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Abstract

Recent technological advances in genomics, metabolomics, proteomics and bioinformatics have

greatly accelerated biomedical research and enabled unprecedented mechanistic insights into

regulatory networks.

In this thesis I undertook a multi-omics data integration approach to study transcriptional regulation of

hepatic metabolism by the glucocorticoid receptor (GR) in mice. My specific focus was the effect of

high-fat diet on GR’s genomic actions and its role in rhythmic gene expression during the day/night

cycle.

GR is a ligand-gated transcription factor that is activated by glucocorticoid hormones (GCs), which

are secreted with a prominent diurnal rhythm, and by synthetic steroids such as dexamethasone. To

functionally characterize GR binding events at promoters and enhancers and to understand its

contribution to rhythmic cycles of gene expression, we performed ChIP-seq, RNA-seq and

metabolomics.

Specifically, I analyzed mouse liver tissues from lean and obese mice collected every 4 hours during

the day/night cycle, either wild type or liver-specific GR mutants. We modeled the effects of diet,

time, genotype and their interactions and identified time-point specific sets of GR targets. By using a

non parametric algorithm, we detected rhythmic transcripts.

Integrating ChIP-seq with nearby transcript expression by linear proximity and functionally

annotating GR target genes into pathways and gene ontology (GO) categories, we found that the

majority of oscillatory genes are bound by and depend on GR to sustain their rhythmicity and

amplitude stability.

Moreover, by including targeted metabolomics data, we identified metabolite changes that mirror the

effects of altered biological processes associated with a prolonged high-fat diet consumption.

Finally, I performed differential transcript usage isoform analyses to study a potential effect of GR

action on alternative splicing. We detected a set of high-confidence RNAs that show

dexamethasone-induced differential transcript usage, suggesting that GCs have post-transcriptional

functions.

Overall, we demonstrate GR’s contribution to the orchestration of rhythmic metabolism by integrating

multi-omics datasets from mouse liver samples.
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Zusammenfassung

Neueste technologische Fortschritte im Bereich der Genomik, Metabolomik, Proteomik und

Bioinformatik haben die biomedizinische Forschung stark vorangetrieben. Dadurch können

beispiellose mechanistische Einblicke in regulatorische Netzwerke ermöglicht werden.

Ziel dieser Arbeit war es, anhand eines Multi-Omics Datenintegrationsansatzes die

Glukokortikoidrezeptor (GR) vermittelte transkriptionelle Regulation des Leberstoffwechsels in der

Maus zu untersuchen. Dabei lag der besondere Fokus auf dem Einfluss von fettreicher Ernährung auf

das genomische Bindungsprofil des GR und dessen Rolle in der rhythmischen Genexpression

während des Tag/ Nachtzyklus.

GR ist ein ligandenabhängiger Transkriptionsfaktor, der durch Glukokortikoid Hormone (GCs), die

dem täglichen Tag/Nachtrhytmus folgen ausgeschüttet werden, sowie durch synthetische Steroide, wie

Dexamethason aktiviert wird.

Um die Bindung des GR an “Promotor” und “Enhancer” Regionen funktional zu charakterisieren und

dessen Beitrag in der rhythmischen Abfolge der Genexpressionen zu verstehen, haben wir Methoden

des Next Generation Sequencing (NGS), wie ChIP-seq, RNA-seq, sowie Metabolomics angewendet.

Dabei untersuchte ich insbesondere Lebergewebe von schlanken und fettleibigen Wildtyp oder

leberspezifischen GR knockout Mäusen, die in einer Abfolge von jeweils 4 Stunden während eines

gesamten Tag/Nacht Zyklus gesammelt wurden. Danach modellierten wir die Effekte von Ernährung,

Zeit und Genotyp, sowie deren Wechselwirkungen und identifizierten dabei eine zeitpunktspezifische

Reihe von GR Zielgenen. Durch Anwendung eines nicht parametrischen Algorithmus konnten wir die

rhythmischen Veränderungen der Genexpression ermitteln.

Durch die Integration von ChIP-seq mit angrenzender Transkriptionsexpression mittels linearer

Näherung und funktioneller Annotierung von GR-Zielgenen und deren Einteilung in Signalwege und

Gen-Ontologie (GO), fanden wir heraus, dass die Mehrheit der oszillatorischen Gene von GR

gebunden werden. Damit ist die Anwesenheit von GR wichtig um deren Rhythmik und

Amplitudenstabilität aufrecht zu erhalten.
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Zusätzlich konnten wir durch Berücksichtigung gezielter Metabolomics Daten Veränderungen in

Stoffwechselprodukten identifizieren, die die Auswirkungen veränderter biologischer Prozesse

widerspiegeln, die mit einer Langzeit Hochfettdiät verbunden sind.

Schließlich führte ich differentielle „Transcript-Usage-Isoform“-Analysen durch, um einen möglichen

Effekt des GR auf alternatives Spleißen zu untersuchen. Dabei entdeckten wir eine Reihe von

„high-confidence RNAs“, die eine Dexamethason-induzierte differentielle Transcript-Nutzung

zeigten, welches auf posttranskriptionelle Funktionen der GCs hindeutet.

Insgesamt konnten wir die Rolle von GR bei der Orchestrierung des rhythmischen Stoffwechsels

durch die Integration von multi-omics-Datensätzen aus Maus-Leberproben nachweisen.
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1. Introduction

1.1 The mammalian circadian clock

Almost all light-sensitive organisms, from cyanobacteria to humans, have acquired during evolution a

timing system called the circadian clock. It consists of an autonomous and endogenous oscillator with

a period of ca. 24 hours (therefore the name “circadian”, meaning approximately one day) which is

responsible for maintaining the rhythmicity in behavior, physiology, and metabolism.

While the molecular machinery of the clock is contained in all cells, the circadian clock is

hierarchically organized. Indeed, in mammals, a master circadian clock is located in the

suprachiasmatic nucleus (SCN) of the hypothalamus (Klein et al., 1991). The SCN receives light input

(its major Zeitgeber, i.e. a stimulus that can entrain the circadian clock to the 24-hour cycle on Earth)

via the retina, and regulates peripheral clocks through endocrine and systemic cues. In addition, other

environmental cues such as feeding time and body temperature appear to play a role in the resetting of

peripheral timekeepers. The most striking difference between the master and peripheral clocks lies in

the fact that while SCN is not drifting out of phase when perturbations are coming from internal cues,

peripheral clocks adapt to reflect their local metabolic environment.

Figure 1: Hierarchical organization of the circadian clock in mammals.
The master clock resides in the SCN and entrains peripheral clocks, for example in the liver. The
molecular clock machinery is a transcription/translation feedback loop oscillating with an
approximately 24 hour period. Picture modified from (Atger et al., 2017) & (Gaucher et al., 2018).

https://www.zotero.org/google-docs/?1eXzZo
https://www.zotero.org/google-docs/?dqGSgt
https://www.zotero.org/google-docs/?W71J7O
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At the molecular level, the circadian clock is formed by two interlocking transcription/translation

feedback loops (Figure 1). In the first loop, the transcriptional activators BMAL1/CLOCK

heterodimerize and then bind to conserved E-boxes at promoters of target genes (Gekakis et al.,

1998). This way they induce their own repressors PER1/2/3 and CRY1/2 during the circadian day,

which form a protein complex that translocates back to the nucleus and inhibits

CLOCK:BMAL1-induced gene expression (Lee et al., 2001). The PER/CRY heterodimer is degraded

during the night, which allows a new cycle of transcription to take place, as CLOCK/BMAL1 is no

longer repressed. The second loop is formed by the nuclear receptors REV-ERBα/β and ROR α/β/γ

which regulate the cyclic Bmal1 transcription (Takahashi, 2016). The transcription of Rev-erbα and β

is activated by the heterodimer BMAL1/CLOCK during the day and transrepressed by CRY/PER,

which leads to circadian oscillation of Rev-erbα and β. REV-ERBα represses Bmal1 and Clock

transcription (Guillaumond et al., 2005). RORα and REV-ERBα share DNA binding elements, the

ROREs in the Bmal1 promoter, and have to compete for binding. As a result, the expression of Bmal1

is repressed by REVERBα and activated by RORα.

1.2 Nuclear hormone receptors

Nuclear receptors (NRs) comprise a superfamily of structurally conserved, ligand-dependent

transcription factors (TFs). There are 48 human (Figure 2) and 49 mouse nuclear receptors in total.

With their conserved DNA-binding domains (DBD), they are able to recognize and bind to hormone

response elements (HRE) as homo- or heterodimers and regulate gene expression both positively and

negatively by recruiting co-regulators and histone-modifying enzymes (Mangelsdorf et al., 1995).

Figure 2: The superfamily of nuclear hormone
receptors.
Clustering of nuclear hormone receptors (with GR
highlighted in red) based on their distribution in
tissues, showing their connection to physiological
pathways like lipid metabolism and energy
homeostasis. Picture modified from (Bookout et
al., 2006).

https://www.zotero.org/google-docs/?PEBlo1
https://www.zotero.org/google-docs/?PEBlo1
https://www.zotero.org/google-docs/?76J9FT
https://www.zotero.org/google-docs/?8knJcs
https://www.zotero.org/google-docs/?8jgahE
https://www.zotero.org/google-docs/?X49RqJ
https://www.zotero.org/google-docs/?wowFPW
https://www.zotero.org/google-docs/?wowFPW
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In my thesis, I focus on one member of the NR family, namely the glucocorticoid receptor (GR). GR

together with the estrogen receptor (ER), the mineralocorticoid receptor (MR), the androgen receptor

(AR), and the progesterone receptor (PR) are known as the “classic” steroid receptors, all of them

being named after the endogenous steroid hormone that they recognize. Since the complete cDNA of

GR and ER were the first to be isolated in the 1980s, they are the “founding members” of the NR

family (Greene et al., 1986; Hollenberg et al., 1985).

1.2.1 The glucocorticoid receptor (GR)

The glucocorticoid receptor (GR gene or NR3C1, i.e. nuclear receptor subfamily 3, group C, member

1) is a ligand-activated transcription factor that belongs to the steroid/thyroid hormone receptor

superfamily. It resides in the cytoplasm together with chaperone proteins (hsp90, hsp70, and p23)

(Rajapandi et al., 2000) and immunophilins of the FK506 family (FKBP51 and FKBP52) forming a

multi-protein complex (Pratt and Toft, 1997). Upon activation, by glucocorticoid hormones (GCs,

mainly cortisol in humans and corticosterone in mice), it can translocate to the nucleus, where it

induces or represses the transcription of target genes (Figure 3).

Figure 3: Gene regulation by the glucocorticoid receptor.
The dimeric glucocorticoid receptor (GR) binds Glucocorticoid Response Elements (GREs) to
regulate target genes.

https://www.zotero.org/google-docs/?dNtG17
https://www.zotero.org/google-docs/?bP5QiG
https://www.zotero.org/google-docs/?csWExd
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As a modular protein, it has three major domains: an N-terminal transactivation domain (NTD), a

central DNA-binding domain (DBD), and a C-terminal ligand-binding domain (LBD) (Figure 4)

(Oakley and Cidlowski, 2013). A flexible hinge region (H) separates the DBD and LBD. The 2 zinc

finger motifs within the DBD, which is the most conserved region, play a role in the recognition and

binding of target DNA sequences, i.e. glucocorticoid response elements (GREs). A transcriptional

activation function domain (AF1) within the NDT is necessary for interactions with coregulators and

the basal transcription machinery. The LBD harbors a hydrophobic pocket needed for ligand binding,

and also contains an activation function domain (AF2). The transport into the nucleus is facilitated by

the nuclear localization signals NL1 and NL2. NL1 is located at the DBD/hinge region junction, while

NL2 is localized within the LBD (Kumar and Thompson, 2005).

Figure 4: Schematic representation of the glucocorticoid receptor structure.
The N-terminal transactivation domain (NTD), the central DNA-binding domain (DBD), the hinge
region (H), and the C-terminal ligand-binding domain (LBD) forming the glucocorticoid receptor.
Transcriptional activation function domains (AF1 and AF2) and nuclear localization signals (NL1
and NL2) are indicated in purple. Numbers represent amino acids for human GR. Picture based
on (Oakley and Cidlowski, 2013).

1.2.2 Glucocorticoids: activators of the glucocorticoid receptor

Since their discovery in 1949 by Philip Showalter Hench (Hench et al., 1949), when he successfully

treated patients suffering from rheumatoid arthritis by administering them the “compound E”,

glucocorticoids became one of the most widely used anti-inflammatory and immunosuppressive

drugs.

Glucocorticoids are hormones produced mainly by the adrenal gland cortex that are released with both

pulsatile and circadian rhythmicity, controlled by the hypothalamic-pituitary-adrenal (HPA) axis

(Chrousos, 1998; Walker et al., 2010). After it is released from the hypothalamus, the

corticotropin-releasing hormone (CRH) initiates the production of adrenocorticotropin (ACTH) by the

https://www.zotero.org/google-docs/?9NsYSk
https://www.zotero.org/google-docs/?h68gS6
https://www.zotero.org/google-docs/?YHaWM6
https://www.zotero.org/google-docs/?LCsNnO
https://www.zotero.org/google-docs/?MIEjkt
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anterior pituitary. ACTH then signals to the cortical layer of the adrenal gland to produce cortisol

from cholesterol. In a negative feedback loop, circulating glucocorticoids block the release of CRH

and ACTH, thus inhibiting glucocorticoid secretion. Although also non-adrenal GC production was

observed for example in the brain, thymus, or epithelial barriers, it seems that this does not affect the

levels of systematically circulating GCs but results in high spatial specificity of steroid action (Taves

et al., 2011).

Endogenous GC levels reach their peak prior to the active period (which is in the early morning in

humans, and early evening in nocturnal animals, like mice), and decrease gradually at the onset of the

inactive period. GCs are powerful regulators exerting their pleiotropic effects on metabolism, immune

response, and cognitive and emotional functions. Their successful use in the clinics is due to the fact

that they can effectively suppress inflammation not only by activating anti-inflammatory genes but

also by suppressing pro-inflammatory and immune genes (Coutinho and Chapman, 2011).

1.2.3 Glucocorticoids: link between the clock and metabolism

The HPA axis plays a crucial role in the body's stress response. To meet increased energy demands

and restore homeostasis in periods of acute or chronic stress, the adrenal cortex induces GC secretion

(Herman et al., 2016). Glucocorticoids act as signaling molecules that stimulate hepatic

gluconeogenesis. This glucose represents the major source of energy for the brain and peripheral

tissues in times of fasting (Sacta et al., 2016). The release of glucocorticoid hormone is controlled by

the SCN and GCs are able to influence peripheral clocks, as for example in the liver (Reddy et al.,

2007).

Previous studies demonstrated that when cells (e.g fibroblasts) and mice were treated with

glucocorticoids, it induced oscillation and circadian gene expression in the liver, kidney, and heart

(Balsalobre et al., 2000; Oishi et al., 2005). Also, both physical and genetic interactions between the

core clock machinery and the glucocorticoid receptor have been shown. For example, in the

regulatory region of Per1 and Per2 functional GREs were identified, GR was found to be able to

repress Rev-erbα promoter activity, and GR while interacting with CRY1 and CRY2 in a

ligand-dependent manner repressed the activation of gluconeogenic genes like Pck1 (Lamia et al.,

2011; So et al., 2009; Torra et al., 2000). Additionally, physical interaction between CLOCK and GR

was shown, where CLOCK suppressed the binding of GR to DNA (Nader et al., 2009).

https://www.zotero.org/google-docs/?sYh9xz
https://www.zotero.org/google-docs/?sYh9xz
https://www.zotero.org/google-docs/?hy40ir
https://www.zotero.org/google-docs/?PtGwKq
https://www.zotero.org/google-docs/?rQcC1N
https://www.zotero.org/google-docs/?ANYhNP
https://www.zotero.org/google-docs/?ANYhNP
https://www.zotero.org/google-docs/?hGjIRU
https://www.zotero.org/google-docs/?i9ahvJ
https://www.zotero.org/google-docs/?i9ahvJ
https://www.zotero.org/google-docs/?eyfc8b
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1.2.4 Glucocorticoids signaling in the liver

There are only some genes that are commonly activated by GR between different tissues (e.g. Dsip1

and Sgk1), as GC-induced transcription shows cell-type specificity. In the liver, phosphoenolpyruvate

carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc), the two main rate limiting enzymes

involved in hepatic gluconeogenesis, are direct targets of GR (Imai et al., 1990). Functional GREs

were found in their promoters and GR binds the enhancer and promoter regions of both in the liver

(Grøntved et al., 2013). Therefore, in liver-specific GR knockout mice, reduced transcriptional

activation of these genes was observed in response to prolonged fasting (Opherk et al., 2004).

Another GR target gene is Hes1, involved in hepatic lipid metabolism. By recruiting histone

deacetylases to its promoter, GR represses Hes1 expression. As a consequence, in liver-specific GR

knockout mice, derepression of Hes1 is observed, and in fatty liver mouse models hepatic steatosis is

improved (Lemke et al., 2008). Fatty acid synthase (FASN), an enzyme involved in lipogenesis, that is

expressed in the liver, adipose tissues, and the lung is also regulated by glucocorticoids (Sul and

Wang, 1998). Fasn is repressed by GR, meaning that liver-specific GR knockout mice are at risk of

developing hepatic steatosis, as they show increased triglyceride and lipid accumulation. Moreover, it

has been shown that Dgat1 (expressed in many tissues) and Dgat2 (mostly highly expressed in liver

and adipose tissue), both genes encoding enzymes in triglyceride synthetic pathways, are regulated by

GR (Dolinsky et al., 2004). Additionally, a study conducted by Cheng and colleagues could show that

dexamethasone (a synthetic GR agonist) induced the expression of the mouse gene Ntcp

(sodium-taurocholate cotransporting polypeptide, Slc10a1), suggesting that it could be GR mediated,

as the mouse Ntcp promoter harbors functional GREs (Cheng et al., 2007). Ntcp is a bile acid

transporter gene, suggesting that liver-specific GR knockout mice are prone to bile acid accumulation.

1.2.5 Clock and GR in disease

Perturbations of the clock, that are either environmentally-induced or genetic, were linked to

metabolic dysfunctions (Froy, 2010). Early lesion experiments (pre-1950) show how disruptions in the

different parts of the hypothalamus can cause both hyperphagia and obesity, or cessation of food

consumption (Dietrich and Horvath, 2009). Therefore, the interaction of the circadian clock with

hypothalamic function is of special interest (Eckel-Mahan and Sassone-Corsi, 2013), as the disruption

of metabolic homeostasis causes obesity, insulin resistance, and even type 2 diabetes. Previous studies

have shown that a prolonged high-fat diet feeding can alter the mammalian circadian clock, however,

the underlying mechanism is not yet elucidated (Kohsaka et al., 2007).

https://www.zotero.org/google-docs/?CH8LVi
https://www.zotero.org/google-docs/?0nkWtG
https://www.zotero.org/google-docs/?P155Av
https://www.zotero.org/google-docs/?Ua1o3A
https://www.zotero.org/google-docs/?sA1sC6
https://www.zotero.org/google-docs/?sA1sC6
https://www.zotero.org/google-docs/?3r37jX
https://www.zotero.org/google-docs/?nAWIst
https://www.zotero.org/google-docs/?AcuEQK
https://www.zotero.org/google-docs/?69Pgnq
https://www.zotero.org/google-docs/?VzO3U5
https://www.zotero.org/google-docs/?QiUKvS
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Disruption of either clock function or GC release was linked to severe metabolic implications. For

example, the continual increase of GC levels was shown to lead to an approximately two-fold risk of

developing metabolic syndrome (Chandola et al., 2006). Also, the excessive constant GC production

(as in the case of patients suffering from Cushing's disease) induced all clinical phenotypes like

obesity, diabetes mellitus, dyslipidemia, hypertension, and osteoporosis (Feelders et al., 2012).

However, it is not only the endogenous GC release that can be dysregulated and lead to health

problems, but their use as commonly prescribed drugs is associated with both immediate and

long-term complications and comorbidities. Although side effects depend on the type of GC, length

and dosage of treatment, as well as the mode of application, up to 90% of patients who take them for

more than sixty days develop adverse effects (Ericson-Neilsen and Kaye, 2014). GCs are administered

in case of allergies and asthma to treat overreaction by stopping the inflammation process, they can be

used after an organ transplant to prevent the rejection of the donor organ but also in the treatment of

hematological cancers (Oakley and Cidlowski, 2013). However, the long-term side effects of these

drugs are sometimes very damaging ranging from skin atrophy (Coondoo et al., 2014), muscle

atrophy (Rose and Herzig, 2013), osteoporosis (Briot and Roux, 2015) to steroid-induced psychoses

(Janes et al., 2019).

Detrimental side effects on liver metabolism are mainly attributed to GCs’ ability to induce metabolic

genes, which in acute stress response does not cause damage, as it is meant to be a short-term event.

However, prolonged administration of GCs simulates permanent stress, and constantly elevated GC

levels lead to perturbations in glucose and lipid metabolism. Administration of GC treatment over a

longer period of time increases the risk of developing hyperglycemia and insulin resistance in

peripheral tissue, known as “steroid diabetes” (Hwang and Weiss, 2014; Tamez-Pérez et al., 2015).

Corticosteroid treatment also increases insulin resistance in patients with diabetes mellitus (Liu et al.,

2013). Previous studies have linked prolonged GC treatment with the development of obesity and

redistribution of white adipose tissue (increased abdominal adiposity) (Dallman et al., 2004).

Additionally, GCs can induce lipolysis and de novo lipogenesis in peripheral adipose tissue.

Moreover, high levels of circulating free fatty acids lead to an overall state of dyslipidemia (Carmena,

2005), which in turn affects the cardiovascular system. Corticosteroids have major effects on the liver,

as they trigger lipid accumulation in the liver, hepatic enlargement, and even steatosis by inducing

genes involved in triglyceride synthesis and lipogenesis (Vegiopoulos and Herzig, 2007; Wang et al.,

2012).

Deciphering the regulation of energy metabolism by GR remains challenging and of great interest, as

the benefits of these anti-inflammatory drugs are shaded by the major metabolic complications.

https://www.zotero.org/google-docs/?IMSec6
https://www.zotero.org/google-docs/?RXV9YF
https://www.zotero.org/google-docs/?sxIHdi
https://www.zotero.org/google-docs/?AagWHm
https://www.zotero.org/google-docs/?RFgEJq
https://www.zotero.org/google-docs/?mP9hSr
https://www.zotero.org/google-docs/?6xeqbE
https://www.zotero.org/google-docs/?I2JQ7J
https://www.zotero.org/google-docs/?X76Jmt
https://www.zotero.org/google-docs/?eaLKuW
https://www.zotero.org/google-docs/?eaLKuW
https://www.zotero.org/google-docs/?FUIScs
https://www.zotero.org/google-docs/?7L7x6A
https://www.zotero.org/google-docs/?7L7x6A
https://www.zotero.org/google-docs/?vYZkJb
https://www.zotero.org/google-docs/?vYZkJb
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1.3 Next-generation sequencing (NGS) and omics data

Next-generation or high-throughput sequencing technology (e.g. Illumina (Bentley et al., 2008),

Biotechnologies/SOLiD (Metzker, 2010)) has revolutionized genomic research. The first generation

or Sanger sequencing technology required over a decade to finish the first version of the human

genome. In contrast, NGS enables the sequencing of thousands or even millions of short reads in

parallel, very fast (even less than 24 hours), at a low error rate, and affordable price (Wadapurkar and

Vyas, 2018). Its applications range from DNA-sequencing and assembly of unknown genomes, exome

sequencing, RNA- or transcriptome-sequencing, identification of DNA regions of DNA binding

proteins (ChIP-seq), to the discovery of mutations.

