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Abstract
Despite the existence of formal guarantees for learning-based control approaches, the relation-
ship between data and control performance is still poorly understood. In this paper, we propose a
Lyapunov-based measure for quantifying the impact of data on the certifiable control performance.
By modeling unknown system dynamics through Gaussian processes, we can determine the interre-
lation between model uncertainty and satisfaction of stability conditions. This allows us to directly
asses the impact of data on the provable stationary control performance, and thereby the value of
the data for the closed-loop system performance. Our approach is applicable to a wide variety of
unknown nonlinear systems that are to be controlled by a generic learning-based control law, and
the results obtained in numerical simulations indicate the efficacy of the proposed measure.
Keywords: data-driven control, Gaussian processes, data-efficient learning, safe learning-based
control

1. Introduction

Learning-based control is rapidly becoming an attractive alternative to traditional control approaches,
particularly in settings with limited knowledge or prohibitive system complexity (Deisenroth et al.,
2015; Chua et al., 2018). This has prompted a vast amount of research into the theoretical properties
of control approaches based on nonparametric and probabilistic models obtained from supervised
machine learning, yielding techniques that guarantee either safety or performance requirements
(Aswani et al., 2013; Berkenkamp et al., 2016; Beckers et al., 2019; Fisac et al., 2019; Capone and
Hirche, 2019; Gahlawat et al., 2020; Lederer et al., 2020).

While theoretical guarantees for control performance can be obtained in various settings, the
direct relationship between collected data and control performance in learning-based control with
nonparametric, probabilistic models is still poorly understood. In experimental design, the value
of data is often quantified using information theoretical quantities, such as mutual information or
entropy (Pukelsheim, 2006). Although these quantities have been used extensively to guide explo-
ration and control strategies (Hennig and Schuler, 2012; Alpcan and Shames, 2015; Koller et al.,

This paper is the extended version of Lederer et al. (2021a). The official publication can be found at http://
proceedings.mlr.press/v144/lederer21a/lederer21a.pdf.

c© 2021 A. Lederer, A. Capone, T. Beckers, J. Umlauft & S. Hirche.

http://proceedings.mlr.press/v144/lederer21a/lederer21a.pdf
http://proceedings.mlr.press/v144/lederer21a/lederer21a.pdf


THE IMPACT OF DATA ON THE STABILITY OF LEARNING-BASED CONTROL

2018; Capone et al., 2020), they do not provide direct insight into the impact of data on the provable
control performance. In recent years, a handful of efforts has been carried out towards understanding
the influence of collected data on control theoretic properties. Lederer et al. (2021b) have proposed
a Lyapunov-based measure for quantifying the value of data points with respect to a specific control
task based on Gaussian process priors. In a similar vein, Capone et al. (2021) have developed an
algorithm to identify the most useful data points for successfully performing multiple control tasks.
However, the technique presented in Lederer et al. (2021b) is only applicable to a restricted class of
systems, and scalability is a challenge for the method of Capone et al. (2021).

In this work, we present a Lyapunov-based measure for quantifying the value of training data
on the certifiable stationary performance of learning-based control of nonlinear systems. Based on
Gaussian process models of unknown system dynamics, the model uncertainty is quantified and
a necessary condition on the uncertainty is derived for ensuring stability of unknown closed-loop
systems. This condition is transformed into a required training data density, thereby providing a
measure for the impact of data on the provable stationary control performance. By considering a
markedly richer class of systems, this work generalizes the results from Lederer et al. (2021b).

The remainder of this paper is structured as follows. In Section 2, we formally state the con-
sidered problem. In Section 3, we briefly discuss how Gaussian processes are employed to model
the unknown system, and present some preliminary results. Afterwards, in Section 4, we derive
the proposed information measure. We then discuss strategies for data selection, in Section 5, after
which we present some experimental results, in Section 6. Finally, some concluding remarks are
provided in Section 7.

2. Problem Statement

We consider a dynamical system

ẋ = g(z) = Af(z), (1)

where z =
[
xT uT

]T ∈ Rdz , dz = dx + du, is the concatenation of the state x ∈ X and the input
u ∈ U for compact sets X ⊂ Rdx and U ⊂ Rdu . We assume to know the matrix A ∈ Rdx×df ,
whereas the function f : Rdx+du → Rdf is unknown. This system structure is very flexible and
allows general multi-dimensional nonlinear systems (A = Idx , df = dx), as well as correlation in
the outputs, which can be found, e.g., in Euler-Lagrange systems due to the symmetry of the mass
matrix (Cheng and Huang, 2015). We assume to have an approximate model f̂ : Rdx+du → Rdf of
the unknown function f(·, ·), which is often available in practice, as well as measurement data. This
yields the following formal assumption, which is discussed in detail in Umlauft and Hirche (2020).

