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Abstract

Brain-computer interface (BCI) is a particular human-machine interfacing system that pro-

cesses users’ brain activities and translates them into commands to control external assis-

tive devices. Overall, BCI proposes a promising solution to directly connect the human brain

to neuroprostheses, en route to developing a bidirectional, closed-loop interface between

amputees and their prostheses. However, a good BCI system for neuroprosthetics control

should allow the reliable classification of complex movements from users’ intentions when

interacting in real-time with their assistive devices, and more importantly should decode the

human brain perception of different external sensory stimuli, ranging from gentle touch to

very intense sensations.

Within this thesis, I demonstrate that one way to approach this problem is by exploiting elec-

troencephalography (EEG) signals alongside other biosignals, such as electrooculography

(EOG) and electromyography (EMG). As will be shown in this thesis, BCI represents an

intriguing technology for feed-forward control, as well as for sensory substitution. When fo-

cusing on both sides of the equation, two main control methods were investigated. From a

feed-forward control standpoint, the following approaches were pursued: First, Only EEG

signals were used for decoding two motor imagery (MI) movements when controlling a

robotic arm. For that, I validated different EEG learning models using data collected from

20 healthy subjects. Overall, the validated deep learning model outperformed the state-of-

the-art machine learning techniques and showed high stability across subjects, with a mean

standard deviation of less than 3.32%. The successful decoding of these two MI movements

spurred the exploration of other techniques to decode more complex arm movement inten-

tions and led to a second follow-up study. For that purpose, EOG+EMG and EEG+EMG

were used to classify five and six reach-to-grasp movements, achieving an average online

accuracy of 95.8% and 89.6%, respectively. For the sensory substitution part, vibrotactile

stimulation was investigated, and four human subjects were able to control in real-time four

gestures of a prosthetic hand, using decoded EMG signals, with an average accuracy of

86.25%, while being able to simultaneously differentiate between the stiffness of three dif-

ferent grasped objects with an average online accuracy of 88.46%. Thereafter, two follow-up

studies were designed, where EEG was used to quantify the brain perception of electrical
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and thermal sensory stimulations. First, I identified and validated Spatio-temporal features

of brain activity during innocuous, moderately intense, and very intense stimulation of an

amputee’s phantom limb using transcutaneous nerve stimulation (TENS). Based on these

identified EEG features, I classified the three stimuli with a test accuracy of 94.66%. Sim-

ilarly, I reported that the unpleasant (very intense) stimulus activated the pre-motor cortex

with the highest activation shown in the central cortex between 450 ms and 750 ms post-

stimulation, whereas the highest activation for the moderately intense stimulation was found

in the parietal lobe. Further, I localized the cortical sources and observed early strong ac-

tivation of the anterior cingulate cortex (ACC) for the very intense stimulus. These results

were further extended in a follow-up study, where we used EEG to identify spatial, tempo-

ral, and spectral patterns of brain responses to five different thermal stimulations. Results

showed that the most intense thermal stimuli elicit a decrease in alpha power compared to

intense and innocuous stimulations. Spatio-temporal analysis reveals that in the first 400 ms

post-stimulus, brain activity increased in the prefrontal and central brain areas for the very

intense thermal stimulations, whereas for the moderately intense stimulation, high activity

of the parietal area was observed post-500 ms. Based on these EEG patterns, I classified

the different thermal stimulations (average accuracy of 87%). When performing source lo-

calization, my findings reveal that the most intense thermal stimuli (very cold and very hot)

were anticipated and induced early (before 400 ms) activation of the ACC. Moreover, acti-

vation of the pre-frontal cortex, somatosensory, central, and parietal areas, was observed

in the first 400 ms post-stimulation for very intense thermal conditions and starting 500 ms

post-stimuli for intense conditions. Overall, the results of these studies could lead to a better

understanding of thermal and electrical sensations perception and processing in the human

brain.
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Zusammenfassung

Gehirn-Computer Schnittstellen ist ein spezielles Mensch-Maschine-Schnittstellensystem,

das die Gehirnaktivitäten der Benutzer verarbeitet und in Befehle zur Steuerung externer

Hilfsgeräte umsetzt. Insgesamt schlägt BCI eine vielversprechende Lösung zur direkten

Verbindung des menschlichen Gehirns mit Neuroprothesen vor, auf dem Weg zur Entwick-

lung einer bidirektionalen, geschlossenen Schnittstelle zwischen Amputierten und ihren

Prothesen. Insbesondere sollte ein gutes BCI-System für die neuroprothetische Steuerung

die zuverlässige Klassifizierung komplexer Bewegungen aus den Intentionen der Anwender

bei der Interaktion mit ihren Hilfsmitteln in Echtzeit ermöglichen und, was noch wichtiger

ist, die Wahrnehmung verschiedener externer sensorischer Reize im menschlichen Gehirn

entschlüsseln, die von sanften Berührungen bis hin zu sehr intensiven Empfindungen re-

ichen.

Im Rahmen dieser Arbeit zeige ich, dass ein wichtiger Weg zur Lösung dieses Problems

darin besteht, die Signale der Elektroenzephalographie (EEG) neben anderen Biosignalen,

wie der Elektrookulographie (EOG) und der Elektromyographie (EMG), zu nutzen. Wie

in dieser Arbeit gezeigt wird, stellt der BCI eine faszinierende Technologie für die Feed-

Forward-Kontrolle sowie für die sensorische Substitution dar. Wenn man sich auf beide

Seiten der Gleichung konzentriert, wurden zwei Hauptkontrollmethoden untersucht. Aus

der Sicht der Feed-Forward-Kontrolle wurden die folgenden Ansätze verfolgt: Zunächst wur-

den nur EEG-Signale zur Dekodierung von zwei motorischen Bildbewegungen (MI) bei der

Steuerung eines Roboterarms verwendet. Dazu validierte ich verschiedene EEG-Lernmodelle

anhand von Daten, die von 20 gesunden Probanden gesammelt wurden. Insgesamt übertraf

das vorgeschlagene Lernmodell die modernsten Techniken des maschinellen Lernens und

zeigte eine hohe Stabilität über die Probanden hinweg, mit einer mittleren Standardabwe-

ichung von weniger als 3,32%. Die erfolgreiche Dekodierung dieser beiden MI-Bewegungen

spornte die Erforschung anderer Techniken zur Dekodierung komplexerer Armbewegungsab-

sichten an und führte zu einer zweiten Folgestudie. Zu diesem Zweck wurden EOG+EMG

und EEG+EMG verwendet, um fünf und sechs Greifbewegungen zu klassifizieren, wobei

eine durchschnittliche Online-Genauigkeit von 95,8% bzw. 89,6% erreicht wurde. Für den

sensorischen Ersatzteil wurde die vibrotaktile Stimulation untersucht, und vier menschliche
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Versuchspersonen waren in der Lage, in Echtzeit vier Gesten einer Handprothese unter Ver-

wendung dekodierter EMG-Signale mit einer durchschnittlichen Genauigkeit von 86,25%

zu kontrollieren, während sie gleichzeitig in der Lage waren, zwischen der Steifheit von

drei verschiedenen gegriffenen Objekten mit einer durchschnittlichen Online-Genauigkeit

von 88,46% zu unterscheiden. Danach wurden zwei Folgestudien konzipiert, bei denen

das EEG zur Quantifizierung der Gehirnwahrnehmung von elektrischen und thermischen

sensorischen Stimulationen verwendet wurde. Zunächst identifizierte und validierte ich

die raum-zeitlichen Merkmale der Gehirnaktivität während einer harmlosen, mäßig inten-

siven und sehr intensiven Stimulation der Phantomschleife eines Amputierten mittels tran-

skutaner Nervenstimulation (TENS). Basierend auf diesen identifizierten EEG-Merkmalen

klassifizierte ich die drei Stimuli mit einer Testgenauigkeit von 94,66%. In ähnlicher Weise

berichtete ich, dass der unangenehme (sehr intensive) Stimulus den prämotorischen Ko-

rtex aktivierte, wobei die höchste Aktivierung im zentralen Kortex zwischen 450 ms und

750 ms nach der Stimulation gezeigt wurde, während die höchste Aktivierung für die mäßig

intensive Stimulation im Parietallappen gefunden wurde. Ferner lokalisierte ich die kor-

tikalen Quellen und beobachtete eine frühe starke Aktivierung des anterioren cingulären

Kortex (ACC) für den sehr intensiven Stimulus. Diese Ergebnisse wurden in einer Folges-

tudie weiter vertieft, in der wir mit Hilfe des EEG räumliche, zeitliche und spektrale Muster

der Gehirnreaktionen auf fünf verschiedene thermische Stimulationen. Die Ergebnisse

zeigten, dass die intensivsten thermischen Stimuli eine signifikante Abnahme der Alpha-

Power im Vergleich zu intensiven und harmlosen Stimulationen hervorrufen. Die räumlich-

zeitliche Analyse zeigt, dass in den ersten 400 ms nach dem Stimulus die Hirnaktivität

in den präfrontalen und zentralen Hirnarealen bei den sehr intensiven thermischen Stim-

ulationen zunahm, während bei der mäßig intensiven Stimulation nach 500 ms eine hohe

Aktivität des Parietalbereichs beobachtet wurde. Basierend auf diesen EEG-Mustern klas-

sifizierte ich die verschiedenen thermischen Stimulationen (durchschnittliche Genauigkeit

von 87%). Bei der Durchführung der Quellenlokalisation zeigen meine Ergebnisse, dass

die intensivsten thermischen Reize (sehr kalt und sehr heiß) antizipiert und früh (vor 400

ms) zur Aktivierung des ACC induziert wurden. Darüber hinaus wurde die Aktivierung des

präfrontalen Kortex, des somatosensorischen, zentralen und parietalen Bereichs in den er-

sten 400 ms nach der Stimulation bei sehr intensiven thermischen Bedingungen und ab 500

ms nach der Stimulation bei intensiven Bedingungen beobachtet. Insgesamt könnten die

Ergebnisse dieser Studien zu einem besseren Verständnis der Verarbeitung thermischer

und elektrischer Empfindungen im Gehirn führen, was einen Weg für die Entwicklung eines

Echtzeit-Entzugsreaktionssystems bei der Interaktion mit Prothesen aufzeigen könnte.
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1 Introduction

1.1 Motivation

Brain-computer interface (BCI) [1, 2, 3, 4, 5, 6, 7, 8] is a specific human-machine interfac-

ing system that monitors users’ brain activity and translates them into actions that can be

used for operating different external devices. The study by J. J. Vidal in 1973 [1] is consid-

ered the first attempt to capture electroencephalography (EEG)-evoked electrical activity of

the cerebral cortex [9]. Since then, we have witnessed the rapid evolution of BCI systems

to cover a wide range of applications [9], including brain fingerprinting for lie detection [10],

detecting drowsiness for enhancing people working performances [11], controlling virtual re-

ality [12] and playing video games [13], as well as controlling and steering humanoid robots

[14, 15, 16]. Specifically, BCIs can be used to support people with motor disabilities and

helping them interact with their surroundings [17, 18]. The main idea is that an individual

can accomplish tasks only by thinking about specific actions. For instance, motor imagery

describes a mental process in which a person imagines to perform a certain action, e.g.,

opening or closing the left or right hand and the BCI system translates this action into com-

mands to control external assistive devices [19, 18]. Unfortunately, BCI systems based on

motor imagery are still slow, inaccurate, and present several limitations [3, 20]. Hence,

the hybrid approach, relying on the combination and simultaneous decoding of multiple

biosignals is considered an alternative to circumvent these limitations [21, 22], in particu-

lar when decoding complex hand and arm movements (e.g. reach-to-grasp movements).

For instance, electromyography (EMG)-based systems have been widely used as assistive

technologies for different applications such as prosthetics control [23, 24]. Although being

faster, more reliable, and less noisy, solely relying on EMG interfaces has some remaining

drawbacks. Usually, the EMG interface requires extensive training, and recorded signals are

sensitive to the electrode placement, they show variations when it comes to muscle fatigue,

and cannot be used by everyone due to physical (e.g. spinal cord injury or amputation) and

technical reasons. Combining EMG with other signals, such as EEG or electrooculogra-

phy (EOG) is a good approach to compensate for some disadvantages when relying on a

single input signal. Aside from this, BCI represents a good approach for the bidirectional
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control of neuroprostheses. This connection between BCI and prosthetic devices has be-

come widely acknowledged and has gained momentum over the last decades [25, 19, 18].

In this context, BCI could be used in both efferent and afferent pathways not to only improve

the feedforward control of these devices, but more importantly, to understand and quantify

the human brain perception of different external stimuli, en route to developing a real-time

withdrawal reaction system in sensory-enabled prostheses. As was previously suggested

in the study by Tombini et al. [26], closed-loop BCI control, particularly the understanding

of external sensory stimuli perception dynamics and their related cortical activations, using

EEG signals, can also lead to the alleviation of the phantom limb pain (PLP) syndrome [26],

which is affecting more than 42% of amputee population [27].

This thesis focuses on both sides of the equation (efferent and afferent), investigating, in

different ways, how BCI can be used to improve the control of prosthetic devices. On the

one hand, EEG signals were decoded and combined with EOG and EMG for the real-time

feedforward control of reach-to-grasp movements of two different robotic arms. The essen-

tial motivation behind this first contribution was to develop a software system that can be

used for real-time control of assistive devices, particularly prosthetic hands. Such a hybrid

BCI system could be of importance, specifically when other biosignals such as muscle ac-

tivity cannot be decoded and/or accessed. On the other hand, the same brain signals were

used to quantify and understand the brain perception and processing of two different types

of sensory stimuli, ranging from innocuous sensation to very intense transcutaneous electri-

cal nerve and thermal stimulations. Overall, analyzing and classifying neural activity evoked

by external sensory stimuli when using sensory substitution was motivated by the idea of

developing a real-time withdrawal reaction system when interacting with prostheses, which

can increase sense of embodiment [28]. The long-term vision of this research is illustrated

in Figure 1.1.

1.2 Research questions

There are a couple of research questions we set out to answer within this thesis. In fact, the

design of those research questions contributed to the validation of different approaches to

improve the feed-forward control of robotic prostheses, the validation of sensory substitution

methods [29], as well as the investigation of the human brain perception and processing

of different external sensory stimuli, induced by electrical and thermal stimulations. Within

this thesis, we found out that one way to approach these central questions is to exploit EEG

brain activity (alongside other biosignals (EOG, EMG)) when controlling robotic arms and

perceiving the external sensory stimulation. As will be demonstrated in this thesis, the hybrid
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Figure 1.1: Long-term vision of the proposed research

concept presents a good approach for real-time control, as well as for the human brain

perception quantification of external sensory stimuli. Figure 1.2 summarizes the different

questions for both the feed-forward and the sensory/perceptual path. These questions are

structured as follows:

• Would it be possible to validate a robust and real-time BCI/EEG-based control decod-

ing system that works across different subjects?

• Would the fusion, combination, and classification of multiple biosignals allow a more

accurate and real-time decoding of complex hand and arm movements?

• Would it be possible to validate and test a non-invasive vibrotactile sensory substitu-

tion modality to encode the stiffness of different objects during real-time and bidirec-

tional control of the prosthesis?

• Would it be possible to identify specific features in EEG brain recordings and detect dif-

ferences in neural activity between sensory stimulation that ranges from a light touch

to a very intense tactile sensation?

• How does the brain respond to a wide range of thermal stimuli ranging from extremely

cold to very hot stimulations?

1.3 Challenges

In this section, we discuss the different technical challenges encountered in this thesis.

These challenges served as the basis for this work and defined its areas of focus.
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Can we develop robust and real-time 
BCI-based control systems that work 

across different subjects? 

       Main Research questions are:  

Feed-Forward Control

Would hybrid BCI allow for more 
accurate real-time decoding of 

complex hand and arm movements?
 

Is it possible to identify specific 
patterns and detect differences in 

EEG between various sensory 
stimuli?

How do these features change for 
sensory profiles? How does the brain 

respond to very intense stimuli 
coming from different sources?

     Sensory Path

Figure 1.2: Overview of main research questions proposed in this thesis.

High non-stationarity of EEG signals when used for real-time decoding
applications

Overall, when processing EEG signals, the main challenges are data collection, feature

extraction, model implementation, and the design of a robust online system architecture

[30, 31]. Specifically, one of the major technical challenges we faced in this work was the

low signal-to-noise ratio (SNR) of EEG recordings [3, 30]. Although EEG has a good tem-

poral resolution [3, 31], it suffers from high non-stationarity and low spatial resolution. As a

result, it is often time very challenging to localize the sources and responsible regions of this

brain activity. This is due to the fact that EEG signals are captured from multiple channels

and from several time segments. Similarly, EEG non-invasive recordings are susceptible to

many factors in the environment that are unrelated to the underlying cerebral activity, such

as eye blinking and movement artifacts [32]. The fact that EEG data is vulnerable to arti-

facts, even in well-controlled conditions [30, 32], makes it challenging to perform real-time

decoding of such a signal. Hence, these problems have resulted in difficulties to reliably

decode these signals and accurately classify the users’ intentions. When processing EEG

data, researchers have relied on multiple de-noising approaches [3], such as independent

component analysis (ICA) [33]. The problem with such de-noising algorithms is that noisy

channels are usually excluded using manual visual inspection, and hence they are less

suitable for real-time applications. Other research papers have focused on dimensionality
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reduction techniques, such as principal component analysis (PCA) to de-noise collected

EEG data [34]. However, the main issue with dimensionality reduction techniques is the

high risk of losing a significant amount of information from EEG data. In different studies of

this thesis, both PCA and ICA were also used for data pre-processing but they were further

combined with an automatic feature selection approach [35] to select the best subset of dis-

criminative features before being fed to the machine learning classifier. After successfully

processing EEG data, extracting robust features and decoding the recorded signal are an-

other challenging steps. For that, standard machine learning techniques have been widely

investigated to classify EEG data for different purposes and applications [3, 18, 19, 36].

These previous attempts to analyze EEG signals focused on well-characterized sensorimo-

tor data features. However, BCI seems to have stagnated in improving the reliable decoding

of these signals using standard processing techniques. Along the same lines, the high di-

mensionality and non-stationarity of EEG data lead to the heavy computational effort, mak-

ing them not suitable for real-time applications. Our validated decoding models based on

deep learning (presented in chapter 3) achieved less inter-trial and inter-subject variability

and demonstrated the possibility to be used in real-time when controlling two-state move-

ments of a robotic arm, compared to traditional machine learning approaches. The best

performing deep learning model presented in chapter 3 was thereafter used and tested in

the next follow-up study, presented in chapter 4 of this thesis.

EEG’s low spatial resolution hinders the decoding of complex movements

Another technical challenge when decoding EEG data is the limited spatial resolution of

this signal, which hinders the decoding of complex movements when interacting with robotic

arms, such as reach-to-grasp movements. Previous studies attempted to classify, by solely

using EEG signals, different hand and arm movements for neuroprosthetics control [37, 38,

39]. However, all these studies reported difficulties to achieve a good decoding accuracy

when solely relying on motor imagery movements, as well as many challenges when testing

the EEG-based BCI system in real-time. In chapter 4, another approach based on by relying

on multiple biosignals fusion and decoding was demonstrated in this thesis to circumvent the

limitation of solely relying on EEG decoding, and the low spatial resolution problem.

High inter-variability across subjects hinders the development of robust and
generalized BCI decoding models

In the feedforward control, different challenges were faced in this thesis, particularly when

recording, processing, and decoding different biosignals. Sweat, slight changes in the elec-
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trode’s positions during recording and the difference between the participants (muscle tis-

sues, gender, age, etc.) drastically decreased the quality of recorded signals (EEG, EMG,

EOG) and resulted in deteriorated classification accuracy when decoding them. Overall, this

high inter- and intra-subject variability between trials and across subjects made the problem

more intricate and led to unreliable models which cannot be generalized across different

human subjects. Along the same lines, data pre-processing had to be customized to each

individual to reach good overall performance. These observations and challenges are not

surprising, as they were extensively reported in the literature [40, 41, 42]. To overcome

these challenges, subjects had to be trained to correctly and repetitively perform the differ-

ent tasks, and new experimental paradigms were validated in this thesis.

Sensory substitution stimuli perception and processing in the human brain
remain elusive

On the other side of the equation, a major part of this thesis focused on the general quan-

tification of the human brain activity when perceiving and processing innocuous and very

intense sensory stimuli. EEG changes induced by electrical stimulation, using brain data

collected from one amputee, was studied and investigated in Chapter 6. Additionally, EEG

changes induced by five distinct thermal stimuli, using brain data collected from three able-

bodied participants, was studied in Chapter 7. In both studies, one of the major technical

challenges was to find robust spectral, spatial, and temporal features that can be used to

effectively decode and discriminate between external sensory stimuli, ranging from gentle

touch to very intense stimulation conditions. This is due to the highly complex and inter-

connected mechanisms involved in processing intense sensory stimuli [43]. Additionally, the

perception dynamics of these stimuli seem to be harbored in different brain regions, making

their understanding elusive. Along the same lines, literature has been extensively relying

on functional magnetic resonance (fMRI) [43] and Positron emission tomography (PET) [44]

to understand and classify external sensory stimuli. To overcome this challenge, this thesis

focused on advancing new EEG signal processing methods, as well as validating existing de-

coding models and source localization techniques, to provide an understanding of sensory

perception and processing, taking, therefore, an advantage of the good EEG compromise

between the level of invasiveness and the high temporal resolution [3].
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1.4 Thesis overview

This dissertation primarily focuses on the field of hybrid brain-computer interface (BCI) and

its application in upper-limb prostheses control. For that, two main control approaches were

investigated throughout this work. For the feed-forward control, the following approaches

were explored:

(1) Only EEG brain activity was used to decode in real-time two state movements for a

robotic arm control. For that, we validated different real-time EEG decoding models, such

as convolutional neural networks and standard machine learning classifiers. The successful

decoding of two classic motor imagery movements led to a follow-up study where the de-

coding of reach-to-grasp movements was investigated.

(2) Additional biosignals were classified and used either alone or with EEG for real-time de-

coding of other arm movements (mainly reach-to-grasp movements).

For the sensory feedback and the perceptual path, the following approaches were inves-

tigated:

(3) Vibrotactile sensory substitution modality was used to encode and convey back the stiff-

ness of different manipulated objects. This work resulted afterwards in two follow-up studies,

where EEG was used to quantify brain activity when receiving external sensory stimulations.

(4) Particularly, we first shed light on the brain perception of very intense electrical stimu-

lation in an amputee. The motivation was to first understand how does the brain perceive

innocuous and very intense stimuli, encoding object’s curvature and level of sharpness. This

would lead to a better understanding of how we can develop a withdrawal reflex system in

prostheses, mimicking the one in the nervous system.

(5) In a second study, the focus was on the decoding of the human brain’s perception of five

different thermal stimuli, ranging from extremely cold to extremely hot stimuli.

1.5 Thesis contribution

The work presented in this thesis utilizes emerging techniques and methods spanning from

signal processing, to advanced machine learning techniques for interpreting changes in

non-stationary biosignals. Figure 1.3 gives an overview of the work being presented in this

thesis. Main original contributions:

• Validated different deep learning models (convolutional neural networks, recurrent

neural networks) and compared them to classic machine learning approaches for con-

trolling in real-time a robotic arm through the decoding of two motor imagery move-
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ments from EEG signals. We sought to validate these deep learning models by chang-

ing and adapting their internal architectures to process and learn from complex EEG

time series data.

• To circumvent the limitation of solely utilising EEG signals for control, we tested a

hybrid BCI machine learning algorithm for real-time decoding of complex reach-to-

grasp movements. The classic machine learning algorithm combines and processes

various biosignals at the same time, which are EEG+EMG and EOG+EMG signals.

• Validated a noninvasive vibrotactile stimulation paradigm to provide artificial sensation

(sensory substitution) and encode different objects’ stiffness, while simultaneously

controlling, using EMG signals, multiple hand poses and force levels of a prosthetic

hand.

• Validated different processing and machine learning algorithms, as well as EEG source

reconstruction, for brain activity interpretation and localization when perceiving differ-

ent thermal and electrical sensations (encoding objects’ level of sharpness and tem-

perature).

• Investigated, using EEG signals, the question of how does the brain perceive very

intense sensory stimuli (for both extreme thermal stimulation and unpleasant electrical

stimulation)? This was validated using data collected from an amputee, as well as data

gathered from three able-bodied subjects.

Open-source software & Datasets: Besides direct research contributions, and as part of

this research work, an open-source BCI software was designed and made publicly available

for researchers (https://github.com/gumpy-bci). This software has been used by different

Universities across the world [46, 47, 45, 48, 49], including Technical University of Munich

(TUM), University of Houston, Johns Hpokins (JHU), and the National University of Sin-

gapore (NUS). Similarly, this software has been used by a number of students at TUM in

different scientific events and lectures, such as the CyberTUM; a TUM initiative to participate

in the Cybathlon 2020. Aside from that, this work resulted in different datasets, which were

made publicly available for download [50].