Even though progress has been made, processing and analysis of NGS data can still be challenging as

data are generally processed through multiple steps, and each of them needs different programs. The

available web-based analysis platforms, although practical, user-friendly, and fast, cannot cover the

broad range of existing programs and are not easily customizable. As for every step in the analysis,

there are numerous alternatives to choose from, wet-lab scientists require bioinformatics support for

optimal analysis.

1.3.1 RNA-seq data analysis

Whole transcriptome shotgun or RNA-seq is an application of NGS that enables the screening of the

entire transcriptome of any organism or even single cells. Transcriptome analysis allows de novo

assembly of transcriptome and gene discovery, as well as differential expression analysis and isoform

analysis (Morozova et al., 2009).

Figure 5: Graphical representation of the experimental steps in RNA-seq.

RNA-seq identifies and quantifies RNA species at a given time point (as RNA abundance is not stable

over time) in biological samples. The experimental protocol of RNA-seq has the following steps: (i)

https://www.zotero.org/google-docs/?DbSvex
https://www.zotero.org/google-docs/?NYwXTe
https://www.zotero.org/google-docs/?xW3xiK
https://www.zotero.org/google-docs/?xW3xiK
https://www.zotero.org/google-docs/?wRXxUg
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RNA extraction and random fragmentation; (ii) conversion of RNAs into cDNAs, while attaching

adapters to one or both ends; (iii) polymerase chain reaction amplification and sequencing of cDNAs

(Figure 5). The raw sequencing data consists of a list of reads with associated quality scores for each

sample, which are then subjected to RNA-seq data analysis.

In the scope of this thesis, only the application of RNA-seq for differential gene expression and

isoform expression analysis is considered. The analysis essentially consists of mapping,

quantification, filtering and normalization, detection of differentially expressed genes/isoforms, and

finally the biological interpretation of the results (Figure 6) .

Figure 6: Graphical representation of the main steps in RNA-seq data analysis.

1.3.1.1 Quality check of the sequencing reads

Prior to downstream analysis, the quality of the raw data has to be assessed. This includes checking

the following metrics: the quality of the base calls, GC content, duplication rate, adapter content, etc.

A very popular tool is FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), which

evaluates all the above-mentioned criteria, and returns an overview of the metrics for each sample.

While poor-quality data (across samples or a large percent of sequences with low mean quality)

indicate problems in the sequencing, an unexpected %GC for the organism suggests sequence

contamination. Having a high level of sequence duplication can be a consequence of having too many

PCR cycles, not enough starting material, or a low complexity library. Depending on the quality,

removal of adapter sequences and of low-quality bases by read trimming might be necessary prior to

mapping.
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1.3.1.2 Read mapping

Assigning reads to their best matching location in the reference is called mapping. Fragments, as a

result of NGS sequencing, can either be mapped to a reference transcriptome or genome. When

mapping to the transcriptome all isoforms of a gene are considered separately, whereas in the latter,

reads are aligned to the underlying genes, regardless of what isoform the reads stem from (Babarinde

et al., 2019).

STAR (Dobin et al., 2013), TopHat (Trapnell et al., 2009), TopHat2 (Kim et al., 2013), and Bowtie2

(Langmead and Salzberg, 2012) are the most popular splice-aware (can handle reads that span across

introns) alignment tools. While these rely on a reference genome, an alternative is to use efficient

alignment-free tools, which quantify the transcripts directly by mapping them to a transcriptome, as it

is done for example by Kallisto (Bray et al., 2016) and Salmon (Patro et al., 2017). This quantification

method works by fragmenting the reads into all possible k-mers, filtering out the unique ones, and

then mapping them to the transcriptome, which is pre-indexed for efficiency.

STAR (Spliced Transcripts Alignment to Reference) (Dobin et al., 2013) is a high accuracy method

that was shown to be around 50 times faster than its alternatives. It comes with the tradeoff of being

overly memory-intensive because it employs an uncompressed suffix tree of the reference genome,

that facilitates very efficient searches for exact matches. The alignment is based on finding “Maximal

Mappable Prefixes”, i.e. the longest possible exact matches of partial reads, and using these as seeds

for the alignment of the unmapped portions. Doing this sequentially over the length of the read results

in splitting it into several portions at the supposed splice sites.

1.3.1.3 Quality check of the aligned data

Evaluating the quality of the aligned data includes for example checking the total percent of reads

aligned to the genome, the percent of uniquely mapped reads, percent of unmapped reads, and even

percent of multimappers. However, possible problems can also be detected, when comparing the

sequencing depth between samples. Additionally, in case of paired-end sequencing, the percent of

properly paired reads is another important quality metric that has to be checked. MultiQC (Ewels et

al., 2016) and Qualimap (García-Alcalde et al., 2012) are often used tools for alignment evaluation.

https://www.zotero.org/google-docs/?2ZfThM
https://www.zotero.org/google-docs/?2ZfThM
https://www.zotero.org/google-docs/?DMhnhC
https://www.zotero.org/google-docs/?n5UbzW
https://www.zotero.org/google-docs/?u0ird8
https://www.zotero.org/google-docs/?lqnkhI
https://www.zotero.org/google-docs/?I17XXo
https://www.zotero.org/google-docs/?12TbZo
https://www.zotero.org/google-docs/?lUX5np
https://www.zotero.org/google-docs/?wUXTpT
https://www.zotero.org/google-docs/?wUXTpT
https://www.zotero.org/google-docs/?LKyook
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1.3.1.4 Gene and transcript level quantification

Reads can be counted and clustered over different genomic features, such as transcripts or genes. Most

commonly quantification refers to the estimation of the gene level abundances, by counting the

number of reads/fragments overlapping the exons of the gene. However, a significant amount of the

reads will map outside annotated exons, even for the best-annotated human or mouse data (Pickrell et

al., 2010).

Due to a high similarity among isoforms, quantifying the abundances of individual transcripts is a

more complex task than gene level quantification. Isoforms of a gene are composed in a big

proportion from the same exons, which implicitly means that a significant fraction of the reads are

so-called multi-mappers or multireads (i.e reads mapping to multiple locations, multiple transcripts).

There are several approaches to handle multimappers, the easiest being to discard these and keep only

uniquely mapped reads. While this approach is often used in gene-level quantification, when it comes

to transcript-level quantification it is not recommended to exclude them, because we would lose a

significant proportion of meaningful reads. Of note, by this way a bias would be introduced, as for

genes that have more active isoforms the abundance would be underestimated. Another modality to

handle them is to keep all matches, which leads to a higher number of mapped reads than the number

of raw reads. However, in practice, the most applicable approach is to rescue these reads by allocating

ambiguous reads in relative proportion based on probabilistic inference, as for example in RSEM (Li

and Dewey, 2011) and TopHat (Trapnell et al., 2009).

CuffLinks (Roberts et al., 2011), featureCounts (Liao et al., 2014), Kallisto (Bray et al., 2016), and

Salmon (Patro et al., 2017) are the most widely used quantification tools. Of these, Kallisto and

Salmon are transcript based approaches, which estimate transcript abundances using Expectation

Maximization. The featureCounts algorithm is an example of an “exon-based” approach, which

assigns reads to features if the feature overlaps with the read or fragment on at least one basepair. It is

calling a hit for a meta-feature if any of the component features are overlapping with the read or

fragment. The method takes into account any gaps (i.e. insertions, deletions, exon-exon junctions, or

structural variants) in the read while it maps each base in the genomic region spanned by the features.

These methods finally output a matrix of read/fragment counts, in which the features of interest are in

the rows and the different samples in the columns.

https://www.zotero.org/google-docs/?4hSuJ7
https://www.zotero.org/google-docs/?4hSuJ7
https://www.zotero.org/google-docs/?g9nzjr
https://www.zotero.org/google-docs/?g9nzjr
https://www.zotero.org/google-docs/?BlCsxh
https://www.zotero.org/google-docs/?hw3w81
https://www.zotero.org/google-docs/?rQV2X2
https://www.zotero.org/google-docs/?D5w7oj
https://www.zotero.org/google-docs/?6ozMqf
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1.3.1.5 Filtering and normalization of count data

Normalization of the count data, that was generated in the previous step, is the most crucial step in the

analysis. Its impact on the results is higher than that of the mapping method or the test statistics used

for finding differentially expressed genes (Bullard et al., 2010; Li et al., 2017).

One can distinguish between two modalities: within and between sample normalization. In the first

case by correcting for gene length and sequence composition, for example, GC-content (Benjamini

and Speed, 2012), comparisons between the features of a single sample are enabled. In the second

case, when features of different samples have to be compared, normalization is performed to adjust for

the library size, i.e. sequencing depth (Sims et al., 2014; Tarazona et al., 2011). In this case it is

assumed that under different conditions the total expression stays similar, therefore the same amount

of mRNA is expected per cell over the different conditions (Evans et al., 2017). Therefore, the total

count is used for normalization, i.e. the read counts are divided by the sum of the reads in each sample

(Dillies et al., 2013). In order to account also for the length of the gene, the RPKM method for

example extends the total count normalization by computing the reads per kilobase per million

mapped reads (Mortazavi et al., 2008).

Alternative methods derive the normalization parameters from genes that are deemed to be

non-differentially expressed between samples. One such example is the Trimmed Mean of the

M-values approach of the edgeR package, which excludes differentially expressed genes from the

computation of the normalization factor, under the assumption that most of the genes are not changing

(Robinson et al., 2010). A reference sample is selected, logarithm count ratios are computed relative

to it, and their mean is used for normalizing read counts. A similar normalization strategy is employed

by DESeq (Anders and Huber, 2010), with the difference that for each gene of a reference sample the

count ratio is computed relative to the geometric mean of all other samples, then the median of these

is used for scaling.

For sample filtering Principal Component Analysis and the ComplexHeatmaps (Gu et al., 2016) R

package are useful as they help to visually identify outlier samples (Robinson and Oshlack, 2010).

Outliers can be considered for removal in order to not distort downstream analyses.

https://www.zotero.org/google-docs/?NE9tLg
https://www.zotero.org/google-docs/?vs3H24
https://www.zotero.org/google-docs/?vs3H24
https://www.zotero.org/google-docs/?EFCvf8
https://www.zotero.org/google-docs/?P9s2uh
https://www.zotero.org/google-docs/?Iy5aE6
https://www.zotero.org/google-docs/?OrZGcE
https://www.zotero.org/google-docs/?AvUDD9
https://www.zotero.org/google-docs/?00PcBJ
https://www.zotero.org/google-docs/?qWXkp5
https://www.zotero.org/google-docs/?fqlaee
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1.3.1.6 Differential gene expression (DGE) analysis

Early differential gene expression analysis methods approximated the RNA-seq count data by a

Poisson distribution, assuming that reads are the result of a random sampling process (Audic and

Claverie, 1997). However, this would require that the variance and mean of RNA-seq counts to be

equal (to match the properties of the Poisson distribution), which is not the case. Therefore, the

Negative Binomial (NB) distribution proved to be more appropriate for the modeling (Hu et al., 2012;

Hulse and Cai, 2013), and it is used by the most popular methods, including the DESeq2 package

(Love et al., 2014). The NB distribution has two parameters: the dispersion and the mean. In contrast

to the Poisson distribution, the mean (µij) and the variance (Var Kij), i.e. within-group variability of

read counts per gene, are not equal, but linked by the dispersion parameter αi through a second order

polynomial equation, as shown in the formula: Var Kij = µij + αi µ²ij. Note that this is a more general

formulation than the Poisson distribution used earlier, as for αi = 0 one gets µij = Var Kij whereas the

relationship changes to a nonlinear one for αi ≠ 0.

DESeq is estimating the dispersion of the data in three steps. First, a gene-wise dispersion value is

fitted using maximum likelihood (ML). Second, these values are modeled by fitting a smoothed curve

that is a function of the mean expression level. Finally, this function is used to estimate the gene-wise

dispersion. Instead of this regression approach, in DESeq2 an empirical Bayes method is applied to

move the observed (i.e. ML) dispersion values closer to the modeled (i.e regressed) ones.

For the DGE analysis itself, the distribution of counts between different groups is compared. For

example, in DESeq2 a generalized linear model (GLM) is fitted to each gene. The coefficients of the

so-called design matrix (i.e. the linear function of the free variables) represent a log2 fold change in

simple case-control experiments, but more complex relations can also be modeled. After estimating

the coefficients for each gene, the null hypothesis of them being 0 is tested, i.e. whether there is no

effect of the variables differentiating the groups. There are two tests implemented in DESeq2: (i) the

likelihood ratio test that compares the full with a reduced model (where certain coefficients are left

out, in order to test their importance in explaining the data); (ii) and the Wald test which also allows

the contrasting of coefficients in order to formulate more advanced queries.

1.3.1.7 Analysis of RNA-seq time-series data

Time-series gene expression data is key to study and model dynamic biological processes and allows

for finding genes with non-permanent expression changes. Although, not only gene expression can be

https://www.zotero.org/google-docs/?gZ0A0F
https://www.zotero.org/google-docs/?gZ0A0F
https://www.zotero.org/google-docs/?UwXgm0
https://www.zotero.org/google-docs/?UwXgm0
https://www.zotero.org/google-docs/?7cLkbU
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measured over time, still the majority of available time-series data is gene expression data (Bar-Joseph

et al., 2012).

The sampling density of such experiments depends on the type of experiment. It was shown that in

perturbation-response experiments (e.g. the immune response to a vaccine) having higher sampling

rates at the beginning of the experiments is more important (Gaucher et al., 2008). In contrast, when

circadian rhythms are of interest it is recommended to use uniform sampling and covering multiple

cycles.

The trade-off between adding more time-points vs. more replicates depends again on the question to

be answered. If the goal is to detect differentially expressed genes at certain time-points, then adding

replicates is a better investment, whereas if we want to detect all changing transcripts over time,

including those, that have a rise in expression only for a short period of time, than we should opt for

more dense sampling (Bar-Joseph et al., 2012).

The classical way to analyze such data would be to use Fourier Transform methods, which would

require over 10 cycles of the target periodicity (Takahashi and Menaker, 1982). Therefore, as these

experiments are very costly, methods were developed that are suitable for the analysis of data sets that

cover a shorter time span, that are still able to estimate the period and the amplitude. The most known

programs for analyzing time-series RNA-seq data are JTK Cycle (Hughes et al., 2010), ARSER (Yang

and Su, 2010), Lomb-Scargle (Glynn et al., 2006), and COSOPT (Panda et al., 2002).

1.3.1.8 Differential transcript usage (DTU) analysis

The majority of human genes express multiple isoforms and alternative exons show tissue-specific

regulation (Wang et al., 2008). Specifically, it was found that more than 90% of human multi-exon

genes are alternatively spliced (Carninci, 2009). The most common splicing events include exon

skipping, mutually exclusive exons, alternative 3' and 5' donor sites, and alternative exons that

contribute to the diversity of RNA isoforms and implicitly increase protein diversity. Although

RNA-seq made possible a better characterization and quantification of the transcriptome, current

technologies are still limited by the read length and thus cannot reveal full-length transcripts.

Splicing analysis tools can be of three different categories: (i) exon based e.g. DEXseq (Anders et al.,

2012) and limma (Ritchie et al., 2015); (ii) splicing based e.g. rMATS (Shen et al., 2014) and SUPPA2

(Trincado et al., 2018); and (iii) transcript based e.g. DEXseq and SUPPA2. In the exon based

methods, the exons of genes are considered. For each exon, it is tested if an exon is differentially used

https://www.zotero.org/google-docs/?X0MbIc
https://www.zotero.org/google-docs/?X0MbIc
https://www.zotero.org/google-docs/?hycBEJ
https://www.zotero.org/google-docs/?DhxiGB
https://www.zotero.org/google-docs/?AloQb1
https://www.zotero.org/google-docs/?ZLwCMR
https://www.zotero.org/google-docs/?1oBrPR
https://www.zotero.org/google-docs/?1oBrPR
https://www.zotero.org/google-docs/?d8Jvqq
https://www.zotero.org/google-docs/?on2osE
https://www.zotero.org/google-docs/?5S7Lc4
https://www.zotero.org/google-docs/?aSTzVY
https://www.zotero.org/google-docs/?qVCqic
https://www.zotero.org/google-docs/?qVCqic
https://www.zotero.org/google-docs/?qDJf9D
https://www.zotero.org/google-docs/?0wl7Zj
https://www.zotero.org/google-docs/?PlTJe4
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compared to all other exons in that gene. In the splice based approach, differences between conditions

are searched for at each splice event. In the transcript-based methods, the transcript level

quantification of the RNASeq data is used (instead of gene level quantification) the goal being to

detect isoform switches between conditions.

Originally DEXseq was developed for analyzing differential exon usage, hence the acronym.

However, now it can be used also for DTU analysis, by considering the counts not being associated

with exonic parts, but rather to different transcripts, resulting from the alternative splicing of RNA

(Soneson et al., 2016b). In an intermediary step transcript-level abundance estimates are transformed

to generate roughly count-scaled data. This way the counts follow a negative binomial distribution,

and a generalized linear model (GLM) can be applied to analyze the different counts obtained for the

transcripts of the same gene. The GLM allows for non-Gaussian error distributions (in our case NB)

while retaining the advantage of the use of multiple coefficients that can then be interpreted and

combined in various ways, and allows for the introduction of additional covariates if necessary.

DTU analysis in SUPPA2 relies on the “percent spliced in” (PSI or Ψ) metric, which is calculated

based on the inclusion reads (IR) and exclusion reads (ER): PSI = IR / (IR + ER). It represents the

fraction of mRNA of the inclusion isoform (Wang et al., 2008). A PSI value of 100% would indicate

that the exon is included in all expressed isoforms. The statistical significance of each difference in

PSI (ΔPSI) between two conditions is assessed by building a null distribution of the ΔPSI values

between replicates. To make sure the null hypothesis is applicable to the testing of the observed ΔPSI,

only transcripts or events with similar expression levels are considered. If the observed ΔPSI is more

extreme than 1-α (where α is the significance level) of the no-effect values, then the null hypothesis

can be rejected. This approach has the advantage of being orders of magnitude faster than DEXseq, up

to 100 times in the tests (Trincado et al., 2018). When used as an event-based method, the splicing

events are quantified such that the PSI value for each event is calculated. In this case, the PSI

measures the fraction of mRNA from a gene that contains a specific form of that event. Additionally,

SUPPA2 can also cluster the transcripts or events based on their PSI values in different conditions.

1.3.1.9 Biological interpretation of the results

After a set of genes is identified in an exploratory analysis, enrichment analysis is performed. Widely

used tools for identifying significant over- or underrepresentation of annotated Gene Ontology terms

(Smith et al., 2003), are Gene Set Enrichment Analysis (Subramanian et al., 2005) and GOrilla: Gene

Ontology enRIchment anaLysis and visuaLisAtion tools (Eden et al., 2009, 2007). GOrilla assigns a

https://www.zotero.org/google-docs/?1KczOa
https://www.zotero.org/google-docs/?hHVhwD
https://www.zotero.org/google-docs/?xbLjrN
https://www.zotero.org/google-docs/?pGFeRh
https://www.zotero.org/google-docs/?sKJA2i
https://www.zotero.org/google-docs/?iPggWP
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p-value to observe a GO term in the ranked list at a non-equiprobable distribution of occurrences,

based on the minimum hypergeometric (mHG) score function (Eden et al., 2007). This has the

advantage that the gene ranking can be done based on biological data (e.g. log2 fold change in

expression levels), rather than defining a threshold (e.g. significantly differentially expressed) and

treating every member of the resulting target set equally. Another online annotation platform is the

PANTHER (Protein ANalysis THrough Evolutionary Relationships) Classification System (Mi et al.,

2019a, 2019b). Functional annotation of genes can also be done by pathway annotation using the

Kyoto Encyclopedia of Genes and Genomes (Kanehisa and Goto, 2000), Reactome (Fabregat et al.,

2017), or WikiPathways (Kelder et al., 2009).

1.3.2 ChIP-seq data analysis

Chromatin Immunoprecipitation followed by Sequencing (ChIP-seq) is a method for genome-wide

profiling of protein-DNA interactions (e.g. transcription factor binding and histone modifications)

(Landt et al., 2012). For this thesis, only the transcription factor binding sites are of interest. For the

identification of binding sites, cross-linked chromatin is sheared by sonication, and bead-attached

antibodies are added to immunoprecipitate the target protein. Then the DNA is unlinked from the

protein and the purified DNA is sequenced. It is recommended to include biological replicates in order

to ensure reproducibility. Usually, two replicates proved to be sufficient and little information can be

gained by adding more replicates (Rozowsky et al., 2009).

Figure 7: Experimental and data analysis steps for ChIP-seq.
Figure modified from (Nakato and Sakata, 2020) and (Höllbacher et al., 2020).

https://www.zotero.org/google-docs/?aYuY4D
https://www.zotero.org/google-docs/?UxbLD9
https://www.zotero.org/google-docs/?UxbLD9
https://www.zotero.org/google-docs/?lMCmIC
https://www.zotero.org/google-docs/?htMPgg
https://www.zotero.org/google-docs/?htMPgg
https://www.zotero.org/google-docs/?YlO2Hp
https://www.zotero.org/google-docs/?GxNv9s
https://www.zotero.org/google-docs/?cUitEX
https://www.zotero.org/google-docs/?4LrauU
https://www.zotero.org/google-docs/?0CAfc5
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A typical ChIP-seq data analysis has the following steps: (i) quality assessment of the sequenced reads

and read alignment, (ii) normalization, (iii) peak calling, (iv) differential binding analysis, and (v)

peak annotation (Figure 7).

Quality assessment can be performed as already described in Chapter 1.3.1.1. Since the aligner does

not have to be splice aware, in addition to the ones used for RNA-seq, also the Burrows-Wheeler

Aligner can be employed (Li and Durbin, 2009). Another round of quality control is performed after

this step, using MultiQC (Ewels et al., 2016). Normalization is performed to account for differences in

sequencing depth, by “down-sampling” the reads to the lowest number of uniquely mapped reads. In

contrast to RNA-seq, here duplicates are removed for example with Picard MarkDuplicates

http://broadinstitute.github.io/picard/. After alignment, peak calling is performed, for which the most

widely used algorithm is MACS: Model-based Analysis of ChIP-seq data (Zhang et al., 2008), which

is optimized for identifying narrow peaks, mostly in TF binding data (Thomas et al., 2017). Software

tools for the next step, i.e. identification of differential binding, were reviewed in (Tu and Shao,

2017). As in the case of DGE analysis in RNA-seq data, DESeq2 is a commonly used tool for this

task and is often integrated in packages that were developed specifically for ChIP-seq data analysis,

such as DiffBind (Ross-Innes et al., 2012; Stark and Brown, 2020).

Finally, inferring genetic function for these regulatory regions consists of peak annotation. Most

commonly peaks are annotated by linear proximity to the closest transcription start site, with the

caveat that the three-dimensional character of chromatin is not considered. The Bioconductor R

package ChIPpeakAnno (Zhu et al., 2010) is a popular tool for peak annotation.

1.3.3 Metabolomics data analysis

The metabolome is defined as the collection of all metabolites: starting, intermediary, or end products

of the metabolic processes in the organism. Metabolites can be produced by the host organism, but

they can also derive from other exogenous sources like for example xenobiotics or food (Johnson et

al., 2012). Moreover, the metabolome is highly dynamic and varies in time, as metabolites are

sensitive to environmental changes. Metabolite concentrations can indicate phenotypic changes and in

the clinics, they are routinely checked for diagnosing congenital or acquired diseases like

phenylketonuria, diabetes, or even chronic kidney disease (Arneth et al., 2019; Williams et al., 2008).