Assumption 1 A data set containing N measurement pairs

DN =

{
z(n) :=

[
x(n)

u(n)

]
,y(n) = g

(
z(n)

)
+ ε(n)

}N
n=1

(2)

is available, where ε(n) ∼ N (0,Σon) is i.i.d. Gaussian noise with covariance matrix Σon.

Additionally, we assume that the unknown functions fi(·) are well behaved, as expressed in the
following.

Assumption 2 The unknown functions fi(·) are Lipschitz continuous with Lipschitz constants Lfi ,
i = 1, . . . , df .
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We assume to have a learning-based control lawπ : X×
(
X× U× Rdx

)N×R0,+ → U that causally
maps a state x to a control input u depending on the previously observed training data DN and the
current time t ∈ R0,+. The control law is designed to achieve a control task, e.g., stabilization with
respect to a reference point, or tracking of a reference trajectory. The effectiveness of the control
law with respect to this task is measured via a Lyapunov function1 V : X × R0,+ → R0,+ and its
temporal derivative V̇ (·, ·) along trajectories of the closed loop system defined through

g̃(x) = g

([
x

π(x,x(1),u(1), . . . , t)

])
, (3)

which only depends on x, as the control inputs are specified by the policy π(·,x(1),u(1), . . . , t).
Since we do not know the function f(·) but only have a training data set DN and an approximate
model f̂(·), the warranted control performance, measured through the size of the region in which
V̇ (x) ≤ 0 is not guaranteed, strongly depends on the training data. In such a setting, it is crucial
to understand the interrelation between training data and control performance, e.g., for determin-
ing where additional training data should be acquired to increase control performance, or when a
subset of the training data must be selected to reduce the computational complexity of learning.
Therefore, we consider the problem of determining the impact of data on stability certificates for
learning-based control.

3. Gaussian Process Regression

For determining the impact of data on stability certificates, we employ a Gaussian process (GP)
formulation, such that we can relate the control performance to the model uncertainty. We first
introduce the foundations of Gaussian process regression in Section 3.1, before we explain the
extension to multiple outputs, in Section 3.2. Finally, we propose an output-decoupling formulation
using linear models of coregionalization and propose a novel uniform error bound, in Section 3.3.

3.1. Single Output Gaussian Processes

A Gaussian process GP(f̂(·, ), k(·, ·)), uniquely defined through a prior mean function f̂ : Rdz → R
and a covariance function k : Rdz×Rdz → R0,+, is a generalization of Gaussian distributions (Ras-
mussen and Williams, 2006). The prior mean function f̂(·) is often used to include approximate
models in the regression, whereas the covariance function describes prior assumptions on proper-
ties such as smoothness or periodicity. A commonly used covariance function, on which we also
focus in the following analysis for clarity of exposition, is the squared exponential kernel

k(z, z′) = s2
f exp

(
−1

2
(z − z′)TΛ−1(z − z′)

)
, (4)

where s2
f ∈R0,+ and Λ∈Rdz×dz , Λ � 0, denote the signal variance and length scales, respectively.

In order to perform regression with the GP, we consider a scalar system (1) with df = 1. Then,
the joint prior distribution of training targets t =

[
y(1) · · · y(N)

]T
and the unknown function

value f(z) for input z is given by[
t

f(z)

]
∼ N

([
f̂(Z)

f̂(z)

]
,

[
k(Z,Z) + σ2

onIN k(Z, z)
kT (Z, z) k(z, z)

])
, (5)

1. A Lyapunov function V : X×R0,+ → R0,+ is positive definite, i.e., V (x, t) ≥ 0 with equality if and only if x = 0.
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where we use the abbreviations f̂(Z)∈RN , k(Z,Z)∈RN×N and k(Z,Z)∈RN with elements de-
fined as f̂n(Z)= f̂(z(n)), kn,n′(Z,Z)=k(z(n), z(n′)) and kn(Z, z)=k(z(n), z), n, n′=1, . . . , N ,
respectively. By conditioning the GP on the training data, we obtain the posterior distribution

f(z)|y(1), . . . , y(N), z(1), . . . ,z(N), z ∼ N (µ(z), σ2(z)) (6)

with posterior mean and variance

µ(z) = f̂(z) + kT (Z, z)
(
k(Z,Z) + σ2

onIN
)−1

(t− f̂(Z)) (7)