1.6 Thesis outline

This thesis is structured as follows:
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Figure 1.3: Proposed system overview. Adapted with permission from [45]

• Chapter 2 - Background: This chapter gives an introductory overview of EEG sig-

nals, BCI, hybrid BCI, current state of sensory feedback in prostheses, as well as

somatosensory evoked potentials brain responses.

• Chapter 3 - Investigation of real-time EEG decoding for a robotic arm feedfor-

ward control: This chapter explores how EEG can be used to decode two motor

imagery movements for a real-time robot arm control.

• Chapter 4 - Processing and decoding of multiple biosignals for real-time human-

robot interaction: In this chapter, I describe how multi-biosignal processing and hy-

brid BCI can be deployed to decode complex reach-to-grasp movements, circumvent-

ing the limitation of using EEG as the single decoded input signal.

• Chapter 5 - Investigating vibro-tactile stimulation to enable the sense of touch

in sEMG-controlled hand prostheses: In this chapter, I describe how vibrotactile

sensory substitution can be used to encode different objects’ stiffness and translate

them into artificial sensations and sensory substitution.
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• Chapter 6 - Decoding of EEG signals when perceiving three distinct sensory

stimuli induced by TENS: An amputee case study: In this chapter, I show how

EEG can be used to quantify different sensory stimuli ranging from innocuous to a

very intense stimulus.

• Chapter 7 - The development of distinct brain patterns for five thermal stimuli

perception reveals an anticipatory brain activity: This chapter shows how EEG

can be used to quantify different thermal stimuli ranging extremely cold to extremely

hot sensations. I also investigate brain activity at the source level, reporting new

findings of the main autonomic functions of different brain regions.

• Chapter 8 - Conclusion and Outlook: This chapter summarizes the thesis, dis-

cusses the major ramifications and proposes future research directions and possibili-

ties.
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2 Background

This chapter lays the foundation of the different terminologies and research disciplines of

relevance to this thesis. First, this background chapter introduces the general concept of

brain-computer interfaces (BCI) in Section 2.1, and we particularly focus on EEG-based

BCI in Section 2.1.1. Second, the concept of hybrid BCI, by relying on additional biosignals,

such as surface electromyography (sEMG) and electrooculography (EOG), is described in

Section 2.1.2. On the other side of the spectrum, the concept of neural sensory prostheses,

and the different stimulation techniques for the afferent pathway are introduced in Section

2.2. Particularly, we focus on intense sensory stimuli in sensory-enabled prostheses and

we discuss their perception and processing in the human brain in Section 2.3. Last, brain

motor responses, so-called somatosensory evoked potentials, are described and reviewed

in Section 2.3.2. A more in-depth literature review is also presented as related work in each

individual chapter.

2.1 Brain-computer interfaces (BCI): Overview

Paralyzed people need the ability to control assistive devices such as wheelchairs, spellers,

prosthetics, or exoskeletons to improve their quality of life and ensure their independence

[51]. The employed control interface needs to be reliable, robust, accurate, intuitive, and

safe to reduce the additional mental and physical workload for them and to make sure that

users and their environment stay unharmed. Many paralyzed people have no or solely lim-

ited ability to use their bodies as well as their peripheral nervous systems. Depending on

the severeness of the respective body-impairment, BCI represents a promising solution to

connect the brain directly to assistive devices [52]. The BCI field is still in its infancy with

most research works published in the last 20 years [8]. Broadly speaking, BCI is a specific

human-machine interface (HMI) system that monitors users’ brain activities and translates

them into actions that can be used to operate different external devices. Such a system al-

lows paralyzed patients to control, without directly using conventional neuromuscular path-

ways, arm prostheses, wheelchairs, and various robotic devices. BCIs can be used in a

wide range of applications, particularly to support people with motor disabilities by interact-
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ing with their surroundings. The essential idea is that an individual can accomplish tasks

only by thinking about a specific action. Aside from that, BCI can also provide an additional

communication channel for able-bodied people to interact with their environment by control-

ling external robotic devices, augmenting, thereby, their body capabilities well beyond their

needs [3]. A BCI system consists of three stages (as illustrated in Figure 2.1): (1) signal

acquisition by either invasively or non-invasively recording the electrophysiological signals,

which are used as inputs for the second stage. (2) signal processing and feature extraction

by removing signal artifacts using different filtering and machine learning techniques, in or-

der to find thereafter a proper representation of the acquired signal, hence glean the useful

information into feature vectors. (3) signal decoding by classifying the signal and translates

it into real-time control commands to execute the user’s desired task. Overall, brain activ-

ity can be measured using different sensing techniques [53], such as functional magnetic

resonance imaging (fMRI), magnetoencephalography (MEG), electrocorticography (ECoG),

local field potential (LFP), or EEG. Different possible control signals are illustrated in Figure

2.2. Depending on the sensing technique, different signals, such as electrical potentials,

magnetic fields, or electrical activity, are captured. Particularly, EEG has become one of

the most widely used techniques for BCIs due to its non-invasive and comparably affordable

character, as well as its high temporal resolution. In general, one should distinguish between

different types of BCIs: (1) Invasive BCI relies on microarrays or surgically implanted elec-

trodes. (2) Non-invasive BCI described in Section 2.1.1 is based on recording techniques

that do not require any implantation. (3) Passive BCI which is a non-invasive class that, un-

like active BCI, does not rely on any voluntary or intentional control by the user and decodes

spontaneous mental states without a necessary sense of awareness. (4) Unlike the passive

system whose purpose is to serve the able-bodied population, the active BCI focuses more

on decoding the user’s voluntary or intentional control usually linked to rehabilitation and

motor tasks. Overall, although BCI technology has seen significant improvements during

the last years [3], it still exhibits several limitations compared to other conventional control

modalities, such as keyboards or joysticks [54]. As a result, this hinders its potential to be

clinically deployed [3].

2.1.1 EEG-based BCI

BCIs are being widely used to control robotic arms and prostheses [19, 18]. For closed-loop

control, an additional BCI stage can be introduced, so-called the feedback stage, where

brain activity is used to quantify sensory perception and processing. In this thesis, we only

considered EEG signals for both efferent and afferent pathways.
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Figure 2.1: Overview of neuronal signals for arm prostheses control. Adapted with permission from
[55]

2.1.1.1 Signal source and recording principle

As aforementioned, a wide range of sensing techniques has been used in BCI. The BCI

system properties highly depend on the signal source, such as the temporal/spatial resolu-

tion, health risk for users, the recording device, and the signal acquisition price. Although

the main focus of this thesis is on EEG, we compare and summarize the main differences

between these different signals in Table 2.1. Overall, the synaptic activity within the brain in-

duces and generates locally detected potentials, so-called, local field potential (LFP). These

potentials elicit, within the nerve tissue, ionic currents that can be recorded in intra- and

extra-cellular space [56]. This summed voltage propagates to the skull and results in a de-

tectable signal on the scalp. This scalp signal (EEG) was initially discovered by Hans Berger

in 1924 [57], and it captures electric fields arising from the superposed neural activation with

a relatively poor spatial resolution. Both dry and wet electrodes can be used to record EEG

signals, with clear advantages and drawbacks for each recording method [20]. The place-

ment of electrodes used for EEG recording has been standardized in the international 10/20

recording system. It is worth noting that the use of ”10” and ”20” describes the actual dis-
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tances between adjacent electrodes, which are either 10% or 20% of the total front-back or

right-left distance of the skull (e.g. from the nasion to inion) [58]. Depending on the elec-

trode placement and the used paradigm, different patterns can be extracted from the EEG

and could be used in different BCI applications.

Figure 2.2: Standard electrophysiological BCI signals and recording methods. Taken with permis-
sion from [59].

Table 2.1: Qualitative comparison of different brain sensing techniques: ECoG, fMRI, and EEG [60].

Characteristics ECoG fMRI EEG

SNR High High Low

Health risk High Low Low

Spatial resolution High High Low

Temporal resolution High Low High

Price Low High Low

Manageability compact Bulky compact

2.1.1.2 EEG signal processing pipeline

EEG signals are usually sampled at 256 Hz or 512 Hz [3]. First, epochs of fixed size should

be extracted from initially recorded trials. All channels are first notch-filtered at 50 Hz or 60

Hz depending on where the recording sessions took place. Thereafter, EEG data is usu-

ally filtered between 2 and 60 Hz to preserve all interesting frequency bands’ information.
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Depending on the decoding task, a wide range of feature extraction methods have been

proposed in the literature, such as the logarithmic power of a specific frequency band [61],

which is often used in motor imagery decoding tasks, common spatial patterns [62], and

simple time-domain statistical features for ERP decoding [3]. Different classification meth-

ods spanning from classic machine learning [36], spiking neural networks [61], to advanced

deep learning techniques [63] can be used to decode EEG signals, depending on the task

complexity [64].

2.1.1.3 Artifact removal

EEG signals can be easily contaminated by different noise sources, such as interference

with power line, EMG signals when moving your head/neck during the recording, as well

as EOG coming from blinking or eye movements. Hence, artifact removal is an important

step when processing EEG data [3]. For that, we shed light in this section on the most

widely method for removing EEG artifacts. Independent component analysis (ICA) is a blind-

source separation technique which extracts all the different underlying signals that produced

the recorded EEG data, including noise [65]. Overall, ICA attempts to unmix signals that

are mutually exclusive to each other [33]. The ICA can be modelled with the equation 2.1,

where A is the unknown mixing matrix, x(t) are the observed signals, and s(t) are the source

signals. The overall objective is, therefore, to recover the original signals by only using the

observed signals [65]. ICA is considered the most widely used artifact removal method for

EEG signals [3].

x(t) = A · s(t) (2.1)

2.1.1.4 Source localization and reconstruction

To reconstruct EEG signals and analyze them at the source level, several steps are usually

performed. First, cortical surface reconstruction are estimated. Second, the forward solu-

tion and the forward model are computed using the boundary-element model (BEM) [66].

Thereafter, the regularized noise-covariance matrix, which gives information about potential

patterns describing uninteresting noise source, is estimated. Afterward, the singular value

decomposition (SVD) of the matrix composed of both estimated noise-covariance and the

source covariance matrix is computed. Overall, for EEG source localization, the standard-

ized low-resolution brain electromagnetic tomography (sLORETA) [67] is widely used [3].

The Standardized low-resolution brain electromagnetic tomography (sLORETA) [67] com-

putes the EEG distribution across the full brain volume. The sLORETA method offers a
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smooth and good deep sources localization. It provides a unique solution to the inverse

problem using a defined cost function [68] F as follows:

F = ‖φ−KJ − c1‖2 + α‖J‖ (2.2)

where φ defines the electrical potential recorded from the 64-electrode scalp EEG signal,

K defines the lead field matrix, J represents the measured current density, α defines the

positive regularization parameter, c1 is constant, and ‖.‖ is the Euclidean norm.

2.1.1.5 Decoding methods

Both standard machine learning techniques and deep learning have been used in BCI, par-

ticularly when decoding EEG signals. Here, we focus on proposed motor imagery classifi-

cation methods. Over the last two decades, support vector machine (SVM) and linear dis-

criminant analysis (LDA) have been the most commonly used decoding methods and they

achieved up to 75% accuracy when classifying three motor imagery movements [69, 70].

For a comprehensive literature review, readers are referred to this study on the state-of-

the-art of EEG-based BCI classification [4]. Deep learning for EEG decoding has gained

popularity and has been recently widely used in BCI. Both recurrent neural networks (RNN)

and convolutional neural networks (CNN) have been investigated [63]. For instance, Stober

et al. evaluated and benchamrked different methods for learning discriminating features with

deep learning techniques [71] by training convolutional auto-encoders on EEG data. Alex

Greaves implemented a RNN and a fully-connected NN to classify EEG that was recorded

when subjects where exposed to either 2D or 3D stimuli and he achieved 72% accuracy

[72], whereas Schirrmeister et al. investigated the design choices of CNN architectures for

decoding motor imagery movements from raw EEG data and he reached 71% accuracy

[73]. For more in-depth review on deep learning for BCI, readers are urged to check out this

study [63].

2.1.1.6 Event-related potentials and motor imagery

Depending on the BCI task and paradigm, different event-related potential (ERP) patterns

can be detected from EEG recordings. Here, we describe the most widely used EEG pat-

terns in BCI applications.

• Steady State Evoked potentials (SSVEP): Steady-state visually evoked potentials

(SSVEP) can be detected while observing a flickering visual stimulus as shown in [46].

They show up in EEG signals as a peak in the frequency spectrum of the electrodes
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over the primary visual cortex at the respective stimulus frequency. Although the fre-

quency rate and the number of distinguishable frequencies are limited, SSVEP-based

BCIs have a high SNR, information transfer rate (ITR), and require almost no user

training. However, an external stimulus is required, which makes this BCI dependent

on the environment and limited to synchronous control tasks [3].

• P300: P300 are positive brain deflections, where p stands for positive and 300 ms is

the post-stimulus latency to detect these patterns. This ERP is elicited when applying

the oddball paradigm and can be measured most strongly over the parietal lobe. P300-

based BCIs show the same stimulus dependence as SSVEP-based BCIs and are also

restricted to synchronous control tasks. Furthermore, they require extensive training

of the classifier and are generally slow. This is due to the multiple recordings that must

be averaged to visualize the wave deflection [74].

• Motor Imagery (MI): Motor imagery (MI) BCIs use event-related desynchronization

(ERD) [75] in the sensorimotor rhythm (mu band 8-12 Hz and beta band 13-30 Hz)

recorded over the primary motor cortex M1 to recognize preparation, execution, or

imagination of motor actions [75]. MI BCIs are self-paced and do not depend on

external stimuli, which enables them to be employed in asynchronous communication

tasks. They are suited for continuous control tasks, but require extensive training of

the classifier as well as the user, particularly if the movements are not executed but

only imagined. Furthermore, they are slow and the low spatial resolution of the EEG

only allows for the recognition of coarse body movements. Studies have shown that

left arm, right arm, and foot movements can be recognized and distinguished while

the accuracy drops significantly when increasing the number of classes, and hence

single finger movements cannot be accurately distinguished [76].

2.1.1.7 MI-based BCI limitations

BCI seems to have stagnated in improving MI movements decoding [3, 77]. In fact, the

most challenging task is how to extract reliable features from noisy EEG data, which are

characterized by low signal to noise ratio (SNR) and poor spatial resolution. Additionally,

EEG performance and interaction speed is lower compared to other control modalities and

good results usually require extensive training sessions. Another approach to control assis-

tive devices is the use of EMG signals, another HMI technology which measures the users’

muscular activity. Due to its easy usability and high SNR (signal-to-noise ratio) it has a high

potential to serve as a control channel for assistive devices. However, EMG is only record-

able if the user has any residual muscular activity and, even then, it is highly sensitive to
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muscle fatigue which prevents long-term usage even for healthy people. Trying to overcome

these problems of a single modality control has led to the development of multimodal solu-

tions, so-called hybrid brain-computer interfaces (hBCI). An hBCI combines a conventional

BCI with at least one additional control modality, which can either be another BCI signal

(pure hybrid), a physiological signal such as EMG (physiological hybrid), or another device

such as a keyboard or joystick (mixed hybrid) [54].

2.1.2 Hybrid approach: Combining multiple signals

This section primarily focuses on EEG, EOG, and EMG combination. In general, hBCI can

be split into simultaneous and sequential systems [21]. In a simultaneous hBCI, the two

input channels are classified at the same time. Either both channels are used redundantly

encoding the same information which shall increase the accuracy of the overall system,

or the channels are used in a complementary paradigm to increase the complexity of the

control scheme. In a sequential hBCI, one system (BCI or EMG) serves as the input of

the second system, usually as a switch or toggle device, to change the state of the system

and thereby increase the control complexity and authority of the user over the system [22].

An example of a hybrid system, where EEG, EOG, and EMG are decoded and fused, is

illustrated in Figure 2.3.
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Figure 2.3: A hybrid BCI system based on EEG, EOG, and EMG decoding.

2.1.2.1 Electrooculography (EOG)

EOG is a sensing method for measuring the corneo-retinal standing electrical potential.

This potential arizes from hyperpolarizations and depolarizations between the cornea and
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the retina [78]. The resulting signal is called the electrooculogram. The main applications

of such a signal are in ophthalmological diagnosis and in recording eye movements for BCI

control [78]. EOG is relatively easy to process compared to EEG or EMG signals, thanks to

its high SNR. However, one of the limitations of EOG is being more sensitive to electrodes’

positions and can easily interfere with noise.

2.1.2.2 Surface electromyography (sEMG): Origin and recording principle

sEMG is recorded non-invasively with electrodes by measuring the electrical potential on

the skin above a muscle, which is the end of the signal pathway in a motor command. The

electrical potential is created by the sum of action potentials arriving in muscle fibers close

to the electrode. Although the transmission through the skin induces noise into the signal,

the SNR is comparably high and muscular activity is reliably detectable (accuracies up to

100%)[24]. Even for people with muscular dystrophy, residual muscular activity can be rec-

ognized. sEMG provides a fast, asynchronous, and reliable communication channel. How-

ever, sustaining sEMG signals for a long period imposes physical work, especially for motor-

impaired people, and decreases the classification accuracy as muscle fatigue changes the

amplitude and frequency spectrum of the EMG signal. There are also symptoms such as

tremor and lesions which inhibit the use of sEMG data [79]. The EMG processing steps

are similar to EEG signals, with the difference being that EMG is considered less noisy than

non-invasive brain signals. Generally, an experimental paradigm is shown to the participant

with the different hand/arm gestures to be recorded during the experiment. Pairs of liquid-

gel ECG electrode (model: 50×48 mm) covering the forearm and/or upper-arm in a ring-like

fashion are usually used, as illustrated in Figure 2.4.

2.1.2.3 sEMG signal decoding algorithms

This section provides a review of the different algorithms used to classify sEMG signals

spanning from classic machine learning techniques to SNN approaches. In [23], the au-

thors investigated the decoding of sEMG in the early stages of reach-to-grasp movements

(pre- reach-to-grasp) for prosthetic hand control. Five different grasp types were classified,

namely precision disk, tripod, thumb-2 fingers, thumb-4 fingers, and ulnar pinch. In the pa-

per, the authors showed that an accuracy of 90% of the final grasp gesture was obtained

0.5 s after the movement onset. In [80], the authors used the NeuCube spiking model to

classify six different hand gestures, namely hand closed, hand open, wrist flexion, wrist ex-

tension, ulnar and radial deviation. Various feature-extraction techniques were investigated

(Mean-absolute value (MAV), Wavelength (WL) and combined features). Overall, a classi-

19



Figure 2.4: Example of sEMG recording paradigm. (a) Different hand gesture renderings prompting
subjects. (b) Recording setup of sEMG signals during grasp movements [46].

fication accuracy of 95.3% was reached and the authors showed that the spiking approach

outperformed classic machine learning methods when using MAV features. It should be

noted, however, that an accuracy of only 68.7% was attained when classifying raw sEMG

data without hand-crafted features. Table 2.2 compares different studies for sEMG classi-

fication and summarizes the obtained results. For a more comprehensive survey of sEMG

classification, readers are referred to [24].

Table 2.2: Comparison of different sEMG classification studies and their achieved accuracy
Reference No of classes Extracted features Classifier Accuracy

[81] 7 RMS Adaptive Fuzzy classifier (ANFIS) 86%
[82] 10 RMS and WL Linear discriminant analysis (LDA) 98.87%
[83] 5 RMS Support vector machine (SVM) 73%
[84] 6 MAV and WL LDA 91.64%
[85] 3 TD Fuzzy logic (FL) 97%
[86] 4 MAV, WL and RMS Artificial neural networks (ANN) 89.2%
[87] - Time-Frequency (TF) SVM 90%
[88] 4 TF ANFIS 92%
[80] 6 MAV, WL NeuCube 95.33%
[80] 6 Raw data NeuCube 68.7%
[89] 9 spiking neurons Neural networks 92.3%

2.1.2.4 Literature review of hybrid BCI systems: EEG and EMG data fusion as a case

study

There have been several reviews on hBCI in general such as [90], with a few studies that

focused on the combination of EEG and EMG [91]. The following collection shall extend

20



these works and add more recent approaches, as well as it focuses on motor imagery (MI)

based-BCI give the interest in restoring abilities in motor-impaired patients. Similar to [92],

proposed solutions are classified into simultaneous and sequential hBCI.

Sequential hBCI: sEMG as binary EEG-switch: In [92], a 16-channel MI-BCI is supple-

mented with a bipolar EMG in a sequential manner as a brain switch to enable split attention

for the user. The MI BCI is used to send control commands (left or right) to a telepresence

robot. A shared control approach is used to deal with low-level navigation tasks such as

obstacle avoidance. If no turning command is recognized by the system, the robot drives

straight. This mental state of intentionally sending no commands is called intentional non-

control (INC) and can be mentally exhausting for subjects when performed over a longer

period. Therefore, a switch was implemented using the EMG channel to start and stop

the telepresence robot and simultaneously disable BCI commands. In a feasibility study,

four healthy subjects drove the telepresence robot along eight predefined trajectories and

paused on an audible cue using the EMG. The results were compared to the original BCI

paradigm, in which the robot is stopped by the shared control and restarted by any deliv-

ered BCI command. Due to the low number of participants, no significant results could be

obtained. However, the experiment showed that the use of EMG as a brain switch instead

of INC could only be sustained for around 20 seconds, reduced the perceived workload of

the users. There was one false positive command in the EMG signal but it could easily be

reversed by the user. On average, the participants preferred the hybrid BCI version over the

BCI plus INC version because they reported less effort and more authority over the robot.

However, no specific measures on the accuracy, speed, or training were given in this paper.

Sequential hBCI: sEMG as multi-class toggle switch for EEG control: A progression

of the binary switch control paradigm can be seen in [93] where the EMG is used as a

multi-class toggle switch based on the duration of the muscle activation. In this study, the

subjects are controlling a two-dimensional computer mouse cursor using a six-channel BCI

with electrodes spread across the left and right rear half of the head, and a bipolar EMG

on the master muscle. The BCI classifier recognizes left and right commands which are

mapped to the horizontal (up or down) or vertical (left or right) dimension depending on the

state of the system. The EMG is used to turn on/off the system and to turn the control di-

rection from horizontal to vertical and vice versa. 60 subjects were used in an experiment to

test the system. It is not mentioned if the subjects were healthy or impaired in any kind. The

results showed accuracies of 88% for left-brain activation, 90% for right brain activation, and

100% for EMG. This study shows how a control paradigm for BCI can be extended using

a multi-class toggle switch based on an additional EMG channel to allow for more complex
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controls. Last, in [92], a physiological, simultaneous, hBCI was tested with respect to its

general usability and the influence of muscle fatigue on the overall system accuracy.

2.2 Neural Sensory Prostheses

In humans, somatic receptors in the upper-limb are divided in cutaneous and subcutaneous

mechanoreceptors, muscle and skeletal mechanoreceptors, nociceptors and thermal recep-

tors. This complex sensory system encodes and transmits to the Central Nervous System in-

formation about four major modalities: touch, proprioception, pain, and temperature. There

are several sensor options possible for integration in myoelectric hands, capable of measur-

ing a wide range of information like: contact, force, pressure, position, slip and temperature

[94]. Overall, sensory feedback seems to play a vital role in prosthetic arms acceptance

and embodiment [95]. Over the last few years, researchers have shown that it is possible

to complete the sensory feedback loop by either providing natural sensations back to am-

putees through invasive simulations of their residual nerves [96], such as directly targeting

nerves with implantable electrodes, or through non-invasive artificial sensation known as

sensory substitution [97], like transcutaneous electrical nerve stimulation (TENS) [98] and

vibrotactile stimulation [99]. When providing sensory feedback, median, ulnar, and radial

nerves are the essential ones to be targeted. The focus of the next section is solely on

non-invasive methods, which are relevant to this thesis.

2.2.1 Stimulation techniques

2.2.1.1 Vibrotactile stimulation

Vibrotactile feedback allows the user to learn the association of certain vibrations at the

skin surface with one of the physical properties of manipulated objects by the prosthetic

hand. It typically uses small commercially available vibrators, which are usually small and

lightweight. Vibration amplitude and frequency are the two main features of the stimulus,

but other features like pulse duration, shape, and duty cycle can also be modulated to trans-

mit other information [100]. The user’s ability to discriminate between different amplitude

thresholds depends on several parameters, including the frequency and location on the

body. According to previous research results [101], the sinusoidal waveform performed the

best, the bicep region was determined to be the most comfortable and achieved the high-

est accuracy, desensitization occurred after 66 seconds, and batteries lasted for 1-3 days.