Metabolomics aims to capture, measure, and characterize low molecular weight compounds (with

molecular masses below 1500 Da) in biofluids, cells, and tissues, by using different metabolomics

https://www.zotero.org/google-docs/?w0LzQJ
https://www.zotero.org/google-docs/?MJmsuL
https://www.zotero.org/google-docs/?y7dwlX
https://www.zotero.org/google-docs/?ja9UER
https://www.zotero.org/google-docs/?OQQwaL
https://www.zotero.org/google-docs/?OQQwaL
https://www.zotero.org/google-docs/?oX5Lib
https://www.zotero.org/google-docs/?Ydzx6W
https://www.zotero.org/google-docs/?yMXYLE
https://www.zotero.org/google-docs/?yMXYLE
https://www.zotero.org/google-docs/?0Qysz5
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platforms in the context of external stimuli or in disease states (Nicholson et al., 1999). There are two

classical methodologies for metabolite identification: untargeted and targeted metabolomics. In the

untargeted approach, the goal is to measure the broadest range of metabolites that is present in the

sample in an unbiased way. It presents a global profiling of the metabolome and it is used for example

for biomarker discovery (Vinayavekhin and Saghatelian, 2010). In targeted metabolomics a priori

knowledge is needed and a predefined list of compounds is measured (e.g. amino acids, lipids, sugars,

fatty acids), based on the specific question that is of interest (Roberts et al., 2012). Additionally,

targeted metabolomics can also be used to validate results from the untargeted approach.

1.3.3.1 Identifying metabolites with differential abundance

There are many similarities between finding differentially expressed genes and differentially abundant

metabolites. In both cases measured levels are compared between groups, using a linear model. In the

case of DGE the choice of the underlying distribution for representing the data was clearly given by

the nonlinear relationship, but still, an assumed direct dependence, between the mean and the

variance. In the more commonly used Gaussian distribution the mean and variance are completely

independent parameters. Therefore, when it comes to DGE, a standard ANOVA analysis, which

assumes normally distributed data is not applicable, instead, a GLM is used.

In contrast, metabolite concentration levels are typically represented as real values (with a logarithmic

transformation, thus covering both positive and negative intervals). Thus, the use of a Gaussian

distribution is a natural choice, making ANOVA applicable. While there is no proof of normality of a

distribution, there are statistical tests to reject the normality assumption and quantile-quantile plots

(QQ plots) can be used for visual inspection of the probability density function. Using the R package

car (Companion to Applied Regression), the statistical testing’s confidence interval of the null

hypothesis can be visualized around the QQ plot. Moreover, the ANOVA implementation of R

computes the Cook's Distances of the residuals to verify the quality of the fit (Cook, 1977).

Nonetheless, using a generalized linear model (GLM) offers specific advantages, even when assuming

normally distributed data, as more complex interactions can be tested in a straightforward way. For

the post-hoc analysis both Welch’s t-test (for the Gaussian distribution case) and Mann-Whitney U

test (a nonparametric alternative) can be employed (Sawilowsky, 2005).

https://www.zotero.org/google-docs/?xYbWIV
https://www.zotero.org/google-docs/?y8N0BD
https://www.zotero.org/google-docs/?SPwG3g
https://www.zotero.org/google-docs/?hQF1Yl
https://www.zotero.org/google-docs/?3SGGWj
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1.4 Omics data integration

“Omics” data, such as genomics, transcriptomics, proteomics, metabolomics, etc. are all

interconnected: DNA, mRNA, proteins, metabolites, etc. are part of one complex network and they

can interact with and have an impact on the other type of molecules. As such, multiple levels of omics

data must be analyzed and understood simultaneously.

Figure 8: Data integration of ChIP-seq, RNA-seq, and metabolomics.
DE - differentially expressed; LC-MS - liquid chromatography coupled with mass-spectrometry; TSS -
transcription start site; TF - transcription factor; TFBS - transcription factor binding site; WT - wild
type. This figure was created with BioRender.com

Most commonly omics data integration combines ChIP- and RNA-seq data of matched samples. This

way the subset of genes that are possibly direct targets of a transcription factor can be determined.

Having the peaks of a transcription factor, one starts annotating the peaks by assigning genes to peaks.

Most commonly genes are assigned by linear proximity to the closest transcription start site.
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Afterwards, these genes are further screened to check whether they are also differentially expressed.

The overlap between these datasets is then visualized in either a contingency table or a Venn diagram

(Figure 8).

As metabolites have a wide range of functions, and are considered as a “silent” phenotypical readout

of a perturbation, there is a growing motivation to understand their role and integrate metabolite

measurements together with other omics datasets. A popular approach is to link metabolite

measurements with gene expression data (RNA-seq). Pathway-mapping, i.e. placing metabolites into

context with upstream/downstream genes and proteins is wileadly used to facilitate understanding of

mechanistic aspects (Figure 8).

An early example of such an approach was the INtegrative Meta-analysis of Expression data

(INMEX) tool, which took the position of different compounds in a pathway into account, and

assigned weights to them that reflect their importance (Xia et al., 2013). This has evolved into

Network Analyst 3.0 (Zhou et al., 2019), a platform for comprehensive analysis of expression data,

from raw reads to protein-protein interaction network analysis.

An approach that is more decoupled from a priori defined pathways was devised in (Zimmermann et

al., 2017). They build a network of the studied compounds by mining the KEGG database for reaction

pairs. These connections create different metabolic subnetworks that can be filtered by the number of

differentially occurring compounds, including metabolites and proteins.

The online platform MetaboAnalyst (Chong et al., 2019) offers a joint pathway analysis tool. Here the

list of differentially expressed genes and the list of differentially expressed metabolites of matched

samples can be analyzed and visualized together. Both lists can include their associated log2FCs,

allowing an appropriate weighting of the results. Such a joint analysis has the potential to capture

causative relations that contribute to complex conditions and disease, as it covers multiple omics

levels involved in the regulation of a biological system. Given the complexity of interactions at an

organism or even organ level, collecting supporting evidence from multiple omics sources gives more

credence to biologically meaningful interpretations.

https://www.zotero.org/google-docs/?UhjvaY
https://www.zotero.org/google-docs/?Dibswb
https://www.zotero.org/google-docs/?xTOeO0
https://www.zotero.org/google-docs/?xTOeO0
https://www.zotero.org/google-docs/?9iYBqY
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2. Scope of the thesis

The hypothesis of this Ph.D. thesis is that a high-fat diet and its associated pathological condition

alter, in a time-dependent manner, the genome-wide distribution of GR chromatin landscape in the

liver, and consequently remodel GR-dependent gene expression.

To explore multiple facets of the glucocorticoid receptor’s action in response to a dietary challenge,

genotype, time, and ligand availability, the main aims for this project were:

1. Identify diurnal changes in gene expression dependent on GR transcriptional regulation that are

affected by the nutritional challenge.

We characterized differentially expressed genes in time and between diets from wild type (WT) and

liver-specific GR knock out (GR-LKO) mice after 12 weeks of nutritional challenge (high-fat diet

versus control diet). Additionally, as GR activity is tightly connected with circadian rhythms, we

analyzed changes in transcripts rhythmicity again in both WT and GR-LKO mice on both diets. By

integrating our findings with the results from ChIP-seq data analysis, we were able to identify direct

GR target genes around the clock.

2. Characterize the response to GC treatment in the context of diet-induced obesity.

By treating WT mice on both high-fat and control diets with dexamethasone in two different

timepoints we could demonstrate, that the increase in DNA-bound GR on HFD was not a

ligand-dependent response but a consequence of the nutritional challenge

3. Investigate significant differences in the metabolic profiles of mice under different dietary

conditions and genotype.

Using measurements from a targeted metabolomics platform we identified significant changes in the

metabolic profiles of WT and GR-LKO mice on both high-fat and control diets at Zeitgeber Time

(ZT) 12, where ZT0 and ZT12 correspond to the switch on and off of the light, respectively.

Afterwards we coupled our findings with results from the transcriptomic data analysis of matched

samples.

4. Characterize the dexamethasone dependent alternative splicing.

As our preliminary proteomics data suggested that GR could be related to splicing as it was pulled

down with other core spliceosome members, we hypothesized that dexamethasone induces not only

differential gene expression but also influences a differential splicing.
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Therefore, we performed differential transcript usage analysis as well as event based analysis in the

protein coding mouse liver transcriptome after dexamethasone injection. This way we were able to

identify candidate genes that show dexamethasone-dependent transcript usage, that require further

experimental validation.

The overall scope of this Ph.D. project is to gain a deeper understanding of the diurnal glucocorticoid

hormones response to high-fat diet by multi-omics data integration.
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3. Materials and methods

Partial results of this work have been published in (Quagliarini et al., 2019). Reused figures are

properly attributed in their caption. The ChIP-seq and RNA-seq datasets were deposited in the GEO

(NCBI) database under the SuperSeries accession number GEO: GSE108690.

3.1 Animal experiments

Ethical approval for all animal procedures was received from the regional animal welfare committee

of the state of Bavaria (District government of upper Bavaria ROB-55.2-2532.Vet_02-14-33 and

AZ_55.2-1-54-2532-158-14) - in accordance with the rules and guidelines established by the

Institutional Animal Committee at the Helmholtz Zentrum München – Deutsches Forschungszentrum

für Gesundheit und Umwelt (HMGU).

3.1.1 RNA isolation and sequencing

From 50mg of liver the total RNA was isolated using QIAZOL (QIAGEN). The RNA quality was

assayed using the Agilent RNA 6000 Nano Kit in a 2100 Bioanalyzer (Agilent). Using 1 mg total

RNA, libraries were prepared with the Illumina TruSeq RNA library prep kit v2 chemistry in an

automated system (Agilent Bravo liquid handling platform). Libraries were run on a HighSeq4000

sequencer (Illumina).

3.1.2 Description of the used cohorts

For all experiments male C57BL/6J mice were maintained on a 12-h light-dark cycle at 23 ℃ under

ad libitum feeding condition. Mice were fed with either a control diet (11 kcal% fat w/sucrose,

Research Diets D12329) or a high-fat diet (58 kcal% fat w/sucrose, Research Diets D12331) for a

period of 12 weeks. Details on the two diets can be found in the supplementary material (Figure S1),

and the cohorts are summarized in Table 1.

Our first cohort consists of 36 wild type (WT) mice split into two equal groups. Half of them were fed

control diet, while the other received high-fat diet for 12 weeks in total. At 18 weeks of age, mice

were sacrificed by cervical dislocation, and livers were collected at 4 h intervals. It was a long time

https://www.zotero.org/google-docs/?zVsrAj
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course (> 5 time-points) experiment which was sampled uniformly (every 4 hours, starting at 7 am =

ZT0), i.e. six time-points in total (ZT0, ZT4, ZT8, ZT12, ZT16, ZT20).

The second cohort consists of hepatocyte-specific Alb-Cre x GRflox/flox (Opherk et al., 2004) mice

(liver-specific GR knockout = GR-LKO) and their controls which were subjected to the same dietary

protocol. Again, at 18 weeks of age, mice were sacrificed by cervical dislocation, and livers were

collected at 4 h intervals (ZT0, ZT4, ZT8, ZT12, ZT16, ZT20). For each diet/genotype/time-point

group we had at least 2 biological replicates.

Additionally, we had mice treated with dexamethasone, to study the effect of an acute response to an

exogenous GR ligand. In this third cohort wild type mice after 12 weeks of control or a high-fat diet

were administered dexamethasone (Sigma, D2915) at ZT0 (when the endogenous cortisone levels are

the lowest) and at ZT12 (highest levels) as a single i.p. injection of 10 mg/kg. Mice were sacrificed by

cervical dislocation 4 hours later, at ZT4 and ZT16, respectively. We had at least two biological

replicates per category.

For the quantitative metabolomics analysis, we used livers from GR-LKO and WT mice fed both

diets; animals were sacrificed at ZT12. Frozen liver samples were sent to Biocrates and metabolite

measurements were performed in collected liver tissue using the AbsoluteIDQ® p400 HR kit

(BIOCRATES Life Sciences AG, Innsbruck, Austria).

Our last cohort used for the study of the dexamethasone-induced differential transcript usage consists

of only WT mice on control diet, again injected with dexamethasone at ZT0 and ZT12, respectively.

Livers were collected 4 hours later. This cohort is a subset of cohort 3, with additional modifications:

we add one more control for the day time-point and analysed 2 dexamethasone-injected replicates

instead of three in the night group.

Cohort I II III IV V
Nr. of samples 36 67 20 12 10

Diets CTRL and HFD CTRL and HFD CTRL and HFD CTRL and HFD CTRL
Genotype WT WT and GR-LKO WT WT and GR-LKO WT

Time-points
ZT0, ZT4, ZT8,

ZT12, ZT16, ZT20
ZT0, ZT4, ZT8,

ZT12, ZT16, ZT20
ZT0→ ZT4;

ZT12→ ZT16
ZT12

ZT0→ ZT4;
ZT12→ ZT16

Performed
analysis

Differential
expression analysis

and rhythmic
transcript detection

Differential
expression analysis

and rhythmic
transcript detection

Differential
expression analysis
after dexamethasone

treatment

Differential
metabolite

abundance analysis

Differential
transcript usage

analysis

Table 1: Summary of the five used cohorts.

https://www.zotero.org/google-docs/?lvQtGY
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3.2 RNA-seq data analysis: pipeline for finding differentially expressed genes and rhythmic

transcripts

The steps employed for the RNA-seq data processing are shown in Figure 9.

Figure 9: RNA-seq data processing steps for differential gene expression analysis and for
rhythmic transcript identification.

3.2.1 Quality check of the sequencing reads

Before mapping the reads to the reference genome, checking the read quality was crucial in order to

detect possible problems that could have arisen during sequencing. For that, the tool FastQC v0.11.8

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used, which provides an overview of

basic quality control metrics for every sample. I checked for example the per base sequence quality,

per base sequence content, duplication rate, GC content, etc.
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3.2.2 Read mapping and quality assessment of mapped reads

First, the genome index file was generated once for the genome/annotation combination using the

GENCODE mm9 reference genome sequences (FASTA file, version number NCBIM37) and the

annotation (GTF file, gencode.vM1.annotation.gtf). The index allows to quickly search the genome

for possible mapping positions for each read. In a second step, RNA-seq reads were mapped using the

splice-aware STAR v2.4.2a aligner (Dobin et al., 2013) as it aligns reads with considerable gaps in

between without penalizing the alignment. As we had paired-end data, and sequenced on more lanes

the files from all lanes per read1 and analogously per read2 were merged before the mapping. We used

the default parameters for running STAR, as these are optimized for mammalian genomes. The output

files from the mapping step were sorted, then indexed, and format conversions were performed using

Samtools v1.3.1 (Li and Durbin, 2009). Based on the .Log output files generated during the mapping

step, a report was created with MultiQC v1.9 (Ewels et al., 2016), which provides an overview of the

mapping statistics, like the number of mapped reads, percent of uniquely mapped reads, percent

multimappers, etc.

3.2.3 Gene level quantification

In a gene-level analysis, genes are considered single transcripts that contain all exons of the gene. For

gene-level quantification, the featureCounts v1.4.6 read summarization program (Liao et al., 2014)

was used. I counted all reads which were:

● located within an exon

● do not overlap multiple features (because any single fragment must originate from

only one of the target genes but the identity of the true target gene cannot be

confidently determined)

● are not chimeric, meaning that I discard those fragments that have their two ends

aligned to different chromosomes

● have a minimum mapping quality of 4 (MAPQ >= 4, meaning that we exclude

multimappers).

Duplicates were not removed, as it was shown that this improves neither accuracy nor precision but

can “actually worsen the power and the False Discovery Rate (FDR) for differential gene expression”

(Parekh et al., 2016). The final output was a count matrix, where the rows correspond to the genes,

while the columns represent the different samples.

https://www.zotero.org/google-docs/?hrdReO
https://www.zotero.org/google-docs/?vV5NCm
https://www.zotero.org/google-docs/?cT4myP
https://www.zotero.org/google-docs/?qiKsOD
https://www.zotero.org/google-docs/?Mq6Gb3
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3.2.4 Filtering and normalization of count data

First of all, I filtered out zero and low count genes, where the mean of the counts in the different

samples was below 50. Next, data normalization was performed, which is a crucial step in the

workflow, as it makes it possible to account for biological or technical biases.

As previously mentioned the choice of normalization method has a higher impact on the results than

the mapping method or the test statistics used for finding differentially expressed genes, therefore

deciding what method to use is important. I normalized the data using the variance stabilizing

transformation (VST) and also Rlog method, both available through the DESeq2 R package. Both

methods enable us to overcome the overdispersion problem, by reducing the dependence of the

variance on the mean.  Furthermore, the VST method also normalizes with respect to the library size.

The normalized count data was used as input for the JTK Cycle program, which was employed for

finding rhythmic transcripts. Additionally, methods applied for exploratory analysis for

multidimensional data like principal component analysis (PCA) or sample to sample heatmaps work

better on homoscedastic data. When calculating the sample to sample distance, I used the default,

Euclidean distance.

3.2.5 Differential gene expression analysis with DESeq2

The DESeq2 (v1.23.10) R package (Love et al., 2014) was used for differential expression analysis.

We defined our model as: (i) for the first dataset, where we had only WT mice, 6 time-points and 2

different diets: design(dds) ~ diet + time + time:diet; (ii) for the second cohort, where we had WT and

GR-LKO mice on both diets and measurement in 6 different time-points: design (dds) ~ diet +

genotype + time + genotype:diet + time:genotype + time:diet, meaning that the expression level of a

gene is expected to depend on the diet, genotype and time and combinations thereof. A time series

analysis was performed, to find those genes that react in a condition-specific manner over time,

compared to a set of baseline samples. For this purpose, the likelihood ratio test (LRT) was used,

which compares the difference in the explanatory power of a full model to a reduced model. To obtain

the comparisons of interests, Wald tests were performed on the coefficients (and combinations

thereof) to contrast different time-point, different diets, and different genotype combinations. This

experiment was run in two ways. First with the individual time-points separately (6 in total), and

second with the three day time points and the three night time points pulled together. When using

DESeq2 for the Dex-treated cohort, we were interested in the diet-dependent treatment effect, and the

https://www.zotero.org/google-docs/?9bCk1w
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used model was: design(dds) ~ diet + treatment + diet:treatment. In this case, the data for the day and

night were analyzed separately. Of note, we had to make sure to reset the base level and the

significance cutoff. This is important as by default the base level is considered to be the first term in

alphabetical order. Also, the default cutoff value for significance is 0.1. We considered only genes

below an FDR cutoff of 0.05 to be significant, i.e. differentially expressed. We did not apply a cutoff

value for the log2FC.

3.2.6 Identification of oscillating transcripts in time course data with JTK Cycle

Genes whose mRNA levels follow a circadian rhythm with a periodicity of approximately 24 hours

are called rhythmic or oscillatory genes. For their detection, RNA-seq was performed at several time

points, at small temporal resolution (every 4 hours) over a 24-hour cycle. I used the JTK Cycle v3

(Jonckheere-Terpstra-Kendall = JTK) (Hughes et al., 2010) non-parametric algorithm for cycling

transcript detection, which not only distinguishes between rhythmic and non-rhythmic transcript but

also reports the period, phase, and amplitude of the oscillating genes. As we were interested in only

“purely circadian” transcripts, I set the PERIOD parameter to exactly 24 hours. I used FDR < 0.05 as

significance cutoff.

3.2.7 Result interpretation: pathway analysis, GO term enrichment

Enrichment analyses can attribute biological meaning once a gene set of interest has been defined. For

this purpose, I checked for significant over- or underrepresentation of annotated gene sets, such as

Gene Ontology terms, within the provided gene lists. I used the interactive web-based tool GOrilla

that is able to identify enriched GO terms in ranked lists of genes without the need to provide explicit

target and background sets (Eden et al., 2009). Besides looking at the overrepresentation of GO terms,

gene lists were mapped onto pathways, and statistically significant associations were retrieved. For

this purpose, I used the Reactome pathway analysis (Fabregat et al., 2017) through the ReactomePA

v3.12 Bioconductor package.

3.3 ChIP-seq data analysis and integration with RNA-seq

ChIP-seq data were processed as described in our recent publication (Quagliarini et al., 2019). Briefly,

the pipeline consists of the classical ChIP-seq analysis steps: data quality check, preprocessing, read

alignment, peak calling, peak annotation, and motif analysis. Reads were aligned to the mouse mm9

https://www.zotero.org/google-docs/?DHnWVh
https://www.zotero.org/google-docs/?dKgXLN
https://www.zotero.org/google-docs/?fMj9AV
https://www.zotero.org/google-docs/?fom4m3
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reference genome using BWA-MEM v0.7.12 (Li and Durbin, 2010) and duplicates and multimappers

were removed using Samtools and BamTools v2.4 (Barnett et al., 2011). Reads were downsampled to

the lowest read count of the replicate. Peaks were called using MACS v2.1.1 (Zhang et al., 2008) with

FDR<0.05, and peaks falling in blacklisted peak regions were left out using BEDTools v2.25 (Quinlan

and Hall, 2010). The irreproducible discovery rate (IDR) was controlled by comparing peaks between

replicates (Li et al., 2011) again using BEDTools. Peak union tables were created for GR, STAT5,

PPAR, GR-Dex, and H3K27ac and used for IP efficiency normalization using the THOR package

(Allhoff et al., 2016). Peaks were annotated and motif discovery was performed using HOMER v4.8

(Heinz et al., 2010).

As our goal was to identify possible direct targets of the activated GR in the liver (i.e. their expression

level changed), we determined the set of genes that were bound and regulated by GR. We checked not

only how many and which GR-bound genes were in the set of DEG between the WT and GR-LKO

mice, but also identified rhythmic transcripts that were bound by GR. For every GR peak, we

searched for the closest transcription start site (TSS) and we considered the TSS-associated genes as

being bound by GR.

3.4 RNA-seq data analysis: pipeline for identifying differential transcript usage

The implemented steps for differential transcript usage analysis are presented in Figure 10.

3.4.1 Preprocessing and transcript level quantification

Data preprocessing was performed as described previously in section 3.2.1. For transcript level

quantification I used the RSEM v1.3.3 (RNA-seq by Expectation Maximization) Bioconductor

package (Li and Dewey, 2011) because it can estimate gene and isoform expression levels in one run.

Additionally, it provides the option to generate BAM and Wiggle files in both transcript-coordinates

and genomic-coordinates that can be used for visualization. This time the reads were mapped to the

mm10 mouse genome and protein-coding transcriptome obtained from GENCODE version vM24.

RSEM runs in two spets. First, RSEM was used to build the reference, and for this step sequence and

annotation files were needed in FASTA (GRCm38) and GTF file format respectively. Second, the

RNA-seq reads were aligned to the reference and based on the alignment, abundances were estimated

and credibility intervals were calculated. RSEM by default employs the Bowtie (Langmead et al.,

2009) aligner, however, this can be changed. As such, I used the --star parameter, which allows

https://www.zotero.org/google-docs/?zxk6Ic
https://www.zotero.org/google-docs/?XP6RRw
https://www.zotero.org/google-docs/?ZE72or
https://www.zotero.org/google-docs/?TgoD2J
https://www.zotero.org/google-docs/?TgoD2J
https://www.zotero.org/google-docs/?y7hzsO
https://www.zotero.org/google-docs/?zlheJr
https://www.zotero.org/google-docs/?r5uaEd
https://www.zotero.org/google-docs/?GNI9Jq
https://www.zotero.org/google-docs/?LvomSA
https://www.zotero.org/google-docs/?LvomSA
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employing the STAR aligner instead of Bowtie.