σ2(z) = k(z, z)− kT (Z, z)
(
k(Z,Z) + σ2

onIN
)−1

k(Z, z). (8)

3.2. Multiple-Output Gaussian Process Regression

In order to apply Gaussian processes to multiple-output regression problems, we can proceed anal-
ogously to the single output case. For illustrative purposes, we assume for now that A = Idx and
df = dx in (1), such that we have noisy measurements of the functions fi(·), i = 1, . . . , df in the
data set DN . We start again with the prior GP distribution

f(·) ∼ GP
(
f̂(·),K(·, ·)

)
, (9)

where we have to consider a vector-valued prior mean function f̂ : Rdz → Rdf and a matrix kernel
functionK : Rdz ×Rdz → Rdf×df0,+ , in which each element km,m′ : Rdz ×Rdz → R0,+ is a kernel.

By concatenating the training targets y(n)
i in the vector tT = [y

(1)
1 · · · y(N)

1 y
(1)
2 · · · y(N)

dx
] and

conditioning the joint distribution of t and f(z) on the training data DN , analogously to (6) we
obtain a multivariate Gaussian distribution with mean and covariance matrix

µ(z) = f̂(z) +KT (Z, z) (K(Z,Z) + Σon ⊗ IN )−1
(
t− f̂(Z)

)
(10)

Σ(z) = K(z, z)−KT (Z, z) (K(Z,Z) + Σon ⊗ IN )−1K(Z, z), (11)

where we extend the shorthand notation from Section 3.1 using

K(Z,Z) =

k1,1(Z,Z) · · · k1,df (Z,Z)
...

. . .
...

kdf ,1(Z,Z) · · · kdf ,df (Z,Z)

 K(Z, z) =

k1,1(Z, z) · · · k1,df (Z, z)
...

. . .
...

kdf ,1(Z, z) · · · kdf ,df (Z, z)


f̂(Z) =

[
f̂1(Z) · · · f̂df (Z)

]T
. (12)

3.3. Output Decoupling through Linear Models of Coregionalization

While various positive definite kernels are known for scalar regression, positive definiteness is a ma-
jor challenge in the multiple-output approach presented in Section 3.2 since it is not sufficient that
each entry of K(·, ·) is a covariance function. However, in the following we show that knowledge
of the output correlation structure in the form of a matrix A allows to define proper kernel matrix
functions via scalar covariance functions ki(·, ·). For this, we require the following assumption.

Assumption 3 Prior knowledge about the functions fi(·) is expressed through independent prior
GP distributions with scalar kernels ki(·, ·), i = 1, . . . , df , i.e.,

f(·)∼GP
(
f̂(·), diag

([
k1(·, ·) · · · kdf (·, ·)

]))
. (13)
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This assumption is not restrictive, since correlation in the training targets can be modeled through
the matrixA, and it is frequently used in the case whereA = Idx holds (Berkenkamp and Schoellig,
2015; Koller et al., 2018; Beckers et al., 2019; Hewing et al., 2020).

Due to Assumption 3, it directly follows that

g(·) ∼ GP
(
Af̂(·),Adiag

([
k1(·, ·) · · · kdf (·, ·)

])
AT
)
, (14)

such that we can intuitively define a kernel matrix function through

K(z, z′) = Adiag
([
k1(z, z′) · · · kdf (z, z′)

])
AT . (15)

It is trivial to show that this kernel parameterization is a special case of a linear model of coregion-
alization (Álvarez et al., 2011), such that we can immediately extend the approach in Duvenaud
(2014) to recover models for the individual functions fi(·), as shown in the following lemma2.