A research group also tested a system, where vibrators were placed on a sports glove on

the remaining hand [99]. It leads to fast learning, but makes it difficult to use two hands
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at the same time, which happens quite often. Generally, according to the current research

literature, the user performs better with vibrotactile feedback rather than without it. He/She

often has better control of grip force and reduces the number of errors in task execution,

feels a higher sense of embodiment in their prosthetic, and needs a lower cognitive load to

pick up objects compared to using visual feedback alone [102]. Using vibrotactile feedback

to communicate hand velocity, point of contact and grasping force without visual feedback

even provided enough information for the subjects to pick up objects without seeing them

[103]. However, there are some noticeable drawbacks in vibrotactile feedback, for example,

the extra delay is approximately 400 ms to start generating vibration, which can decrease

the sense of embodiment [102], and hence a shorter delay must be achieved. The optimal

and ideal time delay must be at most 100 ms, according to some research results [101].

2.2.1.2 Electrical stimulation: TENS

The principle of electrotactile (or electro-cutaneous) feedback is the stimulation of afferent

nerve endings through a local electrical current, thus producing sensations within the skin.

Multiple features can be easily and reliably controlled including the intensity, pulse width,

frequency, and location of stimulation (with multiple electrodes), which leads to a higher

bandwidth being available. The great advantages of electrotactile devices are being safe

and comfortable to use [104], the electrodes are slim and lightweight, they consume less

power and they respond faster than vibrotactile systems as there are no moving mechanical

parts, thus having a better potential to improve sense of embodiment. Indeed, a study by

Ismail and Shimadi [102] suggests that the feedback delay should be less than 200 ms to

maximize the sense of body ownership, which gives an advantage to using electrical stim-

ulation and may limit the effectiveness of mechanotactile systems. However, the minimum

sensation threshold and pain threshold is different for each person so they must be person-

alized, and the placement of the electrodes can highly modify the perception of electrotactile

information [105], since movements as small as 1mm have an influence [106]. Additionally,

the comfort and dynamic range of electrotactile stimulation depend on skin conditions [105],

which means that recalibration of thresholds is required every time electrodes are placed on

the user and that the pulse width, frequency, and amplitude may need readjusting to achieve

the same perception each time. Furthermore, potential problems can arise from interference

between myoelectric sensors for control and electrotactile stimulation when the stimulation

sites are close to the EMG electrodes [102].
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2.2.1.3 Thermal stimulation

Temperature is one of the main information provided by our skin sensors and provides extra

information about the environment, as well as any potential dangers or warnings that involve

heat. Producing heat on the upper-arm to match and encode the temperature detected at

the prosthetic hand was the only method of temperature feedback found within the literature,

via a Peltier element, which drew upon a large amount of power [107]. As response times are

currently very long, a prediction algorithm based upon initial measurements was developed

to speed up measurements. It could however play a great role in providing a patient with a

good sense of embodiment [95].

2.2.1.4 Phantom hand

Amputees can sometimes not only experience phantom limb pain, but also phantom limb

sensations [108, 109]. These sensations can be exploited to transmit sensory feedback.

In particular, amputees can have locations known as phantom digits that, when touched,

trigger a sensation that corresponds in their brain to touching their missing finger. Those

phantom digits provide a natural and efficient pathway to communicate a variety of sensa-

tions without requiring any training. The use of TENS can induce sensations in these phan-

tom digit locations for all fingers. The feelings of pressure, pressure and vibration, vibration,

tingling and numbness in the corresponding finger location were induced through TENS ap-

plied to the phantom digit location. These sensations were stable for an 11- month period for

nine amputees [106]. The ideal size and spacing of TENS electrode to stimulate a phantom

hand map were studied by the authors [110]. According to them, the bigger electrode, the

wider range of sensations produced, but a higher current is then required and further space

between electrodes is needed. So they concluded that having an electrode sizing of 5-7 mm

was a good compromise based on their preliminary investigations. In terms of performance,

patients with a complete phantom hand map recognised multiple sites of feedback with a

higher success rate than those who had an incomplete or no phantom hand map [110]. It

can also provide up to five separate somatotopicaly matched feedback pathways that feel

natural to the user according to studies. However, all amputees do not present phantom

digit locations, their location and size can vary [111]. Therefore, this approach cannot be

applied uniformly to all patients, as it is unsuitable for those without phantom digits and indi-

vidual customisation, such as customised prosthetic sockets, will also be required for those

who possess them. This approach seems quite promising in terms of sense of embodiment

potential for those who can profit from it, though.
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2.2.1.5 Noxious stimulation

The somatosensory cortex provides exteroceptive sensations for perception and reaction to

external stimuli. Different skin cells and mechanoreceptors are responsible for conveying

tactile information. Among the tactile perception components, the sense of pain is an im-

portant one. Despite its undesired nature, pain is a vital mechanism to protect ourselves

from damaging stimuli. When touching a harmful object, different sensations ranging from

innocuous to extremely noxious can occur. Pain can be useful for various purposes and can

allow amputees to interpret useful information about the surrounding environment, such as

preventing damage to the fingertips or cosmesis, a skin-like covering, of a prosthetic hand.

To encode the sense of pain, particular nociceptors are involved [112]. These nocicep-

tors are dedicated sensory afferents in both glabrous and non-glabrous skin responsible for

conducting tactile stimuli that we perceive as painful [112]. Overall, nociceptors, free nerve

endings in the epidermal layer of the skin, act as high threshold mechanoreceptors (HTMRs)

and respond to noxious stimuli through Aδ, Aβ and C nerve fibers [113], which enables our

perception of tactile pain. The importance of the sense of touch [114] has spurred research

in this direction. Notwithstanding the considerable advances in developing sensory feedback

methods to encode pressure [114], proprioception [115], and texture [116], temperature and

pain have not been extensively investigated [117]. Similarly, investigation of perception and

processing of pain in the human brain have been limited to fMRI and invasive studies [43]

and have been rarely investigated in the context of prostheses [117].

2.3 Noxious sensation perception and processing in the brain

2.3.1 Noxious sensation perception and processing review

The quantification of human pain using various neuroimaging techniques have been previ-

ously investigated [118, 119]. Despite the enormous number of studies in this area [120,

121], understanding nociceptive processing in the human brain is still challenging [122].

This is due to the complex brain mechanisms and areas involved in the processing of nox-

ious stimuli. Authors in [123] investigated perceptual, motor, and autonomic responses to

short noxious heat stimuli using EEG and confirmed that pain perception is subserved by a

distinct pattern of EEG responses in healthy subjects. fMRI was used in [43] to demonstrate

pain-related activation of the anterior cingulate cortex (ACC) and the posterior cingulate cor-

tex (PCC) during transcutaneous electrical nerve stimulation (TENS) in healthy participants.

Additionally, authors in [124] showed the important role of the parietal lobe in pain percep-

tion and understanding. Positron emission tomography (PET) [125], and invasive record-
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ings [126], were exploited to investigate exogenous pain perception and processing. In the

study by [127], frequency analysis were investigated and an EEG frequency analysis was

performed and event-related desynchronization (ERD) of alpha were detected during per-

forming hand immersion into cool and extremely cold water (noxious). Readers are referred

to chapter 6 & 7 of this thesis for a more comprehensive literature review of pnoxious sen-

sation processing studies investigating the use of EEG and other neuroimaging techniques

for quantification and interpretation.

2.3.2 Somatosensory Evoked Potentials for closed-loop BCI systems

Somatosensory evoked potentials (SEPs) are EEG patterns, which have been extensively

used to evaluate the somatosensory pathway in closed-loop BCI systems. Notwithstanding

the advances in imaging studies, such as MRI, SEPs have gained popularity, particularly

in clinical studies [128]. Overall, SEPs are time-locked potentials evoked by electric stimu-

lation of the sensory or mixed peripheral nerves [128]. Predictable SEPs of certain values

(amplitude and latency) are elicited as a result of an electric stimulation applied over the

peripheral nerves.

2.3.3 Upper-limb SEPs

Median and ulnar SEPs are usually recorded in post upper extremities stimulation. They are

frequently evoked by TENS applied over the skin of the chosen nerve. In Figure 2.5, Epi

represents the side of stimulation, whereas EPc refers to the contralateral side. C5s refers

to the fifth cervical vertebral spinous process, CPi refers to the centroparietal and ipsilateral

to the side of stimulation, CPc the contralateral side of it, and AC is the noncephalic anterior

cervical, just above the thyroid cartilage in the midline. As shown in Figure 2.5, there are

different SEP patterns that can be subcortically detected. SEPs may be useful in predicting

response to spinal cord stimulation (SCS) for the treatment of chronic neuropathic pain [128].

2.4 Summary

This chapter defines the main terminologies and concepts investigated throughout this the-

sis. Additionally, it provides the reader with a literature review of the main fields and sub-

fields covered in this work, while following a chronological order of their appearances in the

different studies presented in this thesis. First, the general concept of BCI was presented
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Figure 2.5: (Left) 6-Channel left tibial SEP with annotated SEP peak waveforms and their corre-
sponding recording channels. (Middle and right) Left tibial SEP/somatosensory path-
way: pathway neuroanatomy and corresponding SEP peak generators. Black arrows
(on mesial postcentral gyrus) show P37 variable dipole orientation. Taken with permis-
sion from [128]

with a particular focus on non-invasive BCI and the most widely used EEG signal process-

ing and decoding methods. This section lays the foundation of chapter 3 and introduces

the reader to the main methods used in that chapter. Second, the concept of hBCI and

the different investigated biosignals were presented and reviewed. hBCI is the main field

that was studied and validated in Chapter 4. As this thesis investigates both sides of the

equation, neural sensory prostheses alongside the different non-invasive stimulation meth-

ods were thereafter described. This neural sensory prostheses section was introduced to

give the reader a notion of the field of sensory-enabled prostheses and the various stimu-

lation techniques used in the literature to restore the sense of touch, and hence it lays the

foundation of chapter 5. Last, a review of the concept of noxious sensation perception and
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processing in the human brain with a literature review was presented. This section helps

the reader understand all the underlying mechanisms and methods for noxious sensation

processing, as well as compare this thesis’ results presented in chapters 6 and 7 with the

ones previously reported in the literature.
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3 Investigation of real-time EEG decoding
for a robotic arm feedforward control

This chapter is made up of content adapted with permissions from the manuscript
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3.1 Study overview

As described in the previous chapter, non-invasive, EEG-based BCI on MI movements trans-

late the subject’s motor intention into control signals through classifying the EEG patterns

caused by different imagination tasks, e.g., hand movements. This type of BCI has been

widely studied and used as an alternative mode of communication and environmental con-

trol for disabled patients, such as those suffering from a brainstem stroke or a spinal cord

injury (SCI) [3]. Notwithstanding the success of traditional machine learning methods in

classifying EEG signals, these methods still rely on hand-crafted features [3, 51, 18]. The

extraction of such features is a difficult task due to the non-stationarity of EEG signals,
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which is a major cause by the stagnating progress in classification performance. In this

study, we validated three deep learning models: (1) A long short-term memory (LSTM); (2)

a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convo-

lutional neural network (RCNN), for decoding motor imagery movements directly from raw

EEG signals without (any manual) feature engineering. We changed the internal architec-

tures of these models to be able to process and learn from complex EEG time-series data.

Overall, this study served as a survey of methods by implementing different learning algo-

rithms for decoding MI movements from EEG, and comparing their performances with three

deep learning models. Decoded movements were translated, thereafter, into commands to

control the robotic arm. Results were evaluated on our own publicly available, EEG data

collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI

Competition IV”. Overall, better classification performance was achieved with deep learn-

ing models compared to state-of-the art machine learning techniques. We underpin this

point by demonstrating the successful real-time control of two states (left, right) of a robotic

arm using our CNN based BCI. An overview of the proposed system is illustrated in Figure

3.1. To sum up, this work validates different deep neural network architectures for real-time

control of a robotic arm using two decoded left and right motor imagery movements.

Spectrograms

Robot Control

EEG Signals Decoding

Figure 3.1: The proposed BCI system overview for real-time feed-forward control of robotic arms.

3.2 Introduction

Non-invasive BCIs are intelligent systems which enable users to communicate with exter-

nal devices such as computers or neural prostheses without the involvement of peripheral

nerves and muscles [3, 18]. Therefore, BCIs can be applied to a wide range of applica-

tions in order to support people with motor disabilities by interacting with their surroundings.
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BCI-based MI describes a mental process in which a person solely imagines to perform

a certain action, e.g., opening or closing the left or right hand without executing it. Our

study demonstrates the successful and real-time decoding of two MIs, namely left-and right-

hand movements. It shows the potential of using deep learning methods to classify binary

MI movements in EEG signals. Three different deep learning models were investigated and

tested. These models are LSTMs [129], CNNs [130], and RCNNs which have until now been

rarely investigated for BCI applications [131, 64, 132, 133]. In addition, five different machine

learning classifiers (Support Vector Machine (SVM), K-Nearest Neighbours (KNN), Logistic

Regression (LR), Naive Bayes (NB), Quadratic Linear Discriminant Analysis (QLDA), and

Decision Tree (DT)), were implemented and used for the purpose of comparison with the

aforementioned deep learning methods.

3.2.1 Overview of convolutional neural networks (CNN)

In the following subsection, CNN is introduced and its basic structure is defined. More-

over, an overview of different CNN architectures, design choices, and the most widely used

strategies to train them are described.

3.2.1.1 Basic CNN architecture & design choices

Overall, CNN consists of three different stages. In the first stage, known as convolutional

layer, the spatial information of the input is extracted through convolution and displayed in

a feature map. Therefore, the input is element-wise multiplied with a set of weights as a

filter or kernel and the multiplication outputs are summed up to a single element of the

feature map [130]. These weights are used in the same constellation at every position

of the input, thereby each neuron is connected to only a small number of regions of the

input volume and only one parameter set has to be learned. In the second stage, a non-

linear activation function is applied to the obtained feature map, which increases the non-

linear properties of the overall network. The most commonly used operation is the Rectified

Linear Unit (ReLU) defined as f(x) = max(0, x), which replaces all negative values of the

feature map with zero. In the last stage, the input dimensionality is further reduced with

pooling. Pooling replaces the input at a location with a summary statistic of nearby inputs.

There are several types of pooling operations such as max, average or sum. Max-pooling is

prevalent and partitions the input into non-overlapping sub-regions. In each sub-region, the

maximum value is chosen whereas the other elements are discarded. Pooling does not only

decrease the input scale but also the number of parameters but also helps control overfitting
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and reduce the computation time. An additional property of pooling is that it makes the

representations invariant to slight translations of the input data.

3.2.1.2 CNN training

The CNN output is produced by a fully connected layer. However, this output has to be

further transformed in order to assign a specific imagined movement to the obtained feature

vector. Assume the given datasets Di = {(X1, y1), ..., (XN
i , y

N
i )} with a total number of Ni

trials for subject i. Xj represents the input signals of trial j and yj the corresponding class

label from a set of K class labels L. ∀yj : yj ∈ L = l1, ..., lk, where each label lk repre-

sents a corresponding imagined movement. In the final classification layer, the conditional

probabilities of a class label lk are computed using the softmax function

p(lkcf(Xj ; θ) =
exp(fk(X

j ; θ))∑K
k=1 exp(fk(X

j ; θ))
(3.1)

where θ are the parameters of the classifier fk(Xj ; θ). The aim is to obtain a parametric

classifier f that can assign the correct label to unseen trials. Therefore, the optimization

problem based on the cross-entropy loss function can be described by:

θ∗ = arg min
θ

N∑
j=1

loss(yj , p(lkcfk(Xj ; θ))) (3.2)

In order to train a CNN, the parameters θ are optimized by computing the gradient of the

loss function via backpropagation [73, 130]. Two different methods to train a CNN are usu-

ally used. Trail-wise training is a standard strategy that uses whole trials as input and the

corresponding trial labels as targets. Unlike trail-wise training, cropped training splits the

trials into crops using sliding input windows within the trial. In this case, the label of a crop

is identical to the label of the corresponding trial. Cropped training yields a larger number

of training examples for the network. Particularly for EEG decoding, only a relatively small

data set is available, and hence this strategy is an effective way to increase the training set

size.

3.2.2 Overview of long-Short Term Memory (LSTM)

In the following subsection, LSTM network is introduced and its basic structure is defined.

Moreover, an overview of the most widely used strategies to train LSTM networks are de-

scribed.
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3.2.2.1 Basic LSTM architecture & design choices

LSTM is based on the cell state which acts as a memory, and how much memory will be

wiped out is controlled by the forget layer. Gates are composed of a sigmoid layer and a

pointwise multiplication operation, and whose essential function is to preserve the relevant

information and abandon the rest. How much old memory will be preserved and abandoned

is controlled by the output of forget gates. The memory will be completely erased when

the output is 0, whereas it will be fully preserved when the output value is 1. The general

information flow is regulated by the ”input gate layer”, which has a similar function as the

”forget gate layer”. The previous cell state is controlled by the ’forget gate layer’, while

the new candidate cell state is controlled by the ’input gate layer’. The new cell state is

computed based on the controlled previous cell state and controlled new candidate cell

state. After that, the new output will be calculated by the new cell state and the output gates

[129]. Mathematically, LSTM can be described as follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3.3)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (3.4)

ct = (ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (3.5)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (3.6)

ht = ot tanh(ct) (3.7)

where σ is the logistic sigmoid function, i, f , o, h and c denote, input gate, forget gate,

output gate, hidden vectors and cell activation vectors, respectively.

3.2.2.2 LSTM training

Generally speaking, the most common training algorithm for recurrent neural network (RNN)

is known as backpropagation through time (BPTT). BPTT is a gradient-based method for

training RNN. Since RNN can be considered as a layered, feed-forward network with shared

weights, if unfold the RNN, then obviously, the forward pass builds up a stack of the activ-

ities of all the units at each time steps. Neural network training is challenging, particularly

for RNNs [134]. Two main problems may arise when training RNNs, known as exploding

and vanishing gradient problems [134]. For exploding gradient, the gradient norm increase

largely during the training phase and lead to an exponential growth of long-term compo-

nents, whereas for vanishing gradient, the norm and long-term component converge ex-
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ponentially to 0. To address both problems, several methods have been proposed in the

literature. To mitigate the explosion problem, authors in [135] proposed an approach that

limits the gradient to a certain threshold, so-called gradient clipping, and is mathematically

described as follows:

ĝ ← ∂ε

∂θ
(3.8)

if ‖ĝ‖ ≥ threshold then

ĝ ← threshold

‖ĝ‖
ĝ (3.9)

end if

Authors in [135] also proposed a regularization method to solve the gradient vanishing

problem. The main concept is to use a regularization term in such a way that the back-

propagated gradient neither exponentially increase nor decrease in magnitude, and hence

preserves the gradient in one relevant direction.

3.2.3 Review of different deep learning approaches for EEG decoding

This section provides a review of different deep learning approaches developed for EEG de-

coding. In fact, recent research has shown that this type of BCI could allow both healthy and

severely paralyzed people to control a robotic arm [18] or to move around in a wheelchair

[91]. Notwithstanding the good results obtained by previous work focusing on the well-known

MI patterns [18], the progress in BCI performance has been stagnating in the last decade.

Apparently, the design of more stable classification methods is comprising formidable chal-

lenges. One of these challenges stems from the low SNR of EEG signals as well as the high

variability in recordings across trials and within participants, which puts the identification of

more robust and discriminative features in EEG-based BCI systems under high demand.

3.2.3.1 Elman neural network

Elman Neural Network (ENN) is a type of RNN which was proposed by Jeff Elman. In ENN

with multiple stacked hidden layers, each hidden layer receives the activation of previous

hidden layers per timestep. The feedback connection enables the neural network to capture

the temporal patterns, which makes RNN a success in natural language and video process-

ing. In [72], an Elman network was used to classify EEG data during a 3-D perception task

where subjects were viewing either 2D or 3D images. In that paper, the authors showed

that an accuracy of 58% can be achieved using ENN whereas, an accuracy of 72% was

obtained on the same task using a two layer multilayer perceptron (MLP). Due to the unsat-

isfactory obtained performance, the authors concluded that it is not straightforward to apply
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RNNs to EEG data. In [136], the authors used an ENN to classify MI mental tasks such as

right hand clenching, observing a tumbling cube and silently singing a song. Three subjects

participated in the study and the accuracy varied drastically across subjects from 58.8% to

93.3% reflecting a large intra-subject variability. In [137], authors used only two electrodes,

namely, C3 and C4, and achieved 93% accuracy for four MI movements classification using

an ENN.

3.2.3.2 Long-short term memory (LSTM)

Since ENNs share the same weight matrix at different time steps, this can cause either the

gradient exploding or the gradient vanishing problem. To address that, Sepp Hochreiter

and Jürgen Schmidhuber proposed the LSTM network in 1997 [129], where simple neu-

rons are replaced by LSTM units each consisting of four main components: an input gate,

a neuron with a self-recurrent connection, a forget gate and an output gate [129]. In [133],

with the use of a large EEG dataset (109 subjects, 26.4 million samples) from PhysioNet

eegmmidb [138], an accuracy of 95.53% was achieved for five MI movements classification

problem using seven RNN layers with two LSTM layers. It is worth noting that unlike [136],

the results obtained using PhysioNet dataset were stable over all subjects. However, the

developed model was only tested with the large scale PhysioNet dataset and no evaluation

on their own recorded dataset was performed. In [139], five different recurrent neural net-

work architectures were tested for hand motion recognition of grasp-and-lift task from EEG

signals, namely LSTM, GRU, MUT1, MUT2, and MUT3 [140]. The obtained results showed

that MUT3 performs the best with an accuracy of 88.82%, whilst LSTM and GRU had an

accuracy of 87.89% and 88.60%, respectively.

3.2.3.3 Convolutional neural networks (CNN)

Classifying raw EEG data without hand-crafted features is a challenging problem. Schirrmeis-

ter et al. [73] pioneered the development of a CNN capable of decoding movement-related

information from raw data. Deep as well as shallow-CNNs with various design choices were

introduced and compared. The first convolution of the deep-CNN (dCNN) was split into a

convolution across both time and space. In the shallow-CNN (sCNN), the first two layers

were split into temporal and spatial convolutions. The rest of the networks contained stan-

dard convolution-max-pooling blocks with a softmax classification layer at the end. More-

over, the results were evaluated on different frequency bands. By including recent advances

from the field of deep learning, such as batch normalization and exponential linear unit ac-

tivations, the authors obtained accuracies of 71.90% and 70.10% on BCI dataset IVa for
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dCNN and sCNN models, respectively. We wish to mention that both dCNN and sCNN

models have been reimplemented in this work for benchmarking purposes and their archi-

tectures are described in the Methods section 3.3. In [141], a generalized neural network

architecture, called EEGNet, was implemented which is capable of solving different BCI

tasks. EEGNet contained three layers. The first layer learns sixteen 1D convolutional ker-

nels. In the second and third layers, four 2D convolutional kernels are learned and 2-D

max-pooling is applied. Furthermore, the model iterates between convolutions along spatial

dimension (layer 1 and 3) and temporal dimension (layer 2). In each layer, the Exponential

Linear Unit activation function is used and Batch Normalization and Dropout are applied to

improve the model robustness. An overall accuracy of 70% was achieved using EEGNet on

four MI movements.

3.2.3.4 Recurrent convolutional neural networks (RCNN)

In [142], the authors proposed to construct the spectral information over the whole trial du-

ration as a sequence of images, and used RCNN, which is a combination of RNN and CNN,

for four-classes working memory task classification. The obtained results showed that deep

RCNN is capable of learning robust representations from sequence of images. They also

demonstrated that their proposed model outperforms the state-of-the-art traditional machine

learning approaches. In addition, in [143], authors proposed an RCNN model for six-class

hand motion classification problem with 94.8% accuracy. They also showed that their RCNN

architecture outperforms CNN. It should be noted that this high accuracy was only obtained

for hand motion tasks and was not tested with motor imagery movements.

3.2.4 Motivation & aims of this study

Overall, this study investigated the real-time decoding of EEG brain data for robot arm con-

trol. This work serves as the foundation of our feed-forward control system of robotic arms,

which was further improved using the hybrid BCI system introduced in the next chapter. Us-

ing our proposed model, EEG signals could be used in real-time to control a robotic arm. The

system overview is illustrated in Figure 3.1. This chapter is structured as follows: Section

3.3 describes the implementation details of the different proposed deep learning models.

Section 3.4 shows the obtained results using deep neural networks as well as traditional

machine learning methods on our recorded EEG data and the publicly available dataset 2b

from BCI Competition IV [144]. Real-time control of a robotic arm using our trained CNN

model on EEG signals is described in Section 3.4.3. Section 3.5 enumerates the strengths
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and weaknesses of our proposed methods and proposes possible future improvements.

Finally, Section 3.6 concludes the main findings and results of the study.