Figure 10: Workflow of the isoform analysis.
On the left: DTU analysis with DEXSeq. On the right: splicing analysis at the transcript isoform or at
the local alternative splicing event level with SUPPA2.

3.4.2. Filtering and normalization of abundance estimates

Transcripts with zero abundance estimates were removed from the downstream analysis. I used the

tximport v1.14 Bioconductor package (Soneson et al., 2016a) to import transcript-level abundance

estimates generated by RSEM. This can be done by setting the type argument to “rsem”. As

differential transcript usage analysis is a count-based workflow, the developers recommend using the

https://www.zotero.org/google-docs/?WoKnkC
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scaledTPM method to generate the counts from abundance estimates:

library(tximport)

txi <- tximport(files, type="rsem", txOut=TRUE, countsFromAbundance="scaledTPM",

geneIdCol="gene_id", txIdCol="transcript_id")

This is an intermediary step in which the TPM abundances are scaled such that their sum equals the

number of mapped reads. Thus the data become roughly on the scale of counts, enabling the use of the

Negative Binomial (NB) distribution to model them in the subsequent steps.

3.4.3 Differential transcript usage analysis

The transcript-level counts can be directly used by packages like DEXSeq (Anders et al., 2012) or

DRIMSeq (Nowicka and Robinson, 2016) for the statistical analysis of differential transcript usage

(DTU). This transcript-level analysis needs to be integrated with the gene-level detection of DTU. If a

gene shows statistically significant evidence for DTU, the identification of the transcripts that confirm

the presence of DTU can be identified in a post hoc analysis. I used DEXSeq v1.32 for the DTU

analysis, where the applied linear model was: design ~ sample + exon + treatment:exon (in our case

exon refers to the provided transcripts). DEXSeq will account for the total gene expression for each

sample and transcript, and then detect dex-induced changes in transcript proportions by performing a

likelihood ratio test with respect to the reduced model of sample + exon.

For controlling the overall error rate for the gene and transcript level hypothesis testing, I used the

stageR v1.8 package (Van den Berge et al., 2017), that applies a target error rate (5% in our case) to

control the overall false discovery rate (OFDR) introduced in (Heller et al., 2009).

Complementary to DEXseq, I also used another powerful tool, namely SUPPA2 (v2.3), that is suitable

for splicing analysis (Trincado et al., 2018). SUPPA2 was employed to study splicing at the transcript

isoform and at the local alternative splicing event level. While identifying differentially occurring

splicing events, SUPPA2 tested the following local event types: (i) Skipping Exon (SE); (ii)

Alternative 5'/3' Splice Sites (A5/A3); (iii) Mutually Exclusive Exons (MX); (iv) Retained Intron (RI);

(v) Alternative First/Last Exons (AF/AL).

First, starting from a GTF annotation file the transcript events and local alternative splicing (AS)

events were generated. For this, SUPPA2 uses only the “exon” lines from the GTF file. In a second

https://www.zotero.org/google-docs/?MSgueJ
https://www.zotero.org/google-docs/?qksnY1
https://www.zotero.org/google-docs/?fjibQZ
https://www.zotero.org/google-docs/?kV48MB
https://www.zotero.org/google-docs/?ZtG3wS
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step, the percent spliced in (PSI) values for transcript and local alternative splicing events were

calculated from the previously generated files and a transcript expression file that holds the transcript

abundances. Third, the magnitude of splicing change (for events or transcripts) and its significance

across multiple biological conditions was calculated.

DTU analysis was performed with both DEXSeq and SUPPA2 separately for the “day” (ZT0, ZT4,

ZT8) and “night” (ZT12, ZT16, ZT20) groups. Afterward, I checked also for overlapping genes and

transcripts, between the two groups. In the case of DEXseq, as previously mentioned, a gene might

show DTU but when looking at the individual transcripts that contribute to this, only those genes were

considered, where both gene and transcript pass the significance cutoff of OFDR < 0.05. The list of

genes that show significant Dex-induced DTU was further analyzed. The list of DTU genes that were

found by both methods was uploaded to Panther Classification System for functional classification

test. Additionally GO biological process annotation was performed with GOrilla (Eden et al., 2009,

2007). As background, all expressed genes, i.e. the ones having non-zero expected counts reported by

RSEM, were used.

3.5 Metabolomics data analysis pipeline

Figure 11: Flowchart of the applied computational steps for the metabolomics data analysis.

Applying a targeted metabolomics approach (using the AbsoluteIDQ® p400 HR kit from Biocrates),

we investigated 405 metabolites in WT and GR-LKO mouse livers, after 12 weeks on a high-fat or

https://www.zotero.org/google-docs/?yJrenl
https://www.zotero.org/google-docs/?yJrenl
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control diet. Measurements were taken at ZT12, having three biological replicates per category. This

kit is a targeted metabolomics platform that is suitable for broad lipid and metabolic profiling and

allows quantification of up to 408 metabolites and lipids from 11 compound classes. The predefined

classes are shown in Table 2.

Small molecules Polar lipids Neutral lipids
Small molecules Phosphatidylcholines (172) Acylcarnitines (55)
Amino acids (21) Lysophosphatidylcholines (24) Cholesteryl esters (14)
Biogenic amines (21) Sphingomyelins (31) Diglycerides (18)
Hexose (1) Ceramides (9) Triglycerides (42)

Table 2: Compound classes of the AbsoluteIDQ® p400 HR kit from Biocrates.
(BIOCRATES Life Sciences AG, Innsbruck, Austria)

The overview of the employed steps for metabolomics data analysis are presented in Figure 11. To

ensure data quality, before applying statistical methods, it was necessary to preprocess the data.

Typically this includes filtering and missing value imputation. In our case this consists of the

following two steps: (i) measurements below the limit of detection (LoD) were considered as

"missing"; (ii) considering each of the four groups separately (WT CTRL, KO CTRL, WT HFD, KO

HFD), a metabolite was kept if it had a non-missing value in at least 2/3 of the replicates in any of the

4 categories. Those metabolites that failed the above-mentioned criteria were excluded from the

analysis. After filtering the MetImp v1.2 web-based tool was used to perform missing value

imputation (Wei et al., 2018). Missing values were assumed to be missing at random (or completely at

random), therefore the random forest method was applied. The missing not at random (MNAR) case

can be verified for example by performing a Chi-square test on the distribution of missing values

between the groups, however, in our case, we have too few samples to make this feasible.

Nonetheless, the test was performed and the random case could not be rejected.

To check the results, I visualized sample (dis)similarities in a PCA score plot and a sample-to-sample

heatmap. I mean normalized each metabolite, using the average of all samples (i.e. for each

metabolite, I took the mean metabolite abundance, and divided all replicate metabolite levels with it).

Data points outside three times the standard deviation for each metabolite were considered as outliers

and were removed from the visualization. Afterward, data was also log-transformed in order to allow

good visualization of both small and large values on the same color scale.

https://www.zotero.org/google-docs/?qcWFtE


34

In order to assess significant effects, a linear regression model was fit to each metabolite. The applied

model was: metabolite_level ~ diet + genotype + diet:genotype. When the interaction term did not

obtain a significant effect size it was discarded and the simplified model metabolite_level ~ diet +

genotype was employed. To correct for multiple testing, the false discovery rate was controlled at 5 %

using the Benjamini–Hochberg procedure. The distribution of metabolite levels in the groups was

additionally visualized in heatmaps. For better visualization of between-group differences, the

metabolites were clustered based on Euclidean distance and Ward’s clustering criterion (Murtagh and

Legendre, 2014).

3.5.1 Integrative pathway analysis

The crosstalk between genes and metabolites is of great interest, as changes in metabolite levels are

considered not only the phenotypical readouts of gene regulation, but they can in turn influence gene

expression. Our goal was to interpret the findings from the metabolomics data analysis by integrating

metabolomics and RNA-seq data results. Therefore, we used the web-based tool MetaboAnalyst

(Chong et al., 2019), which offers a statistical, functional, and integrative analysis of metabolomics

data. I employed the joint pathway analysis that offers exactly this option. Here the user has to provide

two lists: one with gene names and their associated fold changes, the second one has to contain the

significantly expressed metabolites. Because after the Benjamin-Hochberg correction we had only 29

significant metabolites that were showing either significant diet or genotype effect, for the joint

pathway analysis we considered all metabolites that had a significant p-value < 0.05. This analysis

was performed separately for the genes/metabolites that show genotype effect at ZT12 and those with

significant diet effect. We used the default parameter setting, i.e. for the enrichment analysis we

employed the hypergeometric test, for the topology analysis degree centrality, as a pathway database

we chose gene-metabolite pathway, and as the integration method, the combined queries approach.

The latter avoids the need of combining separate gene- and metabolite-based p-values, and the choice

for a weighting method between the two, by treating the two sources in combination and doing a

single search and p-value estimation.

3.6 Contribution from collaborators

Mouse experiments were conducted by Dr. Fabiana Quagliarini, Dr. Kenneth A. Dyar and

Konstantinos Makris. Samples were sequenced by Elisabeth Graf, Sandy Lösecke and Thomas

https://www.zotero.org/google-docs/?WZdjTZ
https://www.zotero.org/google-docs/?WZdjTZ
https://www.zotero.org/google-docs/?V5zRVd
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Schwarzmayr at the Genomic Core Facility at Helmholtz Zentrum München. ChIP-seq data

processing was performed by Dr. Ashfaq Ali Mir. ChIP-MS data was generated by Michael Wierer.
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4. Results

It is known that there is a strong connection between a prolonged HFD, perturbation of circadian

rhythms, and impaired metabolic function. Perturbations of the clock were linked to metabolic

dysfunction, whereas a prolonged HFD feeding could alter the mammalian circadian clock and has

detrimental effects on metabolism. Having accumulated evidence that the glucocorticoid receptor

plays an important role in circadian biology, we wanted to uncover GR’s contribution to diurnal

rhythms and characterize how a prolonged HFD reprograms the cistromic glucocorticoid hormone

response. Therefore, we studied the circadian hepatic GR cistrome and transcriptome in mice after 12

weeks of high-calorie feeding.

We applied a step-by-step approach: (i) First, we characterized the diet’s effect on rhythms and the

time-dependent diet effect on gene expression in livers from WT mice. (ii) Second, using livers from

GR-LKO mice and their littermates upon control diet, we could assess the genotype effect, i.e. how

the loss of GR influences rhythms and gene expression in a time-dependent manner. (iii) Third, in

analogous experiments conducted in GR-LKO and WT mice upon HFD, we could detect the

combined diet and genotype effects. (iv) Forth, in order to show that the gained GR binding was

indeed induced by HFD and did not depend on GR ligand availability, we used dexamethasone-treated

cohorts and checked the diet-dependent treatment effect. (v) Fifth, having metabolite measurements at

ZT12 of WT and GR-LKO mice on both diets we detected metabolites that have significantly

different levels in the two diets or genotypes. By combining these findings with RNA-seq data of

matched samples we could identify possible GR-dependent metabolic pathways. (vi) Finally, in a

subgroup of our Dex-treated cohort, we were able to identify genes that show differential transcript

usage between conditions. Additionally, in steps one to three, we integrated our findings with the

ChIP-seq data, meaning that we intersected the list of deregulated transcripts and the list of oscillating

transcripts with those genes that harbored a nearby GR peak. Our applied multi-omics data analysis

approach served to better understand the glucocorticoid’s receptor action.

In the following subsections, the findings from each of the above-mentioned steps are further detailed.

4.1 Characterization of the diet’s effect in RNA-seq data from WT mice after 12 weeks of

high-fat diet

Our fist RNA-seq was performed in livers of WT mice put on either a control or a high-fat diet for 12

weeks in total. Livers were collected every four hours throughout the day, starting at 7 a.m. = ZT0. We
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had 3 biological replicates per time point and diet, i.e. 36 samples in total (Figure 12). Based on this

data we were able to assess the effects of a prolonged HFD on the circadian rhythm and on

time-dependent gene expression.

Figure 12: Graphical overview of the experiment.

4.1.1 Quality metrics of the raw data and mapping statistics

The quality of the raw data was assessed with the FastQC tool. All samples passed quality control.

From the final .Log files that are outputted by the STAR aligner (Dobin et al., 2013) I also generated a

report with MultiQC (Ewels et al., 2016) that holds the mapping statistics. A good quality sample will

have at least 75% of the reads uniquely mapped. As we can see in Table S1 in the supplementary

material, this criterion applies to all our samples. The range being between ~76% to 91% confirms

high-quality data. Also, the number of sequenced reads is very high, on average over 49 million reads

per sample, meaning that we have good coverage.

The PCA (Figure 13), performed to get an overview of how the samples are clustered together based

on their similarity, shows that one sample (control diet, time-point 4 = ZT12, replicate 1) is a clear

outlier. This happened despite enough sequencing reads (54618150) and a high percent of uniquely

mapped reads (91%). The same was confirmed by the sample-to-sample distance heatmap (Figure

14). We decided to discard this one sample from the downstream analysis. As seen on the PCA plot,

the first two principal components together captured 21% of the variance, and we can already see a

rough division of the samples according to the diet.

https://www.zotero.org/google-docs/?mdZzkl
https://www.zotero.org/google-docs/?9GLeJq
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Figure 13: PCA plot based on the VST-normalized counts of WT mice after 12 weeks of
nutritional challenge.
Half of the mice were fed control and the other half high-fat diet for 12 weeks in total. Livers were
collected every 4 hours throughout the day starting at 7 am = ZT0. We had three biological replicates
per time/diet category (marked as #1, #2, #3).

Figure 14: Sample to sample distance
heatmap of WT mice after 12 weeks of
nutritional challenge.
Based on the VST-normalized counts the
Euclidean distance between the samples
was calculated and in a heatmap
visualized.
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4.1.2 Prolonged high-fat diet feeding leads to increased number of oscillating transcripts

To test the hypothesis that a prolonged high-fat diet has a detrimental effect on the molecular clock,

we investigated how transcript oscillation changes between the control and high-fat diet fed group.

With JTK Cycle (Hughes et al., 2010) we identified the set of circadian genes in both diets (setting the

period to exactly 24 hours). Then we calculated the overlap of these gene sets and saw that 275 genes

were oscillating only in the control diet group, 675 in both, and strikingly the majority of genes,

namely 2207, gained oscillation in the high-fat diet group (Figure 15A). The group of overlapping

genes was further characterized to detect diet-specific differences. As shown in Figure 15B, we

observe that only 39% of the genes stay in phase, while in 6% HFD induces phase delay. Interestingly,

we found that the majority of the overlapping genes, 55%, were phase advanced in the high-fat diet

fed group. Of note, we did not detect significant differences in the amplitude for most of these genes.

95% of amplitude changes were smaller than ±0.26, with a mean of -0.005 and standard deviation

0.12.

In the set of genes that preserved their oscillation, we could detect the core clock genes (Clock,

Bmal1, Per1, Per2, Rev-erbα, Rev-erbβ, and Rorc). Bmal1, Per1, and Clock were phase advanced in

the HFD group, while Rev-erbα, Rev-erbβ, and Clock displayed a change in amplitude that was more

extreme than that of 95% of the genes. While Rev-erbα’s and Rev-erbβ’s amplitude increased (by 38%

and 23%, respectively), Clock’s amplitude decreased by roughly half (43%). Two examples are shown

in Figure 15C and 15D.

Overall our data suggest that HFD drives rhythmic transcription and induces phase advancement. In

addition, we could show that the core clock machinery is very robust and clock genes stay rhythmic in

the livers of HFD-fed mice.

https://www.zotero.org/google-docs/?1wC72b
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Figure 15: Prolonged HFD-feeding leads to increased number of oscillating transcripts.
(A) Phase sorted heatmap of all oscillating transcripts in liver from WT mice in control diet, both
diets, and HFD for ZT0-20. Rhythmicity was assessed with JTK Cycle (period = 24, BH q-value <
0.05, n=3) (B) Pie chart of the phase differences in transcripts that preserve oscillation in both diets.
(C&D) Normalized read counts (Rlog) for two rhythmic core clock genes in WT mice fed control (here
as LFD) or a high-fat diet.
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4.1.3 HFD induces more genes during the night and deregulates hepatic gene expression

To gain more insight into the altered gene expression after prolonged HFD we analyzed the

transcriptome of mice to identify the set of genes and the pathways that were disturbed by this

nutritional challenge. We mapped the reads to the mm9 mouse genome, and used DESeq2 (Love et

al., 2014) for differential expression analysis. We grouped our sample into two categories, day (ZT0,

ZT4, and ZT8) and night (ZT12, ZT16, and ZT20), respectively, and performed DGE analysis in each

group separately. We defined our model as expression_level ~ diet + time + diet:time, meaning that

we expect the expression levels to be influenced by the diet, time, and their interactions. Due to the

fact that mice are active and feed during the night, we saw more deregulated genes during the night

(1178) than during the day (497), as mice are nocturnal animals. However, almost 50% (213) of genes

of the day group were also deregulated during the night (Figure 16).

A B

Figure 16: HFD induces more genes during the night.
(A) Venn-diagram showing the number of deregulated genes between control and high-fat diet fed WT
mice during the “day” (ZT0, ZT4, and ZT8) and during the “night” (ZT12, ZT16, and ZT20). (B) Bar
plot showing the distribution of up- and down-regulated genes during the “day” and during the
“night”. Overlapping genes are included in both.

The analysis identified 128 up- and 85 downregulated genes that showed a significant effect both

during the day and the night. Their effect sizes during the two parts of the day were almost identical

(with a Pearson correlation coefficient of 0.98). The results from the Reactome pathway analysis are

presented in Figure 17. As shown, the metabolism of amino acids and derivatives was found to be

significantly enriched for all upregulated gene subsets (both at day, night, and their overlap).

https://www.zotero.org/google-docs/?IAhH62
https://www.zotero.org/google-docs/?IAhH62
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Additionally, the up-regulated genes unsurprisingly revealed enrichment in fatty acid metabolism, the

metabolism of vitamins and cofactors, as well as protein localization. Down-regulated genes were

linked to metabolism of carbohydrates and glucose metabolism.

Figure 17: Reactome pathway analysis of up- and down-regulated genes for the “day”, “night”
and their overlap.

Exclusively during the day, we had an additional 77 upregulated and 207 downregulated genes. Again

we performed Reactome pathway analysis on the up- and down-regulated set of genes separately. As

shown in Figure 17, activated genes were enriched for pathways involved in the metabolism of

steroids, (mitochondrial) translation, and as stated above, the metabolism of amino acids and

derivatives.

There were considerably more genes that were deregulated exclusively during the night, as we had

637 activated and 328 repressed genes in this subset of the significant results. The activated genes

were enriched for several pathways also associated with the daytime (and the overlapping) gene sets,

as well as TCA cycle, biological oxidations, etc. However, the set of repressed genes did not show any

significant enrichment in Reactome pathways after FDR correction, therefore they are not present in

Figure 17.

We repeated the DGE analysis also per time-point and the results are presented in Figure 18. Of note,

the number of deregulated genes does not represent unique genes, as some of them pop up as being
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differentially expressed in more than one time-point. The number of activated and repressed genes is

roughly the same for each time point. Overall, we observe much more deregulated transcripts during

the night time-points. Mice, being nocturnal animals, wake up around ZT12 and have their meal,

meaning that this shift towards ZT16, showing the most prominent changes in expression, is normal

and expected. After ZT16 the numbers of differentially expressed genes decreased. Interestingly, we

could observe a rise at ZT4, presumably because mice were fed ad libitum and had access to food

non-stop, meaning that we can not exclude the possibility that they had a “snack” at ZT0, right before

they go to sleep.

Description P-value FDR q-value
cell cycle process 9.08E-10 4.78E-06
mitotic cell cycle process 1.33E-09 3.51E-06
cell cycle 1.04E-08 1.82E-05
cell division 1.65E-07 2.18E-04
chromosome organization 3.45E-06 3.63E-03
Examples: Kifc1, Cdca8, Cdt1, Smc2 etc.

Figure 18: HFD induces more genes during the night time-points.
Bar plot showing the number of up- and downregulated genes for each time-point separately (left).
GO biological process annotation of DEGs at ZT16 (right).

GO biological process analysis revealed that downregulated genes at ZT16 were associated with cell

cycle process, cell division, and chromosome organization. As insulin stimulates anabolic processes

this is in line with downregulation of the mentioned pathways. The same analysis for the upregulated

genes found no significant enrichment after FDR correction. However, the best p-value was 5.96E-6,

and most of the genes, although not significantly, were enriched for signaling pathways involved

mainly in immune response, suggesting that the inflammatory mechanisms are stimulated by HFD.

This finding is not surprising as prolonged HFD was linked to inflammation.

Taken together, we found that HFD induces more deregulated transcripts during the night, with

metabolism of amino acids and derivatives, and fatty acid metabolism as being most prominently

up-regulated.
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4.1.4 ChIP and RNA-seq data integration identified HFD-induced GR target genes

We next examined how many of these genes are also bound by GR (gained GR peaks on HFD, from

the ChIP-data set, Figure 19). We saw more HFD-induced GR targets during the night than during the

day (Figure 20). For the day group almost 30% of the genes (=148) and for the night group, ~42% of

the DE genes (=469) were bound by GR. During the inactive phase, HFD-induced GR target genes

were associated with down-regulation of metabolism of carbohydrates and glucose, and up-regulation

of cholesterol biosynthesis, fatty acid, and lipid metabolism. During the night, when the corticosteroid

levels are the highest in nocturnal mice, the differentially expressed genes between the two diets, that

harbored a nearby gained GR peak, were again assigned to glucose, amino acid, lipid, and fatty acid

metabolism.

Figure 19: Venn diagram showing the number
of GR peaks during the night in the control diet
fed and HFD fed mice.
9354 peaks were newly gained in the HFD group.
Figure already published in (Quagliarini et al.,
2019)

Altogether, our data show that a prolonged HFD reprograms hepatic transcription primarily during the

active/feeding phase of the animals. In line with the increased number of GR ChIP peaks during the

night in HFD, the number of HFD induced GR targets was also higher during the night.

https://www.zotero.org/google-docs/?BFlXG3
https://www.zotero.org/google-docs/?BFlXG3
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A B

C D

Figure 20: Expression of HFD-induced GR targets is more prominent during the night.
(A) Heatmap of transcripts deregulated by HFD during the night (ZT12, ZT16, and ZT20) intersected
with the genes associated with the 9354 gained GR binding (see Figure 19). (B) Pathway annotation
for transcripts either up- or downregulated in HFD livers. (C) Heatmap of transcripts deregulated by
HFD during the day (ZT0,4,8) and associated with gained GR binding. (D) Pathway annotation was
performed for transcripts either up- or down-regulated in HFD livers. Differential gene expression in
livers from HFD fed and control wildtype mice was calculated by using DESeq2 (n=3, adj p<0.05) as
described. Figure already published in (Quagliarini et al., 2019)

4.2 Characterization of the genotype effect in RNA-seq data from WT and GR-LKO mice after

12 weeks on control diet

Integration of our results from the GR ChIP-seq data (Quagliarini et al., 2019) with published liver

cistromes for the core clock machinery revealed that the promoter or enhancer regions of all core

clock genes harbor GR peaks. To uncover GR’s contribution to diurnal rhythms, we profiled mRNA

https://www.zotero.org/google-docs/?T0oh9G
https://www.zotero.org/google-docs/?EHB1Pu
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expression in liver-specific GR knockout mice and their controls throughout the day (24 hours, 4-hour

resolution starting at ZT0 = 7 am) after 12 weeks on a control diet (Figure 21).