Lemma 1 Consider a nonlinear system (1) with matrixA =
[
a1 · · · adf

]
composed of column

vectors ai, for which a training data set DN and prior distributions that satisfy Assumptions 1 and
3, respectively, are given. Then, the posterior distributions are given by

fi(z)|D ∼ N (µi(z), σi(z)), (16)

where

µi(z) = f̂i(z) +
(
kTi (Z, z)⊗ aTi

)
(K(Z,Z) + Σon ⊗ IN )−1

(
t− f̂(Z)

)
(17)

σ2
i (z) = ki(z, z)−

(
kTi (Z, z)⊗ aTi

)
(K(Z,Z) + Σon ⊗ IN )−1 (ki(Z, z)⊗ ai) . (18)

A crucial benefit of this decoupling of the outputs is that it allows the application of scalar analysis
methods to uniformly bound the regression error on the input domain X×U as proposed in Lederer
et al. (2019a). This is formalized in the following theorem.

Theorem 2 Consider a nonlinear system (1), a training data set DN , and prior distributions sat-
isfying Assumptions 1-3, respectively. For any δ ∈ (0, 1), τ ∈ R+, and i = 1, . . . , df , it holds that

P
(
|fi(z)− µi(z)| ≤

√
β(δ, τ)σi(z) + γi(δ, τ) ∀z ∈ X× U

)
≥ 1− δ, (19)

where

β(δ, τ) = 2dx log
(

1 +
r0

τ

)
− log(δ), γi(δ, τ) = (Lµi + Lfi)τ +

√
β(δ, τ)Lσ2

i
τ . (20)

Here, Lµi and Lσ2
i

are the Lipschitz constants of the mean and variance functions, respectively, and
r0 = maxz,z′∈X×U ‖z − z′‖.
This theorem is a generalization of Lederer et al. (2021b, Lemma 1) and many properties directly
transfer. Small error bounds can be achieved through small GP standard deviations σi(z), which
corresponds to high data densities. This resembles well-known relationships from scattered data ap-
proximation (Wendland, 2004) and Bayesian optimization (Srinivas et al., 2012). The dependence
of the uniform error bound (19) on the constants γi(δ, τ) does not affect this behavior, since they can
be chosen arbitrarily small, and convergence to 0 can be shown under weak assumptions on σi(z)
(Lederer et al., 2019a). In general, the constant τ trades-off the effect of the data independent terms
γi(δ, τ) and the posterior standard deviations σi(z) on the error bound. Therefore, τ should be cho-
sen such that the uncertainty dependence of the bound dominates, i.e.,

√
β(δ, τ)σi(z)�γi(δ, τ).

2. Proofs for all theoretical results can be found in the appendix.
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Remark 3 Theorem 2 admits the counterintuitive behavior that adding training samples can lead
to a locally higher uniform error bound. This is due to the fact that adding data in some regions can
increase the Lipschitz constants of µ(·) and σ(·) (Lederer et al., 2019a), and thereby increase the
uniform error bound in other regions. Note that a similar argument holds for uniform error bounds
based on RKHS theory (Srinivas et al., 2012; Chowdhury and Gopalan, 2017).

4. Control-Based Information Measures

While the uniform error bound in Theorem 2 establishes a connection between the training data
distribution, represented by the posterior GP variance, and the regression performance, it is ignorant
of the control task. In order to measure the importance of data for control performance, we consider
the Lyapunov stability conditions (Khalil, 2002) for the closed loop system, which require a negative
derivative of the Lyapunov function V (·, ·), i.e.,

V̇ (x, t) = (∇xV (x, t))TAf̃(x) +
∂

∂t
V (x, t), (21)

where we employ the shorthand notation f̃(x) = f
( [
xT πT (x,x(1),u(1), . . . , t)

]T )
, which is

used analogously for the GP mean µ̃(·) and variance σ̃2(·). Although the function f̃(·) is unknown,
we can bound the Lyapunov function derivative based on the uniform error bound (19), which yields

V̇ (x, t) ≤ V̇nom(x, t) + V̇σ(x, t), (22)

where we decouple the bound into the nominal component based on the GP mean

V̇nom(x, t) =(∇V (x, t))TAµ̃(x)+
∂

∂t
V (x, t), (23)

and an uncertain component depending on the GP standard deviation

V̇σ(x, t) =
[∣∣∣(∇xV (x, t))Ta1

∣∣∣ · · · ∣∣∣(∇xV (x, t))Tadf

∣∣∣] (√β(δ, τ)σ̃(x)+γ(δ, τ)
)
, (24)

with γ(δ, τ) =
[
γ1(δ, τ) · · · γdf (δ, τ)