3.3 Methods

3.3.1 Study design: Experimental paradigm

For MI-EEG data recording, 20 healthy and right-handed human subjects (31 ± 5.5 years

old) were recruited to perform a series of kinesthetic MI tasks across 2 sessions yielding a

total of 750 trials. All recording sessions took place at our lab and were set up as shown in

Figure 3.2. Each session consisted of 4 runs of 12 min separated by 10-min breaks to avoid

mental fatigue. Each run consisted of several MI tasks, each 10 s long. At t = 4.5 s, an

arrow pointing either to the left or right was displayed with an acoustic warning tone (1 kHz,

70 ms). The subject was instructed to imagine a movement according to the displayed cue

(left vs right) for four seconds. The MI task was followed by a relaxation period of 1.5 s that

separated two trials. During the recording, no movement execution was requested. Data

were recorded and sampled at 256 Hz using a g.tec g.USBamp EEG system [145] with 32

active electrodes located according to the 10/20-system. The number of electrodes was

reduced to three, namely C3, C4, and Cz, over the sensorimotor cortex. The experimental

paradigm is made publicly available with the gumpy toolbox [46]. 375 trials were recorded

for each MI movement (left and right) with every subject.

3.3.2 Data processing & analysis

EEG signals were processed using the gumpy.signal module in the gumpy BCI toolbox [46].

First, a notch filter at 50 Hz was applied in order to remove power line interference. Second,

data were high-pass filtered with a cutoff frequency of 0.5 Hz to remove baseline drift and

then band-pass filtered between 2 and 60 Hz using a 5th order zero-phase Butterworth fil-

ter. Afterwards, the EEG data were clipped to µ(xi) ± 6σ(xi) rectifying outliers. µ(xi) and

σ(xi) denote, respectively, the mean and standard deviation for the EEG data of channel i.

Next, the data were normalized by subtracting µ(xi) from each channel i and then dividing

by the standard deviation σ(xi). Furthermore, a thresholding-based method [146] to detect

and remove EOG and EMG artifacts from EEG was used. For that, we removed artifacts

based on the mean amplitude value and standard deviation from individual channels within

single epochs. Overall, deleted portions and epochs from the data were generally character-

ized by high amplitude values > 83µV. Finally, in order to reflect the partial time invariance
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Figure 3.2: Experimental setup and an example of a recording session of motor imagery-
electroencephalography (MI-EEG) recording.

of the data and overcome the problem of overfitting, a data augmentation method was per-

formed: A time window of 4 s was used to create different crops with a stride of 125 ms

yielding 25 new sub-trials from each individual trial. The crops were gathered starting 3 s

prior to the motor imagery onset until the end of the trial. Noticeably, this augmentation

method was very helpful and forced our proposed “pragmatic” CNN model to learn complex

features from all the crops and therefore led to better classification performance. In total,

this cropping strategy increases the training set by a factor of 25 yielding 25 new examples

per trial and a total number of 18,750 trials (9375 for each class).

3.3.3 System architecture & decoding methods

A BCI’s decoding stage aims to extract usually distinct user intention’s commands from

the complex, multidimensional EEG data stream. Different strategies and myriad methods

could be applied to this problem, which is essentially a classification task. In this work

we systematically compare traditional ML methods to contemporary neural ones. Within

the scope of this work the categorical difference between the traditional and the neural

38



approach is that only the latter can perform well on raw EEG data (or a direct representation

thereof), whereas the former would typically rely on “hand-crafted” features. These are

discriminative data properties like, e.g., the power in specific frequency bands at specific

recording electrodes. They are specific to the individual task and experimental paradigm and

are commonly defined and selected by an expert—a task we term “feature hand-crafting”

or “feature engineering”. The specificity and discriminative power of an individual feature

would often vary among different subjects and different trials. Automatic (optimizing) feature

selectors can only partly counteract this tendency. Certain neural networks, in contrast, can

classify EEG data directly: RNNs can evaluate EEG time series [72]; CNNs can classify

[141] (series of) spectrograms. The networks can apparently find discriminative features

automatically, without user intervention, without hand-crafted features. This is beneficial,

because (1) less “hand-crafting” is required to define task-specific features, (2) potentially

more complex spatio-temporal features can be found, and (3) the process of selecting or

weighting relevant features is more dynamic and adaptive, so inter-subject and inter-trial

variability should eventually be reduced.

3.3.3.1 LSTM model

Over the last few years, recurrent neural networks, mainly LSTM has gained tremendous

momentum and prevalence for a variety of applications such as sequence to sequence

generation and time-series prediction. As LSTM models are capable of learning long-term

dependencies in time-series data, it would be appropriate to investigate their potential in

classifying MI from EEG data. Hence, we developed an LSTM network with one hidden

layer containing 128 cell units followed by an additional fully-connected layer that consists of

two output neurons representing the two classes “left and right hand movements”. In regard

to the model’s architecture choice, it is worth mentioning that using more layers and memory

cells improved the training accuracy, but led to overfitting during the test phase, due to the

exponential number of parameters. Likewise, reducing the number of memory cells to less

than 128 led to underfitting shown by a significant decrease in both training and validation

accuracies. Moreover, a dropout layer with a deactivation rate of 0.05 was used between

the LSTM layer and the output to alleviate overfitting. The network was trained using a

stochastic gradient descent on mini-batches of size 256 and using categorical cross-entropy

as the loss function on a NVIDIA GTX Titan X GPU, with CUDA 8.0 and cuDNN v5, using

Theano 0.9 [147] and Keras library [148]. For each of the 20 participants, training has been

conducted using a stratified 5-fold cross-validation. More precisely, one of the five folds was

held back for testing (3750 trials) while the four remaining folds (15,000 trials) were used
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for training and validation with a split of 90% and 10%, respectively, in a loop until each

fold has once been used for testing. Stratified in this context means that both classes are

represented equally in each fold. Finally, we point out that early stopping [149] was used to

avoid overfitting. That means the model is trained until the minimum of the validation loss is

found and then tested on the test data split to measure its generalization capabilities.

3.3.3.2 The Pragmatic CNN model (pCNN)

In addition to reimplementing the two aforementioned CNN models (shallow sCNN and deep

dCNN) by Schirrmeister et al. [73] we have developed a third CNN which we term “the prag-

matic CNN” (pCNN). In terms of complexity the pCNN is in between of sCNN and dCNN. As

will be shown the model can classify MI tasks with a high accuracy, yet it is sufficiently light-

weight to perform real-time control of a robotic arm. Given that EEG data have a time-series

structure, it was paramount to convert them into an image-like representation by computing

spectrograms using a short-time Fourier transform (STFT), which is a well-known technique

in audio signal processing [150]. An example of the obtained spectrograms during left and

right imagined movements is shown in Figure 3.3. Overall there is a subtle, but clear differ-

ence in the generated spectrograms between the two imaginations on the same electrode

in the frequency range of 25–50 Hz. However, it remains challenging to recognize the event-

related (de)synchronization (ERD) in the alpha band between 8–13 Hz and lower beta band

(14–24 Hz) [151] from the generated spectrograms. Computed spectrograms in the input

layer are fed into our pragmatic CNN model (pCNN), which contains three convolutional

blocks. Each block contains one convolutional layer, batch normalization to minimize co-

variate shift and enhance the robustness of the model [152], and max-pooling layer with a

downsampling factor of 2 between each layer. A rectified linear unit (ReLU) is used as the

activation function. Finally, a fully connected layer with a softmax activation function is used

to compute the probability of each class. Weights were learned using the Adam optimizer

[153]. The network architecture is shown in Figure 3.4. Similar to LSTM, the CNN network

was trained using the same procedure. Overall, Figure 3.5 shows the fast convergence of

the CNN model. It should be noted that the early stopping strategy was used to efficiently

find the best model. The full architecture of the pCNN model can be found in Table 3.1.

As shown in Figure 3.5, at epoch 62 the validation loss starts increasing as opposed to the

continued decrease of the training loss. This indicates the overfitting problem which could

be explained by the small amount of data that is used for training. Hence, the early stopping

technique, as aforementioned, was chosen in order to save the best model.
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Table 3.1: Pragmatic CNN (pCNN) architecture. E is the number of channels, T is the number of
timesteps and K is the number of classes. Input and Output sizes are shown for cropped
training with E = 3 (electrodes C3, C4, and Cz) and T = 1024 for window size of 4
seconds; binary classification with two classes for K = 2.

Layer Input Operation Output Parameters
1 E × T STFT 65× 64× E -
2 65× 64× E 24× Conv2D (12× 12) 65× 64× 24 10,392

65× 64× 24 BatchNorm 65× 64× 24 260
65× 64× 24 MaxPool2D (2× 2) 32× 32× 24 -
32× 32× 24 ReLU 32× 32× 24 -

2 32× 32× 24 48× Conv2D (8× 8) 32× 32× 48 73,776
32× 32× 48 BatchNorm 32× 32× 48 128
32× 32× 48 MaxPool2D (2× 2) 16× 16× 48 -
16× 16× 48 ReLU 16× 16× 48 -

3 16× 16× 48 96× Conv2D (4× 4) 16× 16× 96 73,824
16× 16× 96 BatchNorm 16× 16× 96 64
16× 16× 96 MaxPool2D (2× 2) 8× 8× 96 -
8× 8× 96 ReLU 8× 8× 96 -
8× 8× 96 Dropout (0.2) 8× 8× 96 -

4 8× 8× 96 Flatten 6144 -
6144 Softmax K 12,290

Total 170, 734

3.3.3.3 RCNN model

As was shown in Figure 3.3, it remains unclear whether the computed spectrograms encode

enough information from EEG signals and whether the CNN could learn high-level features

from them. Additionally, it may be desirable to improve the CNN model’s ability to integrate

the context information, which might be of utmost importance while learning the sequence

of spectrograms in EEG signals. Consequently, an RCNN model has been implemented

and its capability of learning MI movements has been investigated. The key module of such

a model is the recurrent convolutional layer (RCL) [154], which can be seen as a specific

form of RNN. In the RCL, the feed-forward and recurrent computation both take the form of

convolution. During the training and test phase, the RCL is unfolded through discrete time

steps into a feedforward subnetwork. The number of time steps, namely recurrent iterations,

is pre-fixed as a hyper-parameter. Overall, RCNN can be described as a stack of these

RCLs. The proposed RCNN architecture is described in Table 3.2.
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Figure 3.3: Generated spectrograms during left (class 1) and right (class 2) hand movements imag-
ination.

3.3.3.4 Shallow-CNN (sCNN) and deep-CNN (dCNN)

To benchmark our obtained results we validated with three aforementioned models (LSTM,

pCNN, RCNN), and two deep learning models (dCNN, sCNN) proposed recently by Schirrmeis-

ter et al. [73]. The dCNN model consists of four convolutional-max-pooling blocks followed

by a dense softmax classification layer. Unlike previous implementations, the first convolu-

tion block is split into two parts where filters of the first one learn temporal information and

the ones of the second layer learn 2D spatial information from the already learned tempo-

ral layers. On the other hand, the sCNN architecture which is inspired by the filter bank

common spatial patterns (FBCSP) [62] relies essentially on band power features. For more

technical details about the models’ architecture, readers are referred to [73].

3.3.3.5 Traditional machine learning approaches

Aside from the deep learning techniques, we implemented and tested a range of classical

machine learning approaches which are based on hand-crafted features. Five different clas-

sifiers from the gumpy.classification module [46] have been used and evaluated in order to

provide a baseline for the deep learning models: KNN, DT, LR, NB, and QLDA [155]. Three
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Figure 3.4: Pragmatic CNN (pCNN) architecture. E is the number of channels, T is the number
of timesteps and K is the number of classes. Input and Output sizes are shown for
cropped training with E = 3 (electrodes C3, C4, and Cz) and T = 1024 for window size
of 4 seconds; binary classification with two classes for K = 2.

20 40 60 80 100

Epoch

0

1

2

3

4

5

6

L
o
ss

Training Set

Validation Set

Figure 3.5: Training and validation loss of the pCNN model. The blue and green lines represent the
average of the 5 folds for training and validation, respectively.
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Table 3.2: The proposed recurrent convolutional neural network (RCNN) architecture

Layer Type Size Output Shape

Convolutional 256× 9 filters (144,1,1280,256)

Max pooling Pool size 4, stride 4 (144,1,1280,256)

RCL 256 filters (1× 1), 256 filters (1× 9), three iterations (144,1,1280,256)

Max pooling Pool size 4, stride 4 (144,1,320,256)

RCL 256 filters (1× 1) , 256 filters (1× 9), three iterations (144,1,320,256)

Max pooling Pool size 4, stride 4 (144,1,80,256)

RCL 256 filters (1× 1) , 256 filters (1× 9), three iterations (144,1,20,256)

Max pooling Pool size 4, stride 4 (144,1,5,256)

RCL 256 filters (1× 1) , 256 filters (1× 9), three iterations (144,1,20,256)

Max pooling Pool size 4, stride 4 (144,1,5,256)

Fully connected 1280× 3 (144,2)

different feature extraction methods were used, namely logarithmic band power (log-BP)

[156], common spatial patterns (CSP) [157] and discrete wavelet transform [158]. For the

log-BP method, we analyzed the log-power of mu rhythm (8–12 Hz) and beta (14–30 Hz).

For each of the three channels (C3, C4, and Cz), log-BP features in 72 frequency bands

were calculated using different overlapping narrow bands between 8 and 30 Hz yielding

a total of 216 BP features. Additionally, the CSP method, which maximizes the pairwise

compound variance between our two classes in the least square sense, was implemented

and used for benchmarking purposes. Furthermore, statistical features (mean, root mean

square (RMS) and standard deviation (SD)) were extracted from D3 and D4 wavelet coef-

ficients. Thereafter, a feature selection algorithm [35] was used for each feature extraction

method to select a subset of features. A 5-fold cross validation was performed and features

were fed into the classifiers in order to discriminate between the two classes.

3.4 Main results of EEG decoding using traditional classifiers

and neural models

Our motor imagery data recorded from 20 subjects were used to compare the models’ per-

formance. In order to further verify our results on independent data, we additionally used

Graz dataset 2b from BCI Competition IV [144]. It should be noted that balanced accuracy
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was chosen as the evaluation metric for the trained models and a stratified 5-fold cross-

validation was applied during the validation phase.

3.4.1 Decoding results of our EEG recorded dataset

3.4.1.1 Traditional, Baseline classifiers

Figure 3.6a presents the results of the traditional classification algorithms. Overall, QLDA

outperforms all the other classifiers with a mean accuracy over all subjects of 79.5% with

CSP features and 78% with log-BP features. DT performs the worst with a mean accuracy

of 67%. According to their performance with the QLDA classifier, the 20 participants could

be classified into three groups: (G1) Participants S3 and S14 achieved a mean accuracy

below 75%. (G2) Participants S1, S2, S4, S5, S7, S8, S9, S10, S11, S12, S13, S15, S16,

S17, S19, and S20 achieved a mean accuracy between 75% to 79%. (G3) Participants S6

and S18 reached a mean accuracy of 80.52% and 82.09%, respectively. It should be noted

that an average mean accuracy of 75% was obtained using the wavelet method when tested

with QLDA. In Figure 3.6b, the polar bar plot shows the accuracy range (mean ± standard
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Figure 3.6: MI classification accuracies from 20 subjects using (a) traditional machine learning ap-
proaches and (b) different neural classifiers.
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deviation) achieved by the 5 models for each of the 20 subjects. The lower panel subsumes

for each algorithm the 20 mean accuracies achieved, black bars indicate the median result.

3.4.1.2 Neural models

Figure 3.6b compares the classification accuracies achieved using the developed neural

classifiers (RCNN, LSTM, pCNN) and two other models dCNN and sCNN proposed by

Schirrmeister et al. [73]. It is worth noting that the dCNN and pCNN models outperformed

all the other developed classifiers and attained higher accuracy.

LSTM model: To assess the LSTM’s capability of learning discriminative features, only

raw EEG signals were fed into the model. Noticeably, obtained results show a high standard

deviation (SD) within subjects and across the test splits. Overall, a mean accuracy of 66.2 %

(± 7.21%) from all subjects was achieved for two classes. Interestingly, the LSTM model

could perform well with some of the subjects e.g., S3 with a reached accuracy of 86.97 %

(± 5.18%). Contrary, an average accuracy of only 60 % was obtained from S6, S16, S18,

and S20 which could be due to the fact that the raw data collected from these subjects

were too noisy and hence the LSTM model could not learn any discriminative features. As

illustrated in Figure 3.6b, the LSTM-based raw EEG data approach did not outperform any

of the other developed models and the results remained slightly inferior to those obtained by

state-of-the-art methods as will be shown in the next sections.

CNN models: Herein, we show the obtained results using our pCNN and two other CNN

models proposed by Schirrmeister et al. [73] which have been reimplemented in this work for

benchmarking purposes. Through all subjects, a mean accuracy of 84.24% (±14.69%) was

achieved using the pCNN model. We wish to emphasize that such a high standard deviation

could be easily explained by the failure of the model to classify recorded EEG signals from

S5, S10, and S19 as shown in Figure 3.6b. Although reasons for that remain unclear, we

could explain that some of these participants were unable to properly imagine the requested

MI movements which resulted in a low signal to noise ratio of the collected data, and hence

most of the developed deep learning models (except the dCNN model) failed to classify

them. Overall, it is important to highlight that the pragmatic model (pCNN) shows a high

stability across test splits with a mean SD of less than 3.32%. Furthermore, the achieved

results with the sCNN model are also shown in Figure 3.6b The mean accuracy over all the

participants is 66.97% (±6.45%), which is barely lower than the presented results in [73] and

close to the one obtained with the LSTM model. However, it should be noted that the sCNN
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shows less variance in the obtained accuracy across subjects and within different data splits

compared to LSTM. Finally, a mean accuracy of 92.28% (±1.69%) was obtained with the

dCNN model, which is better than the pCNN model. However, it should be noted that the

dCNN model requires a significant amount of computation due to its extremely large number

of parameters. Such a large model requires a large number of floating point operations and

can run in a data center. But, for neurorehabilitation devices, the model should be small

enough to be fitted into the memory. This makes the pCNN model a better choice as it

requires about 50% less memory and computation compared to the dCNN.

RCNN model: A mean accuracy of 77.72% (±6.50%) was obtained with the RCNN model

as illustrated in Figure 3.6b. Overall, RCNN model seems to provide better accuracy than

the LSTM and sCNN but worse accuracy than both the pCNN and dCNN. Furthermore, we

wish to highlight that the RCNN model required more epochs of training to avoid overfitting.

3.4.2 Results of EEG Graz dataset decoding using deep learning models and
standard machine learning classifiers

To further evaluate the trained models’ performance, we tested the pCNN architecture as

well as the LSTM model on the Graz data set B from the BCI Competition 2009 [144].

The data consist of three bipolar recordings (C3, Cz, and C4) sampled at 250 Hz and two

classes, namely the MI of left and right hand. Figure 3.7 shows that the pCNN model

outperforms both LSTM, Naive Bayes and quadratic LDA for all nine subjects except for

subject B08. For the LSTM model, better results than Naive Bayes and quadratic LDA are

obtained with subjects B03, B05, B07, B08 wheareas quadratic LDA with the log-power fea-

tures provided better mean accuracy results for subjects B01, B02, B04 B06, B09. Overall,

models’ performances are aligned with previously obtained performance on our recorded

EEG data with lower variance for the pCNN model. We wish to mention that a mean accu-

racy of 95.72% and 78.22% was obtained through all subjects, using the dCNN and sCNN,

whereas a mean accuracy of 91.63% and 78.93% was achieved using the pCNN and the

LSTM models, respectively. In Figure 3.7, the polar bar plot shows the accuracy range

(mean ± standard deviation) achieved by the five models for each of the nine subjects. The

lower panel subsumes for each algorithm the nine mean accuracies achieved, black bars

indicate the median result.
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Figure 3.7: MI classification accuracies from nine subjects using five different classifiers.

3.4.3 Real-time control of a robot arm

We further tested and validated the real-time capability of the pCNN by online decoding

of MI movements from streamed EEG signals for a robot arm control. Three electrodes

were used to record live EEG data. First, a band-pass filter between 2–60 Hz as well as

notch filter at 50 Hz were applied. All filters were implemented as Butterworth IIR filters.

Second, the experimental setup shown in Figure 3.2, and the lab streaming layer (LSL)

[159] were used to continuously stream the created spectrograms from live EEG data within

a circular buffer that stores a predetermined number of samples up to the most recent one.

The process of creating spectrograms from EEG streaming data is shown in Figure 3.8. In

Figure 3.8, the top part represents filtered signal during a trial. Blue and red traces illustrate

channel 1 and channel 2, respectively. Vertical lines indicate visual (orange) and acoustic

cues (red). The bottom part represents the generated spectrograms from data within the

grey rectangle shown above. Thereafter, live spectrograms were fed into the trained pCNN

model for real-time classification and a robot arm was controlled accordingly. A Katana

robotic arm was directed to either move to the left, right or stay in middle position according
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Figure 3.8: A frame of a live stream.

to the decoded movement from EEG signals. The trained model provides the probability

of left and right hand movements. To detect the stay position, we defined a threshold for

the classifier. That means signals with a high probability to move (left or right movements)

are classified accordingly, and the remaining are categorized as no movements. The whole

process is depicted in Figure 3.9. The live generation system using the trained pCNN has

been tested for frame rates up to 128 Hz on a PC with a 2.8 GHz quadcore CPU. As shown

in the supplementary video, a noticeable delay (∼1.4 s) was experienced when performing

the real-time experiment using the pCNN model. This delay can be attributed almost entirely

to the CNN processing. A delay of∼2.55 s is expected when using the trained dCNN model.
1

Figure 3.9: Live setup for real-time EEG signal decoding and Katana robot arm control. P(L) and
P(R) represent the probability of left and right hand movements, respectively.

1A demo video of this work is available: https://youtu.be/MClm6T5d5PM
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3.5 Discussion on real-time EEG decoding using the different

validated approaches

This study aimed at validating various deep neural network architectures to decode human

intentions from EEG signals and translate that into left and right commands to control, in

real-time, a robotic arm. For that, three different deep learning models were proposed to

classify the two MI movements from our recorded EEG signals: a time-series based LSTM,

a pCNN, and a RCNN model. In addition, the deep- and shallow-CNN models proposed

in the literature [73] were reimplemented for benchmarking purposes. Furthermore, five

classic machine learning classifiers were also used for comparison. Several models for

BCI-based MI have been proposed in the past. However, the present study was able to

show an online decoding of motor imagery movements using the pCNN model. Overall,

with a classification accuracy of (66.2 ± 7.21)% the LSTM model performed similar to the

sCNN model with (66.97 ± 6.45)% accuracy. Despite the LSTM’s capability of learning

time-series sequences, the LSTM model did not outperform our pCNN, the dCNN, or even

well-known machine learning classifiers that are commonly used in BCI such as SVM and

quadratic LDA. As LSTM is prone to overfitting, one intuitive reason for the inferior results

(with respect to [144]) could be the limited amount of training data which at the same time

hindered the development of more complex LSTM models with more layers and cell units.

On the other hand, our pCNN showed better performance compared to the LSTM model.

The obtained performance could be due to the capability of CNNs to learn complex non-

linear features as well as the fact that the time-frequency representation of the signal was

used as an input to the model. Also, interestingly, the pCNN model showed higher stability

in both training and validation accuracy compared to the other models despite the existence

of overfitting potential due to its high number of parameters (170,734). The dCNN model

showed promising results and slightly outperformed all the trained models confirming the

ability of convolutional models in general to extract complex and discriminative features.

Moreover, it confirmed that deeper networks could provide more accurate results. How-

ever, it should be noted that the large depth of very deep models like dCNN could result in

an extremely high number of parameters (268,977), which in turn causes the model to be

computationally expensive. As a “pragmatic” alternative, our pCNN provides a much better

computation-accuracy trade-off and hence makes it a more attractive choice for the type of

applications that we are interested in. It is also worth mentioning that unlike previous ob-

tained results in [73], the performance of the shallow model was vastly inferior to the dCNN

(66.97% vs 92.28%). Although the reasons for that remain unclear, we could explain this

inferiority by a poor choice of the optimizer’s hyper-parameters. These hyper-parameters
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have to be carefully chosen for models like sCNN and dCNN as they do not rely on standard

activation functions such as ReLu, exponential ReLu, sigmoid, and Tanh. Lastly, the RCNN

model showed better performance than the developed LSTM, sCNN, and classic machine

learning methods with a mean accuracy of (77.72 ± 6.50)%, but not the dCNN and pCNN

models. However, RCNN could be subject to further improvement by optimizing the network

architecture. Thus, a different RCNN architecture as presented by Bashivan et al. [142],

that combines CNN and LSTM, could improve the achieved results. Finally, it should be

noted that the amount of data used to train all of the aforementioned models were limited

and low noise to signal ratio did not allow to decode more complex movements. Therefore,

simultaneous multiple biosignals processing and decoding was investigated to classify more

complex movements, such as reach-to-grasp, and is introduced in the next chapter.

3.6 Summary

Overall, this work is considered as a survey of different learning methods for EEG decoding,

by implementing and benchmarking the performance of five machine learning algorithms

with three deep learning models advanced in this study. The details of these three deep

learning models (LSTM, pCNN, RCNN) for online decoding of two imagined hand move-

ments from EEG signals were described. Additionally, the developed DNN models were

compared with two other models (dCNN, sCNN) proposed in the literature. Overall, the

two CNN architectures (dCNN, pCNN) showed better performance and achieved a mean

accuracy higher than 84% over all the 20 participants, the RCNN model reached a mean

accuracy of 77.72% and a comparable accuracy to state-of-the-art results was obtained with

the LSTM model. In general, the traditional way of decoding EEG data has consisted in (1)

data preprocessing, (2) feature engineering, and (3) classification. Methods for all three

processing steps abound, but have to be carefully selected and linked together by experts.

