outlined in
[54, Exercise 6.7.4]. Recall that we assume that A∗ contains a countable determining set Ã.
Let P be the space of Borel probability measures on D(R+, J ) equipped with the topology
of convergence in distribution. Note that a Do-adapted process is a D-martingale if and only
if it is a Do-martingale. The implication ⇒ follows from the downward theorem (see [48,
Theorem II.51.1]) and the implication ⇐ follows from the tower rule. For g ∈ Ã set

Kg
t � g(Xt ) − g(X0) −

∫ t

0
Kg(Xs)ds, t ∈ R+.

Define I to be the set of all ν ∈ P such that ν ◦ X−1
0 = δ j for some j ∈ J . Moreover, letM

be the set of all ν ∈ P such that

Eν
[
(Kg

t∧ρm
− Kg

s∧ρm )1G
] = 0,

for all g ∈ Ã, all rational s < t,m ∈ N and G in a countable determining class of Do
s . By

the uniqueness assumption, {μ j , j ∈ J } = I ∩M. Because the set {δ j , j ∈ J } is Borel due
to [8, Theorem 8.3.7] and ν �→ ν ◦ X−1

0 is continuous, I is Borel. The set M is Borel due
to [1, Theorem 15.13]. We conclude that {μ j , j ∈ J } is Borel. Let � : {μ j , j ∈ J } → J
be defined by �(μ j ) = j for all j ∈ J . We note that � is a continuous injection. Thus, the
inverse map �−1 is Borel due to Kuratovski’s theorem ([8, Proposition 8.3.5]). This means
that j �→ μ j (G) is Borel for all G ∈ D.
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Step 2 Because μn ∼ μ, we have μn(X0 = j0) = 1. As in the proof of Theorem 4.4, we see
that for all g ∈ A∗ the process Kg

·∧ρ is a μn-martingale.

Step 3 For every t ∈ R+ we denote by θt : D(R+, J ) → D(R+, J ) the shift operator given
by θtω(s) = ω(t + s). Recalling that ρ is bounded, we deduce from [30, Lemma III.2.44]
that

Do
ρ ∨ θ−1

ρ (D) = D.

Hence, we can associate to each G ∈ D a (not necessarily unique) G ′ ∈ Do
ρ ⊗ D such that

G = {
ω ∈ D : (ω, θρ(ω)ω) ∈ G ′}.

We define

ν(G) �
∫

μn(dω)μω(ρ(ω))(dω∗)1G ′(ω, ω∗).

It follows from [30, Lemma III.2.47] that ν is a probability measure, i.e. that ν is defined
unambiguously. Our goal is to show that ν solves the martingale problem (A∗, L∗, j0,∞).
Providing an intuition, ν is the law of

{
X1
t , t < ρ(X1),

X2
t−ρ(X1)

, t ≥ ρ(X1),

in case X1 is sampled according to μn and X2 is sampled according to μ j with j = X1
ρ(X1)

.

In other words, we extend μn to a solution of the global martingale problem. For G ∈ Do
0

we can choose G ′ = G × D(R+, J ). Consequently,

ν(X0 = j0) = μn(X0 = j0) = 1.

Let ψ be a bounded Do-stopping time and fix m ∈ N. For ω, α ∈ D(R+, J ) and t ∈ R+ we
set

z(ω, α)(t) �
{

ω(t), t < ρ(ω),

α(t − ρ(ω)), t ≥ ρ(ω),

and

V (ω, α) �
{(

(ψ ∧ ρm) ∨ ρ − ρ
)
(z(ω, α)), α(0) = ω(ρ(ω)),

0, otherwise.