]T . Since the uncertain derivative component V̇σ(·, ·) is
non-negative, a positive nominal derivative component V̇nom(·, ·) directly implies that (22) violates
the Lyapunov stability conditions regardless of the GP posterior variance. Therefore, we assume
V̇nom(x, t)<0 in the following, essentially requiring that the control law can stabilize the dynami-
cal system defined byµ(·). As a result, stability of the closed-loop system depends on the magnitude
of the uncertain Lyapunov function derivative V̇σ(·, ·), which is strongly influenced by posterior GP
standard deviations σ̃(·). Although this establishes a direct relationship between the training data
density and the control task, the dependency of σ̃(·) on training samples is highly nonlinear and the
computation of σ̃(·) is computationally expensive. In order to mitigate these issues, we introduce
the weighted M -fill distances, in analogy to the M -fill distance proposed in Lederer et al. (2021b).

Definition 4 The weighted M -fill distance φi(x,DN ) for function fi(·), i = 1 . . . , df , at a point
x is defined as the minimum radius ϕ of a ball with center z̃ = [xT πT (x)]T , such that the ball
contains M samples z(n), i.e.,

φ̃i(x,DN ) = min
φ∈R+,0

ϕ (25a)

such that
∣∣∣∣{z(n) ∈ DN :

(
z̃ − z(n)

)T
Λ−1
i

(
z̃ − z(n)

)
≤ ϕ2

}∣∣∣∣ ≥M, (25b)
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where |·| denotes the cardinality of the set and we use the abbreviationπ(x)=π(x,x(1),u(1), . . . , t).

The weighted M -fill distances measure the distance from a test point z̃ = [xT πT (x)]T to the M
closest training samples in the Mahalonobis distance metric induced by the length scales Λi of
the squared exponential kernels (4). By choosing a small number M � N , only training points
in the proximity of the test point z̃ = [xT πT (x)]T are relevant for the weighted M -fill distance
φ̃i(x,DN ). This allows us to measure the local data density in a flexible way, where high train-
ing data densities are indicated by low values of φ̃i(x,DN ). Moreover, it is possible to bound the
posterior GP variances σ̃2(x) in terms of the weighted M -fill distances φ̃i(x,DN )3. We exploit
this property in the following theorem to derive conditions that guarantee that the summands of the
uncertain Lyapunov derivative V̇σ(·, ·) are upper bounded by functions ξi : Rdz × R0,+ → R0,+,
i = 1, . . . , df . For suitably chosen functions ξi(·, ·), the satisfaction of these bounds implies stabil-
ity of the closed-loop system.

Theorem 5 Choose τ such that
√
β(δ, τ)σ̃i(x) > γi(δ, τ) holds for all x ∈ X and ξi : Rdz ×

R0,+ → R0,+ such that

V̇ 2
σi,0(x, t) = 4β(δ, τ)s2

fi

∣∣∣(∇xV (x, t))Tai

∣∣∣2 > ξ2
i (x, t). (26)

If the M -fill distance φ̃i(·,DN ) satisfies φ̃2
i (x,DN ) ≤ φ̄2

i (x, t) + θ2
i for all x ∈ X, where

φ̄2
i (x, t) = − log

(
1− ξ2

i (x, t)

V̇ 2
σi,0(x, t)

)
(27)

θ2
i = log

(
s2
fi
‖ai‖22

)
− log

 max
m=1,...,dx

df∑
n=1

|am,n|‖an‖1s2
fn +

λmax(Σon)

M

 , (28)

then, with probability of at least 1− δ, it holds for all x ∈ X that

V̇σi(x, t) =
(√

β(δ, τ)σ̃i(x) + γi(δ, τ)
) ∣∣∣(∇xV (x, t))Tai

∣∣∣ ≤ ξi(x, t). (29)

Condition (26) is necessary to ensure the existence of the logarithm in (27), but it is not restrictive
since ξ2

i (·, ·) are upper bounds. Hence, we can simply tighten the bounds until ξ2
i (·, ·) satisfies con-

dition (26). The expressions (27) and (28) have different roles. The values θi express the difficulty
of recovering the functions fi(·) from the noisy measurements of Af(·), which in turn depends on
the signal variances s2

fi
of the independent covariance functions ki(·, ·) and the magnitude of the

elements of A. In contrast, φ̄2
i (·, ·) captures the dependency on the control task. The numerator in

(27) corresponds to a summand of the uncertain Lyapunov derivative component (24) without any
training data as s2

fi
corresponds to the prior GP variance. Therefore, φ̄2

i (x, t) goes to∞ when the
prior uncertain Lyapunov component converges to the bound ξ2

i (x, t). This intuitively reflects the
fact that no data are required when the GP prior is already sufficient to guarantee (29).