Neural networks can merge steps (2) and (3), and identify relevant data features automat-

ically. Their crucial benefit is not that they require less expert knowledge, rather it is that

they can automatically and dynamically adapt their selection and weighting of features to

different trials, different subjects, and possibly also different tasks [160]. Our data confirm

at least the two former points: Sufficiently deep convolutional neural networks achieve less

inter-trial and less inter-subject variability. Overall they classify more accurately than tradi-

tional methods. This is, however, quickly becoming easier and more accessible thanks to

powerful and user-friendly software frameworks like Keras [148] or EEG (and EMG) specific

toolkits like gumpy [46]. Furthermore, a successful real-time control of a robot arm was

achieved using the trained pCNN model. Our next study presented in the next chapter was
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designed to overcome all limitations of this EEG-based approach by relying on multiple sig-

nals decoding, and hence increase system’s complexity and the number of controlled DoF

of the robotic system. In the next chapter, the pCNN model advanced in this work is used

and combined with an EMG decoder to classify more complex reach-to-grasp movements

instead of the two state decoding system presented in this study.
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4 Processing and decoding of multiple
biosignals for real-time human-robot
interaction

Some parts of this chapter (Sub-study 1) are created based on content adapted with

permissions from the manuscript Bernhard Specht*, Zied Tayeb*, Emmanuel Dean,

Rahil Soroushmojdehi, Gordon Cheng, ”Real-Time Robot Reach-To-Grasp Move-

ments Control Via EOG and EMG Signals Decoding”, Published in International Con-

ference on Robotics and Automation (ICRA 2020), 2020.

*: Both authors contributed equally to the manuscript

DOI: https://ieeexplore.ieee.org/abstract/document/9197550

Authors Contribution: Zied Tayeb and Bernhard Specht contributed equally to this

manuscript. Zied Tayeb proposed the idea, designed the experiments, prepared

the protocols for data recordings, recorded EMG data, co-analyzed the data with

Bernhard Specht, prepared the figures and wrote the manuscript. Bernhard Specht

recorded and collected the data, co-analyzed the data by advancing and testing

the developed algorithms, tested the system offline and online, and co-wrote the

manuscript. Emmanuel Dean developed the software for the robotic arm control,

helped with testing the system online with the robotic arm, and assisted in writing the

paper, Rahil Soroushmojdehi helped with testing the experimental setup and helped

with writing the manuscript. Gordon Cheng supervised the research and revised the

manuscript.

4.1 Study overview

In two separate follow-up studies, a real-time human-robot interface (HRI) system based on

the combination of different biosignals was proposed. In the first sub-study, EOG and EMG

signals (introduced and described in chapter 2) were decoded to perform reach-to-grasp
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movements, instead of solely relying on EEG data and the decoding of two-state movements

(presented in the previous chapter). For that, four different eye movements (up, down, left,

right) and rest were classified in real-time and translated into commands to steer an indus-

trial robot (UR-10) to one of the four approximate target directions. Thereafter, EMG signals

were decoded to perform the grasping task using an attached gripper to the UR-10 robot

arm. The proposed system was tested offline on three different healthy subjects, and mean

validation accuracy of 93.62% and 99.50% were obtained across the three subjects for EOG

and EMG decoding, respectively. Furthermore, the system was successfully tested in real-

time with one subject 1, and mean online accuracy of 91.66% and 100% were achieved for

EOG and EMG decoding, respectively. Our results obtained by combining real-time decod-

ing of EOG and EMG signals for robot control show overall the potential of this approach

when being used in real-time scenarios.

In the second sub-study, the combination of EEG and EMG was investigated and led to the

successful decoding also of these signals with a mean validation of 89.6%. For that, the

pCNN model proposed in the previous study (chapter 3) was used for EEG decoding and

was combined with a standard machine learning model (SVM) for EMG decoding, following

the same sequential paradigm used for EOG and EMG decoding. This investigation of si-

multaneous EEG+EMG decoding was performed to classify more complex reach-to-grasp

movements instead of the two-state decoding system proposed in this previous chapter. For

that, two motor imagery movements (left, right) and rest were decoded and translated into

commands to steer an industrial robot (KUKA-Arm), whereas three different hand move-

ments were classified from EMG signals to control a 3-D prosthetic hand. Overall, the out-

comes of these two sub-studies confirm the potential of using multiple biosignals for human-

robot interaction and the decoding of more complex arm movement intentions compared to

the previous study, but they also highlight challenges to overcome in order to enhance the

usability of the proposed methods.

4.2 Introduction

Human-robot interaction for rehabilitation and assistance has gained momentum [161] and

has continuously attracted many researchers and industrial companies [162]. Highly au-

tonomous robots have been used in multiple industrial applications, such as disassembling

tasks and robot-cranes [163]. Apart from industrial sections, robots have been utilized in

different healthcare applications. For instance, nursing robots [164], robots in gait rehabili-

tation for patients after stroke [165] and assistive telepresence robots for elderly [166] have

1A demo video of this work is available: https://youtu.be/EEsq_7e-XLQ
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been widely used. Despite the tremendous advances that have been made, various prob-

lems persist [167] and the development of human-robot interfaces (HRI) still needs further

investigation of the capabilities of human-robot collaboration when designing the interface

to produce desirable actions [168]. Many researchers have been working on incorporating

human bio-signals, as one of the most important input signals that can be used to control

assistive robots [169]. Assistive robotics using signals that are acquired from muscle activity

(EMG) [170], brain activity (EEG) [171] and eye movements (EOG) [172], [173], [174], [175]

have shown promising results. However, these systems still exhibit some drawbacks, such

as complex and expensive experimental setups, which makes transferring this into com-

mercial products a challenging task [176]. Along the same lines, using one unique signal

for robot control limits the number of degrees of freedom (DoF) that can be controlled. In

this context, many studies have been recently focusing on combining multiple bio-signals

to increase the number of DoF when controlling assistive robots [177]. This has therefore

spurred research in designing hybrid HRI systems [178]. In [179], authors integrated EOG,

and evoked related potentials. A comparison between different modes of robot control in-

cluding accelerometer data, EOG + EMG, EOG + blink and EOG + ERD/ERS + blink in

[176] showed that combining EOG and EMG offers a good compromise between accuracy,

ease-of-use, and number of DoFs for robot control. Recent work by Zhang et al. combined

EEG/EMG/EOG-Based Multimodal Human-Machine Interface to control a soft robot-hand

in real-time [180]. This work investigated the fusion and combination of different biosignals

to increase the number of extracted commands from these signals when interacting with

robotic arms, while maintaining a good real-time decoding accuracy. The online system was

demonstrated by simultaneously processing and classifying EOG and EMG signals. The

next section provides a more comprehensive review on previous studies that investigated

the fusion of different biosignals, as well as their limitations and the novelty of this study.

4.2.1 Summary of previous research on hybrid BCI and simultaneous
biosignals decoding

Over the last few years, there have been several literature reviews on fusing and decoding

multiple biosignals, such as EMG+EEG or EMG+EOG. Overall, when combining different

body signals for robot control, decoding approaches are classified into simultaneous and

sequential [181]. In [92] and [182] a physiological, simultaneous, hybrid BCI was tested with

respect to its general usability and the influence of muscle fatigue on the system accuracy.

People with muscular dystrophy and elderly people suffer generally from muscle fatigue

during the day, as the number of employable muscle fibers as well as their size and power
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decrease [183]. As a result, this badly affects the frequency spectrum and amplitude of EMG

signals, resulting in a poor decoding performance. The hybrid BCI system, by either adding

EEG or EOG as a second decoded signal, presents another solution to maintain a good

decoding performance. In [92], the study was conducted with nine healthy subjects who had

to repeat the execution of left- or right-hand movements depending on the presented cue.

A 16-channel EEG was recorded over the primary motor cortex and a 4-channel EMG was

recorded on the flexor and extensor of each forearm. The problem of muscle fatigue was

simulated by attenuation of the recorded EMG signal. Classifier accuracies were tested for

four fatigue levels (100% EMG, 90% EMG, 50% EMG, 10%EMG) and compared to EMG-

only and EEG-only modes. Additionally, two data fusion approaches were investigated. The

first one used equally balanced weights to fuse the EMG and EEG classifier outputs pro-

cessing chain, whereas in the second approach, a nave Bayesian fusion was employed

using probabilities calculated from the training data. Experiments resulted in classification

accuracies for EEG-only and EMG-only of 73% and 87%. In the first fusion approach (equal

weights) an average accuracy of 91% (100% EMG), 90% (90% EMG), 85% (50% EMG)

and 73% (10% EMG) was achieved for the different fatigue levels. In the Bayesian fusion

approach an accuracy of 92% could be achieved for 100%, 90% and 50% EMG, which for

the 50% case presents a significant improvement compared to the first fusion approach.

Overall, this study showed that the hybrid BCI system based on the fusion of EEG and EMG

led to a significant performance improvement compared to the single use of EEG-based BCI.

Additionally, it was shown that the muscle fatigue had no or only a moderate negative influ-

ence on the classifier performance, increasing, therefore, the long-term reliability of such a

system when used during the day. Nevertheless, one of the limitations of this study was

the limited number of decoded movements (robot’s control commands) given that the ex-

tracted information from both signal channels was redundant. Other studies [184, 185, 186]

investigating the combination of multiple biosignals in the field of assistive technology (such

as hybrid BCI speller systems) demonstrated that multimodal systems always improved the

performance or complexity of the systems. Despite the number of challenges to overcome

when fusing and decoding different biosignals at the same time, these previous studies

have confirmed the usefulness of this hybrid approach, as well as have shown the over-

all motivation behind investigating this concept. Along these lines, these studies clearly

demonstrated the control limitations when relying on a single input signal (EMG/EEG/EOG)

for both motor-impaired and healthy human subjects. People who suffer from muscular

dystrophy have difficulties to maintain EMG signals for longer periods. Additionally, even

for healthy people, the continuous contraction of a muscle can lead to muscle fatigue and

unease and decrease the usability of the system [183]. Like muscle fatigue, when solely
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relying on MI movements from EEG, mental fatigue is considered another problem, given

that maintaining mental states such as intentional non-control for a longer period can be

mentally exhausting. Furthermore, it is known that some people are not able to produce

or use EMG, EEG, or even EOG signals at all. Patients with tremor or other spastic symp-

toms tend to produce false positives in the EMG signal making this channel useless [186].

Furthermore, some paralyzed or tetraplegic people or even amputees do not even have

any recordable muscle activity. Similarly, as was shown in the chapter 3 of this thesis (the

previous study), the detection of ERD/ERS in EEG signals is very sensitive to users, which

hinders its acquisition from a large proportion of subjects, and the number of distinguishable

movements that can be accurately decoded is usually limited to two or three states. For this

purpose, the hybrid system is considered a good alternative despite the challenging seam-

less integration of multiple modalities, as well as the overall number of movements that can

be extracted. Extending upon the obtained results of these studies, this work aimed at using

the hybrid concept with two different investigated approaches (EEG+EMG and EOG+EMG)

to investigate the robust decoding of more complex movements, known as reach-to-grasp

movements, when interacting in real-time with robotic arms. This work showed first the high

accuracy that can be obtained when decoding these movements (91.66% for EOG+EMG,

and 89.6% for EEG+EMG). Moreover, this study showed the possibility to use such a system

in real-time when controlling reach-to-grasp movements (EOG+EMG) of a robotic arm, while

maintaining a high online accuracy. Table 4.1 compares different studies that relied on more

than one single decoded biosignal when interacting with robotic devices, and summarizes

the main obtained results.

Table 4.1: Comparison of different hybrid BCI studies for human-robot interaction and their achieved
results
Reference No of Classes Validation Mode Decoded Signals Accuracy

[178] 2 Online EMG+EEG 94.4%

[181] 2 Offline ERD+SSVEP 77%

[92] 2 Offline EMG+EEG 92%

[180] 4 Online EMG+EOG+EEG 93.83%

Our work 6 Online EOG+EMG 95.83%

Our work 5 Online EEG+EMG 89.6%
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4.2.2 Motivation & aims of combining and decoding multiple biosignals for
real-time human-robot interaction

The core contribution of these two sub-studies within this investigation resides in designing

an HRI system based on real-time decoding of EOG+EMG and EEG+EMG for the control

of different reach-to-grasp movements of two different robotic arms. Overall, the results

from both proposed paradigms and sub-studies showed comparable performance. As was

shown in the previous chapter, relying solely on EEG signals still exhibits many problems

and limitations, such as low spatial resolution limiting the number of the control commands

that can be decoded [3], as well as low SNR making them impracticable to use in daily-life

scenarios. Thus, adding other biosignals is thought to offer a better solution for more robust

and real-time human-robot interaction. In this work, we underpin the real-time capabilities

of the proposed systems by demonstrating the successful online control of a UR-10 robot

arm (universal-robots). Our EMG+EOG system (shown in Figure 4.1) can be extended to

classify more complex movements. An overview of the EMG+EOG system is depicted in

Figure 4.1, whereas the EEG+EMG system is illustrated in Figure 4.12.

EMG Signals

EOG Decoding

EMG Decoding

Reach

Movement

Grasp

Movement

EOG Signals

Figure 4.1: Overview of the real-time developed EOG+EMG system.
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4.3 Sub-study 1 on EOG+EMG decoding for reach-to-grasp

movements control

4.3.1 Methods

4.3.1.1 EOG & EMG signals recording and processing

EOG and EMG signals were recorded from three healthy subjects (two males and one fe-

male) using the g.USBamp system with a sampling frequency of 1200 Hz. Subjects were

between 22 and 27 years old and claimed to have no record of neurological disorders. The

three subjects were recruited to perform four different eye movements (up, down, left, and

right) by following a pointing arrow on the screen during the training phase (EOG task), as

well as to perform one hand movement, namely power-fist followed by a relaxation phase.

The pointing arrow (cue) was randomly displayed and was selected from a discrete uniform

distribution. Both experimental paradigms for EMG and EOG recording were prepared by

Zied Tayeb and Bernhard Specht. EMG and EOG data collection was jointly performed by

Bernhard Specht, Rahil Soroushmojdehi, and Zied Tayeb. All recording sessions took place

in the lab and yielded a total of 150 and 400 trials for EOG and EMG signals, respectively.

For EOG signals, 30 trials for each direction were recorded (including the rest phase/no

movement) forming the total number of 150 trials. For EMG, 200 trials for each condition

(power-fist vs rest) were collected yielding to the total number of 400 trials. One pair of

electrodes, which cover the muscles of the forearm (flexor and extensor carpi radialis) in

a ring-like fashion were used, and the reference electrode was placed on the elbow bone.

The open source library mushu [187] was used for data acquisition and both EMG and EOG

signals were thereafter processed using the gumpy.signal module in the gumpy BCI toolbox

[46]. For that, EOG signals were band-pass filtered between 1 and 22 Hz using a 4th order

zero-phase Butterworth filter, whereas EMG was band-pass filtered between 30 and 500

Hz using the same filter. Both signals were notch filtered at 50 Hz to remove the power line

interference [46]. The designed experimental paradigms, electrode placement and recorded

signals for EOG and EMG are shown in Figure 4.2 and Figure 4.3, respectively.

4.3.2 Main results of EOG+EMG decoding

The processing and classification algorithms described and used in this sub-study were

proposed and developed by Bernhard Specht and Zied Tayeb. Thereafter, those algorithms

were advanced and tested offline and online by Bernhard Specht.
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Figure 4.2: A shows the paradigm for recording trials used to train the EOG classifiers. For each
trial, a window of two seconds is sampled. For the first half second the screen is black,
then a uniformly selected cue in the form of an arrow appears at the position where the
subject is expected to look at, or the screen stays empty for classification of relaxation.
The cue disappears after one second and is followed by a black screen for another
half of a second. A short tone marks the start of a sampling period. B shows the
electrode placement on the subject. One ground electrode was placed in the middle of
the forehead. The electrodes CH1+ and CH1- were placed on the right of the subject’s
right eye and left of the subject’s left eye respectively. CH2+ and CH2- were placed on
beneath and on top of the subject’s right eye. C shows the filtered subtracted signals
of the horizontally placed electrodes for left and right eye movements and the vertically
placed electrodes for up and down eye movements.
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Figure 4.3: A shows the animations with timings of two consecutive trials showed to the subject while
recording EMG signals. A trial is divided into five sub-trials, where each trial is recorded
as a sampling window of two seconds. B shows the electrode placement for the EMG
recording. The ground electrode was placed on the elbow. Two electrodes CH1+ and
CH2+ were placed on top of the forearm forming a channel for bipolar recording. C shows
recorded EMG data. When the subject forms a fist higher activity can be observed.

4.3.2.1 Offline results: EOG data classification

Filtered EOG signals were analyzed using two sliding windows (from 0.0s to 1.5s, and

from 0.5s to 2s). The length of the sliding window was chosen for the purpose of allow-

ing real-time control. For each sliding window of 1.5s, four different features, namely mini-

mum value, maximum value, variance and threshold crossing count (crossing positive and

negative threshold) were extracted and were used for training, as well as for the movement

classification in real-time. A feature selection algorithm (SFSF) [188] was used and trained

to select the best features (a subset of the initial features) using a 10-fold cross validation.

Only the selected features were then used to train a KNN classifier. We wish to mention that

two different KNN models were trained to classify EOG signals. The first one was served

for detecting if there is an eye movement or not (rest vs eye movement). If an eye move-

ment was detected, a second classifier was trained to classify the different directions of eye
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movement (up, left, right, or down), and hence deciding on the robot’s target direction. It is

worth noting that 10-fold cross-validation was used during the validation phase to evaluate

the model’s performance. Figure 4.4 shows the classification results for the three different

subjects. Overall, we achieved an average success rate of 97.91%±3.22%, 89.92%±8.66%

and 93.04%±7.69% for the three subjects, respectively, yielding a mean accuracy of 93.62%

across the three subjects, when recognizing the different eye movements. A principal com-

ponent analysis (PCA) was performed (n components=2) to visualize the different classes

and results are depicted in Figure 4.5, which shows that most eye movements trials are

highly separable, except the left and right which were also confused during the real-time

test. It should be mentioned that the mean balanced accuracy (bACC), where the average

of correct predictions for each class was computed and used.
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Figure 4.4: Bar plot showing the mean validation accuracy for each subject with the standard devia-
tion.

4.3.2.2 EMG signal classification

The mean absolute value and the sum of absolute discrete differences were used to extract

features from EMG signals. Those two features were extracted from different consecutive

overlapping windows within a time window of two seconds. The overlapping windows had
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Figure 4.5: Feature space showing the different eye movement trials after performing PCA.

a size of 0.2 seconds and overlapped with their neighbors for 0.04 seconds. The same

sequential feature selector algorithm was used to choose features for training a KNN clas-

sifier with 10 fold cross-validation. As this is a binary EMG classification task, signals were

correctly classified during the validation as well as in the test phase with 100% accuracy.

4.3.2.3 Real-time signals decoding

After the validation of the proposed system offline, we used a UR-10 robot with an attached

gripper to test the proposed system online. For that, the subject had to perform one of the

four different eye movements to control the robot to perform a reach movement as described

in table 4.2. EOG signals are acquired in real-time, processed, classified using the saved

offline model and decoded information was thereafter translated into commands to move the

UR-10 robot towards the right direction. Once the robot reaches the target object, the sub-

ject flexes his muscles, EMG signals are processed, classified in real-time using the saved

EMG classifier and the attached gripper to the UR-10 robot arm performed the grasping task.

Overall, an online accuracy of 91.66% and 100% were, respectively, obtained when classi-

fying EOG and EMG signals using one single subject. The confusion matrix in Figure 4.6

shows that down and up eye movements were always correctly classified, whereas the left

and right movements were sometimes confused during the test phase. For the EMG online

classification, all performed fist movements were correctly classified. Table 4.2 summarizes
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robot’s and subject’s different actions. The robot arm’s action was controlled depending on

the decoded subject’s eye movement, whereas the gripper’s action was controlled using the

decoded EMG movement.

Up
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Figure 4.6: Confusion matrix for the real-time test showing that left and right were the only classes
confused during the online phase.

Table 4.2: Subject action to robot action mapping

Signal Subject’s Action Robot’s Action [P (i)&G(j)]
EOG look left move up left

look up move up right
look right move down right
look down move down left
rest (idle state) no movement

EMG grasp close gripper
relax open gripper
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4.3.2.4 Robot interface

The robot interface described in this section of the thesis was developed by Emmanuel Dean

and was then used for the real-time demonstration with the robotic arm. The robot interface,

which was used to connect the Decoder with the robot controller is depicted in Figure 4.7.

The Decoder uses two robot operating system (ros)-clients to trigger the Robot’s Actions

defined in table 4.2, namely Reach Movements P (i)and Gripper States G(j). Herein, the

ros-client communicate with the server system, and wait thereafter for a response by that

server (ros-service). In the case ofG(j), the client triggers two possible gripper actions open

and close. These actions are directly transformed into gripper commands by the Gripper

Driver, which, in turn, are transformed into digital outputs (DI/O) running in the UR-Control

Unit. For the Arm actions, the Decoder selects a specific Reach Movement P (i) using

the classification of the EOG signals. The selected P (i) is sent to the Arm Driver using a

ros-client. The ros-service implemented in the Robot Interface maps the desired P (i) into

a predefined end-effector state (end-effector position xefs(i)). This position xefs(i) is used

in a State Machine (SM) to trigger the different end-effector goals xefg(k). These goals

are used as desired positions in a Cartesian controller. Then, the output of the Cartesian

controller is transformed into joint velocity commands [189] and sent to the robot.

4.3.2.5 Cartesian control

To control the robot end-effector, we implemented a second order sliding mode controller in

the Cartesian space defined as:

τ = −KdSq + YrΘ ∈ Rn (4.1)

where Kd+ = KT
d+
∈ Rn and YrΘ ∈ Rn is the robot regressor. The joint error surface Sq is

defined as:

Sq = q̇ − q̇r ∈ Rn (4.2)

where the joint velocity reference q̇r ∈ Rn is given as:

q̇r = J(q)−1ẋr (4.3)

and the Cartesian velocity reference ẋr is given as:

ẋr = ẋd −Kp∆x+ Sd −Ki1

∫ t

t0

Sδdζ −Ki2

∫ t

t0

tanh (µSδ) dζ (4.4)
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with tanh (µ•) as a smooth approximation for the function sign(•), and µ > 0 ∈ R.

Kp,Kij > 0 ∈ R6×6, j = 1, 2. The Cartesian error manifold Sδ is

Sδ = S − Sd = (∆ẋ+Kp∆x)−
(
S (t0) e

−κt) (4.5)

with the Cartesian position error defined as:

∆x = x− xd ∈ R6 (4.6)

where ∆ẋ = ẋ − ẋd is the Cartesian velocity error, where xd and ẋd stands for the desired

Cartesian pose and velocity, respectively. The desired Cartesian pose xd ∈ R6 is com-

posed of a desired position vector xefd and a desired orientation vector θefd ∈ R3, which is

obtained using the Euler angles representation Z-Y-X. In our particular case, the goal is to

keep the orientation of the end-effector constant, i.e. θefd(t) = θef (0). The position of the

end-effector depends on the Reach Movement P (i) triggered by the EOG/EMG Decoder.

The discrete movement obtained from P (i) is transformed into a set of end-effector goals

xefg(k) ∈ R3, where k is defined by the State Machine SM , see Figure 4.7. Then, we

generate a continuous desired trajectory using a spline function for each xefg(k).

4.3.2.6 Spline End-Effector Trajectory xefd

To generate a smooth trajectory from the initial desired Cartesian position xefi ∈ R3 to the

goal position xefg(k), we employ the following trajectory generator:

xefd = a1x̄ef + xefi , ẋefd = a2x̄ef (4.7)

where x̄ef = xefg(k)− xefg(k − 1), with xefg(0) = xefi = xhome.

The coefficients ai are defined as: a1 = 10r3−15r4+6r5, a2 = (30r2−60r3+30r4)/(tf )

and a3 = (60r − 180r2 + 120r3)/(t2f ), where r = t/tf is a time ratio between the current

time t and the desired total time tf . This function guarantees a smooth trajectory that sat-

isfies the constraints xefd (0) = xefg(k − 1), xefd (tf ) = xefg(k) and ẋefd (0) = ẋefd (tf ) =

ẍefd (0) = ẍefd (tf ) = 0 ∈ R3. The discrete movements P (i) are a set of predefined Carte-

sian positions x(i) ∈ R3. The robot’s end-effector continuous trajectory χ(t) is generated
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using polynomial interpolation between two positions u and v of that set, see eq. (4.11).

r =
t− t0

∆t
(4.8)

∆t = tf − t0 (4.9)

p(t) = 35r4 − 84r5 + 70r6 − 20r7 (4.10)

χ(t) = p(t)∆x(k) + x(v), (4.11)

with t0 and tf as the initial and final time for the trajectory, and ∆t defines the total time of

the trajectories, in our case, it was set to 10s. ∆x(k) = x(u)− x(v), where the indices u, v

are the target defined by the SM, depending on the desired action. Each action takes 30s

since the robot has to move to three different stations, namely, home, reach, and target.