Figure 21: Graphical overview of the experiment.

4.2.1 Quality metrics of the raw data and mapping statistics

The quality of the raw data was again assessed with the fastQC tool and all samples passed the quality

control. Table S2 contains the mapping statistics and can be found in the supplement. As presented, all

samples had high percent of uniquely mapped reads (>73%). This time the average number of reads

per sample was 16 million.

4.2.2 Loss of GR alters rhythmicity, but core clock factors maintain oscillation

Similarly to the previous cohort, where we tested if the HFD influences gene oscillation, here we

tested for the effect of the genotype, i.e. what is the effect of GR loss on circadian rhythm. Having

RNA-seq data from WT and liver-specific GR knockout mice on a control diet, using the JTK Cycle

program, I was able to identify purely circadian genes, i.e. those that show a 24-hour oscillation. We

detected oscillating genes in each group separately. When comparing the two lists of rhythmic genes

in WT and GR-LKO, I could see that 1026 genes preserved, 2374 lost, and 697 gained oscillation in

the absence of GR (Figure 22A). Reactome pathway annotation revealed that genes that lost

oscillation in the absence of GR were mainly associated with metabolism of lipids and metabolism of

amino acids and derivatives (Figure 22C). Two examples of genes that lose oscillation are Lpin1 and

Foxo1. This is not surprising as both are known GR targets and their phase coincides with the peak of

glucocorticoids. Lpin1 is involved in triglyceride synthesis and the transcription factor Foxo1, plays a

critical role in hepatic glucose and lipid metabolism (Figure 22B) (Matsumoto et al., 2006; Reue and

Zhang, 2008).

https://www.zotero.org/google-docs/?cZE027
https://www.zotero.org/google-docs/?cZE027
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Figure 22: Loss of GR alters rhythmicity.
(A) Phase sorted heatmap of all oscillating transcripts in livers from WT and GR-LKO mice
throughout the day (ZT0, ZT4, ZT8, ZT12, ZT16, ZT20). Plotted are the VST normalized counts,
averaged over replicates and normalized per row. Rhythmicity was determined using JTK Cycle
(period 24, adj p<0.05, n=3). (B) Example of genes that lose oscillation. Plotted are the Rlog values
(normalized counts) over time in the WT and GR-LKO (n=3). (C) Reactome pathway analysis of
genes that lose oscillation in the absence of GR (FDR < 0.05). Figure (22A) already published in
(Quagliarini et al., 2019)

In the group of more than 1000 genes that were oscillating in both genotypes, I was able to identify all

members of the core clock machinery, meaning that the circadian clock remains intact despite the loss

of GR (Figure 23). Only Per1, another GR target gene, showed an amplitude dampening in the

absence of GR.
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Figure 23: Core clock not affected by GR loss, except Per1.
Example of two clock genes. Plotted are the Rlog values (normalized counts) over time in WT and
GR-LKO (n=3).

Reactome pathway annotation revealed that genes that preserved their rhythm in both genotypes were

involved in the following pathways: metabolism of lipids and lipoproteins, circadian clock, fatty acid,

triacylglycerol, and ketone body metabolism, and regulation of cholesterol biosynthesis by SREBP.

4.2.3 Majority of oscillating genes are bound by GR

By intersecting the lists of rhythmic transcripts with the list of genes that harbor a nearby GR peak

(peak list again from the ChIP-seq result) we saw that the majority of oscillating genes are bound and

regulated by GR. More precisely, 56.4% of genes that lost oscillation and 68.5 % of those that

maintain rhythmicity (Figure 24), were GR targets.

Figure 24: The majority of the oscillating
transcripts are bound by GR.
Phase-sorted heatmap of oscillating transcripts
in wild type (control) and GR-LKO livers for
ZT0-20 of GR targets. Rhythmicity was
determined using JTK Cycle (period 24, adj
p<0.05, n=3). Figure already published in
(Quagliarini et al., 2019)



49

4.2.4 Loss of GR causes amplitude dampening

As previously mentioned JTK Cycle outputs not only the list of rhythmic genes and their associated

significance value but also the phase, period and amplitude. Therefore, I checked how the amplitude is

affected by loss of GR over time. As seen in Figure 25, we found that the absence of GR in the liver

influences the amplitude of the oscillating transcripts. More exactly, we could observe a significant

amplitude dampening of rhythmic gene expression across all six time-points.

Figure 25: Loss of GR causes amplitude
dampening across all time-points.
Distribution of the amplitude over time in livers
from GR-LKO compared to their WT controls.
3,400 genes cycling in control mice were binned
according to peak time point (4 h). Values are
represented as mean ± SEM (n = 3 per group).
*p < 0.05, ***p < 0.001 (two-tailed t-test).
Figure already published in (Quagliarini et al.,
2019)

4.2.5 More differential expression at night

To further characterize the impact of GR loss, the DESeq2 Bioconductor R package was used to

detect differentially expressed genes during the day (ZT0, ZT4, ZT12) and during the night (ZT12,

ZT16, ZT20) between the WT and GR-LKO both on a control diet. Our findings were in line with the

results from the ChIP-seq, where we saw that GR genomic occupancy was higher during the night,

meaning that the ChIP-seq signal reflected the endogenous ligand availability (Figure 26A)

Accordingly, we detected more differential gene regulation during the night (1474) than during the

day (776) (Figure 26B). Interestingly, the majority (two-thirds, 515) of the transcripts deregulated

during the day were also deregulated during the night. We performed functional annotation of the up-

and down-regulated gene lists for both “day” and “night” groups. Genes involved in glucose

metabolism, gluconeogenesis, and synthesis of bile acids and bile salts were downregulated, while

triglyceride biosynthesis, fatty acid, and lipid metabolism were upregulated at night. The differentially

expressed genes during the day were assigned to down-regulation of the urea cycle and glucocorticoid
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biosynthesis and up-regulation of cell cycle, DNA replication metabolism of proteins.

A B

C

Figure 26: More differentially expressed genes during the night than during the day between
WT and GR-LKO on control diet.
(A) Venn diagram showing the number of GR peaks during the day (ZT0, ZT4, and ZT8) and night
(ZT12, ZT16, and ZT20) (based on data from ChIP experiments). (B) Venn diagram illustrating the
number of differentially regulated genes in GR-LKO during the day (ZT0, ZT4, and ZT8) and night
(ZT12, ZT16, and ZT20). Pathway annotation was performed separately for transcripts either up- or
downregulated in GR-LKO. Figures already published in (Quagliarini et al., 2019)

Differential gene expression analysis was also performed for each time-point separately. As seen in

Figure 27, there were more genes deregulated during the night time points than during the day time

points. The highest number of differentially expressed genes was found again at ZT16, 4 hours after

the beginning of the active/feeding phase of the animals and zenith of corticosterone levels. At ZT4

and ZT8 These numbers drop and reach the lowest amount during the day.



51

Figure 27: More differentially expressed genes
during the night time-points between WT and
GR-LKO on control diet.
Distribution of up and downregulated transcripts
over time. Differential gene expression between
GR-LKO and littermates was calculated per time
point with DESeq2 (n=3, adj p<0.05). Figure
already published in (Quagliarini et al., 2019)

4.3 Characterization of the diet and genotype effect based on RNA-seq data from WT and

GR-LKO mice after 12 week on HFD

In the previous two datasets, we were able to characterize first the diet (HFD) and then the genotype

(WT vs. GR-LKO) effect on rhythmicity and checked their time-dependent effect on gene expression.

As our main goal was to understand how GR transcriptional regulation is affected by a long term

nutritional challenge, we performed analogous RNA-seq experiments in mouse livers of

hepatocyte-specific GR knockouts and their littermates after 12 weeks on a high-fat diet. Again livers

were collected in biological triplicates, in 6 time points (ZT0, ZT4, ZT8, ZT12, ZT16, ZT20) (Figure

28).

Figure 28: Graphical overview of the experiment.

4.3.1 GR loss causes amplitude dampening also in HFD

By analyzing changes in transcripts rhythmicity after 12 weeks on a high-fat diet with JTK Cycle, we

again could see that hepatic GR depletion caused significant transcriptional dampening of circadian

amplitude across all six time-points (Figure 29). Almost the same number of genes lost and

maintained rhythmicity in the absence of GR in the HFD samples (Figure 30A). These observed

changes occurred despite similar mRNA expression of the core clock machinery itself (except for

Per1) (Figure 30B).
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Figure 29: GR loss causes amplitude dampening also in HFD
across all six time-points.
Amplitude distribution for ZT0–ZT20 in livers from GR-LKO
compared to WT controls on HFD. Values are represented as
mean ± SEM (n = 3 per group). Figure already published in
(Quagliarini et al., 2019)

A B

Figure 30: Same ratio of genes that lost and maintained rhythmicity on
HFD.
(A) Phase sorted heatmap of all oscillating transcripts in livers from control
and GR-LKO mice on HFD (ZT0-ZT20). Plotted are the VST normalized
counts, averaged over replicates and normalized per row. Rhythmicity was
determined using JTK Cycle (period 24, adj p<0.05), n=3. (B) Line plots of
the Rlog normalized counts of selected transcripts in livers from GR-LKO
and floxed littermates, fed both diets. Values are mean±SEM (n=3). Figure
already published in (Quagliarini et al., 2019)
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4.3.2 HFD-induced binding is reflected in the transcriptome

Differential gene expression was repeated again for the day and night groups separately. Once more,

we observed the same trend as in the control diet-fed group, that there were more deregulated

transcripts in GR-LKO during the night than during the day (Figures 31A). The analysis was repeated

also for each time-point separately (Figure 31B). The differentially expressed genes in the night group

were enriched for pathways including lipid, fatty acid, lipoprotein, and amino acid metabolism. In the

day group, the up-regulated genes could be associated with metabolism of lipids and lipoproteins,

fatty acid, lipid, and carbohydrate metabolism, while the down-regulated genes were linked to urea

cycle, lipoprotein metabolism, steroid hormones, and amino acid metabolism.

A B

C

Figure 31: More differentially expressed genes during the night between WT and GR-LKO
after 12 weeks of HFD.
(A) Venn diagram showing the number of differentially regulated genes in GR-LKO during the day
(ZT0, ZT4, and ZT8) and night (ZT12, ZT16, and ZT20). (B) Distribution of up and downregulated
transcripts per time-point. Differential gene expression between GR-LKO and littermates was
calculated using DESeq2 for each time point separately (n=3, adj p<0.05). (C) Pathway annotation
for transcripts either up- or down-regulated in GR-LKO during the day and during the night as
defined in (A). Figure already published in (Quagliarini et al., 2019)
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4.3.3 HFD-induced binding is functionally linked to gene expression

As we were interested if the HFD-induced binding events were also functionally relevant, we checked

the differential expression of the genes which harbored a nearby gained GR peak during the night. We

found that the absence of GR caused deregulation in over 400 gained targets. These genes could be

linked mainly to upregulation of lipid and fatty acid metabolism. The expression of gluconeogenic

genes like Pck1 and Pfkfb3 was reduced, while Cd36 and PPARγ, both known for their role in lipid

and fatty acid utilization and storage, showed increased expression (Figure 32).

C

A

B

Figure 32: HFD-induced binding is functionally linked to gene expression.
(A) Heatmap of differentially expressed transcripts in GR-LKO during the night (ZT12, 16, 20)
associated with ‘‘gained’’ (9,354) GR peaks from Figure 19. (B) Pathway annotation of the transcripts
either up- or downregulated in GR-LKO livers. (C) Examples of HFD-induced genes. Plotted are the
Rlog normalized counts for deregulated gluconeogenic (Pck1 and Pfkfb3) and lipid metabolism
(PPARγ and Cd36) transcripts in GR-LKO mice and controls fed both diets. Values are represented as
mean ± SEM (n = 3 per group); *p < 0.05, **p < 0.01, ***p < 0.001 (two-tailed t-test). Figure
already published in (Quagliarini et al., 2019)



55

4.4 Characterization of RNA-seq data from dexamethasone-treated WT mice after 12 weeks of

nutritional challenge

To further demonstrate that the increase in DNA-bound GR was a consequence of the nutritional

challenge or a related pathogenic effect and not dependent on the GR ligand availability, mice on both

diets were injected with a single dose of dexamethasone, an exogenous GR ligand. The Dex-treatment

was administered in two time points, at ZT0 (day, lowest endogenous GC levels) and ZT12 (night,

highest endogenous GC levels) respectively, and for ChIP-seq livers were harvested one, and for

RNA-seq 4 hours later (Figure 33).

Figure 33: Graphical representation of the experiment.
WT mice on both diets were injected with dexamethasone (an exogenous GR agonist) in two
time-points (ZT0 and ZT12), and livers were collected 4 hours later.

4.4.1 Quality metrics of the raw data and mapping statistics

Once again all samples passed the quality check. The mapping statistics are listed in Table S3 in the

supplement. To make sure that the Dex-treatment was successful, we first compared the injected mice

on both diets with their untreated littermates. The PCA was performed separately for the two groups,

day and night respectively. If we look at the group treated during the day with dexamethasone, we can

see that the first principal component, which captures 36% of the variance clearly separates the groups

by treatment. The second principal component with 24% separates them by diet (Figure 34). The

sample to sample distance heatmap confirmed the separation into 4 groups (seen along the diagonal of

the matrix) (Figure 34). When looking at the group treated during the night (when mice woke up), we

again observe similar trends. There is clear separation based on the treatment, however, when it comes

to diet, although PC2 captures again 24% of the variance and the low-fat diet group tends to be

positioned lower, and this separation is not so clear (Figure 35). This separation by the diet is more

evident at ZT4 when endogenous corticosterone levels are low. The two treatment-based clusters can
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be clearly recognized in the sample to sample distance heatmap, where we can distinguish the two

squares in the top left and bottom right part of the matrix (Figure 35).

Figure 34: Visualization of sample similarities.
On the left: PCA plot based on the VST-normalized counts of the Dex-treated and untreated samples
of both diets at ZT4. Mice were injected with dexamethasone at ZT0, livers were harvested 4 hours
later. On the right: sample to sample distance heatmap calculated as Euclidean distance between the
VST-normalized count vectors of the same samples.

Figure 35: Visualization of sample similarities.
On the left: PCA plot based on the VST-normalized counts of the Dex-treated and untreated samples
of both diets at ZT16. Mice were injected with dexamethasone at ZT12, livers were harvested 4 hours
later. On the right: sample to sample distance heatmap calculated as Euclidean distance between the
VST-normalized count vectors of the same samples.
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4.4.2 Ligand-independent reprogramming by HFD

The dexamethasone-treated mice showed increased GR ChIP signal intensity compared to untreated

controls at ZT0 as a consequence of increased occupancy in response to the ligand. In the HFD livers

this signal was even stronger (Figure 36A and 36B). Of note, both the number of GR ChIP-seq peaks

and the signal strength were increased upon HFD, confirming ligand level independent increased GR

occupancy.

In both the control and HFD fed groups, I also checked how many deregulated transcripts are between

the untreated and Dex-treated samples. As shown in Figure 36C there are more differentially

expressed genes in the HFD group than in the control diet fed group. This again supports the finding

from the ChIP experiment presented in Figure 36A and 36B.

A B

C

Figure 36: Ligand-independent increase in GR occupancy.
(A) Heatmap showing the genome-wide GR binding in both, control and Dex-treated livers, on control
and HFD. Dex was injected at ZT0, livers were collected 1 hour later. (B) Normalized distribution of
GR ChIP-seq tag density, corresponding to A. (C) Dex-induced differential expression in the control
(blue) and high-fat (orange) diets, and the overlap between the two sets shown in a Venn diagram.
Figure 36A and 36B were already published in (Quagliarini et al., 2019)
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When analyzing the RNA-seq data of the Dex-treated mice our goal was to compare the response to

treatment of the control and HFD fed mice, i.e. identify those genes whose log fold change due to

treatment is significantly different for the two diets. The analysis revealed several hundreds of

deregulated transcripts that responded differently to GR ligands on HFD during the day (Figure 37

upper part). As seen in Figure 37 (bottom part) the lists of down- and upregulated genes were

annotated separately. Genes involved in cholesterol biosynthesis, metabolism of lipids, and

lipoproteins were downregulated, while circadian rhythms, PPAR𝛼 signaling were upregulated during

the day. Among the genes showing reduced expression were Elovl1, involved in fatty acid elongation,

and Fabp5 which participates in fatty acid uptake, transport, and metabolism. Other genes like for

example the clock gene Cry1, the nuclear receptor Rora, the nuclear corepressor Ncor1 were

upregulated.

Figure 37: Ligand-independent genomic response on HFD during the day.
Volcano plot illustrating genes differentially responding to Dex treatment in HFD versus control
(adj.p-value < 0.05). Dex was injected at ZT0 and livers collected four hours later. Pathway
annotation of the up- and downregulated genes marked blue and red in the volcano plot. Figure
already published in (Quagliarini et al., 2019)

In the analogous experiment performed during the night, although the GR ChIP-seq signal was again

increased (Figure 38A), we did not observe major HFD-specific transcript changes in the

Dex-response, presumably because GR ligand levels are the highest at night (Figure 38B).
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Importantly, this dataset shows little change in gene expression, and did not reveal any functionally

enriched pathways.

A B

Figure 38: Ligand-independent genomic response on HFD during the night.
(A) Heatmaps illustrating GR genomic binding (using two different GR antibodies) in Dex-treated
livers on control and high-fat diet, with Dex injection occurring at ZT12 and chromatin being
processed 1 hour later. (B) Volcano plot illustrating genes differentially responding to Dex treatment
in HFD versus control (adj.p-value < 0.05), for mice injected with Dex at ZT12 and livers collected
four hours later. Figure already published in (Quagliarini et al., 2019)

However, we analysed the effect of HFD in the Dex-treated mice, by comparing the Dex-treated mice

on control diet with the Dex-treated on HFD, while controlling for the sampling time. We found 1352

genes that were upregulated and 1142 downregulated with respect to the control diet.

In conclusion, our data suggest that HFD is able to reprogram the cistrome in a ligand independent

manner.
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4.5 Characterization of the metabolomics data

To investigate significant differences in the metabolic profiles of mice under different dietary

conditions and genotypes, targeted metabolomics analysis on liver-specific GR knockout and WT

mice on both control and high-fat diet was performed. Measurements were taken in one time-point, at

ZT12, having three biological replicates per category (Figure 39). In total 405 metabolites were

measured using the AbsoluteIDQ® p400 HR kit from Biocrates (Table 2).

Figure 39: Graphical representation of the experiment.
Metabolite levels were measured in livers of WT and GR-LKO mice
on both diets at ZT12 with the targeted p400 kit from Biocrates.

Out of the 405 metabolites, 247 metabolites passed the quality control. The excluded metabolite

concentrations were split roughly equally between missing values and measurements below the limit

of detection. After data transformation, results were visualized in a PCA biplot (Figure 40), where we

can see that the first two principal components capture 24.7% and 19.4% of the variation. Replicates

cluster together and we observed a clear separation by diet, along the metabolites with the highest

loadings: PC(29:0) and SM(32:2).

Figure 40: PCA biplot of the metabolomics
samples.
The top 5 loadings are shown with blue
arrows. Here the control diet is denoted LFD.
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4.5.1 Metabolic adaptation to prolonged HFD feeding

In order to find significant metabolite expression differences between the groups, similarly to

differential gene expression analysis, I applied a linear model. The model was defined as: metabolite ~

diet + genotype + diet:genotype, meaning that we expect the metabolite level to depend on the diet,

genotype, and their combination. The FDR < 0.05 was used as a significance cutoff. The interaction

term did not obtain a statistically significant effect size for any metabolite, therefore the simplified

model was applied metabolite ~ diet + genotype. The list of metabolites that were significantly

differentially expressed is listed in Table 3 below. As we can see, 29 metabolites were identified as

significantly different, of which only 5 showed a genotype effect (PC(41:5), LPC(20:0), SM(39:2),

SM(34:1) and PC(31:1)), while the rest were significantly different between the two diets.

Metabolite Genotype Diet
Name adj. p-value adj. p-value

PC(41:5) 1.19E-09 6.80E-01
LPC(20:0) 1.48E-03 6.02E-02
SM(39:2) 2.79E-02 1.14E-01
SM(34:1) 2.79E-02 3.88E-01
PC(31:1) 3.03E-02 3.62E-01
PC(30:1) 1.34E-01 2.53E-05
PC-O(36:3) 2.83E-01 6.67E-05
SM(36:1) 8.31E-01 7.03E-05
PC(32:1) 4.74E-01 8.90E-04
PC(30:0) 3.44E-01 1.26E-03
AC(4:0-OH) 8.31E-01 1.46E-03
AC(4:0-DC) 5.61E-02 1.89E-03
LPC(20:3) 1.05E-01 1.89E-03
PC(34:1) 1.84E-01 5.38E-03
SM(32:1) 8.84E-01 5.38E-03
PC(29:0) 1.45E-01 1.75E-02
Histamine 4.88E-01 2.19E-02
CE(20:5) 1.05E-01 2.33E-02
t4-OH-Pro 3.96E-01 2.33E-02
PC-O(30:0) 9.55E-01 3.39E-02
PC(33:0) 5.34E-01 3.49E-02
PC(40:3) 4.02E-01 4.40E-02
PC(34:4) 6.56E-01 4.40E-02
LPC(16:0) 4.03E-01 4.45E-02
SM(32:2) 7.68E-02 4.69E-02
SM(30:1) 1.34E-01 4.69E-02
Cer(40:1) 1.80E-01 4.69E-02
Creatinine 8.09E-01 4.69E-02
DG(32:1) 9.69E-01 4.69E-02

Table 3: List of metabolites that display either a significant genotype or a diet effect.
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Two examples from each significance category are also visualized in the line plots below. Figure 41

for LPC(20:0), a member of lysophosphatidylcholines, and PC(41:5) represent significant examples

for the genotype effect. When we compare the measured metabolite levels in the control and HFD

within the two genotypes, we can not observe any significant differences.

Figure 41: Line plots showing two examples of metabolites having a significant genotype effect.
Plotted are the transformed metabolite levels in each sample.

Analogously, Figure 42 shows two examples of the diet effect. The measured metabolite levels are

significantly higher in the control diet for creatinine and in the HFD for histamine. However, there is

no significant difference between the genotypes in none of the diets. While there was a tendency to

show a genotype-dependent diet effect in both cases, the interaction was not statistically significant.

Figure 42: Line plots showing two examples of metabolites that have a significant diet effect.
Plotted are transformed metabolite levels for creatinine (C4H7N3O) and histamine (C5H9N3).
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To better understand the observed changes, as metabolites can be considered the phenotypic readout

of gene expression, we aimed to couple our findings with the results from the RNA-seq data of

matched samples. In order to overlay metabolite and transcript data, the MetaboAnalyst platform was

used, which enables integrative pathway analysis by coupling differentially expressed genes and

differentially expressed metabolites.

Because after FDR multiple testing correction only 29 metabolites were showing either significant

diet or genotype effect (Table 3), for the joint pathway analysis we considered all metabolites that had

a significant p-value < 0.05 (these metabolites are visualized in the heatmaps in Figure 43).

Although the integrative pathway analysis revealed four significantly enriched pathways (Table 4),

they contained hits only from the RNA-seq data, involving none of the metabolites. A reason for this

might be that before the pathway mapping is done, metabolite symbols are first converted into KEGG,

HMDB, or PubChem IDs, and roughly half of the metabolites had no corresponding IDs.