As mentioned previously, Theorem 5 can be used to analyze the stability of the closed loop sys-
tem. More specifically, stability is guaranteed if the negated nominal Lyapunov derivative V̇nom(·, ·)
is larger than the uncertain component V̇σ(·, ·). This can be trivially checked with Theorem 5 by
defining ξj(·, ·) such that

∑df
i=1 ξi(x, t) ≤ |V̇nom(x, t)|. A natural choice satisfying this condition

3. A bound for the posterior variance in terms of the M -fill distance is derived in the appendix.
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together with constraint (26) is given by

ξi(x, t) = min

− V̇nom(x, t)‖ai‖1∑df
j=1 ‖aj‖1

, V̇σi,0(x, t)− ν

 , (30)

where ν ∈ R+ is an arbitrarily small constant. Furthermore, convergence rates can be examined in
a similar way. For example, an exponential rate of convergence is achieved by guaranteeing that a
requirement similar to (30) is satisfied, where V̇nom(x, t) is replaced by V̇nom(x, t) + V (x, t).

Due to the intuitive interpretation of Theorem 5, we propose to use it as the basis for a measure
of the importance of training data for control. This naturally leads to the definition of the ρ-gap.

Definition 6 The ρ-gap is defined as

ρ(x, t,DN ) =

df∑
i=1

max{0, φ2
i (x,DN )− φ̄2

i (x, t)− θ2
i }. (31)

Essentially, the ρ-gap measures the discrepancy between the required data density, which is ex-
pressed through φ̄2

i (x, t) + θ2
i and depends on the desired bounds ξi(·, ·), the Lyapunov derivative

and the signal standard deviations s2
fi

, and the actual data density represented by theM -fill distances
φ2
i (x,DN ), which are independent of the control problem and only depend on the available data.

5. Data Selection Strategies

Based on the information measure proposed in Section 4, the data set can be preprocessed to contain
only the most relevant information for the given control task. This becomes particularly important in
scenarios where the prediction of the GP model must be performed under tight real-time constraints.
Even with a precomputation of the matrix inverse in (17) (which takesO(N3)), the N kernel evalu-
ations (for kTm(Z, z)) and the corresponding multiplications (O(N) for the posterior mean, O(N2)
for the posterior variance) must still be performed online. In practice, this imposes an upper bound
for the number of points that can be considered by the model. We formulate the resulting computa-
tional constraint independent of the hardware and specific real-time limit as follows.

Assumption 4 The computational constraints allow a maximum of N̄ data points to be considered
by the GP regression model (17).

For the non-trivial case N > N̄ , this makes a selection of an active data set DN̄ ⊂ DN necessary.
Such a data selection has been considered for general function learning in Krause et al. (2008),
and specifically for control tasks in Umlauft et al. (2020). But both employ entropy-based criteria,
which only aims to optimize the precision of the model but does not consider the closed-loop control
performance. Therefore, we utilize the ρ-gap as the measure for the control performance of a data
set to find the optimal active data set4

i∗ = arg min
i∈PI

N̄

max
t∈T,x∈X

ρ (x, t,i) , (32)

where T = [0, T [ with initial time t0 ∈ R0,+, t0 <∞ and (possibly infinite) final time T ∈ R∪∞.

The optimal active data set is then given by DN̄ =
{
z(i(i)),y(i(i))

}N̄
i=1

. If the desired trajectory

4. To simplify notation, we introduce the index set I = {1, . . . , N} and all possible subsets with size N̄ , denoted as PI
N̄ .

i(i) denotes the i-th entry of the index set i.
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Algorithm 1: Greedy optimization for optimal subset selection
Input: DN , ρ(·, ·), T0, . . . ,TS
Output: DT0

N̄
,. . .,DTS

N̄

for T = T0, . . . ,TS do
DT
N̄
← ∅, I = {1, . . . , N}

for n = 0, . . . , N̄ do
i∗, t∗ ← arg max

i∈I,t∈T
ρ
(
x(i), t,DT

N̄

)
DT
N̄
← DT

N̄
∪
{
z(i∗),y(i∗)

}
I← I \ {i∗}

end
end

has a wide spread or N̄ is small, then the selected subset might not lead to a satisfactory control
performance. For such a case, we can partition the task in S ∈ N time intervals T0 = [0, t1[, T1 =
[t1, t2[, . . ., TS = [tS , T [ and compute the corresponding optimal subsets DT0

N̄
, . . ., DTS

N̄
.