UR 
Control Unit

Socket 1: 

Socket 2: 

UR Script

EOG
Decoding

EMG
Decoding

ROS
Py

Client

Client

EOG
Signals

EMG
Signals

Service [State Machine (SM)]

Arm Driver

UR LLI

Gripper Driver

Service

Service [SM]

Gripper LLI

ROS
CPP

Robot Interface Decoder

Figure 4.7: Robot Interface: The robot interface to control the robot’s actions is implemented in
ROS, where two ROS services have been implemented. The first one to control the arm
motions, using a State Machine SM , and the second one to trigger the gripper states
(open/close). The EOG decoder executes the Reach Movements P (i), and the EMG
triggers the Gripper States G(j). The Reach Movements are divided into a sequence of
end-effector positions (xefg (k)) triggered by a State Machine.

4.4 Sub-study 2 on EEG+EMG decoding for reach-to-grasp

movements control

In addition to the EOG+EMG interface, the pCNN model for two motor imagery (MI) move-

ments decoding from EEG, which was described in the previous chapter, was combined with
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posture classification from EMG using a classic machine learning model (SVM). For that, 2-

MI movements namely left and right imagined hand movements, and three hand poses (fist,

2-finger pinch, and 3-finger pinch) were decoded. The experimental paradigms and pro-

cessing classification algorithms described and used in this sub-study 2 were proposed by

Zied Tayeb and were made freely available within gumpy software [50]. The robot interface

for the robot control was developed by Matteo Saveriano and all the developed algorithms

were thereafter advanced and jointly tested (offline and in real-time) by all the co-authors of

Tayeb et al. [46].

4.4.1 Methods

4.4.1.1 EEG & EMG signals recording and processing

For EMG signal recording, an experimental paradigm using a simulated hand was designed

and used to record EMG data corresponding to three-hand postures, namely fist, two-finger

pinch, and three-finger pinch, as illustrated in Figure 4.8. For that, eight silver chloride

solid gel electrodes were placed on the forearm, with four pairs of electrodes covering the

muscles in a ring-like fashion, as shown in Figure 4.9. The reference electrode was placed

on the elbow, the g.USBamp amplifier [145] was used to record data and the LSL [159]

was used for data acquisition. Both EMG and EEG signals were processed using gumpy

Figure 4.8: EMG recording paradigm for three hand postures.

software [46]. EMG data was first filtered using a fourth order band-pass filter with cut-off

frequencies 20 Hz and 255 Hz and a notch filter with cut-off frequency 50 Hz to remove

power line interference. Thereafter, the channel pairs get subtracted from each other and

separate epochs from recorded trials were extracted. For this EMG classification task, the

root mean square (RMS) was extracted as a feature from each EMG channel using a sliding

window of 0.2 seconds and overlap factor of 0.05 seconds. Afterwards, the feature matrix
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Figure 4.9: EMG electrodes’ placement.

was normalized and the feature selection algorithm [35] was used to reduce the number of

features into three before feeding them into the machine learning classifier. For EEG signals,

the same recording paradigm as described in the previous chapter (chapter 3) was used to

instruct the subject to either imagine a passive left or right hand movements. The motor

imagery movement’s duration was 4 seconds (as shown in Figure 4.10). Eight different

electrodes over the motor cortex were used for data recording, but only three of them (Cz,

C3, C4) were chosen for data analysis, given that they contain the most useful information

when performing a motor imagery task [190, 3]. The same EEG processing pipeline as was

presented in Chapter 3, was used in this sub-study and the pCNN model was trained using

the collected EEG data.

4.4.2 Results of EEG & EMG decoding

4.4.2.1 Offline classification results

For the offline classification, five different machine learning classifiers (Support Vector Ma-

chine (SVM), K-Nearest Neighbours (KNN), Logistic Regression (LR), Naive Bayes (NB),

and Quadratic Linear Discriminant Analysis (QLDA)) were validated tested offline to dis-

criminate between the three hand postures from EMG signals. Data was split into 80% for

training and 20% for test. A comparison of the five classifiers performances is available in
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Figure 4.10: EEG experimental paradigm for motor imagery movements recording.

Figure 4.11. For EEG data, the pCNN was trained, and similar average performance as was

described in chapter 3 was obtained.

4.4.2.2 Online classification results and robot control

For the online experiment, a SVM trained model for EMG signal classification was com-

bined with the pCNN model for EEG signal decoding. In this second sub-study, the online

mode was designed to perform reach-to-grasp movement decoding, where a KUKA robot

arm [191] was controlled by the two decoded MI movements from EEG (reach movements),

whereas the mounted prosthetic hand was controlled using EMG signals (grasp movements)

during the same experiment. In this second sub-study, the LSL [159] was used to synchro-

nize different data streams (EEG, EMG) and the temporal procedure was arranged as a

state machine. During the offline recording, the program alternates between two states,

which execute the tasks related to EEG and EMG experiments. The participant performed

the EEG experimental paradigm first. Thereafter, the EMG experimental paradigm was per-

formed. This procedure was repeated for a defined number of offline trials, for instance,

72 as was shown in the online EMG experiment in section A.4.2.2. After completion of the

offline experiments, the program entered a state, where the model used for posture detec-

tion was trained based on the offline recorded EMG data, whereas the MI pre-trained pCNN
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Figure 4.11: Comparison of the offline accuracy of EMG decoding obtained using five different ma-
chine learning classifiers.

model was retrained based on the offline EEG data. It should be noted that the pre-trained

model can be either a CNN or also a standard machine learning classifier, depending on the

end-user’s configuration. Afterwards, the program entered the online phase, which consists

of three states (EEG, EMG, and classification). These states were performed sequentially

for a defined number of online trials. Likewise, the EEG state was first performed and was

followed by the EMG state. The robotic arm was programmed to execute either a left or right

reach movement (or move back to home position if no movement was decoded), depending

on the decoded EEG signal and using commands sent through a user datagram protocol

(UDP) socket with a module developed in Python. The prosthetic hand was programmed to

execute one of the three grasping postures, depending on the decoded EMG signal. Over-

all, comparable performance to the EOG+EMG system was obtained, by achieving a mean

accuracy of 89.6%, where the three hand poses from EMG signals were recognized with

an accuracy of 95.25%, whereas reach movements from EEG motor imagery movements

were recognized with an accuracy of 83.95%. After classifying both EEG and EMG signals,

the KUKA-robot arm as well as the Open Bionics prosthetic hand attached to it were con-

trolled to perform a reach-to-grasp movement as shown in Figure 4.12, reaching a validation

accuracy of 89.6% when classifying the desired reach-to-grasp movement. Overall, one po-

tential benefit offered by combining EEG and EMG [34] is the low latency provided by EEG

when decoding reach movements as well as the rich spectro-temporal information that can

be decoded from EMG when classifying complex grasp movements [34, 23]. Nevertheless,
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Figure 4.12: The proposed hybrid BCI experiment for reach-to-grasp movements decoding.

we observed that the accuracy of the EOG+EMG is more stable, particularly when used in

real-time applications.

4.5 Discussion

In this study, we proposed a human-robot interface based on decoding and combining multi-

ple signals to control reach-to-grasp movements of different robot arms, such as KUKA and

UR-10. For that, two sub-studies were designed and investigated. An EOG+EMG experi-

ment was designed and tested to control a UR-10 robot with an attached gripper, whereas

EEG+EMG was designed and tested with a KUKA-Arm and an attached Open Bionics pros-

thetic hand. Overall, our results show that we could successfully classify both EMG and

EOG signals with more than 90% accuracy across three different subjects and we underpin

the real-time aspect by showing the successful online control of the robot arm. Additionally,

reach-to-grasp movements were classified from both EEG and EMG signals with an accu-

racy of 89.6%. To the best of our knowledge, these two sub-studies are among the very

few to demonstrate the real-time control of multiple reach-to-grasp movements of different

robot arms using decoded information from different biosignals. Nonetheless, the proposed

concept still has some limitations that should be addressed in future work, in order to inves-

tigate to what extent this approach could be generalized across many subjects, including
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elderly and disabled people, to further verify the robustness of such a system when used

in real-life scenarios, as well as to extend the proposed approach to classify more complex

reach-to-grasp movements.

4.5.1 Limitations

First, the EOG+EMG experiment was solely tested on healthy subjects and no experiments

with elderly or disabled people were performed. Hence, it remains questionable whether a

similar performance could be obtained when testing with patients. Furthermore, we wish

to mention that the subject had to be trained to correctly and repetitively perform the differ-

ent eye movements prior to the recording. Therefore, generalizing the developed approach

across many subjects would be a challenging task. Aside from that, we noticed that sweat

or slight changes in the electrode’s position during recording and the difference between

muscle tissues of the participants drastically decreased the quality of the recorded EMG

signal, and therefore deteriorate the classification accuracy. For example, the accuracy

dropped when testing on the female participant (subject 2 in our analysis) and a validation

accuracy of only 89.92% was attained compared to more than 97% and 93% for subjects 1

and 3, respectively. Similarly, for the EEG+EMG experiment, extensive training was needed

to master the task and slight changes in the electrode’s position resulted in a decrease of

SNR for both signals, and caused a drop in the validation accuracy. For both experiments,

only one side of the equation was investigated and no sensory feedback was provided to

the human controller. Hence, this gave rise to focus on the other side of the equation, the

afferent pathway, by investigating the use of vibrotactile stimulation to provide artificial sen-

sation about the stiffness of the different manipulated objects, while controlling, using EMG

signals, a 3D-printed prosthetic hand. This work is described in the next study presented in

chapter 5.

4.6 Summary

This study proposed a human-robot interface system based on two separate studies, where

the real-time decoding of EOG+EMG to control reach-to-grasp movements using an indus-

trial UR-10 robot arm was described in the first one, and the classification of EEG+EMG

to control reach-to-grasp movements using an industrial KUKA robot arm with an attached

3D prosthetic hand was described in the second sub-study. The EMG+EOG system was

tested with three different healthy subjects in the validation phase and one subject during

the online phase, whereas the EEG+EMG system was successfully validated with one sub-
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ject. Overall, we obtained a mean validation accuracy of 93.62% and 99.50% for EOG and

EMG classification, respectively, and online accuracy of 91.66% and 100% during the on-

line phase. The EEG+EMG achieved similar performance of 89.6% as a validation accuracy.

We demonstrated the real-time capability of the proposed EOG+EMG system by showing a

successful control of the robot arm using decoded information from both signals.
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5 Investigating vibro-tactile stimulation to
enable the sense of touch in
sEMG-controlled hand prostheses

This chapter is made up of content adapted from the manuscript Zied Tayeb, Philipp

Jakovleski, Zhong Chen, Jannick Lippert, Pablo Lanillos, Dongheui Lee, Gordon

Cheng, “Enabling the sense of touch in EMG-controlled hand prostheses using

vibro-tactile stimulation.” accepted for publication at the 9th International IEEE/EMBS

Conference on Neural Engineering (NER). DOI: https://ieeexplore.ieee.org/

abstract/document/8717124.

Author Contributions: Zied Tayeb designed the research, designed the experimen-

tal paradigm, developed the software for data processing, prepared the figures, and

wrote the paper. Philipp Jakovleski and Zied Tayeb performed the real-time experi-

ment. Zhong Chen and Jannick Lippert designed and prepared the hardware system

used in the experiment and tested the different system parameters. Pablo Lanillos

and Dongheui Lee assisted with writing the paper. Gordon Cheng supervised all ex-

periments, data analysis, and interpretation of the results. All authors contributed in

writing the paper.

5.1 Study overview

This study is disconnected from the previously described studies of this thesis and whose

purpose was to investigate the other side of equation when controlling robotic arms using

BCI systems. In this work, we focused on the afferent pathway by investigating the use of

vibrotactile stimulation in sensory substitution. The overall goal of this study was to assess

the feasibility of designing a low-cost, non-invasive sensory-enabled prosthetic hand con-

trolled by surface electromyographic (sEMG) signals. First, four hand movements and two

force levels (low, high) were successfully classified from sEMG signals with an accuracy of
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86.25% for posture decoding and 100% for force recognition. Second, a real-time control of

the prosthetic hand was achieved using the decoded sEMG activity. Thereafter, measured

finger-tip forces were translated into vibrotactile stimulation of the muscles for feedback.

With solely 10 trials per posture, an average online accuracy of 86.25% was reached across

the four different human participants when classifying the different hand poses with the ap-

plied finger forces. Additionally, an average success rate of more than 88.46% was obtained,

when differentiating between three different grasped objects (soft, hard, and medium) using

the proposed vibrotactile feedback. Taken together, this study showed the potential of using

low cost and non-invasive approaches for a bidirectional control of hand prostheses.

5.2 Introduction

The design of a prosthetic hand that can grasp and manipulate daily life objects precisely

and effortlessly is undoubtedly a big challenge, which is still lacking in prostheses currently

available on the market [192]. An intuitive reason for that is the absence of any kind of sen-

sory feedback to users, which makes the control of the device frustrating, ineffective [193],

and explains the high abandonment rate of available prosthetic hands [194]. Owing to that,

it has become important to develop more advanced encoding and decoding algorithms. On

one side of the spectrum, the decoding algorithms should be able to reliably classify different

hand gestures and force levels from sEMG for a more lifelike dexterity [195]. On the other

end of the spectrum, the encoding algorithms should translate the captured information from

the sensorized prosthetic hand into a feedback signal to the user through different feedback

modalities, such as vibrotactile [99] or electro-tactile stimulation [196], or the combination

of both modalities [197]. Many non-invasive sensory substitution approaches for transradial

prosthetic hands have been studied and proposed in the literature [198]. A functional non-

invasive system that does not need any surgical operations and can work in real-time and

closed-loop fashion has been rarely demonstrated [198]. Such a system should combine

the decoding of different hand poses and force levels from sEMG with multimodality sen-

sory substitution. This work sheds light on the real-time classification of four-hand poses

with two force levels from sEMG signals. In addition, low-cost, coin-shaped vibration motors

were used to provide a feedback signal by translating the measured pressure on the finger-

tips into a vibration in the bicep and the forearm of four different healthy subjects. With that,

participants could successfully identify the stiffness of three different objects (soft, hard, and

medium). This study proposed a myoelectric prosthetic hand system capable of decoding

four hand poses with two force levels from sEMG signals, and providing tactile feedback by

translating the measured pressure on the fingertips into a vibration in the biceps and the
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forearms of users, using low-cost coin shaped vibration motors. We validated the system

experimentally on four participants (online) that could successfully identify the stiffness of

three different objects.

5.2.1 Previous research on non-invasive sensory substitution in prostheses
using vibrotactile stimulation

Non-invasive hand prostheses have the benefit of not requiring any surgical operations,

making them more practical, and increase thereby their acceptance rate by amputees [192].

Thus, they can be potentially less expensive, easy and more intuitive to use for the pa-

tient who will not have to undergo any clinical surgeries [192]. Indeed, there have been

several literature reviews on the different feedback techniques and modalities for sensory-

enable upper-limb prostheses [198]. Particularly, sensory substitution feedback, by either

using modality mismatch to provide sensory information to the user through a channel that

usually differs from the normally used (e.g. substitute touch with hearing) or through the

use of the same channel but with a different modality (e.g. substitute pressure with vibra-

tion) [97], has become important [198]. Among these feedback modalities, vibrotactile and

electrotactile have been the most prevalent techniques [198]. Previous studies [100] inves-

tigated how changes in the amplitude and frequency of the stimulus can convey information

about the manipulated object. One study [105] tested a system, where a sports glove on

the non-amputated arm, was used to provide sensory feedback. In that study, EMG was

not combined with the vibrotactile system but authors only focused on the sensory substi-

tution part. Overall, their proposed haptic feedback improved the grip force accuracy by

129% compared to when the feedback was not provided. In another study [199] that was

performed on 15 healthy subjects and validated on three patients, authors showed improve-

ment when executing a grasping task, and users reported that, overall, they would prefer

to use vibrotactile compared to electrotactile feedback. It is worth noting that no EMG was

used for the feedforward control of the device nor the user’s applied force was decoded.

One of the limitations of these studies is that the vibrotactile feedback was in most cases

either tested alone or with a binary EMG classifier (open vs close) and no simultaneous

decoding of different grasping movements nor of the applied force extracted from EMG were

performed [198]. Extending upon these studies, this work investigated the reliable decoding

(86.25%) of four different hand postures from sEMG signals, two force levels (high, low)

for a real-time control of 3D-printed prosthetic hand. Simultaneously, the four participants

received different vibrotactile stimulations on their forearms, encoding the stiffness of three

different objects (soft, medium, hard), and they were able to recognize them with an aver-

77



age accuracy of more than 88.46%. Table 5.1 compares different studies that used sensory

substitution for prosthetics control and summarizes the main obtained results. For more in-

depth review on non-invasive sensory substitution methods for prosthetics control, readers

are urged to check out this study [198].

Table 5.1: Comparison of different studies that used sensory substitution for prosthetics control and
their achieved results

Reference Modality Feedback Posture & Force decoding Accuracy

[105] Electrotactile Force (Offline) NO 78.8%

[199] Hybrid Position (Offline) NO Not reported

[200] Vibrotactile Velocity & Force only 1 posture 74% & 33%

[201] Vibrotactile 1 single force NO 94%

[202] Electrotactile only 6 force levels only 1 posture 94%

Our work Vibrotactile 3 stiffness levels 4 postures & 2 force levels 88.46%

5.2.2 Motivation & aims of investigating vibro-tactile sensory substitution for
upper-limb prostheses control

The overall aim of this study was to propose a real-time and non-invasive system for upper-

limb prostheses bidirectional control based on sEMG decoding and vibrotactile stimulation.

Such a system allowed four different healthy subjects to control four different hand move-

ments with two force levels of a 3D-printed prosthetic hand, while receiving a sensory substi-

tution vibratory signal about the stiffness of the manipulated object. Owning to that, subjects

were able to distinguish between soft, hard, and medium objects in real-time. An overview

of the proposed system is presented in Figure 5.1.

5.3 Methods

5.3.1 Experimental paradigm and data recording

5.3.1.1 Hand gesture recognition

For sEMG data recording, four healthy and right-handed human subjects (25 ± 2.5 years

old) with no record of neurological disorders were recruited to perform a series of hand

movements, namely a 2-digit grasp, a 3-digit grasp, a fist grasp and hand open (rest). During

each trial, the subject was asked to perform one of the postures, which were selected from

a discrete uniform distribution, with two levels of force (high, low). Data used in this example

study as well as the experimental paradigm are made publicly available with the gumpy
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sensors

Figure 5.1: Overview of the proposed non-invasive bidirectional control system

toolbox [46]. EMG data were recorded and sampled at 200 Hz using the MYO armband

wireless system [203]. Four pairs of electrodes, which cover the muscles of the forearm in a

ring-like fashion were used, and the reference electrode was placed on the elbow bone.

5.3.1.2 Force encoding

To measure the applied force, force sensing resistors (FS402) were placed on the finger-

tips. A voltage divider circuit and an Arduino Nano were used to acquire the global force

values from each individual finger. The FS402 force sensitivity range is from 0.1 to 100 N.

The choice of FS402 sensors in this experiment was based on its low cost and human-like

touch characteristics. The sensor can be placed in the fingertip of different prosthetic hand,

and it can cover comparatively a wide area and when interacting with the environment and

manipulating objects.
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5.3.1.3 Prosthetic hand control

As mentioned, an open-source 3D printed prosthetic hand from Open Bionics [204] was

used in this experiment. It is a body powered passive prosthetic hand that was assembled

in our research laboratory. The prosthetic hand has a chestnut board to control the differ-

ent movement of fingers. Each time, the prosthetic hand receives the decoded movement

and force information, it activates the motor which can control each of the five different fin-

gers, and hence the intended hand movement is performed. Beetroot v1.0 firmware from

Open Bionics was used to control the chestnut board. Beetroot includes full serial control

of individual fingers and grip patterns, muscle control through EMG sensors and provides a

framework for adding extra functionality to the hand.

5.3.1.4 Vibro-tactile stimulation

For the vibrotactile feedback system, three coin type vibration motors were placed on the

biceps and the forearm of the participants. All of the three vibrators were controlled by pulse

width moderation (PWM) (as shown in Figure 5.3) sent by an Arduino Nano. The PWM

signal was used to control the three vibration motors; each vibration motor was associated

with one of the force sensors, where the duty cycle of the PWM signal controlling that vibra-

tion motor was set to be proportional to the measured finger pressure. For the vibrotactile

feedback experiment, three different classes of objects (soft, hard and medium) were used.

During the experiment, the participant learnt to associate the vibration at one specific site

with the lifted object and could therefore differentiate between them according to the re-

ceived feedback signal. We wish to mention that a similar experiment was proposed before

in [114], despite the high level of invasiveness of their designed system.

5.3.2 Data processing & analysis

5.3.3 EMG signal processing and hand poses classification

EMG signals were processed using the gumpy.signal module in the gumpy BCI toolbox

[46]. Filtered EMG signals were analyzed using 200 ms sliding time windows with 50 ms

overlapping. The length of the sliding window was chosen for the purpose of allowing real-

time control. For each interval, the computed mean of the signal was subtracted and divided

by the standard deviation. Thereafter, the root mean square (RMS) was computed in each

time window and fed into the classifier. A feature selection algorithm (SFSF) [35] was used to

select a certain number of features in the k range (10, 25). Four different classifiers, namely

(Naive Bayes (NB), Quadratic Discriminant Analysis (QLDA), k-nearest neighbors (KNN),
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Figure 5.2: Proposed experimental paradigm for the closed-loop system. (a) Different hand ges-
ture renderings prompting subjects. (b) Recording setup of EMG signals and fingertips
pressure during grasp movements with the proposed vibrotactile feedback system.

and Support vector machine (SVM)) were tested, and a 3-fold cross validation was used to

train and validate the selected (offline) model. The comparison of the different classifiers

trained and tested offline is presented in Figure 5.4.

5.3.4 Force values encoding and decoding

Two force levels were simultaneously decoded from sEMG signals with the recognized hand

pose and they were converted into a control signal to drive a 3D printed prosthetic hand

designed by Open Bionics. It is worth noting that the same feature extraction method used

for gesture recognition was chosen to classify each type of the two associated force levels

(low, high). Afterwards, the measured pressure on the fingertips was translated into a vibro-

tactile feedback using coin type vibration motors placed on the subject’s arm. Based on the

received feedback signal and the elicited sensations, the blindfolded subject could identify

the stiffness of three different objects.
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Figure 5.3: Duty cycle of pulse width moderation (PWM)

5.4 Main results of using vibro-tactile substitution and sEMG

signals decoding for a 3D prosthetic hand control

5.4.1 Real-time control of a 3D prosthetic hand

A successful online decoding of four hand poses, namely a 2-digit grasp, a 3-digit grasp, a

fist grasp, and rest (the no movement class) with two levels of force was performed. Inter-

estingly, only 10 for each posture were needed from each of the four participants to train the

model. Thereafter, 15 new online trials were used for online testing. The number of offline

trials used for model training was reduced in retrospective analysis to evaluate the effect of

the training data size on the online classification accuracy.

5.4.2 Sensory substitution results

Our experiment was conducted solely on healthy subjects. First, the proposed system was

validated and tested with two subjects without the prosthetic hand. Afterwards, the proposed

system was further validated and tested directly with a prosthetic hand. The experimental

setup is illustrated in Figure. 5.6. Experiment 1: For the first experiment, two participants

(P1, P2) were needed in order to perform the vibro-tactile experiment and validate the pro-

posed system. P1 was asked to perform one of the four postures as shown on the screen

with two different force levels. Force levels were chosen by the subject based on to the

object that can be grasped. Recorded EMG signals were decoded and converted into a
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Figure 5.4: Offline classification results for sEMG decoding. This bar plot shows the validation ac-
curacy for each subject for the 4 different tested classifiers, as well as the standard
deviation of each model.

control signal of the 3D printed prosthetic hand. The measured force using the FS402 sen-

sors placed on the fingertips, were encoded and translated into vibration-tactile stimulations

on the arm of P2, who had to recognize the stiffness of the lifted object. Overall, we achieved

an average success rate of more than 92%, when recognizing the stiffness of three different

objects. More importantly, the four subjects needed solely one training session to learn the

vibro-tactile feedback mapping. As the model performance should not be solely assessed

on classification accuracy, precision and recall performance measures were also computed.