Pathway Total Expected Hits FDR
Retinol metabolism 44 1.70 8 1.42E-02
Terpenoid backbone biosynthesis 36 1.39 7 1.42E-02
Nitrogen metabolism 10 0.39 4 1.92E-02
Arginine biosynthesis 27 1.05 6 1.92E-02

Table 4: Significantly impacted gene-metabolite pathways.
Integrative pathway analysis on genes and metabolites, showing significant diet (upper pair) and
genotype (lower pair) effect at ZT12.
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Figure 43: Heatmaps of metabolites with a significant p-values < 0.05 for diet (left) and genotype
(right).
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4.6 Characterization of RNA-seq data from dexamethasone-treated WT mice for differential

transcript usage detection

The tissue-specific transcriptional regulation through GR is influenced by multiple interacting factors.

In order to get insights into GR interactome at chromatin level, we performed Chromatin

Immunoprecipitation coupled with mass spectrometry (ChIP-MS) experiments in mouse liver tissue

(Figure 44). The proteomics analysis showed a prominent enrichment of core spliceosomal

components and other associated factors.

In the last decades, it became clear that transcription factors can control gene expression not only

through transcription initiation, but also through other gene regulatory layers, such as splicing,

stability, and transport (Rambout et al., 2018). However, GR binding to mRNA or the spliceosome

and its control over the processing of the transcriptional targets is still unexplored. We investigated

GR’s effect on differential transcript usage.

Figure 44: The Glucocorticoid Receptor
and the splicing machinery.
GR transcriptional complex was
immunoprecipitated and analyzed by
ChIP-MS; components of the spliceosome
were functionally annotated using KEGG
categories.

https://www.zotero.org/google-docs/?WAKA3x
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In order to test our hypothesis that dexamethasone induces not only differential gene expression but

also influences splicing, we analyzed a subgroup of the RNA-seq data from our

dexamethasone-treated cohort. We aimed to identify whether there are differences in the composition

of gene isoform abundances between conditions.

Figure 45: Graphical representation of the experiment.
Wild type mice after 12 weeks on a control diet were injected with dexamethasone in two time-points
and liver samples were collected 4 hours later.

The mice used for this analysis were all WT mice on a control diet, untreated controls and their

littermates injected with dexamethasone in two time-points at ZT0 and ZT12, respectively. Livers

were collected 4 hours later (Figure 45). We had three biological replicates for the day group and two

for the night group. The data were analyzed first with the DEXseq Bioconductor R package and then

with SUPPA2, developed in Python. While both programs are able to detect DTU, SUPPA2 can also

be used to calculate differential splicing for alternative splicing events, where the local alternative

splicing events are standard local splicing variations.

4.6.1 Dexamethasone-induced differential transcript usage is more prominent during the night

As already mentioned, differential transcript usage refers to changes in the abundance of individual

transcripts, compared only to transcripts of the same gene.

As presented in Figure 46A, when running DEXseq we detected over 300 genes that show evidence

for DTU in the day group, and three times more, around 900, in the night group. More precisely, there

were over 300 genes whose individual transcripts showed significantly different abundance between

the control and the Dex-treated group.
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Figure 46: More Dex-induced DTU during the night than during the day detected with DEXseq.
(A) Venn-diagram showing the number of genes that show Dex-induced DTU during the day (ZT0,
ZT4, ZT8, marked in white) and night (ZT12, ZT16, ZT20, marked in light gray). (B) Venn-diagram
showing the distribution of the transcripts of the overlapping (93) genes.

Figure 47: Representative
Sashimi plot of the gene
Rab34.
Dex induces other transcripts
of the Rab34 gene during the
night than during the day. Four
Dex-treated samples are shown
(2 night, 2 day). Numbers
represent reads across different
splice junctions.

When we further checked how many of these genes are present in both day and night groups, we

found 93 genes overlapping between the two datasets. Out of the 93 genes that show time-independent

Dex-induced DTU, there were 18 genes that differ in their transcripts, meaning they expressed other

transcripts differentially during the day than during the night. As seen in Figure 46B, these 18 genes
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have 34 transcripts that show DTU during the day and 41 during the night. Figure 47 presents an

example gene, Rab34, which is from the list of 18 genes described before.

Figure 48: More dexamethasone-induced DTU during

the night than during the day detected with SUPPA2.

Venn-diagram showing the number of genes that show

Dex-induced DTU during the day (ZT0, ZT4, ZT8, marked in

white) and night (ZT12, ZT16, ZT20, marked in light gray).

Additionally to DEXseq I also run SUPPA2 on the same datasets, to study splicing at the transcript

isoform and at the local alternative splicing event level. When running the alternative DTU-detection

program, we observe again that there are significantly more genes that show DTU during the night

than during the day as presented in Figure 48. We saw that almost half of the “day” Dex-induced DTU

genes (262) are shared with the night group.

4.6.2 A shortlist of high-confidence genes was identified, where dexamethasone induced

differential transcript usage

By intersecting the results of DEXSeq and SUPPA for both day and night, the aim was to detect those

highest confidence genes which show a consistent DTU response to dexamethasone treatment. From

the list of the 46 genes in the overall intersection (see Figure 49), I subtracted those which used

different transcripts during the day and the night (according to both DEXSeq and SUPPA). This way

we found a set of 42 genes that show consistent Dex-induced DTU. GO biological process analysis of

these genes identified enriched terms involved in metabolic process, organic substance metabolic

process, etc.
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Figure 49: Overlaps and differences
between genes identified by SUPPA and
DEXSeq as showing DTU during the day
and the night.
46 genes were found by both methods as
showing Dex-induce DTU in a time
independent manner.

Description FDR q-value
metabolic process 2.60E-04
organic substance metabolic process 4.13E-03
cellular metabolic process 9.68E-03
small molecule metabolic process 1.32E-02
primary metabolic process 1.06E-02
suckling behavior 1.25E-02
catabolic process 2.14E-02
cellular catabolic process 2.78E-02
carboxylic acid metabolic process 3.69E-02
small molecule catabolic process 3.60E-02
oxoacid metabolic process 4.65E-02

Table 5: Significantly enriched GO categories of the 46 overlapping genes found by both
DEXSeq and SUPPA that showed Dex-induced differential transcript usage.

By performing the functional classification of these genes through the PANTHER web service, we can

see that a majority of them fall into the metabolite interconversion enzyme protein class (Figure 50).

Only 28 of the genes were annotated in the ontology.

As seen in Table 5 most genes (e.g. Ppm1b and Mat1a) were involved in a broad range of metabolic

processes. Examples of genes from the list include Dek, Nqo2, and Plin5. Dek is a known onco target

gene, and it was shown that its loss induces genome instability and sensitizes cells to DNA

double-strand breaks. Nqo2 is mainly involved in detoxification pathways (Mandal et al., 2012), while

Plin5 was shown to have a protective role against hepatic lipotoxic injuries induced by the hepatitis C

virus (Zhang et al., 2019).

https://www.zotero.org/google-docs/?o9sil8
https://www.zotero.org/google-docs/?PVERCb
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Figure 50: Distribution of the 46 overlapping genes over protein classes from the functional
classification performed by PANTHER.
Only 28 of them were annotated in the ontology.

4.6.3 Event-based analysis shows the same ratio of event types during the day and during the

night

When running SUPPA on the splicing events instead of a transcript-level analysis, differentially

occurring event types were identified in 562 genes during the day (an example result for the Rhbdd2

gene is shown in Figure 51) and 1162 during the night. We compared the results between day and

night and checked the proportions of different splicing events. We observed no significant differences

in the distribution of events between the two groups, suggesting that dexamethasone-induced splicing

influences the same events in a time-independent manner (see Figure 52).
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Figure 51: Boxplot representing the PSI
values of different splicing event types
identified to be different between WT and
Dex-treated mice in the Rhbdd2 gene during
the day.
SUPPA2 events: alternative first/last exons
(AF/AL), skipping exon (SE).

Figure 52: Differentially occurring splicing events during the day (left) and during the night
(right) show a similar distribution of event categories.
SUPPA2 events: skipping exon (SE), alternative 5'/3' splice sites (A5/A3), mutually exclusive exons
(MX), retained intron (RI), alternative first/last exons (AF/AL).

The distribution of event categories follows the expected proportions between the events. In higher

eukaryotes, selection of alternative 5'/3' splice sites (A5/A3) occurs in 18% and 8% of cases,

respectively (Mehmood et al., 2019). Intron retention, while common in plants, fungi, and metazoa,

constitutes only 5% of the alternative splicing events in higher eukaryotes (Kim et al., 2008). Exon

skipping (including SE, AF, and AL) is rarely observed in lower eukaryotes, but it is the most frequent

one in higher eukaryotes, representing around 40% of all event types (Alekseyenko et al., 2007;

Sugnet et al., 2003).

https://www.zotero.org/google-docs/?CH5w9g
https://www.zotero.org/google-docs/?347bNI
https://www.zotero.org/google-docs/?MBu8Mq
https://www.zotero.org/google-docs/?MBu8Mq
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5. Discussion

5.1 Biological interpretation of the results

In this thesis, I analyzed and integrated multiple types of omic data in an attempt to better understand

GR’s contribution to diurnal rhythms in the context of prolonged high-fat and control diet feeding.

Using circadian hepatic GR ChIP-seq and RNA-seq data coupled with targeted metabolomics data at

ZT12 we were able to identify components relevant in the circadian hepatic response to HFD

consumption. We could show that rhythms and amplitude stability depend on GR, as hepatic GR

depletion leads to loss of oscillation in the majority of the genes and causes an amplitude dampening

of rhythmic gene expression across all six time-points. However, the rhythmicity of clock genes was

not affected in the liver-specific GR knockout mice, except for Per1. Interestingly we found that more

than half of the oscillating genes harbored a nearby GR peak. Additionally, we could show that the

increased DNA-binding of GR in the HFD group was ligand-independent and diet-induced. Moreover,

we detected significant metabolic adaptation to prolonged high-fat diet feeding. Finally, we could link

GR to splicing, by detecting dexamethasone-induced differential transcript usage.

5.1.1 Prolonged HFD feeding reprograms the hepatic circadian clock

The liver is considered as being the body’s metabolic hub, which is able to connect metabolically

different tissues, from adipose tissue, brain to skeletal muscle. Transcription factors and nuclear

proteins tightly regulate the hepatic energy metabolism that involves mainly carbohydrate, lipid, and

protein metabolism (Rui, 2014). Endogenous dysregulation as well as exogenous perturbations can

cause metabolic imbalance. Accumulating evidence supports the fact that nutritional stress, like

prolonged HFD feeding, altered feeding patterns, etc., can cause circadian disruption in hepatic

peripheral clocks, which results in obesity, type 2 diabetes, insulin resistance, etc. (Arble et al., 2009;

Eckel-Mahan et al., 2013).

Feeding a HFD to mammalian models for several weeks leads to the reprogramming of the liver’s

transcriptional and metabolic response and mice develop diet-induced obesity and even

hepatosteatosis (Wang et al., 2016). The adaptive changes to nutritional cues include reprogramming

of genes involved in glucose and lipid metabolism, elevated levels of circulating free fatty acids,

elevated TG levels in the liver, increased inflammation, disruption of the circadian clock in the liver.

https://www.zotero.org/google-docs/?uXUBEC
https://www.zotero.org/google-docs/?Ms6bXY
https://www.zotero.org/google-docs/?Ms6bXY
https://www.zotero.org/google-docs/?cZxb6z
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Using circadian RNA-seq data from livers of WT mice after 12 weeks on a control or a HFD, we

explored the effects of the prolonged nutritional challenge on the circadian transcriptome. We have

demonstrated that HFD-induced transcriptional remodeling consists of the following changes: (i) HFD

induces a massive increase of de novo oscillating transcripts; (ii) majority of genes that preserved

oscillation show phase advancement in the HFD group; (iii) the rhythmicity of clock genes is

preserved.

Published data are only partially in accordance with our results. While (Eckel-Mahan et al., 2013)

found approximately the same amount of genes that preserved oscillation as we did (775 vs. 675 in

our dataset), they had much more genes that lost oscillation after a HFD feeding than genes that

gained oscillation (1394 and 654). We found the opposite, the number of newly oscillating genes was

strikingly high (2207) in comparison to those that lost oscillation (275). However, a thorough look at

the genes that kept oscillation in both groups revealed the same: the majority of oscillating genes were

phase-shifted by HFD. Eckel-Mahan and colleagues found that 66% of genes that preserved

oscillation were phase-shifted, while we observed the same in 61% of the cases. Also, we both found

that this phase shift is mostly a phase advancement. Pathway annotation linked these genes to

“circadian clock”. This finding, together with the fact that the circadian clock genes preserved their

oscillation, underscores the robustness of the core clock genes in face of external perturbations.

Although the main findings of the two studies were in line, there was still a high discrepancy in the

number of genes that were newly oscillating in our HFD group. However, one can identify many

aspects that were distinct in the two approaches and could lead to the observed differences. First of all,

they employed microarrays while we used RNA-seq as quantitative technology. They fed animals

with a normal chow diet, while we had a control diet. Moreover, the used HFDs were not identical.

Their mice were on this diet for 10 weeks, while ours for 12 weeks in total. Additionally, the

parameter settings used in the analysis were different. While we allowed only strict periods of 24

hours, they set the period window to be between 20-28 hours. Interestingly, I also tested a larger range

for the period, and this resulted in less oscillating transcripts in each category (gained, lost and

maintained oscillation). Another important difference was the used significance cutoff. We defined

our significance cutoff as < 0.05 after Benjamini-Hochberg correction, while they used p < 0.01.

All in all, we can conclude that while both groups studied the same research question, a dearth of

methodological differences can accumulate to large differences in the results, not to mention the

random effects resulting in false discoveries. Not only does the experimental setup influence the

output, but also the performed analysis steps, involving different parameter settings, used thresholds,

number of replicates, batch effect corrections, and sometimes the version of the used program as well;

https://www.zotero.org/google-docs/?kRAkrJ
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with the latter variable being very hard to detect and judge for its impact. While exact reproducibility

can not be achieved, careful documentation of the study’s steps and performing meta-analyses over

multiple studies are the only way to ensure high-certainty results.

5.1.2 HFD increases the number of deregulated transcripts during the night and affects fatty

acid metabolism

To investigate the high-fat diet-induced dysregulation of hepatic transcriptome the same cohort was

further analyzed. We aimed to understand the effect of HFD on gene expression and to identify

disturbed metabolic pathways. Our analysis found twice as many genes that were differentially

expressed during the night than during the day, in accordance with the ChIP-seq results on increased

GR binding during the night. This result is expected, given the fact that mice are nocturnal animals

and the circadian peak in GCs release is bound to the active phase of the animal. Physiologically, GCs

play a crucial role in maintaining blood glucose during periods of stress or fasting and the entrainment

of metabolic programs in peripheral tissues. The liver, being a central organ in the handling of energy

homeostasis, is a major target for GCs signaling.

Almost half of the deregulated transcripts from the day group were shared with the night group.

Pathway annotation revealed that the up-regulated genes in the overlap were associated with fatty acid

metabolism (e.g. Acsl1 - involved in lipid synthesis, and Acox1 - the first enzyme of the fatty acid

beta-oxidation pathway), metabolism of amino acids and derivatives metabolism of vitamins and

cofactors, and protein localization.

5.1.3 The increased GR binding induced by HFD is functionally relevant

In our circadian GR ChIP-seq experiments in mouse livers after 12 weeks of control and high-fat diet,

we observed a circadian pattern for GR binding aligned with its ligand availability (i.e. much more

binding during the night). Interestingly, in the HFD-fed group, this general pattern was preserved, and

additionally, we saw a massive increase of de novo binding sites during the night (Quagliarini et al.,

2019), as shown in Figure S2. RNA-seq data analysis also showed much more deregulated

HFD-induced transcripts during the night (Figure 10). Interestingly, we found that almost half (~42%)

of the HFD-induced deregulated transcripts during the night were direct GR targets.

Genes involved in the following pathways were upregulated during the night:

https://www.zotero.org/google-docs/?d0Y9vQ
https://www.zotero.org/google-docs/?d0Y9vQ
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● lipoprotein secretion and lipid and cholesterol efflux (Abca1, Abcb11, Apoa1, Cyp7b1, Saa4),

● fatty acid beta-oxidation (Acat1),

● intracellular fatty acid transport (Fabp5),

● and fatty acid and sterol synthesis, modification and elongation (Acsl5, Elovl3, Fads2,

Hsd17b12, Sc5d).

Additionally, we identified the following HFD-induced GR targets that were downregulated:

● stearoyl coenzyme A desaturase 1 (Scd1), encoding the catalyst of a rate-limiting step during

unsaturated fatty acid synthesis,

● polyunsaturated fatty acid (PUFA) epoxygenases (Cyp2c29, Cyp2c37, Cyp2c38, Cyp2c39),

● enzymes of the urea cycle (Arg1, Asl, Ass1).

Of note, all the above-reported changes were also detected in a study conducted by Toye and

colleagues (Toye et al., 2007), who studied liver transcriptomics with the aim to identify changes in

gene expression associated with HFD-induced non-alcoholic fatty liver disease (NAFLD) in 129S6

mice. Taken together, our findings underscore the link between HFD-feeding, GR, and potentially

NAFLD which could be an interesting direction for future research, as it was shown that both the

down- and up-regulation of GR has an aggravating effect on NAFLD pathology (Koorneef et al.,

2018).

5.1.4 Rhythm and amplitude stability depend on GR, while the core clock is unaffected

Metabolic processes in the cell are regulated by the molecular circadian clock and metabolic

homeostasis requires the alignment of these clocks between tissues. Environmental cues, like for

example high-fat diet feeding, fasting, etc., are able to induce misalignment in peripheral clocks as

they are very sensitive to nutritional changes. Altered rhythms, mainly phase shifts, can cause the

disruption of the normal circadian cycle and have severe clinical implications on metabolism,

resulting mainly in cardiometabolic disorders.

Although it is known that the glucocorticoid receptor plays a crucial role in the synchronization of

peripheral clocks, our group was the first to study its contribution to diurnal rhythms on a genomic

scale.

By profiling mRNA expression in both GR-LKO and WT mice throughout the day after 12 weeks on

a control diet we could assess the effect of hepatic GR depletion on circadian rhythm. Our analysis

https://www.zotero.org/google-docs/?gXqBkB
https://www.zotero.org/google-docs/?duVLf1
https://www.zotero.org/google-docs/?duVLf1
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revealed that loss of GR leads to rhythmicity loss in the majority of genes. A thorough look at the

amplitude of these genes showed that hepatic GR is required for amplitude stability. Data integration

of the list of GR ChIP peaks with the RNA-seq data revealed that the majority of diurnally oscillating

genes are direct GR targets. More than half of the genes that lost oscillation were bound by GR,

therefore it was not surprising to see lost oscillation in genes like e.g. Lpin1 or Foxo1 that are known

GR targets.

Detecting all members of the core clock in the list of genes that maintain rhythmicity, suggests that

GR contributes to circadian rhythm synchronization of downstream target genes together with core

clock factors.

5.1.5 More differential expression at night

The same samples as before were also used to detect how GR loss influences the transcriptional

outcome in a time-dependent manner. Differential expression analysis for the day and night samples

was performed separately. Once more our results were in line with the findings from the ChIP-seq

data analysis, where we observed much more binding during the night than during the day. Functional

annotation of the up and downregulated gene lists showed that genes upregulated at night were

associated with lipid, fatty acid, and triglyceride metabolism, while downregulated genes were

involved in glucose metabolism. Our findings suggest that glucocorticoids govern nutrient partitioning

and substrate utilization during daily cycles of feeding and fasting.

5.1.6 HFD-induced cistromic reprogramming of the GR response is reflected in the

transcriptome

Previous studies have investigated the link between HFD and epigenome and found that HFD

increased H3K27 acetylation and DNaseI hypersensitivity (Siersbæk et al., 2017). Our ChIP-seq

profiles for H3K27ac also showed an increased signal in the HFD group and although the difference

was minimal, yet associated with gained binding. This increased chromatin accessibility might

contribute to the observed increase in GR DNA occupancy upon HFD feeding.

By studying the relationship between GR, circadian rhythm, and HFD, in analogous experiments in

WT and GR-LKO mice after 12 weeks on HFD, we observed the same trend as in the control diet fed

group. Again, there were more deregulated genes between the GR-LKO and WT during the night than

https://www.zotero.org/google-docs/?bjhyU7
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during the day. Downregulated genes in the night group were enriched for pathways including

lipoprotein metabolism, metabolism of amino acids, and derivatives, while upregulated genes were

mainly associated with metabolism of lipids and lipoproteins. By testing whether the HFD-induced

binding events are functionally relevant we detected more than 400 genes that were deregulated in the

absence of GR and harbored a nearby GR peak. Upregulated genes were associated with lipid and

fatty acid metabolism and downregulated ones with metabolism of fat-soluble vitamins and urea

cycle.

Investigation of the combined genotype-diet (i.e. GR loss and HFD) effect on transcripts rhythmicity

revealed once more that the core clock genes remained unperturbed. We saw a significant amplitude

dampening in all six time-points for those genes that lost oscillation in the absence of GR. However,

this time the number of genes that lost and preserved oscillation was roughly the same.

Overall our results underscore the role of GR in generating rhythmic outputs and emphasize the link

between the mammalian circadian clock and metabolism.

5.1.7 Cistromic reprogramming by HFD is ligand-independent

By injecting mice on both diets with dexamethasone (an exogenous GR agonist) at ZT0 and ZT12, the

nadir and zenith of the endogenous GC levels, we could demonstrate that the observed increase in

DNA-bound GR is indeed a consequence of the HFD and did not depend on ligand availability.

Acute dexamethasone injection in WT mice during the day lead to a significant number of deregulated

transcripts. For example the mRNA expression of genes like Fabp5, Elovl1 was downregulated while

Hes1, Lpin2, and Cry1 were upregulated between the Dex-treated control and HFD-fed groups.

Lipin2 (Lpin2) is involved in controlling the metabolism of fatty acids at different levels (Csaki and

Reue, 2010). Fatty acid-binding protein 5 (Fabp5) participates in fatty acid uptake, transport, and

metabolism by binding long-chain fatty acids (Senga et al., 2018), while Elovl1 encodes the

elongation of very long chain fatty acids protein 1 (Ofman et al., 2010).

Our findings might have broad consequences for patients on glucocorticoid treatment, as one could

expect to see a different response to the treatment in obese individuals.

https://www.zotero.org/google-docs/?hKuk61
https://www.zotero.org/google-docs/?hKuk61
https://www.zotero.org/google-docs/?mT3eFE
https://www.zotero.org/google-docs/?BKB6xt
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5.1.8 Metabolic adaptation to prolonged high-fat diet feeding

Performing targeted metabolomics in livers of WT and GR-LKO mice on both diets we were able to

detect differences in the metabolic profile of mice. We captured the significant diet and genotype

effects and could show that the most prominent changes are induced by the long-term HFD feeding,

the most changes being detected in the levels of phosphatidylcholines followed by sphingomyelins.

Our findings are in line with the literature, as it was shown that HFD leads to elevated levels of

sphingomyelin in the liver, skeletal muscle, adipose, and cardiovascular tissues (Choi and Snider,

2015). Moreover, HFD induces de novo sphingolipid synthesis that contributes to systemic insulin

resistance and altered lipid accumulation (Turpin et al., 2014). Additionally, abnormal sphingomyelin

levels were found in obesity-induced atherosclerosis (Li et al., 2005). Besides sphingomyelins also

Cer(40:1) was found as significantly different. Interestingly, the literature review in (Choi and Snider,

2015) suggests species-dependent roles of ceramides in the regulation of energy metabolism.