Due to its mixed nature (combinatorial in i, continuous in t and x), the optimization prob-
lem (32) is not trivial to solve. However, the optimization can be performed offline, assuming that
sufficient memory capacity is available to store all precomputed subsets. Furthermore, in the field of
function learning it has been shown that greedy algorithms can show near-optimal behavior (Krause
et al., 2008). Therefore, we propose the greedy data selection procedure shown in Algorithm 1.

6. Numerical Evaluation

In order to evaluate the proposed importance measure, we consider the nonlinear system

ẋ = x+
1

1 + exp(−2x1)

[
1
−1

]
+ 0.5

[
sin(πx2)
cos(πx1)

]
+ u, (33)

which is a slight modification of the example proposed in (Umlauft et al., 2018). We assume a prior
model f̂(z) = x+ u, and define the kernel matrix using

A =

[
1 0
−1 1

]
(34)

and squared exponential kernels k1(x,x′), k2(x1, x
′
1). This ensures that the correlation between the

outputs caused by the second summand in (33) is properly modeled. We employ a control law

π(x, t) = −(µ(x) +K(x− xref(t))− ẋref(t)),

with gain K = 15 and references xref(t) = [c1 sin(t) c2 cos(t)]T with randomly drawn ci ∼
N (0, 1). Nominal stability of the closed loop is shown using the Lyapunov function V (x, t)=(x−
xref(t))

T (x−xref(t)). The training set is generated by simulating the closed-loop system with prior
mean µ(·) = f̂(·) and sampling N = 100 data points during the interval t∈ [0, T ] with T = 10. We
divide the period of the reference trajectory into S=10 equally long intervals Ts and select subsets
of cardinality N̄=10 for each interval using Algorithm 1 with M=1 and ξi(·) as defined in (30).

Snapshots of the selected subsets and the resulting system trajectories are illustrated in Fig. 1. It
can be clearly seen that the training samples are chosen close to the reference in the considered time
intervals Ts. This is because the feedbackK(x−xref) ensures that the Lyapunov stability condition

9
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Figure 1: Snapshots of the desired and actual trajectory of the dynamical system. Data selected by

Algorithm 1 lies close to the future reference and ensures a high tracking accuracy.

is satisfied far away from the reference regardless of training data. Moreover, the data density grows
as the distance to the reference decreases due to the vanishing effect of the feedback in its proximity.

We evaluate our technique by carrying out 100 control law roll-outs with randomly drawn trajec-
tory parameters ci. Furthermore, we compare the results with the performance of the full data set, as
well as data selected with a greedy maximization of the mutual information with respect to a uniform
grid over [−1.5, 1.5]2, and maximization of the mutual information with respect to the considered
trajectory interval (Umlauft et al., 2020). The results are depicted in Table 1. A reduction in the aver-
age computation time by a factor of approximately 10 for all subset selection methods can observed,
which is a straightforward consequence of the linear complexity of predictions (Rasmussen and
Williams, 2006). Moreover, the steady state mean squared tracking error is the lowest for the subset
selected based on the ρ-gap, and even smaller than for the full data set. The approach from (Umlauft
et al., 2020) exhibits a similar performance. Although it might seem unintuitive that reducing the
number of samples benefits control performance, this is not excluded by Theorem 2, as discussed
in Remark 3. This underlines the importance of selecting training data for learning-based control.

7. Conclusion

We presented the ρ-gap, a measure that quantifies the value of data for a broad class of control tasks.
The proposed quantity is used to identify the optimal data set for control tasks under computational
constraints. Simulations demonstrate that the data subsets selected using the presented measure are
highly correlated with the control task and can even be beneficial for control performance.