Experiment 2: After the validation of the proposed system with two human subjects, the

system was tested directly with the prosthetic hand. The subject was asked to perform one

of the hand gestures, which was decoded online and translated into commands to control

the prosthetic hand to grasp and hold one of the three objects. Simultaneously, the same

participant received a vibro-tactile and had to recognize the stiffness of the grasped object.

Overall, we achieved an average success rate of 88.46%, when recognizing the stiffness of

three different objects. More importantly, subjects needed only one training session to learn

the vibro-tactile feedback mapping. Results are presented in Figure 5.7. The confusion ma-

trix presented in Figure 5.7 shows that the four participants could easily distinguish between
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Figure 5.5: Online classification results

soft and hard objects. However, as shown in Figure 5.7, the medium object was sometimes

confused with the soft and hard objects for most of the four participants. 1

5.5 Discussion

In this study, we showed the control of a 3D printed prosthetic hand using decoded sEMG

signals and a low cost vibro-tactile feedback system. Several similar systems have been

proposed in the past. However, the main contribution of this work resides in proposing and

testing a low-cost and bidirectional system in real-time that combines both EMG decoding

and stiffness recognition through sensory substitution. Overall, this study is considered an

extension upon previous studies whose focuses were either on solely validating individual

parts of the closed-loop system or the use of invasive approaches when tackling the prob-

lem. Notwithstanding the good online results presented in this work, it is thought that the

proposed system exhibits some limitations, which should be addressed in future work. First,

the developed system was only tested on healthy subjects and no experiments with am-

putees were performed. Hence, it remains questionable whether similar performance could

be obtained when testing with amputees and the translation of this engineering approach

1A demo video of this work is available: https://youtu.be/RfcDedfgQs4
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Figure 5.6: Overview of the proposed closed-loop approach for prosthetic hand control.

into clinical trials should be investigated. Second, long-term validation of the robustness and

the effectiveness of this developed system should be considered in the future. Sweat, slight

changes of electrode position during recording and the difference between muscle tissues

of the participants could drastically decrease the quality of the recorded sEMG signal and

therefore deteriorate classification accuracy. Additionally, better classification results could

be obtained when decoding simultaneously EMG signal and force levels by using more dis-

criminative features. Aside from that, recording and training the system with more complex

hand poses and individual fingers control should be addressed in future work. Last, de-

spite the good performance of the proposed sensory substitution system (92% and 88.46%

accuracy when differentiating between three different grasped objects), considerable im-

provements could be achieved. Using more accurate pressure sensors when providing the

feedback signal could improve the performance of the system, particularly when increasing

the complexity of the problem, testing with more objects, and investigating the encoding

of other physical properties of manipulated objects. This study gave rise to focus on so-

matosensory evoked potentials (SEP) identification and analysis in our follow-up studies, in

particular those associated with other sensory substitution modalities, in order to understand

how the human brain perceives different sensory substitution signals. Thus, this sparked the

interest to use the identified SEP patterns to quantify brain activity in response to different

sensory modalities, including transcutaneous electrical nerve stimulation and thermal stim-
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Figure 5.7: Confusion matrices for the object discrimination task tested with four participants using
the proposed vibrotactile feedback system.
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ulation. This was, therefore, investigated in the next two studies presented chapters 6 and

7.

5.6 Summary

This study proposed a non-invasive system for hand prostheses control that investigated the

use of sensory substitution (vibrotactile stimulation) combined with multiple hand gesture

decoding and force levels from sEMG signals. Four hand poses and two force levels were

successfully decoded from sEMG signals with an online accuracy of 86.25% and 100%,

respectively. The measured finger forces from the fingertips of a 3D printed prosthetic hand

were encoded and translated into vibro-tactile stimulation. Using this feedback paradigm,

all subjects were able to recognize the stiffness of three different objects with more than

88.46%.
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6 Decoding of EEG signals when
perceiving three distinct sensory stimuli
induced by TENS: An amputee case study

This chapter is made up of content adapted with permissions from the manuscript
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Cheng, “Decoding of Pain Perception using EEG Signals for a Real-Time Reflex Sys-
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1-11, (2020). DOI: https://www.nature.com/articles/s41598-020-62525-7
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6.1 Study overview

In recent times, we have witnessed a push towards restoring sensory perception to upper-

limb amputees, which includes the whole spectrum from gentle touch to noxious stimuli.

These are essential components for body protection as well as for restoring the sense of

embodiment. Notwithstanding the considerable advances that have been made in design-

ing suitable sensors and restoring tactile perceptions, very intense sensation perception

dynamics and its decoding using effective features, are still not fully understood. In this

study, using EEG recordings, we identified and validated spatio-temporal patterns of brain

activity during innocuous, moderately more intense, and noxious stimulation of an amputee’s

phantom limb using transcutaneous nerve stimulation (TENS). Based on the spatio-temporal
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EEG features, we developed a system for detecting noxious sensation perception and reac-

tion in the brain, which classified three different stimulation conditions with a test accuracy

of 94.66%, and we investigated the cortical activity in response to sensory stimuli in these

conditions. Our findings suggest that the noxious stimulation activates the pre-motor cortex

with the highest activation shown in the central cortex (Cz electrode) between 450 ms and

750 ms post-stimulation, whereas the highest activation for the moderately intense stimula-

tion was found in the parietal lobe (P2, P4, and P6 electrodes). Further, we localized the

cortical sources and observed early strong activation of the anterior cingulate cortex (ACC)

corresponding to the noxious stimulus condition. Moreover, activation of the posterior cingu-

late cortex (PCC) was observed during the noxious sensation. An overview of the real-time

withdrawal system is shown in Figure 6.1.

Figure 6.1: System implementation overview of a prosthetic arm that can restore the sense of touch
and pain. An upper-limb amputee wears a prosthesis equipped with e-dermis sensors
capable of measuring pressure and object curvature. Tactile sensations from innocuous
to noxious, based on detected pressures at the fingertips, are conveyed to the user’s
phantom hand through TENS on the residual limb. Brain responses are analyzed and
decoded to understand the tactile sensory perception, including noxious stimulus, and
identify activated brain regions. Neural activity can be used to design a prosthesis that
mimics natural pain withdrawal behavior in humans.
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6.2 Introduction & Related Work

Nociception is commonly known as the sense of pain [112]. Specialized receptors called

nociceptors that cover the skin and organs react to harmful chemical, mechanical and ther-

mal stimuli [205]. Some of these microscopic pain receptors react to all kinds of noxious

stimuli while others only react to specific pain like burning or pricking your finger on some-

thing sharp. Jolts of sudden pain activate the A-type fibers to send an electrical signal up to

the spinal cord [206]. Pain signals then activate the thalamus, which relays the signal to the

different brain regions[207]. Subsequently, the signal activates the somatosensory cortex

which is responsible for physical sensations; the signals are then relayed to the frontal cor-

tex where higher-order cognitive processing occurs, and finally to the limbic system, which

is linked to emotions [208]. This pain processing network, along with pain reflex pathways

in the spinal cord [206], are considered of the utmost importance for body protection from

damaging stimuli [117]. These insights into brain networks have therefore spurred research

on unraveling the processes within the body that lead to the unpleasant sensation of pain

[209] and on understanding the pain perception mechanism in the brain [210]. Authors in

[123] investigated perceptual, motor, and autonomic responses to short noxious heat stimuli

using EEG and confirmed that pain perception is subserved by a distinct pattern of EEG

responses in healthy subjects. Functional magnetic resonance imaging (fMRI) was used in

[43] to demonstrate pain-related activation of the ACC and the PCC during TENS in healthy

participants. A template of nociceptive brain activity that is sensitive to analgesic admin-

istration and suitable for clinical trials and research investigations was identified and vali-

dated in [211]. Furthermore, different somatosensory evoked potential (SEP) components

and latency differences after stimulation of proximal and distal sites of the median nerves

were studied and identified in eight healthy right-handed males [212]. Similarly, other pre-

vious studies showed that primary and secondary somatosensory cortices, insular cortex,

ACC, prefrontal cortex (PFC), and thalamus are activated during experimental pain stim-

uli [213, 214, 215]. Authors in [124] showed the important role of the parietal lobe in pain

perception and understanding. Notwithstanding the enormous number of studies on pain

perception and brain responses to different painful stimuli using EEG and fMRI, most of

these studies focused on studying brain responses in healthy subjects and have not investi-

gated brain responses when perceiving the sense of pain in amputees nor in human-robot

interaction settings [117]. It has, therefore, become imperative to study amputees’ brain ac-

tivity when integrating the sense of touch and pain in their arm prostheses [117]. The core

novelty and the main contribution of this study reside in the use of non-invasive EEG ac-

tivity to analyze somatosensory evoked responses recorded when receiving three different
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types of stimulations. These stimulations were chosen to convey different sensation profiles,

ranging from pleasant to uncomfortable sensation. For that, we identified a brain activity

template during innocuous (INNO), moderately intense (MOD) and noxious (NOX) stimula-

tion of an amputee’s phantom hand delivered through TENS [98]. Based on the identified

spatio-temporal brain activity patterns, we developed an offline system for detecting pain

reaction in the brain which can recognize the three stimulation conditions from recorded

EEG responses by using effective spatio-temporal bio-markers to identify the different brain

regions involved in noxious stimuli processing as well as latency responses for each stim-

ulation condition. The overall goal of this study was to extend upon the work performed

by Osborn et.al [117], where the reflex system was implemented in the arm prosthesis and

the amputee was not involved in the withdrawing reaction. This is thought to be of the ut-

most importance when designing a better bidirectional-control system between the human

and the prosthesis, and hence increase the amputee’s sense of embodiment and the sense

of ownership [216, 28]. Additionally, detecting this perceived pain sensation and reaction

would have an important role in protecting the prosthesis from being damaged by external

stimuli [217]. To the best of our knowledge, even though the presented results are from a

case study, this work is among the very few to investigate brain responses to different types

of NOX and INNO stimuli and the first study to investigate and characterize spatio-temporal

brain activities in amputees during a range of noxious and innocuous sensory feedback to

the phantom hand. Extending upon the findings of the aforementioned studies, we also

investigate attention and perceptual brain circuitry involved in the withdrawal reaction.

6.2.1 Motivation & aims of decoding EEG signals when perceiving three
TENS-induced sensory stimuli

This work reports a proof-of-principle of this approach to analyze and classify neural ac-

tivity when restoring sensory perception to amputees, which could chart a route ahead for

designing a real-time withdrawal reaction system in upper-limb prostheses.

6.3 Methods

6.3.1 Study design: Experimental paradigm

6.3.1.1 Patient recruitment and sensory stimulation

An amputee participant (29 years old) with a bilateral amputation for more than five-year

prior to the current experiments, due to tissue necrosis from septicemia, was recruited at

91



Johns Hopkins University in Baltimore to perform a series of an embodied prosthesis con-

trol as well as sensory feedback experiments. The participant has a transhumeral ampu-

tation of the left arm and a transradial amputation of the right arm. All sensory feedback

and prosthesis experiments were performed on the participant’s left arm. EEG data were

collected in one session over a period of two hours. For the sensory stimulation, we per-

formed sensory mapping of the amputee’s phantom hand through transcutaneous electrical

nerve stimulation (TENS) using a 1-mm beryllium copper (BeCu) probe connected to an

isolated current stimulator (DS3, Digitimer Ltd., Hertfordshire, UK). An amplitude of 0.8 mA

and frequency of 2 to 4Hz were used while mapping the phantom hand. The amputee iden-

tified areas of phantom activation during sensory mapping and the stimulation sites were

noted using anatomical and ink markers. For the stimulation experiment, we used 5-mm

disposable Ag-Ag/Cl electrodes on the residual limb sites that mapped to the thumb/pointer,

pinky/ulnar, and wrist of the phantom hand [218]. The stimulation sites were the same as

those used in [117]. It should be noted that sensory mapping was only performed on the

left (transhumeral) residual limb because the amputee participant only wears a prosthesis

on his left (transhumeral) side and not his right (transradial) side.

6.3.1.2 Research governance

This study was carried out in accordance with the Declaration of Helsinki. All experiments

were approved by the Johns Hopkins Medicine Institutional Review Boards. The whole

experiment and data recording were performed at Johns Hopkins University (JHU). The

participant was asked to sign a written informed consent and he agreed to take part in

all our experiments. Additionally, the participant consented, by signing a written informed

document, to have images and recordings taken during the experiments used for online

open-access publication and presentations.

6.3.1.3 EEG data recording and experiment

Brain activity correlates of transcutaneous electrical nerve stimulations were investigated by

recording 64-channel EEG data from the amputee participant. Different locations on the

participant’s left residual limb were identified so that, when stimulated, they activate different

regions of the participant’s phantom hand. In this EEG experiment, the subject was seated

comfortably and was looking at a black cross on a white wall. EEG recordings during various

stimulations of the subject’s peripheral nerve sites corresponding to the thumb/pointer finger,

pinky/ulnar side of the hand, and the wrist of his phantom hand. We stimulated the subject’s

residual limb in regions that activated his phantom hand using transcutaneous electrical

92



nerve stimulation (TENS). The stimulation included three different conditions for the thum-

b/pointer and two conditions for the other sites. All values of stimulation were based on

previous mapping and psychophysics with this subject [117]. Condition 1 (INNO stimula-

tion): Pulse width (PW)= 1 ms, freq = 45 Hz – perceived as a light, almost pleasant touch

sensation. Condition 2 (MOD stimulation): PW = 5 ms, freq = 4 Hz – perceived as a slightly

more noticeable/intense touch but not uncomfortable. Condition 3 (NOX stimulation): PW =

20 ms, freq = 20 Hz – perceived as a slightly painful and uncomfortable touch sensation. All

values of stimulation were based on previous mapping and psychophysics with this subject

[117]. All three conditions (INNO, MOD, NOX) were applied to the thumb/pointer stimulation

site and the INNO and MOD conditions were applied to the pinky/ulnar and wrist stimulation

sites. Blocks of each stimulation condition were randomly presented as a five consecutive

stimulation pulse trains lasting for 2 s with a delay of 4 s ± 25% jitter between each stimu-

lation pulse train. Stimulation condition blocks were presented 4 times, yielding a total of 60

trials for the three conditions. A break up to 10 min was chosen between each block. Condi-

tion 3 (NOX) was only presented to the thumb/pointer stimulation site, whereas Conditions 1

and 2 (INNO and MOD) were presented to all stimulation locations (thumb/pointer, pinky/ul-

nar, and wrist). Condition 3 was only presented to the thumb/pointer location to reduce the

total time the subject experience noxious sensations. EEG data were collected using a 64

channel EEG device (Neuroscan system) with a 500 Hz sampling rate. The montage was in

accordance with the 5% 10/20 system. Electrode impedance was kept below 10 kOhm in at

least 95% of derivations throughout the experiment. The amplitude of the transcutaneous

electrical nerve stimulation was 1.6 mA for all sites of stimulation and the subject rated each

condition’s discomfort level using a comfort scale. To ensure that the subject is not substitut-

ing/anticipating the stimuli by sight, the EEG data was recorded without the subject wearing

the prosthesis. The pulse width and the frequency of the TENS stimulation were selected

based on extensive psychological experiments to quantify the perception of TENS as was

reported in [117, 218].

6.3.2 Data processing & analysis

EEG data were recorded at 500 Hz. The reference electrode was chosen on the vertex and

the ground electrode was located on the forehead. Data were processed with special de-

signed Jupyter notebooks in Python using both gumpy [46] and MNE [219, 220] toolboxes.

For data analysis, 60 trials in total for the three stimulation conditions were used. EEG sig-

nals were band-pass–filtered between 0.5 and 70 Hz using a fourth-order Butterworth filter

and notch filtered thereafter at 60 Hz [211, 190]. All signals were extracted from the record-
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ings in 1000 ms epochs, and to 100 ms time-window for further analysis. Epochs were

baseline-corrected to the pre-stimulus mean [151]. Muscle artifacts were rejected by the

Automatic Artifact Rejection (AAR) [221] as well as independent component analysis (ICA)

were used to remove eye movement artifacts [222]. Additionally, epochs containing high-

amplitude artifacts or high-frequency muscle noise (visually inspected) were rejected from

the analysis using a threshold-based method [146]. EEG data collected over several trials of

the same experiment were averaged together. All EEG scalp topographies were plotted us-

ing the MNE toolbox, by matching channel location with its value given the defined latency.

Topographies are color encoded, where the green or yellow present null values, blue color

presents negative values, and red encodes positive values; with the color intensity correlates

with the channel value. Chosen time latencies in the topographic maps were chosen based

on an algorithm [219] that computes and finds the highest peaks at each time point from all

electrodes. For feature extraction and classifying the three conditions from EEG, we imple-

mented and tested a wide range of classical machine learning approaches which are based

on hand-crafted features. Five different classifiers from the gumpy.classification module [46]

have been used and evaluated: K-Nearest Neighbor (KNN), Support vector machine (SVM),

Naive Bayes (NB), Linear Discrimination Analysis (LDA) and Quadratic Linear Discrimination

Analysis (QLDA). Two different feature extraction methods were used, namely the maximum

amplitude value computed from each channel for a fixed 100 ms time-window, yielding a to-

tal number of 64 features (number of electrodes) as well as common spatial patterns (CSP)

[62]. The CSP method yielded to slightly lower results (a mean accuracy of 85%) than the

maximum amplitude value and was therefore discarded in our further analysis. Two differ-

ent post processing methods were investigated and tested. First, a principal component

analysis (PCA) with only two components was used for dimensionality reduction and the

two components were fed thereafter to the different classifiers resulting in the presented 2D

feature space (Figure 6.5). Second, we further investigated keeping all the extracted 64

features and we used a feature selection algorithm [35] to select the most discriminating

subset of features (channels) as was depicted in Figure 6.6. Data were divided into 80% for

training and 20% for testing. As the number of trials was small when splitting the data into

validation and test sets (solely four trials remained for each condition during the test phase),

a data augmentation technique [190] was performed yielding two new trials from each one

of the initial 60 trials, forming a total number of 120 trials. It should be mentioned that the

120 trials (after data augmentation) were only used when preforming the PCA, splitting the

data, and computing the test accuracy. Overall, a 10-fold cross validation was performed on

training data to validate the model (validation accuracy) and the remaining 20% were using

for the test phase. It should be noted for all analyses, balanced accuracy (bACC) was cho-
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sen as an evaluation metric for the trained models. bACC is calculated as the average of the

proportion corrects of each class individually, where the same number of examples in each

class was used. Overall, we wish to mention that the first feature extraction method (max

amplitude value) combined with PCA using SVM clearly outperformed the other investigated

methods, yielding a validation accuracy of more than 95% and a test accuracy of more than

94%. It is worth noting that a grid search was performed to select the best hyper parameters

of the SVM classifier for a given 10-fold cross validation.

6.3.2.1 GFP computation

The Global Field Power (GFP) is the standard deviation of the potentials at all EEG channels

of an average given reference map [223]. The GFP formula is shown below in equation 6.1:

GFP =

√∑N
i=0(µi − µ2)
N

(6.1)

where µi is the voltage of the map µ for a given electrode i, µ is the mean voltage of all EEG

electrodes of the map u and N is the number of electrodes of the map µ. High GFP wis

explained by peak EEG activities as well as steep gradients. Overall, as illustrated in Figure

6.2, NOX stimulation shows higher global field power (GFP) compared to the MOD and the

INNO stimulation. The GFP shows here the amount of activity at each time point in the field

considering the data from all the 64 recording electrodes simultaneously [224].

6.3.2.2 Source localization

MNE toolbox [219] combined with gumpy [46] Python toolbox were used for EEG process-

ing and for source localization. First, cortical surface reconstruction using FreeSurfer [225].

Second, the forward solution and the forward model were computed using the boundary-

element model (BEM) [66]. Thereafter, the regularized noise-covariance matrix, which gives

information about potential patterns describing uninteresting noise source, was computed

and estimated. Afterward, we computed the singular value decomposition (SVD) of the ma-

trix composed of both estimated noise-covariance and the source covariance matrix. Finally,

dynamic statistical parametric maps (dSPM) [226] was computed and used for source local-

ization and reconstruction. For dSPM, an anatomical linear estimation approach is applied.

This assumes the sources are distributed in the cerebral cortex [227]. A linear collocation

single-layer boundary-element method (BEM) [228] is used to compute the forward solu-

tion which models the generated signal pattern at each location of the cortical surface. A

noise-normalized minimum norm estimate is estimated at each cortical location resulting
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Figure 6.2: EEG activity for all 64 electrodes combined with the global field power (GPF) shown for
the three different stimulation conditions. NOX stimulation shows higher GFP than the
other two conditions and high activity in the somatosensory electrodes (CZ, C4, and C6).
MOD shows higher GFP than the INNO and higher activity in the parietal lobe electrodes
(P2, P4, and P6). Low GFP is shown during the INNO stimulation. The electrodes are
color-coded as shown in the 10/20 system in the figure (up-left).

in an F-distributed estimation of the cortical current. Overall, dSPM identifies the locations

of statistically increased current-dipolar strength relative to the noise level. The sLORETA

method for source localization was also implemented for benchmarking purposes.

6.3.2.3 Data analysis and statistics

All relevant information about the obtained results is presented alongside their correspond-

ing figures. For all statistical analyses, we first checked the normality as well as the indepen-

dence of the data before applying the adequate statistical test. The normality of the data (the

three conditions with the background activity) was checked using one-sample Kolmogorov-

Smirnov test, which is a strict normality test, and as was suggested in the study by Strauss

et.al [229]. Thereafter, the independence was checked using the Mann-Whitney U Test was
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used (used when data is not normally distributed) and we found that the conditions are sta-

tistically independent (p < 0.0001). As the data was not normally distributed, we applied

a Kruskal-Wallis test instead of ANOVA [229]. The Kruskal-Wallis test was combined with

the post-hoc test for multiple group comparison. For all the obtained results, we considered

p < 0.05 statistically significant to reject the null hypothesis. The software for the statistical

analysis was implemented in python using the scipy and stats libraries.

6.4 Main results of EEG processing and decoding

6.4.1 All stimulation conditions activate the parietal lobe and noxious
stimulation activates the central motor cortex

Sensory feedback of the three conditions (NOX, MOD, and INNO) tactile stimuli was deliv-

ered to the phantom hand using TENS on the transhumeral amputee’s residual limb. Three

different stimulation sites were used on the residual limb, which activated the thumb/index,

wrist, and pinky of the phantom hand. The NOX stimulation was reported by the subject as

uncomfortable but tolerable [117], the MOD stimulation was reported as slightly more no-

ticeable/intense compared to the INNO stimulation. EEG was used to quantify brain activity

during each stimulation and to identify the activated brain regions as well as the physiological

principles underlying the perception of pain in amputees. For that, brain activity topography

and time course were performed by analyzing all electrodes’ activities in the first second

post-stimulus period. Our analysis shows that all stimulation conditions elicit early activa-

tion of the parietal lobe (around 54 ms) which persists over time for all types of sensation.

Interestingly, the MOD stimulation elicits higher activation of the parietal lobe compared to

the INNO and the NOX stimulations. In contrast to both INNO and MOD stimulations, only

the NOX stimulation activates the central cortex. Based on our findings, we postulate that

the NOX stimulation started in the parietal (54 ms) and centro-parietal lobe, rapidly activated

the perceptual mechanism in the subject’s brain but moved thereafter towards the pre-motor

and central cortex, which could, therefore, explain that the NOX stimulation activated the

pain perception and reaction mechanism in the brain and the amputee had the intention to

move away his residual limb during the stimulation. Results of brain activity topography for

the three types of stimuli are illustrated in Figure 6.3. As shown in Figure 6.3, deactivations

of the ipsilateral centro-parietal and the frontal lobe were observed during the NOX and the

MOD stimulation, respectively, whereas a slight deactivation of the right temporal lobe was

observed during the INNO stimulation. Further, 6.3 shows that there is no activation of the

different brain regions when analyzing the pre-stimulus activation for the three different con-
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ditions, concluding that the participant was not anticipating any of the three stimuli prior to

the stimulation.
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Figure 6.3: EEG topographic maps for NOX, MOD and the INNO stimulation. A, B and C repre-
sent topographic scalp map of the EEG amplitude response for three classes of stimuli:
INNO, MOD and NOX stimulation, respectively, using the average of all trials for each
condition. All topographic maps were plotted for the first second post-stimulation time
window (average of across each condition’s trials). The get peak algorithm in the MNE
software [219] was used to compute and detect the amplitude of the maximum EEG re-
sponse (local maxima) for the noxious stimulation as well as the location (EEG channel)
and latency of the detected peak amplitude. Time courses of NOX stimulation identified
and found using the get peak algorithm were used thereafter for analysis and bench-
marking with the other two conditions. Early activation of the parietal lobe was found for
all conditions, followed by strong activation of the central cortex during the NOX stimu-
lation, strong continuous activation of the parietal region during the MOD stimulus and
almost no activity during the INNO stimulus. For all three conditions, no activation of the
different brain regions was found when analyzing the half-second pre-stimulus phase,
indicating that the subject was not anticipating the applied stimulus.