Another metabolite that was found to have significantly different levels in the control and HFD was

histamine. Histamine is a biogenic amine known to play an important role in the inflammatory

response and allergies (Wood, 2006). The enzyme histidine decarboxylase (HDC) decarboxylates the

amino acid L-histidine to form histamine. Accordingly, studies showed that plasma histamine levels

were decreased in Hdc gene-deficient mice (DeChiara et al., 1995). Moreover, it has been shown that

histmanine can regulate appetite, and promote biliary damage and hepatic fibrosis (Francis et al.,

2008, 2007). Interestingly, Kennedy and colleagues showed that by knocking out the Hdc gene, mice

receiving a high-fat diet were protected from hepatic fibrosis and cholangiocyte damage (Kennedy et

al., 2018).

As we saw that adaptation to HFD included changes in genes associated with glucose and lipid

metabolism, we expected to observe changes also in the metabolic profiles of these mice. By

integrating our metabolomics results with our RNA-seq data of matched samples we found pathways

that were significant, however, none of them contained significant gene/metabolite combinations.

However, this could be a limitation of the annotation complexity and enrichment computation of

MetaboAnalyst, since it did not even identify the simple Histamine-HDC connection described above.

On the other hand, a major drawback of this study was that we investigated a small cohort, only 3

biological replicates for each diet/genotype category. Larger sample size would definitely increase the

reliability of the analysis. To verify if results are reproducible, the measurements could be repeated,

and a meta-analysis performed. Furthermore, our analysis was limited by the measurement method.

Using a targeted metabolomics kit, that is suitable for capturing changes in the lipids, introduces a

https://www.zotero.org/google-docs/?if49P1
https://www.zotero.org/google-docs/?if49P1
https://www.zotero.org/google-docs/?a6z3Wb
https://www.zotero.org/google-docs/?BsRVmI
https://www.zotero.org/google-docs/?jHWIOr
https://www.zotero.org/google-docs/?jHWIOr
https://www.zotero.org/google-docs/?8Pt1p9
https://www.zotero.org/google-docs/?bySitt
https://www.zotero.org/google-docs/?mNBjjd
https://www.zotero.org/google-docs/?mNBjjd
https://www.zotero.org/google-docs/?Nkgb02
https://www.zotero.org/google-docs/?Nkgb02
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strong bias in the detection of metabolite changes. Further investigations should aim at using an

untargeted approach that would uncover more significant differences. Additionally, as we know that

metabolite levels change rapidly, it would be interesting to see measurements at a better time

resolution, not only at ZT12.

Despite these limiting factors, our results confirm that metabolic adaptation occurs as a response to

prolonged HFD feeding.

5.1.9 Results of the differential transcript usage analysis were verified experimentally

Differential transcript usage (DTU) can be seen as isoform switches when different isoforms are

expressed in different conditions. In some cases, changes can not be seen at the gene level, as the total

gene expression level may not change, however, the DTU is of biological importance. Most

commonly DTU is observed when comparing expression across cell types. It was shown in (Reyes

and Huber, 2018) that half of all expressed genes had tissue-specific isoforms, based on the analysis

of the Genotype-Tissue Expression Project (GTEx) dataset (GTEx Consortium et al. 2017). Some

DTU patterns seem to be more common for specific diseases. For example, protein domain losses

(mainly those involved in protein-protein interactions) were found to be a specific DTU pattern in

cancer (Vitting-Seerup and Sandelin, 2017). While in the case of this cancer study the identified genes

were also more likely to be mutated, the resulting DTU patterns were indicative of survival,

suggesting functional results of the transcript usage. Therefore, identifying whether there are

differences in the composition of a gene’s isoform abundances between conditions is a great way to

complement the “classical” differential gene expression analysis, even in the case of “natural”

variation induced by HFD, as this could result in biologically relevant consequences as well.

Using a small cohort of dexamethasone-treated mice and their controls we were able to find a list of

genes that were “high confidence”. This means that these genes were found to show

dexamethasone-induced differential transcript usage in both day and night group and were detected by

both methods, DEXseq and SUPPA2.

As part of a bachelor’s thesis (Zwang, 2020), we tested several candidates (Dek, Nqo2, Ndfip1,

Ppm1b, and Derl2) from our high-confidence gene list among others found only during the day by

DEXseq. Our student was able to experimentally validate Ppm1b as showing dexamethasone-induced

differential transcript usage (Figure 53). However, this is only a first step before attempting to infer its

biological meaning. Unfortunately, Dek, Nqo2, Ndfip1, and Derl2 ended up having disqualified

transcripts after the quality control of primers.

https://www.zotero.org/google-docs/?fCW5yz
https://www.zotero.org/google-docs/?fCW5yz
https://www.zotero.org/google-docs/?wC8SIF
https://www.zotero.org/google-docs/?EDz85V
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Figure 53: Representative Sashimi plot of
liver RNA-seq coverage, showing the
numbers of reads across different splice
junctions of the Ppm1b gene.
The asterisk denotes an exon which is
differential in response to Dex.

Nonetheless, understanding the link between the Derl2 gene and GR would be interesting. GO

biological process annotation of the “high-confidence” list found Derl2 (Derlin-2) to be significantly

associated with organic substance metabolic process, cellular metabolic process, primary metabolic

process, and the (cellular) catabolic process subcategories. Interestingly, Derlin-2-/- mice were found

to not develop hypoglycemia after starvation and refused to feed (Dougan et al., 2011). Additionally,

Derl2 is upregulating the protein quality control pathway required for the development of hepatocytes.

However, conditional knockout experiments conducted by Dougan and colleagues showed unaffected

hepatocyte function after liver-specific deletion of Derlin-2. On the other hand, this gene is conserved

from yeast to human, and its human ortholog (97.9% similarity) was found to be upregulated in

human liver cancer (Ying et al., 2001). Further biological studies to elucidate the interplay between

Derl2, HFD, and GR is an interesting avenue for follow-up research.

5.2 Computational biology considerations

Increasingly, omic approaches are being recognized for their utility as each type of omic data provides

a glimpse on a particular regulatory level. However, the integration of these heterogeneous results into

a sound statistical framework, for testing a large number of hypotheses, can be challenging. To

increase the sensitivity of the analysis methods and the robustness of the results, more dense sampling

of the timepoints and more replicates would be needed for some of the methods. However, the

presented procedures ensured that the results were statistically significant, and the multi-omics

integration gave strong clues about biological relevance and causative relationships, as discussed

above. Here I will discuss four specific computational biology issues that were relevant during the

interpretation of the results.

https://www.zotero.org/google-docs/?C30V95
https://www.zotero.org/google-docs/?pZoB5N


81

5.2.1 Computational bottlenecks

During processing the data I encountered several limiting obstacles, due to the large file sizes and

complex processing steps. While most steps could be run on a standard laptop, having access to a

multi-core server or cluster provides a great speed-up through allowing for parallel processing of the

samples. The one step where using a non-standard PC was required was the alignment, which required

excessive amounts of memory (around 30GB RAM per sample along with hundreds of GB of storage)

and parallel processing for practical runtimes.

In cases where sample sizes are large (in the hundreds or thousands), DGE and DTU analysis can also

take a long time to process, and efficient k-mer based approaches like iMOKA might be a more

suitable choice (Lorenzi et al., 2020). While big data collections are becoming commonplace, the

circadian dataset sizes are strongly lagging this trend (Sun et al., 2020). However, future research is

expected to produce larger datasets in this domain as well, making the analysis steps over all samples

at all time-points challenging with standard hardware. This is especially true for novel deep learning

approaches, that currently require specialized GPU clusters to train, and high-end GPU cards to use

the learned models for inference.

5.2.2 Statistical significance versus biological relevance

Best practices on the use of statistical testing are well established in the computational biology field,

and are implemented and performed automatically in most software tools. In the case of combining

results over multiple steps or experiments, however, the task of correctly accounting for multiple

hypothesis tests lies with the users. Therefore, special care has to be taken when integrating results

from multi-omics data.

Generally, when identifying significant differences across time-points and conditions, the

data-specific testing procedures evaluate the null hypothesis of no difference between groups, in

accordance with the assumed underlying distributions of the data. The obtained p-values can be

thresholded to filter out tests where the log fold-changes were not significantly different than zero,

thus limiting the probability of false positives. But in order to account for the multiple tests performed

in parallel, the number of type I errors (i.e. incorrectly rejected null hypotheses) has to be controlled,

limiting the family-wise error rate (the probability of making at least one type I error).

https://www.zotero.org/google-docs/?f3isXs
https://www.zotero.org/google-docs/?iOcGro
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One such correction method is the Bonferroni correction (Bland and Altman, 1995), which works by

adjusting the significance threshold to ensure that their sum over all performed tests adds up to the

significance level ɑ. While this approach is directly controlling the family-wise error rate, it is too

conservative, and, in practice, false discovery rate (FDR) controlling procedures are used instead. The

FDR also represents the number of false positives (falsely rejected null hypotheses), but as a

proportion among all results that were declared significant (all rejected null hypotheses).

The most common method to control the FDR is the Benjamini–Hochberg procedure (BH step-up

procedure), which is also implemented in edgeR and DESeq2 (Benjamini and Hochberg, 1995). The

resulting adjusted p-values (i.e. q-values) can then be thresholded to a desired level of significance.

However, the interpretation of q-values has an important distinction with regard to that of the regular

p-values. As discussed above, a 5% cutoff in the case of p-value means that 5% of the total number of

tests will result in a false positive, while applying this filter on the q-values would mean that 5% of

the tests that are deemed to be significant are in fact false positives (so according to the definition, the

rate of false discoveries is 5%).

This raises the question of whether the usual 5% p-value cutoff is still the right choice in the case of

q-values. In order to make sure that results are reproducible across experiments, and are not just

statistical flukes, the Sequencing Quality Control consortium (Su et al., 2014) recommended that

filters for p-values, but also fold-changes and measurement-levels are needed in order to exclude

results with effect sizes that are statistically significant but at the same time biologically insignificant.

Such a case can occur especially when sample sizes are small, and the variance in the data is

underestimated (possibly also due to underlying assumptions that are not met in practice), resulting in

small differences becoming statistically significant (necessitating reproduction studies and

meta-analyses to exclude such results). Moreover, the consortium recommends applying these

thresholds in a pipeline-specific manner, based on the specific consideration of the experiment

performed. However, one must consider that applying additional filters apart from the q-value cutoff

is distorting the FDR statistics of the final subset, and could both increase or decrease the FDR

(depending on whether true positives or false positives are removed by the subsequent filters).

The above considerations apply to both RNA-seq and ChIP-seq data, as well as metabolomics

analysis, and we consistently used the BH step-up procedure for correction within the method and for

post-hoc analysis where applicable. We did not apply any additional filters to not distort the false

discovery rates, and this enabled us and subsequent users of the results to compute the FDR of the

different combinations of the results. For example, when intersecting RNA-seq and ChIP-seq results,

if we limit the false discovery rate to 5% in both sets, the probability of the overlap containing false

https://www.zotero.org/google-docs/?YD0yOl
https://www.zotero.org/google-docs/?A48RzB
https://www.zotero.org/google-docs/?OufiRp
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discoveries is 1-(1-5%)2=9.75% because the discovery is correct only if it is correctly identified in

both input sets. For such multi-omics experiments, it is necessary to select a higher q-value cutoff in

the data integration pipeline, than in the constituent ones.

When analyzing the results, a search for biological relevance is key, in order to be able to derive

actionable conclusions for the design of treatments, but also as a causal underpinning of the identified

correlation in order to validate its biological relevance. While some connections are straightforward,

like the differential abundance in both histamine and HDC identified above, in most cases the

causational chains in biological systems are complex, with different positive and negative feedback

loops, trans-regulatory elements, and adaptations on a system level. Such complex relations can be

elucidated only in a step by step manner, integrating large bodies of knowledge, as they do not lend

themselves to reductionist approaches.

5.2.3 Meta-analysis of alternative methods

Another consideration for combining the results of multiple tests is the integration of p-values

obtained by different alternative methods. This can be exemplified through the identification of

cyclical genes. JTK Cycle is more reliable for analysis of large data sets because i) it is more resistant

to outliers, ii) has increased power in case of multiple replicates, iii) can handle input data covering

only a single cycle, and iv) is several orders of magnitude faster than its “competitor” COSOPT. On

the other hand, there are other methods with different pros and cons that could be applied, like

ARSER and Lomb-Scargle.

The low sampling density can pose problems for JTK Cycle as well as the other methods, but due to

the different assumptions and computations, the adverse effects (that usually result in an increased

false-negative rate) can cancel each other out in an “ensemble” approach. Therefore, the MetaCycle

package combines the p-values obtained by running two or three of these methods in order to avoid

the shortcomings of every single method (Wu et al., 2016). For example, JTK Cycle has a known bias

towards cosine waves, whose effect can be mitigated by employing ARSER and Lomb-Scargle. It

uses Fischer’s method to combine the method-wise p-values, under the assumption that these are

independent. While this is obviously not completely true, studies show that using the more accurate

Brown method actually reduces the accuracy of the results (Hutchison and Dinner, 2017).

While in this thesis I only employed JTK Cycle, and using different approaches are not expected to

dramatically change the trends observed in the result, future work might include a meta-analysis of

multiple methods for this problem.

https://www.zotero.org/google-docs/?3xb5uI
https://www.zotero.org/google-docs/?CocGmi
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5.2.4 Handling of missing measurements in metabolomics data analysis

Finally, a difficulty in modeling the data accurately is that certain omics measurements (for technical

reasons), will produce incomplete observations, or some data points will be filtered out as part of the

quality control. The analysis methods are, however, mostly unsuited for handling such inputs, and

using pseudocounts or similar simple solutions can distort the results. I encountered this problem in

the case of the metabolomics data, and had to select an appropriate missing value imputation method,

in order to predict probable metabolite level measurements for sample-metabolite pairs where these

were missing.

The occurrence of missing values is a well known phenomenon in mass-spectrometry based

metabolomics measurements and can arise because the metabolite is not present in the sample, or it is

present but below the limit of detection, or is present but remains undetected due to technical issues

(Taylor et al., 2013). Having fully defined data matrices is a prerequisite of multivariate methods like

PCA, thus imputation of missing data is needed before downstream analysis. During imputation

missing data are replaced with values based on the information from the existing data.

There are several methods to handle missing values and the selection can have a significant impact on

the results. The literature distinguishes between missing values of three types: missing completely at

random (MCAR), missing at random (MAR), and missing not at random (MNAR). Whereas MCAR

is the simplest case, where the propensity for missing data is uncorrelated to the measured variables (

and MNAR is the clearly non-random case), MAR is describing a conditional probability distribution

for missing data, dependent on some other variable, which can be controlled for in order to obtain a

random distribution (Little and Rubin, 2014).

It was shown that for mass spectrometry based metabolomics data the random forest (RF) method

outperformed all tested methods - mean, median, singular value decomposition and k-nearest

neighbors - for MCAR/MAR data (Wei et al., 2018). In another recent study conducted by (Kokla et

al., 2019) the authors tested different types and rates of missingness in LC-MS metabolomics data and

finally recommended using random forest-based imputation for metabolomics data even when the

type of missingness is not known in advance.

That a trained machine learning model is showing the most robust results was to be expected, since

there is no analytical solution to the missing data problem. In the future, more refined bioinformatic

tools based on machine learning, specifically deep learning might help decipher the underlying

https://www.zotero.org/google-docs/?ybDn29
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structuring of the data, and aid tasks like missing value imputation for example. For such tasks,

generative models are especially useful, as they learn a prior distribution from labeled or unlabeled

datasets, and use this to generate novel realistic samples. The most basic form of these kinds of

approaches are (variational) autoencoders, embedding the data in a low-dimensional distribution. This

is, conceptually, a learned non-linear PCA analysis, and has been used already to impute missing data

in a time course of metabolite measurements (Scholz et al., 2005). However, it must be noted that any

biases present in the training data, or introduced by enforcing a fixed distribution in the learned latent

space for variational autoencoders, will be reflected in the generated samples. Therefore, such

approaches became feasible only after large datasets, and the hardware necessary to process them,

became available. Different techniques, like drop-out (US9406017B2 patent by Google LLC), are

commonly employed to reduce the possibility of overfitting, however general guarantees are

impossible to give.
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86

6. Concluding remarks and future perspectives

The continuously increasing amount of data, fueled by new emerging technologies and large

investments in the field, lead to a need for a scalable integration methodology of the heterogeneous

sources of information. Such a task poses fundamental challenges to traditional human-designed

processing methods that rely on specific a priori assumptions and heuristics for parameter tuning.

However, the availability of large public datasets (annotated and not), and generic tools for

high-performance computing, opens the way of a broader deployment of deep learning approaches

(Eraslan et al., 2019). The advantage of training computer programs in a data-driven way, instead of

manually defining the computations to be done, becomes clear in the recent success of such

approaches in variant calling (Luo et al., 2019; Poplin et al., 2018), denoising ChIP-seq data (Koh et

al., 2017) and improving Hi-C data resolution (Zhang et al., 2018).

These deep artificial neural networks are generic tools that can be readily applied to a wide range of

problems, from natural language processing, image recognition, and automatic translation through

different omics analysis tasks. Therefore, it is expected that they will penetrate the field to encompass

and bring together the functionality of many specific bioinformatics algorithms into a unified

modeling and inference framework. This integration will ensure a holistic interpretation of the data,

instead of the piecewise processing pipelines used today.

An early example of such an approach is BPNet (Avsec et al., 2020), which directly predicts

ChIP-nexus binding profiles signals at single base resolution from a DNA sequence, and enables the

identification of soft syntax rules for cooperative TF binding interactions. The integration of multiple

data sources is an important aspect of multi-omics analysis (e.g. ChIP-seq, RNA-seq, proteomics, etc)

which can be achieved with specialized network architectures and training protocols (Amodio and

Krishnaswamy, 2018). For example, FactorNet combines gene sequences and expression, their

annotations, as well as single-nucleotide resolution signals to predict cell type specific transcription

factor binding (Quang and Xie, 2019).

Future developments are expected in the area of Graph Convolutional Networks for learning on

structured data, e.g. gene interaction networks (Dutil et al., 2018), as well as advancements in the

modeling and inference of causal effects. Both research areas will be aided by the continuing increase

in perturbation data generation using systematic CRISPR screens and massively parallel reporter

assays (Eraslan et al., 2019).

In summary, the added power of multi-omics is evident, and deep learning techniques will contribute

to managing the complexity of such multi-dimensional data.
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Supplementary data

Figure S1: Formula for the used control (left) and high-fat diet (right).

By Research Diets, Inc. (20 Jules Lane, New Brunswick, NJ 08901 USA).

Figure S2: Heatmaps of GR genome-wide binding for all six time-points in control (left) and

HFD (right).

Rows show the normalized unique tag counts for GR ChIP peaks, sorted according to signal strength.

Image already published in (Quagliarini et al., 2019).
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NAME:
Diet_TP_Replicate

% Uniquely
mapped

Uniquely
mapped

Unmapped
too short

Unmapped
other

Mapped to too
many loci

Multimapped Total reads

HFD_ZT0_R1 82.62 44796696 867608 3557193 135202 4865579 54222278
HFD_ZT0_R2 81 34464623 1152338 3176370 109565 3648069 42550965
HFD_ZT0_R3 81.7 35038853 1090356 3176629 111029 3472583 42889450
HFD_ZT4_R1 80.1 40032830 764352 4256393 128041 4795059 49976675
HFD_ZT4_R2 79.35 31336053 924071 3862145 99930 3266419 39488618
HFD_ZT4_R3 79.56 34181517 1095388 3986352 111313 3586793 42961363
HFD_ZT8_R1 82.21 37693886 719318 3349180 101738 3989122 45853244
HFD_ZT8_R2 85.66 49139220 992844 2295594 112490 4828582 57368730
HFD_ZT8_R3 86.03 37565684 1048726 1809051 79857 3164539 43667857
HFD_ZT12_R1 79.53 41544904 752221 4884210 135011 4921723 52238069
HFD_ZT12_R2 86.59 47167498 854828 1764103 99746 4584830 54471005
HFD_ZT12_R3 86.93 33649680 1084942 1061693 69263 2843413 38708991
HFD_ZT16_R1 87.08 49477749 789736 1795371 86246 4669695 56818797
HFD_ZT16_R2 84.48 52347176 1122252 3025742 142042 5326607 61963819
HFD_ZT16_R3 80.65 30470265 1606366 2422777 90530 3192923 37782861
HFD_ZT20_R1 86.65 33582179 1011264 1131375 64919 2968054 38757791
HFD_ZT20_R2 81.59 47771821 907650 4227895 143614 5497442 58548422
HFD_ZT20_R3 82.85 33383233 1031498 2373250 82669 3422354 40293004
CTRL_ZT0_R1 76.51 40157951 803537 6349522 176169 5000058 52487237
CTRL_ZT0_R2 84.34 47676134 994008 2648807 124261 5083389 56526599
CTRL_ZT0_R3 83.71 36575135 1162674 2211702 101495 3640906 43691912
CTRL_ZT4_R1 85.67 45122811 847336 2210440 122522 4367766 52670875
CTRL_ZT4_R2 85.46 46291678 855895 2746448 123006 4152232 54169259
CTRL_ZT4_R3 86.64 35417035 1043746 1399847 76073 2941908 40878609
CTRL_ZT8_R1 81.22 49810799 987829 4552605 164600 5814853 61330686
CTRL_ZT8_R2 89.01 46497240 909428 898975 82231 3849469 52237343
CTRL_ZT8_R3 83.91 28813505 1071733 1641951 71199 2738588 34336976
CTRL_ZT12_R1 91.67 50066960 1044348 54678 90735 3361429 54618150
CTRL_ZT12_R2 86.43 53615847 1011262 2245870 115053 5043293 62031325
CTRL_ZT12_R3 82.18 33531670 917960 2810998 95902 3447344 40803874
CTRL_ZT16_R1 87.86 52070899 1015607 1146269 115051 4917160 59264986
CTRL_ZT16_R2 88.34 52969185 989500 1205390 109568 4688805 59962448
CTRL_ZT16_R3 89.57 36695087 974627 389032 77734 2833726 40970206
CTRL_ZT20_R1 83.41 45254206 830463 3386984 124424 4661403 54257480
CTRL_ZT20_R2 87 50656386 973821 1702730 108187 4787172 58228296
CTRL_ZT20_R3 84.86 34117174 959975 1831584 74393 3221201 40204327

Table S1: Mapping statistics of the first cohort generated with MultiQC.