Table 1: Tracking errors and GP prediction times resulting from different subset selection criteria.
The ρ-gap significantly outperforms existing methods regarding control performance.

criterion full data set mutual information mutual information ρ-gap
w.r.t. uniform grid w.r.t. reference

steady-state MSE (·10−3) 1.15 1.32 0.38 0.16
prediction time (µs) 437 45.0 45.0 45.0

10
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Appendix A. Component-wise Uniform Error Bounds for Multiple-Output Gaussian
Process Regression

Proof of Lemma 1 It can be easily checked that we can express the kernel matrix function as

K(z, z′) =

df∑
i=1

Biki(z, z
′), (35)

where

Bi =

 a1,i
...

adx,i

 [a1,i · · · adx,i
]︸ ︷︷ ︸

aTi

. (36)

Therefore, the kernel matrix is linear in the scalar kernel functions km(·, ·), such that the posterior
of aifi(·) can be obtained as

aifi(·)|DN ∼ N (µaifi(·),Σaifi(·)), (37)

where

µaifi(z) =
(
Bi ⊗ kTi (Z, z)

)Σon ⊗ IN +

df∑
j=1

Bj ⊗ kj(Z,Z)

−1 (
t− f̂(Z)

)
(38)

Σaifi(z) = ki(z, z)Bi−
(
Bi⊗kTi (Z, z)

)Σon⊗IN+

df∑
j=1

Bj⊗kj(Z,Z)

−1

(Bi⊗ki(Z, z)) (39)
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This follows from a trivial extension of the results in (Duvenaud, 2014) to multiple-output GPs. Due
to the definition ofBi, we can equivalently write

µaifi(z) = ai

(aTi ⊗ kTi (Z, z)
)Σon⊗IN+

df∑
j=1

aja
T
j ⊗kj(Z,Z)

−1(
t− f̂(Z)

) (40)

Σaifi(z) = aiki(z, z)aTm (41)

− ai

(aTi ⊗kTi (Z, z)
)Σon⊗IN+

df∑
j=1

aja
T
j ⊗kj(Z,Z)

−1

(ai⊗ki(Z, z))

aTi , (42)

from which we can directly deduce the identities (17) and (18).

Proof of Theorem 2 The result follows from Lemma 1 and a straightforward adaption of (Lederer
et al., 2019a, Theorem 3.1).

Appendix B. Variance Bounds and Lyapunov-Based Data Densities

Lemma 7 The posterior variance σ̃2
i (x) defined in (18) is bounded by

σ̃2
j (x) ≤ s2

fj
−

s4
fj

exp(−φ̃2
j (x))

dx∑
i=1

a2
i,j

max
m=1,...,dx

df∑
n=1

dx∑
i=1

am,nai,ns2
fn

+ λmax(Σon)
M

. (43)

Proof This result is a direct extension of (Lederer et al., 2019b, Corollary 3.1) to multiple-output
GPs with linear coregionalization and we pursue the proof analogously. Since the posterior variance
is non-increasing, we can consider only training samples z(n) within distance at most φ̃j(x) to[
xT πT (x)

]T in the posterior variance calculation. Therefore, we obtain

σ2
j (x) ≤ s2

fj
−

‖kTj (Zφ̃j(x), z)⊗ aTj ‖2

λmax

(
Σon⊗IN+

df∑
n=1
anaTn⊗kn(Zφ̃j(x),Zφ̃j(x))

) , (44)

where Zφ̃j(x) denotes the training samples with distance at most φ̃j(x) to
[
xT πT (x)

]T . We
trivially obtain the bound

‖kj(Zφ̃j(x), z)⊗ aj‖ ≥Ms4
fj

exp(−φ̃2
j (x))

dx∑
i=1

a2
i,j (45)

due to the distance restriction. Moreover, the application of Gershgorin’s theorem yields

λmax

Σon⊗IN+

df∑
n=1

ana
T
n⊗kn(Zφ̃j(x),Zφ̃j(x))

 ≤ λmax(Σon)+ max
m=1,...,dx

df∑
n=1

dx∑
i=1

am,nai,nMs2
fn

(46)

due to the definition of the M -fill distance φ̃j(x) in Theorem 4. Substituting the bounds (45) and
(46) in (44) finally yields the result.
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Proof of Theorem 5 Since
√
β(τ)σ̃j(x) > γj(τ) by assumption, we can simplify√
β(τ)σ̃j(x) + γj(τ) ≤ 2

√
β(τ)σ̃j(x). (47)

Therefore, satisfaction of the condition

4

(
dx∑
i=1

|ai,j
∂

∂xi
V (x, t)|

)2

β(τ)σ̃2
j (x) ≤ ξ2

j (x, t) (48)

implies the statement of Theorem 5. Hence, we can substitute (43) and solve for φ̃2
j (x) in order to

prove Theorem 5.
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