Due to [18, Theorem IV.103] the map V is Do
ρ ⊗ D-measurable such that V (ω, ·) is a Do-

stopping time for all ω ∈ D(R+, J ). Furthermore, it is evident from the definition that

(ψ ∧ ρm)(ω) ∨ ρ(ω) = ρ(ω) + V (ω, θρ(ω)ω)

forω ∈ D(R+, J ). For allω ∈ {ρ < ψ∧ρm} ∈ Do
ρ andα ∈ D(R+, J )withα(0) = ω(ρ(ω))

we have V (ω, α) ≤ ρm(α). Note further that for ω ∈ {ρ < ψ ∧ ρm}
Kg
V (ω,θρ(ω)ω)(θρ(ω)ω) = Kg

(ψ∧ρm )(ω)−ρ(ω)(θρ(ω)ω)

= g(ω((ψ ∧ ρm)(ω))) − g(ω(ρ(ω))) −
∫ (ψ∧ρm )(ω)

ρ(ω)

Kg(ω(s))ds

= Kg
(ψ∧ρm )(ω)(ω) − Kg

ρ(ω)(ω).

123



504 Mathematics and Financial Economics (2020) 14:461–506

Because Kg
·∧ρ is a μn-martingale, we have

Eν
[
Kg

ρ∧ψ∧ρm

] = Eμn
[
Kg

ρ∧ψ∧ρm

] = 0,

due to the optional stopping theorem. Therefore, we obtain

Eν
[
Kg

ψ∧ρm

] = Eν
[
Kg

ψ∧ρm
− Kg

ρ∧ψ∧ρm

]
= Eν

[(
Kg

ψ∧ρm
− Kg

ρ

)
1{ρ<ψ∧ρm }

]
= Eν

[
Kg
V (·,θρ)(θρ)1{ρ<ψ∧ρm }

]

=
∫

μn(dω)Eμω(ρ(ω))
[
Kg
V (ω,·)∧ρm

]
1{ρ(ω)<(ψ∧ρm )(ω)} = 0,

again due to the optional stopping theorem (recall that V (ω, ·) is bounded and that Kg
·∧ρm

is a μ j -martingale for all j ∈ J ). We conclude from [47, Proposition II.1.4] that Kg
·∧ρm is

a ν-martingale and hence that under ν the coordinate process (Xt )t≥0 solves the martingale
problem (A∗, L∗, j0,∞). The uniqueness assumption implies that ν = μ∗. Because also for
G ∈ Do

ρ we can choose G ′ = G × D(R+, J ), we obtain that μ∗(G) = ν(G) = μn(G). The
proof is complete. ��
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Appendix A: Independence of Markov chains and Brownianmotion

Let 0 < T ≤ ∞ be a time horizon and let (�,F,F,P) be a complete probability space with
right-continuous and complete filtration F = (Ft )t∈[0,T ], which supports a one-dimensional
Brownian motion W = (Wt )t∈[0,T ] and a Feller–Markov chain ξ = (ξt )t∈[0,T ]. We suppose
that the initial value ξ0 of ξ is deterministic. Recall our convention that W is a Brownian
motion for F and that ξ is a Markov chain for F.

Lemma A.1 σ(Wt , t ∈ [0, T ]) and σ(ξt , t ∈ [0, T ]) are independent.

Proof Let f ∈ C0(J ) be such that Q f ∈ C0(J ), where Q is the Q-matrix of ξ . We set

M � f (ξ) − f (ξ0) −
∫ ·

0
Q f (ξs)ds.

Let g ∈ C2
b (R) such that infx∈R g(x) > 0 and set

K � g(W ) exp
(

− 1

2

∫ ·

0

g′′(Ws)

g(Ws)
ds

)
.
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Itô’s formula yields that K is a martingale. The process M is a martingale by Dynkin’s
formula. Thus, integration by parts yields that

dMt Kt = MtdKt + KtdMt + d[M, K ]t . (A.1)

Because ξ has only finitely many jumps in a finite time interval, the process M is of finite
variation over finite time intervals. Thus, since K has continuous paths, it follows that
a.s. [M, K ] = 0. In view of (A.1), we conclude that MK is a martingale. Now, recall-
ing Example 4.2, we can argue as in Step 3 of the proof of Theorem 4.3 to obtain the claimed
independence. ��
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