NAME:
TP_Diet_Genotype_

Replicate

% Uniquely
mapped

Uniquely
mapped

Unmapped
too short

Unmapped
other

Mapped to
too many

loci
Multimapped Total reads

ZT00-HFD-KO-1 83.94 14036696 127081 1615262 35452 906888 16721379
ZT00-HFD-KO-2 90.92 15159086 136679 748401 32473 597100 16673739
ZT00-HFD-KO-3 86.15 12664836 129374 835054 35733 1036289 14701286
ZT00-HFD-WT-1 86.12 12712236 147693 781296 28101 1092467 14761793
ZT00-HFD-WT-2 80.11 10765865 127715 1492255 39962 1013668 13439465
ZT00-HFD-WT-3 88.11 12339920 123274 837700 29134 675319 14005347
ZT00-CTRL-KO-1 86.46 13482027 317939 782379 29640 981202 15593187
ZT00-CTRL-KO-2 79.09 13369704 187643 1903478 43021 1401610 16905456
ZT00-CTRL-KO-3 80.44 13069867 212728 1599522 42308 1322926 16247351
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ZT00-CTRL-WT-1 83.56 14538328 144427 1614794 37842 1064149 17399540
ZT00-CTRL-WT-2 83.15 13703939 464826 1066461 37519 1209115 16481860
ZT00-CTRL-WT-3 81.45 13097017 364748 1298309 42677 1276855 16079606
ZT04-HFD-KO-1 77.53 9911702 423067 1327994 26673 1094459 12783895
ZT04-HFD-KO-2 82.73 13745027 204280 1355227 27576 1281941 16614051
ZT04-HFD-KO-3 81.1 14411718 202702 1861660 30257 1264127 17770464
ZT04-HFD-WT-1 83.57 12134920 329504 863679 24635 1168084 14520822
ZT04-HFD-WT-2 82.28 12339468 154495 1241961 27335 1234004 14997263
ZT04-HFD-WT-3 90.54 13249719 112678 659968 24160 587845 14634370
ZT04-CTRL-KO-1 89.02 16827944 360712 430589 31610 1251656 18902511
ZT04-CTRL-KO-2 78.6 11741233 376414 1626646 40702 1152519 14937514
ZT04-CTRL-KO-3 80.89 13577611 513733 1388422 37436 1268324 16785526
ZT04-CTRL-WT-1 81.57 12648747 426404 1049729 33395 1349194 15507469
ZT04-CTRL-WT-2 80.5 13212308 283819 1469952 38879 1406862 16411820
ZT04-CTRL-WT-3 78.93 11026340 335207 1282169 35079 1290166 13968961
ZT08-HFD-KO-1 76.01 12627995 342365 2250299 40943 1352070 16613672
ZT08-HFD-KO-2 79.46 14495844 434217 1857281 38617 1417054 18243013
ZT08-HFD-WT-1 73.76 11812327 467589 2310724 44680 1379358 16014678
ZT08-HFD-WT-2 80.54 13782782 210531 1656860 36257 1426572 17113002
ZT08-CTRL-KO-1 84.54 14158503 142439 1176376 30791 1238903 16747012
ZT08-CTRL-KO-2 73.14 11561460 303428 2557009 52720 1332000 15806617
ZT08-CTRL-WT-1 79.56 13319649 465435 1495083 44555 1417078 16741800
ZT08-CTRL-WT-2 81.75 11858558 336753 1066867 33351 1210232 14505761
ZT12-HFD-KO-1 79.5 12481760 342223 1521168 38663 1315943 15699757
ZT12-HFD-KO-3 78.59 11101799 373082 1447104 36218 1167461 14125664
ZT12-HFD-KO-4 73.62 12621396 437185 2547673 49993 1488828 17145075
ZT12-HFD-WT-1 84.94 15673298 627370 719630 36934 1394641 18451873
ZT12-HFD-WT-2 77.19 12460613 434480 1762147 39972 1444959 16142171
ZT12-HFD-WT-3 81.06 13554256 290740 1396891 37251 1442851 16721989
ZT12-CTRL-KO-1 84.94 14903122 518009 790184 30651 1302872 17544838
ZT12-CTRL-KO-2 88.78 13052839 465860 224847 25412 933886 14702844
ZT12-CTRL-KO-3 80.06 12047396 335366 1419665 34171 1211445 15048043
ZT12-CTRL-WT-1 78.85 12249356 462873 1486475 39899 1296022 15534625
ZT12-CTRL-WT-2 77.33 11900101 358665 1797940 42730 1289169 15388605
ZT12-CTRL-WT-3 80.12 13468689 480761 1464135 36283 1360233 16810101
ZT16-HFD-KO-1 85.14 14499756 411955 726879 31429 1360054 17030073
ZT16-HFD-KO-2 83.99 14175072 533042 816432 32331 1319416 16876293
ZT16-HFD-KO-3 85.29 12920653 413880 683735 32977 1098120 15149365
ZT16-HFD-WT-1 84.52 14305738 487015 779562 32621 1321276 16926212
ZT16-HFD-WT-2 82.43 13925037 478177 1013802 34949 1441748 16893713
ZT16-HFD-WT-3 79.4 12994192 410981 1493284 42777 1423349 16364583
ZT16-CTRL-KO-1 85.54 13075166 432595 539598 28646 1210295 15286300
ZT16-CTRL-KO-2 84.07 11586367 399457 713513 31601 1051107 13782045
ZT16-CTRL-WT-1 82.4 11321266 339297 938218 38078 1103029 13739888
ZT16-CTRL-WT-2 81.32 11999100 214100 1315609 30179 1195642 14754630
ZT16-CTRL-WT-3 82.19 16143099 538367 1304656 47811 1607716 19641649
ZT20-HFD-KO-1 82.85 13968601 485724 1028790 34730 1342150 16859995
ZT20-HFD-KO-2 80.66 13436715 351739 1371950 42332 1455113 16657849
ZT20-HFD-KO-3 85.26 15021747 492889 785103 32881 1286813 17619433
ZT20-HFD-WT-1 83.02 14805437 304854 1315684 35454 1371559 17832988
ZT20-HFD-WT-2 84.27 13591390 406492 774271 30466 1325155 16127774
ZT20-HFD-WT-3 80.26 11791299 408697 1271664 36296 1184083 14692039
ZT20-CTRL-KO-1 84.54 12397904 432728 726104 33644 1073958 14664338
ZT20-CTRL-KO-2 87.51 13309285 360159 518203 29713 991221 15208581



106

ZT20-CTRL-KO-3 81.22 11747781 354473 1163251 28478 1170591 14464574
ZT20-CTRL-WT-1 79.97 13709650 404327 1473397 34179 1522122 17143675
ZT20-CTRL-WT-2 82.89 11991154 372938 810922 31629 1259952 14466595
ZT20-CTRL-WT-3 80.17 12977630 433867 1408449 24070 1343833 16187849

Table S2: Mapping statistics of the second cohort generated with MultiQC.

NAME:
Treatment_Diet_TP_

Replicate

% Uniquely
mapped

Uniquely
mapped

Unmapped
too short

Unmapped
other

Mapped to
too many

loci
Multimapped Total reads

UNTR_HFD_day_R1 77.59 40599189 1569160 5460679 104188 4594956 52328172
UNTR_HFD_day_R2 76.63 48676669 1962860 7489358 133455 5259685 63522027
UNTR_HFD_night_R1 85.78 47370994 950951 2609585 97330 4193538 55222398
UNTR_HFD_night_R2 84 48515654 560215 4025459 123407 4529908 57754643
UNTR_CTRL_day_R1 84.74 44513471 1637517 2550747 100758 3724441 52526934
UNTR_CTRL_day_R2 82.34 44603026 867219 2858762 79806 5760446 54169259
UNTR_CTRL_day_R3 86.14 48004653 1553406 2171428 90185 3908322 55727994
UNTR_CTRL_night_R1 86.03 46641128 1469981 1686953 83628 4330448 54212138
UNTR_CTRL_night_R2 88.38 48485893 1798804 630678 91875 3853810 54861060
DEX_HFD_night_R1 81.15 42364386 757325 3603825 192044 5289828 52207408
DEX_HFD_night_R2 80.5 45284622 1485415 3342184 157424 5982897 56252542
DEX_HFD_night_R3 81.28 43165160 1847365 2548090 148465 5400251 53109331
DEX_HFD_day_R1 83.11 40318809 1513634 2047287 109548 4523790 48513068
DEX_HFD_day_R2 81.93 24148696 1270992 1262145 67992 2725941 29475766
DEX_HFD_day_R3 83.85 44213619 1612943 2213844 113535 4574013 52727954
DEX_CTRL_night_R1 83.69 48556359 1421751 1340508 183811 6516328 58018757
DEX_CTRL_night_R2 88.47 47607569 857170 318070 168838 4857801 53809448
DEX_CTRL_night_R3 85.46 46291678 855895 2746448 123006 4152232 54169259
DEX_CTRL_day_R1 87.1 42841546 1968516 310041 118887 3946995 49185985
DEX_CTRL_day_R2 85.33 45770883 2053171 745145 132275 4940374 53641848
DEX_CTRL_day_R3 86.69 45277522 2014167 491771 127389 4321350 52232199

Table S3: Mapping statistics of the third cohort generated with MultiQC.

Marked lines are the samples used in the differential transcript usage analysis. The line marked in

green shows the mapping statistics when aligned to the mm10 genome. All other samples show the

results when mapped to mm9. All marked samples were later also mapped to mm10 when used for

DTU analysis.

Metabolite name Padj. genotype Padj. diet Coef. genotype Coef. diet
Ala 0.495 0.368 -0.608 0.840
Asn 0.474 0.511 0.726 0.635
Asp 0.955 0.307 -0.051 -0.971
Cit 0.944 0.546 0.090 -0.655
Gln 0.822 0.472 -0.283 -0.746
Glu 0.322 0.913 0.996 -0.124
Gly 0.907 0.554 0.142 -0.635
His 0.608 0.467 -0.517 -0.743
Ile 0.730 0.659 0.410 0.467
Lys 0.488 0.448 0.637 0.754
Met 0.490 0.725 0.670 -0.362
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Orn 0.584 0.961 0.586 0.077
Phe 0.831 0.618 0.271 0.514
Pro 0.831 0.618 -0.280 0.511
Ser 0.732 0.578 -0.396 -0.584
Thr 0.902 0.159 0.122 1.205
Trp 0.925 0.554 -0.120 -0.645
Tyr 0.944 0.467 0.091 -0.772
Val 0.902 0.471 0.144 0.764
xLeu 0.542 0.596 0.601 0.531
ADMA 0.180 0.962 1.243 -0.048
alpha-AAA 0.402 0.659 0.852 -0.431
Creatinine 0.955 0.034 -0.037 -1.567
Histamine 0.396 0.023 0.537 1.543
Putrescine 0.322 0.682 -0.981 -0.375
Sarcosine 0.925 0.082 0.091 1.355
SDMA 0.410 0.372 0.781 -0.803
Serotonin 0.807 0.681 -0.328 0.439
Spermidine 0.344 0.313 0.860 -0.857
Spermine 0.163 0.618 1.262 -0.393
t4-OH-Pro 0.403 0.045 0.566 -1.455
Taurine 0.335 0.472 -0.921 -0.660
AC(0:0) 0.180 0.266 -1.132 0.827
AC(2:0) 0.498 0.322 -0.590 -0.901
AC(3:0) 0.740 0.249 0.336 1.037
AC(3:0-DC) 0.147 0.159 -1.160 0.956
AC(4:0) 0.474 0.245 -0.645 -0.998
AC(4:0-DC) 0.145 0.018 -0.872 1.459
AC(4:0-OH) 0.134 0.047 -1.025 1.273
AC(4:1-DC) 0.402 0.578 -0.857 0.536
AC(5:0) 0.488 0.472 -0.646 0.709
AC(5:0-DC) 0.402 0.061 -0.625 1.349
AC(5:0-OH) 0.484 0.847 -0.729 -0.211
AC(6:0) 0.624 0.926 -0.538 -0.115
AC(6:0-OH) 0.281 0.159 -0.918 1.069
AC(7:0) 0.740 0.488 -0.370 0.719
AC(7:0-DC) 0.403 0.179 0.714 -1.090
AC(9:0) 0.847 0.962 -0.255 0.057
AC(10:0) 0.960 0.511 0.049 0.693
AC(10:2) 0.105 0.511 1.395 0.470
AC(12:0) 0.304 0.107 0.830 1.177
AC(12:0-DC) 0.488 0.800 0.707 -0.292
AC(14:0) 0.876 0.982 0.204 0.027
AC(14:0-OH) 0.884 0.913 0.181 0.145
AC(14:1-DC) 0.322 0.660 1.007 0.401
AC(14:1-OH) 0.871 0.847 -0.218 0.223
AC(14:2) 0.630 0.554 0.504 0.617
AC(16:0) 0.609 0.307 -0.485 -0.944
AC(16:0-OH) 0.488 0.800 0.685 -0.289
AC(16:1) 0.455 0.197 -0.657 -1.079
AC(16:2) 0.676 0.684 -0.462 -0.420
AC(17:0) 0.571 0.807 -0.592 0.280
AC(18:0) 0.488 0.971 -0.698 0.040
AC(18:1) 0.161 0.179 -1.136 -0.945
AC(18:1-OH) 0.180 0.807 -1.224 -0.225
AC(18:2) 0.566 0.413 -0.550 -0.798
AC(19:0) 0.922 0.913 0.135 0.150
LPC(12:0) 0.134 0.511 1.334 -0.499
LPC(15:0) 0.781 0.066 0.247 1.398
LPC(16:0) 0.809 0.047 0.207 1.490
LPC(16:1) 0.376 0.264 0.810 0.934
LPC(17:0) 0.283 0.060 0.771 -1.330
LPC(17:1) 0.484 0.426 0.673 0.766
LPC(18:0) 0.692 0.390 -0.412 0.837
LPC(18:1) 0.322 0.362 -0.926 0.789
LPC(18:2) 0.773 0.554 0.349 0.623
LPC(20:0) 0.001 0.060 1.691 0.678
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LPC(20:1) 0.455 0.618 -0.770 0.483
LPC(20:3) 0.180 0.047 -0.891 1.328
LPC(20:4) 0.163 0.661 -1.263 0.352
LPC(22:6) 0.467 0.238 -0.658 1.018
LPC-O(18:0) 0.871 0.758 -0.216 -0.355
LPC-O(18:1) 0.831 0.396 -0.251 -0.842
LPC-O(18:2) 0.621 0.574 -0.518 0.582
PC(24:0) 0.477 0.184 0.610 1.104
PC(25:0) 0.283 0.962 -1.074 0.051
PC(27:1) 0.831 0.240 -0.232 -1.065
PC(29:0) 0.344 0.001 0.388 1.752
PC(29:1) 0.467 0.236 0.661 1.023
PC(29:2) 0.389 0.574 0.878 0.538
PC(30:0) 0.134 0.000 0.376 1.842
PC(30:1) 0.056 0.002 0.980 1.514
PC(30:2) 0.449 0.295 0.705 0.922
PC(31:0) 0.402 0.159 0.723 -1.123
PC(31:1) 0.030 0.362 1.596 0.503
PC(31:2) 0.322 0.776 1.003 0.291
PC(31:3) 0.163 0.962 1.295 0.056
PC(32:0) 0.474 0.511 -0.712 -0.639
PC(32:1) 0.105 0.023 1.006 1.363
PC(32:2) 0.180 0.105 1.015 1.113
PC(32:4) 0.979 0.309 -0.022 0.965
PC(33:0) 0.488 0.022 0.406 1.581
PC(33:1) 0.105 0.307 1.360 0.684
PC(33:2) 0.076 0.979 1.533 -0.020
PC(33:4) 0.608 0.472 -0.521 0.720
PC(33:5) 0.871 0.448 -0.197 0.792
PC(34:1) 0.184 0.005 -0.671 1.601
PC(34:2) 0.938 0.372 -0.096 0.876
PC(34:3) 0.322 0.937 1.014 -0.087
PC(34:4) 0.656 0.044 0.308 1.509
PC(34:5) 0.187 0.060 0.909 1.268
PC(35:1) 0.498 0.996 0.671 -0.008
PC(35:2) 0.595 0.214 0.476 -1.078
PC(35:3) 0.719 0.989 0.433 -0.018
PC(35:4) 0.432 0.511 -0.786 0.626
PC(35:5) 0.143 0.714 -1.341 0.286
PC(36:1) 0.343 0.082 -0.729 1.261
PC(36:2) 0.283 0.245 -0.938 0.927
PC(36:3) 0.207 0.514 -1.134 0.549
PC(36:4) 0.119 0.571 -1.377 0.426
PC(36:5) 0.539 0.322 0.555 0.905
PC(36:6) 0.648 0.062 0.351 1.398
PC(37:1) 0.488 0.295 0.610 0.942
PC(37:2) 0.283 0.648 1.061 -0.409
PC(37:3) 0.474 0.863 -0.759 -0.191
PC(37:4) 0.259 0.245 -0.996 -0.909
PC(37:5) 0.635 0.833 -0.521 -0.247
PC(37:6) 0.872 0.901 0.212 -0.169
PC(37:7) 0.161 0.926 -1.313 0.087
PC(38:0) 0.226 0.839 1.157 0.195
PC(38:1) 0.955 0.060 0.042 1.433
PC(38:2) 0.402 0.578 0.841 0.533
PC(38:3) 0.539 0.060 0.424 1.420
PC(38:4) 0.077 0.593 -1.497 0.355
PC(38:5) 0.283 0.714 -1.080 -0.328
PC(38:6) 0.322 0.118 -0.807 1.160
PC(38:7) 0.944 0.818 0.092 0.273
PC(39:1) 0.438 0.843 -0.810 -0.215
PC(39:2) 0.860 0.919 0.239 -0.136
PC(39:3) 0.875 0.082 -0.146 1.360
PC(39:4) 0.488 0.937 -0.686 -0.098
PC(39:5) 0.773 0.413 -0.336 -0.818
PC(39:6) 0.822 0.362 -0.271 -0.896
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PC(39:7) 0.955 0.493 0.058 -0.724
PC(40:2) 0.938 0.060 0.071 1.461
PC(40:3) 0.534 0.035 -0.385 1.528
PC(40:4) 0.928 0.060 0.081 1.434
PC(40:5) 0.809 0.962 -0.330 0.067
PC(40:6) 0.163 0.066 -1.002 1.201
PC(40:7) 0.166 0.818 -1.271 0.206
PC(40:8) 0.488 0.839 -0.690 -0.227
PC(41:1) 0.801 0.060 0.229 1.430
PC(41:2) 0.438 0.666 -0.797 0.420
PC(41:4) 0.376 0.832 0.925 0.228
PC(41:5) 0.000 0.680 1.911 0.030
PC(42:0) 0.955 0.264 0.061 1.033
PC(42:1) 0.401 0.090 0.682 1.250
PC(42:2) 0.676 0.088 -0.348 1.322
PC(42:4) 0.467 0.593 -0.749 0.522
PC(42:5) 0.979 0.805 -0.023 0.300
PC(42:6) 0.847 0.082 0.182 1.354
PC(42:7) 0.272 0.908 -1.115 0.129
PC(43:6) 0.193 0.567 -1.163 -0.491
PC(44:1) 0.435 0.923 0.824 0.116
PC(44:3) 0.676 0.472 -0.441 0.735
PC(44:12) 0.955 0.786 -0.061 -0.331
PC(46:1) 0.322 0.800 1.008 0.261
PC(46:2) 0.736 0.603 0.393 0.534
PC-O(28:0) 0.740 0.593 -0.384 -0.562
PC-O(28:1) 0.672 0.681 -0.473 0.427
PC-O(30:0) 0.474 0.001 -0.274 1.786
PC-O(31:0) 0.823 0.587 -0.288 0.578
PC-O(31:3) 0.882 0.618 0.188 0.519
PC-O(32:0) 0.076 0.082 -1.333 -0.981
PC-O(32:1) 0.322 0.603 -1.004 0.465
PC-O(32:2) 0.488 0.489 0.668 0.684
PC-O(33:3) 0.171 0.456 1.202 0.614
PC-O(34:0) 0.482 0.923 0.739 0.120
PC-O(34:1) 0.076 0.201 -1.431 -0.757
PC-O(34:2) 0.402 0.786 -0.874 -0.292
PC-O(36:0) 0.884 0.368 0.157 -0.883
PC-O(36:2) 0.105 0.681 -1.423 0.296
PC-O(36:3) 0.077 0.047 -1.190 1.175
PC-O(36:4) 0.322 0.847 -0.995 0.190
PC-O(36:5) 0.488 0.800 -0.680 -0.290
PC-O(36:6) 0.488 0.240 -0.594 1.021
PC-O(37:6) 0.417 0.591 -0.814 0.524
PC-O(38:4) 0.187 0.082 -0.950 1.191
PC-O(38:5) 0.124 0.593 -1.371 -0.396
PC-O(38:6) 0.698 0.368 -0.401 -0.874
PC-O(40:3) 0.283 0.307 0.977 -0.834
PC-O(40:4) 0.831 0.472 -0.251 0.743
PC-O(40:5) 0.884 0.818 -0.184 -0.277
PC-O(40:6) 0.156 0.511 1.276 -0.519
PC-O(40:7) 0.161 0.618 -1.282 -0.392
PC-O(42:1) 0.998 0.509 -0.004 0.707
PC-O(42:2) 0.207 0.901 1.180 -0.134
PC-O(42:6) 0.322 0.207 0.847 1.010
Cer(34:0) 0.822 0.708 0.299 -0.402
Cer(34:1) 0.077 0.930 -1.511 0.070
Cer(38:1) 0.871 0.201 0.180 1.130
Cer(40:1) 0.884 0.005 0.082 1.711
Cer(42:1) 0.322 0.114 -0.800 1.170
Cer(42:2) 0.076 0.693 -1.527 0.256
Cer(43:1) 0.416 0.214 0.716 1.036
SM(30:1) 0.831 0.000 -0.068 1.855
SM(32:1) 0.283 0.000 -0.302 1.839
SM(32:2) 0.831 0.001 -0.105 1.776
SM(33:1) 0.831 0.699 -0.278 -0.412
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SM(34:1) 0.028 0.388 -1.624 0.456
SM(34:2) 0.815 0.906 -0.322 0.161
SM(35:1) 0.822 0.368 -0.280 -0.876
SM(36:0) 0.955 0.998 0.066 0.002
SM(36:1) 0.105 0.002 -0.787 1.605
SM(36:2) 0.143 0.120 -1.145 1.019
SM(37:1) 0.105 0.109 -1.230 0.996
SM(38:2) 0.732 0.554 -0.395 0.622
SM(39:1) 0.488 0.199 0.575 1.091
SM(39:2) 0.028 0.114 -1.528 0.775
SM(40:1) 0.283 0.259 -0.962 -0.900
SM(40:2) 0.435 0.159 -0.665 1.128
SM(41:1) 0.656 0.735 -0.495 0.364
SM(41:2) 0.339 0.970 -0.975 -0.041
SM(42:1) 0.676 0.659 0.458 -0.462
SM(42:2) 0.477 0.159 -0.601 -1.144
SM(42:3) 0.884 0.362 -0.158 -0.903
SM(43:1) 0.180 0.060 -0.929 1.257
H1 0.402 0.598 0.847 0.497
CE(17:2) 0.975 0.565 0.031 0.622
CE(20:5) 0.402 0.044 -0.564 1.463
CE(22:5) 0.180 0.276 -1.127 -0.820
CE(22:6) 0.376 0.962 -0.930 0.054
DG(32:1) 0.969 0.047 0.026 1.495
DG(32:2) 0.871 0.493 0.208 0.717
DG(34:1) 0.474 0.077 -0.553 1.326
DG(34:3) 0.656 0.462 0.459 0.758
DG(36:2) 0.488 0.962 -0.721 -0.054
DG(36:3) 0.488 0.596 -0.678 -0.523
DG(36:4) 0.953 0.126 0.063 -1.260
DG(41:1) 0.998 0.618 -0.002 -0.516
DG(42:2) 0.882 0.996 -0.193 0.007
DG-O(32:2) 0.860 0.239 -0.200 1.074
DG-O(34:1) 0.416 0.869 -0.845 0.180
DG-O(36:4) 0.335 0.554 -0.942 -0.557
TG(44:4) 0.610 0.818 -0.549 0.268
TG(50:1) 0.488 0.839 -0.701 0.230
TG(50:4) 0.283 0.847 -1.074 0.187

Table S4: List of metabolites that passed the quality control.

Shown are the adjusted p-values and the coefficients when running the linear model.
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