6.4.2 Spatio-temporal features for noxious-evoked activity

We then extended the aforementioned analysis by seeking to identify a spatio-temporal tem-

plate to distinguish between the three conditions and find the exact brain response time and

spatial location. For the NOX stimulation, the highest activation was found at the central

cortex in the post-stimulation time window from 450 to 750 ms when comparing it to the

INNO stimulation, and the EEG background activity [p < 0.0001, Kruskal-Wallis test was

98



combined with the post-hoc (using Tukey HSD test) for multiple group comparison. Number

of trials=60]. Additionally and as shown in Figure 6.4, the highest response in the amputee’s

brain activity during the noxious stimulation was localized at the vertex electrode in the mid-

dle of the scalp (Cz) [p < 0.001, when comparing to the other two conditions. Kruskal-Wallis

test was combined with the post-hoc (using Tukey HSD test) for multiple group comparison.

Number of trials=60] (relatively high activation was also detected in C4 and C6 electrodes).

In contrast with the NOX stimulation which shows high activation of the central cortex, the

MOD stimulation was found to be high at P2, P4, and P6 electrodes for the whole second of

analysis as depicted in Figure 6.4 [p < 0.05, Kruskal-Wallis test was combined with the post-

hoc (using Tukey HSD test) for multiple group comparison. Number of trials=60]. Although

an activation of the parietal lobe was also found during the INNO stimulation, it should be

noted that no special spatio-temporal biomarkers were observed. Based on our findings,

we postulate that the intense stimulation was perceivable by the subject, which led to high

and continuous activation of the parietal lobe in the brain [124] but the level of discomfort

was not high to activate the central and pre-motor cortex, which is responsible for motor

movements. Figure 6.4 illustrates activation of the parietal and centro-parietal cortex for the

different conditions. Similarly and as was shown in Figure 6.3, no pre-stimulus activation

was detected in the parietal lobe (P2, P4, and P6 electrodes) nor in the central cortex (Cz)

for the three different stimulation conditions.

6.4.3 Classification of the three different stimulation conditions

We further investigated EEG based spatio-temporal biomarkers for the classification of the

three different stimulation conditions. First, we studied how the classification accuracy

changes in each 100 ms post-stimulation time. As shown in Figure 6.5 (A), our findings

are in accordance with our aforementioned analysis results, and higher mean balanced ac-

curacy (bACC) was found in the time window between 450 and 750 ms, with the highest

bACC found between 650 and 750 ms post-stimulation [p < 0.005, Kruskal-Wallis test was

combined with the post-hoc (using Tukey HSD test) for multiple group comparison. Num-

ber of trials=60]. We wish to emphasize that a mean accuracy of more than 90% was also

observed in the time-window between 150-250 ms, which could be also further investigated

and used as a time marker to design a nociceptive pain reaction system, where a minimum

delay is usually required [230]. As the highest validation accuracy (validation bACC) was

found in the time-window 650-750 ms, we used that time window during the test phase to

classify the three different conditions and for further analysis. A mean bACC of 95% was ob-

tained in the validation phase and more than 94% was achieved in the test phase, whereas
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Figure 6.4: EEG activity for the parietal and central cortex electrodes. A, B, and C represent EEG
activity in Cz, P2, P4 and P6 during the pre-stimulus phase during the INNO, MOD,
and NOX stimulation, respectively. D, E and F represent EEG activity in four different
electrodes; Cz (middle cortex) and P2, P4 and P6 electrodes in the parietal lobe during
the INNO, MOD, and NOX stimulation, respectively. When comparing D to E, a parietal
enhancement (red color) and a central depression (blue color) are observable. When
comparing D, E to F, a central enhancement is observable (red color). G. 10-20 EEG
recording system where Cz, P2, P4, and P6 electrode’s positions in the 10-20 system
are highlighted in blue.
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the chance level for this task is 33.33%. For that, data were split into 80% and 20% where

stratified 10-fold cross-validation was performed on 80% of the data (validation phase) and

the saved model was used to predict correct labels on the remaining 20% of the trials in

the test phase. A principal component analysis (PCA) was performed on the recorded data,

which resulted in a clear separation between the three classes as shown in Figure 6.5 (B).

Figure 6.5 (C) presents the obtained results in the test phase. The confusion matrix shows

that both INNO and NOX stimulation were almost correctly classified, whereas the MOD

stimulation was sometimes either confused with the INNO or the NOX stimulation. Last, it is

important to highlight that when we kept all the features (without performing dimensionality

reduction using PCA), we observed that our feature selection algorithm selected Cz, C4,

C6, FT8 and CP6 as the best electrodes/features when distinguishing between the three

classes. Selected electrodes are shown in Figure 6.6 and are well aligned with our afore-

mentioned analysis, where we showed that central and the centro-parietal cortex electrodes

exhibited different activities depending on the stimulation condition, and hence of the utmost

importance when differentiating between the different types of stimulation. It is worth not-

ing that the computed features are simply the maximum amplitude value of each electrode,

which led to a feature matrix of 64 dimensions.

6.4.4 Stimulus-related activation within the medial wall of the cerebral cortex

To extend our findings, we sought to study brain activity at the source level in response to

NOX, MOD, and INNO stimulations, and gain more insights into how the noxious reaction

mechanism is achieved in the brain and what are the different brain regions involved in

this pain reaction circuitry. We identify activated brain sources, en route to developing a

complete real-time pain sensation detection system. We focus our analysis mainly on the

NOX stimulation, which triggers the reaction mechanism in the brain. Here, we investigate

if scalp EEG can detect and localize signals originating from different brain areas during

the three different conditions. Overall, our analysis confirms the evidence that scalp EEG

could be used to detect and correctly localize the source of the recorded signals [231].

For that, we reconstructed EEG source dynamics using distributed source modeling [232,

233] based on realistic head models [234] derived from individual MRI scans [231]. As

illustrated in Figure 6.7, we found using the reconstructed EEG sources that NOX sensation

elicits activation of the centro-parietal lobe, activation of the ACC, the somatosensory motor

cortex, and the PCC. Overall and as shown in Figure 6.7, the activation of the ACC presents

direct evidence that it plays a role in activating the attention circuitry in the brain as well

as an important role in external sensory stimuli perception [235, 236]. Moreover, our study
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Figure 6.5: Classification results of the three stimulation conditions. A. Validation accuracy in differ-
ent time-windows between 50 and 1000 ms after stimulation represented in a boxplot,
and showing that the highest validation accuracy was obtained in the time-window 650-
750 ms. The green triangle represents the mean accuracy value for each time window
whereas the black line represents the median value for the same time window. B. 2D
feature space after performing PCA, highlighting a clear separation between the three
conditions. PC1 and PC2 represent the first two components after performing PCA. C.
As the highest accuracy was obtained between 650-750 ms (shown in A), the confusion
matrix was computed in that time-window when classifying the three stimulation condi-
tions in the test phase.
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Figure 6.6: Validation results of the classification of the three stimulation conditions in each time-
window using five different classifiers (KNN, QLDA, NB, SVM, LDA:Linear Discriminant
Analysis) as well as the selected electrodes using the feature sequential algorithm. A.
Validation accuracy in different time-windows between 50 and 1000 ms after stimulation
using five different classifiers and represented with a polar bar plot. The polar bar plot
shows the accuracy range (mean ± standard deviation) achieved by the five models for
each time-window. The highest accuracy was obtained in the time-window [650-750]
and is highlighted in the figure in red. B. The 10/20 system used for EEG data recording.
A feature selection algorithm selected five different features (Cz, C4, C6, CP6, and FT8
electrodes) when classifying the three different conditions. Their positions in the brain,
according to the 10/20 system, are highlighted in B.

reveals that the NOX stimulation activates the PCC, which seems to be in accordance with

a similar study using another sensory feedback modality [43]. As shown in Figure 1 in the

supplementary materials, the source localisation results for the MOD and INNO conditions

show also activation of the parietal lobe at around 54 ms, which is aligned with topographic

maps illustrated in Figure 6.3.

6.4.4.1 Standardized LORETA (sLORETA) benchmarking method

To benchmark our results, the standardized low-resolution brain electromagnetic tomog-

raphy (sLORETA) [67] was investigated. The Standardized low-resolution brain electro-

magnetic tomography (sLORETA) [67] computes the EEG distribution across the full brain

volume. The sLORETA method provides a smooth and good deep sources localization.
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Figure 6.7: EEG analysis at the source level for the noxious evoked activity in the first 200 ms. The
dynamic statistical parametric maps (dSPM) [226] is used to compute the reconstructed
sources. The used scale represents the EEG amplitude activity in uV. A. High EEG
activity in the centro-parietal lobe after 54 ms of stimulation. B. High EEG activity in the
central cortex after 92 ms. C. Activation of the PCC after 120 ms. D. Activation of the
ACC and the parietal lobe after 164 ms.

sLORETA provides a unique solution to the inverse problem using a defined cost function

[68] F as follows:

F = ‖φ−KJ − c1‖2 + α‖J‖ (6.2)

where φ defines the electrical potential recorded from the 64-electrode scalp EEG signal,

K defines the lead field matrix, J represents the measured current density, α defines the

positive regularization parameter, c1 is constant, and ‖.‖ is the Euclidean norm. For bench-

marking purposes, the sLORETA was also implemented and used for EEG source localisa-

tion. As illustrated in Figure 6.8 and was previously reported in [237], results obtained by

the sLORETA method are similar and match the obtained results by the dSPM method with

a slightly lower values. 1

6.5 Discussion on the identified spatio-temporal features and

classification results

Here, a spatio-temporal template of brain activity during three different phantom limb stim-

ulation conditions (INNO, MOD and NOX) has been identified and characterized in an am-

putee based on EEG signals. Unlike fMRI or intracranial signals, EEG allows continuous

1A demo video of this work is available: https://youtu.be/Su1HAKpK9J8
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Figure 6.8: EEG analysis at the source level for the different conditions in the first 200 ms using
sLORETA. The sLORETA method was computed and used for benchmarking with the
dSPM method. Results from both methods are similar with lower values were found for
sLORETA. The used scale represents the EEG amplitude activity in uV. A. High EEG
activity in the centro-parietal lobe after 54 ms of stimulation. B. High EEG activity in the
central cortex after 92 ms. C. Activation of the PCC after 120 ms. D. Activation of the
ACC and the parietal lobe after 164 ms. E. EEG activity in the centro-parietal lobe after
54 ms of stimulation. F. No high EEG activity was detected after 92 ms of stimulation. G.
No high EEG activity was detected after 120 ms of stimulation. H. No high EEG activity
was detected after 164 ms of stimulation. K. EEG activity in the centro-parietal lobe
after 54 ms of stimulation. L. No significant EEG activity was detected after 92 ms of
stimulation. M. No significant EEG activity was detected after 120 ms of stimulation. N.
No significant EEG activity was detected after 164 ms of stimulation.
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and real-time recording with a good compromise between level of invasiveness and tempo-

ral resolution [3], which could be therefore used when developing real-time systems based

on neural response to sensory stimulation. The findings in this study confirm and extend

previous findings in non-amputee related studies on the high activation of the somatosen-

sory and motor cortex during the NOX stimulation. Specifically, the highest activation was

detected in Cz electrode site and its neighboring electrodes C4, C6 and CP6. Additionally,

we also show early activation of the centro-parietal lobe for all the three conditions with

the highest activity observed when perceiving and processing the MOD stimulation. Fur-

ther, we identified a spatial template of noxious-evoked activity and we investigated different

activated regions at the source level using EEG signals. This has overall confirmed the im-

portant role of the ACC to trigger the attention mechanism in the brain [43, 238], as well

as the role of PCC for noxious stimulation processing [43]. Our study is extending upon

Osborn et al. study [117], where a pain reflex mechanism was implemented at the level of

the prosthesis. Our study suggests that such a withdrawal/pain reaction system could be

implemented by harnessing the neural response to painful stimuli. The withdrawal reaction

could be activated when the prosthesis touches sharp objects, and hence protect it from

being damaged. Along the same lines, this can help better monitor the user’s perception of

what is happening to create more natural prostheses and provide the amputee more intuitive

control over his prosthesis as well as increase the sense of embodiment and ownership.

6.5.1 Spatio-temporal template interpretation

Noxious-evoked activation generated high activity around Cz electrode between 450 ms-750

ms with the highest activity detected at Cz. We also investigate the relation between brain

responses and three types of sensations. Based on that, we could distinguish between the

three different conditions with more than 94% accuracy using an identified spatio-temporal

template based on a subset of electrodes and the temporal markers. Similarly, we studied

the temporal latency for each condition as well as the spatial distribution of the activity across

other electrode sites. Even though exact mechanisms responsible for the delay remain to be

investigated, we postulate that the early activation of the parietal lobe during all conditions

makes strong evidence on its role in early processing of relevant somatosensory stimuli

and its heavy connection with the ACC in painful and intense stimuli processing forming a

complete circuitry for somatosensory stimuli detection and perception. We also hypothesize

that only the NOX stimulation triggers the pain reaction mechanism in the brain, reflecting

one’s intention to escape the potential source of pain, which relies on the motor cortex.

However, the processing of the other two conditions remain at the parietal lobe level and
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did not activate any motor reaction. The important role of the ACC, PCC, and the pre-

motor cortex in noxious sensation perception in amputees was also investigated during the

noxious sensation. Thereafter, we observe activation of the motor cortex, the ACC, and the

PCC, which is thought to be along the descending pathway to the spinal cord. Overall, our

source localization results present new evidence on the similarity of the reflex system in

amputees and healthy subjects. Further, our study reveals a high correlation between the

stimulation condition and the activation magnitude of the ACC, which is aligned with previous

studies for other purposes. Interestingly, all conditions activated the anterior portion of the

ACC, which is known to be engaged in different attention networks in the brain as well

as sensory stimuli processing. Further, high activation of the PCC was observed during

the NOX stimulation. Overall, it has previously been shown that the PCC is part of motor

responses with a wide interaction with the parietal lobe. In fact, PCC is adjacent to the

supplementary motor cortex (SMA), which could explain why SMA activation was only shown

during the noxious stimulation.

6.6 Summary

In this study, we were able to use EEG recordings to quantify brain activity during innocu-

ous, moderately more intense, and noxious stimulation of an amputee’s phantom limb using

TENS. Based on the extracted spatio-temporal EEG features, a system for detecting pain

perception and reaction in the brain was developed. This system was able to successfully

classify the three different stimulation conditions with a test accuracy of 94.66%. Along

the same lines, the cortical activity in response to sensory stimuli in these conditions was

investigated. To further validate our findings, investigation of brain activity using a differ-

ent sensory feedback modality and comparing similarities between able-bodied participants

and amputees was needed. This gave, therefore, rise to focus on this in our next follow-up

study.
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7 The development of distinct brain patterns
for five thermal stimuli perception reveals
an anticipatory brain activity

This chapter is made up of content from the manuscript Zied Tayeb, Andrei Dragomir,

Jin Ho Lee, Nida Itrat Abbasi, Emannual Dean, Aishwarya Bandla, Rohit Bose,

Raghav Sundar, Anastasios Bezerianos, Nitish V Thakor, Gordon Cheng , “The de-

velopment of distinct brain patterns for five thermal stimuli perception reveals an an-

ticipatory brain activity” which is now under preparation for submission to the Nature

Communications Journal.

Author Contributions: Zied Tayeb designed the research, developed the software

for EEG data analysis and wrote the paper. Zied Tayeb, Nida Abbasi, Aishwarya

Bandla collected the data and designed the experimental paradigm. Rohit Bose, and

Andrei Dragomir contributed in the data analysis interpretation. Emmanuel Dean, Jin

Ho Lee, and Zied Tayeb developed and performed the robotic experiment. Raghav

Sundar, Anastasios Bezerianos, Nitish V Thakor. and Gordon Cheng supervised all

experiments, data analysis, and interpretation of the results. All authors contributed

in writing the paper.

7.1 Study overview

Understanding brain perception of different thermal sensations has sparked the interest of

many neuroscientists. The identification of distinct brain patterns when processing ther-

mal stimuli has different clinical applications, such as phantom-limb pain prediction, as well

as increasing the sense of embodiment when interacting with neurorehabilitation devices.

Notwithstanding the remarkable number of studies that have touched upon this research

topic, understanding how the human brain processes different thermal stimuli has remained

elusive. More importantly, thermal stimuli perception dynamics, their related cortical acti-
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vations, as well as their decoding using effective features are still not fully understood. In

this study, using electroencephalography (EEG) recorded from three healthy human sub-

jects, we identified spatial, temporal, and spectral patterns of brain responses to different

thermal stimulations ranging from extremely cold and hot stimuli (very intense/unpleasant),

moderately cold and hot stimuli (intense), to a warm stimulus (innocuous). The classifica-

tion of these five stimuli into three categories was determined using the average of the three

subjects’ perception and rating of each one of them. Our results show that very intense

thermal stimuli elicit a decrease in alpha power compared to intense and innocuous stimu-

lations. Spatio-temporal analysis reveals that in the first 400 ms post-stimulus, brain activity

increases in the prefrontal and central brain areas for the very intense stimulations, whereas

for intense stimulation, high activity of the parietal area was observed post-500 ms. Based

on these EEG patterns, we developed a system for detecting thermal sensations percep-

tion in the brain, which successfully classified the different thermal stimuli with an average

test accuracy of 87% across all subjects. En route to understanding the underlying cortical

activity, we source localized the EEG signal for each of the five thermal stimuli conditions.

Our findings reveal that (very cold and very hot) stimuli were anticipated and induced early

(before 400 ms) activation of the anterior cingulate cortex (ACC). Moreover, activation of the

pre-frontal cortex, somatosensory, central, and parietal areas, was observed in the first 400

ms post-stimulation for very intense thermal conditions and starting 500 ms post-stimuli for

intense conditions. Overall, despite the small sample size, this work presents a novel ap-

proach to explore, analyze, and classify EEG-brain activity changes evoked by five different

thermal stimuli, which could lead to a better understanding of thermal stimuli processing in

the brain.

7.2 Introduction

7.2.1 Related work on nociceptive stimuli perception

The quantification of human pain using neuroimaging techniques has been widely studied

and investigated [118, 119]. Despite the number of studies in this context [239], under-

standing nociceptive processing in the human brain is still very challenging [240, 122]. This

is due to the complex mechanisms involved in processing noxious stimuli. Similarly, human

nociceptive thermal stimuli perception and processing are likely to be harbored in different

regions in the brain [241]. En route to analyzing and unraveling the underlying processes

within the human body that can lead to the unpleasant stimulus perception, understand-

ing nociceptive thermal sensation in particular has recently gained momentum [242, 243].
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Neuroscientists have been relying on various neuroimaging techniques, including functional

magnetic resonance imaging (fMRI) [43], Positron emission tomography (PET) [125], and

invasive recordings [126], to investigate exogenous pain processing. Kwan et al. [43] in-

vestigated in their study using fMRI the anterior cingulate cortex’s (ACC) role in sensory,

motor and cognitive functions when perceiving four thermal stimuli categorized into innocu-

ous (cool, warm) and noxious conditions (cold, hot). However, the correlation between EEG

evoked changes and different nociceptive thermal stimuli have been minimally studied [244].

Overall, EEG offers a better temporal resolution and has not been extensively studied in this

context. In a tonic pain stimulation [127], authors analyzed EEG power spectra changes and

reported an increase in alpha [8 - 12 Hz] and beta [13 - 25 Hz] power [127]. Along the same

lines, authors in [123] investigated the different early temporal event-related waves, as well

as frequency responses in the Gamma band [25 - 140 Hz]. Interestingly, they [127] reported

a difference between painful and non-painful stimulations, which was detected in both pari-

etal and frontal areas. Thus, this could be explained by motor withdrawal responses. In

the same study [127], an EEG frequency analysis was performed and event-related desyn-

chronization (ERD) of alpha was detected when performing hand immersion into cool and

extremely cold water. This initial decrease of alpha band was followed by an increase in

bilateral frontal and posterior regions. Similarly, in Chen et al. [245], a pronounced de-

crease of alpha magnitude in the central areas was detected in EEG recordings during an

experimental ice-cube cold pressor test. In a different study, Hu et al. [246] studied the

relationship between EEG brain responses and Aδ- and C-fibre skin nociceptors. By inves-

tigating Aδ- and C-fiber laser evoked potentials, authors could provide quantitative analysis

about latency responses of these fibers and the underlying perception-response functions

depending on the stimulus as well as the exact stimulated area. In this study, we fill the

gap by identifying spatial, spectral, and temporal brain patterns that can be used to distin-

guish a wider spectrum of thermal stimulations (five thermal stimuli) ranging from very cold

to very hot stimuli. Additionally, we developed an offline system for classifying the different

conditions from recorded EEG responses.

7.2.2 Motivation & aims of this study

Unlike previous studies, EEG is also used to quantify brain changes for each of the five

thermal stimulations. For that, brain activity is investigated at the source level, reporting new

findings of the main autonomic functions of ACC and frontal areas in thermal stimuli pro-

cessing, the brain anticipatory activity of such stimuli, and their connections to internal fear

emotion induced by unpleasant stimuli, as well as motor withdrawal preparation. Despite
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the limited number of subjects, this work is the first study to provide such an analysis and

take benefit of the EEG’s temporal resolution to investigate brain responses to a wide range

of thermal stimuli, as well as to accurately (87%) classify them based on the identified brain

patterns. The far-reaching goal of this study is to use these patterns to develop a real-time

withdrawal reaction system when interacting with neurorehabilitation devices. An overview

of the proposed system and the motivation behind it is illustrated in Figure 7.1.
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Figure 7.1: Nociceptive sensory processing system overview and analysis pipeline.

7.3 Methods

7.3.1 Subject recruitment and sensory stimulation

EEG data were recorded from three healthy volunteers (males) aged 29.66± 10.27mean± SD.

All five thermal stimuli, including nociceptive cold and heat stimuli, were delivered using cus-

tomized thermal stimulators. Participants were asked to score the sensation intensity on a

well-validated thermal sensation scale- the visual analog scale [247] ranging from 0 to 9 (9

being least tolerable). The average thermal sensation scoring across all subjects for the five

thermal stimuli is depicted in Figure 7.2 (b). All participants were right-handed, and hence

all sensory stimulations were performed on their right arms. Temperature range for each

stimulation condition is as follows: [10 ∼ 14.99], [16 ∼ 24.99], [25 ∼ 33], [35 ∼ 40], [40.99 ∼
44.99]°C, for very cold, cold, warm, hot, and very hot, respectively, as illustrated in Figure

7.2 (d).
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7.3.2 Research governance

This study was carried out in accordance with the Declaration of Helsinki. All experimental

protocols were approved by the Institutional Review Board of the National Health Group,

Singapore. All subjects were informed orally and in writing about the aims of the study, and

written consent for participation was sought and documented.

7.3.3 EEG data recording and experiment

The study of brain activity evoked changes by five thermal stimuli was investigated using

64-channel EEG recorded data. To make sure that the subject was not substituting/antici-

pating the stimuli by sight, all subjects were blindfolded during the recordings. All recording

sessions took place at the lab and were set up as shown in Figure 7.2 (a). For each subject,

two recording sessions were performed on two different days when each of the two NOX

stimuli (very cold and very hot) were delivered on a separate day. Each session consisted

of 30 runs yielding a total number of 30 trials. Each trial consisted of three stages: base-

line, stimulation, and recovery. It had a total duration of 40 seconds (10 seconds baseline

and 30 seconds stimulation) where subjects were exposed to one of the five thermal stim-

ulations separated by 2-min recovery breaks. Before each run, the surface temperature

of the subject’s hand, as well as the thermal stimulator, were measured using an infrared

thermometer. A Python script was used to display an automated visual cue informing the

experimenter which thermal stimulus must be delivered. Each time, cues were pseudoran-

domized and were chosen from a discrete uniform distribution. An auditory warning beep

preceded the cue display and was delivered five seconds before the commencement of the

trial. Participants were asked to score the stimulus intensity during the recovery break at

a scale from 0 to 9, as shown in Figure 7.2 (c). During the experiment, participants were

seated in a comfortable chair in a silent, temperature-controlled room and were instructed

to not execute any movements. EEG data were collected using a 64 channel EEG device

(Neuroscan system) with a 512 Hz sampling rate. The montage was in accordance with the

5% 10/20 system. Electrode impedance was kept below 10 kΩ in at least 95% of derivations

throughout the experiment. The experimental paradigm is made publicly available with the

gumpy software toolbox [46]. An animation video demonstrating the whole experiment and

the main results in available in the appendix.
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Figure 7.2: (a): An example of a recording session of EEG during the thermal stimulation task. (b):
A violin-plot presenting the average thermal sensation scoring of the five thermal stimuli
across all the three subjects. (c): Experimental recording session starting with stimulus
and concluded by a thermal sensation rating task during the recovery inter-trial break
period. (d): A bar plot describing the mean and the standard deviation of the used
temperature interval for each of the five thermal stimuli.

7.3.4 EEG signal processing and classification

The reference electrode was chosen on the vertex and the ground electrode was located

on the forehead. Data were processed with custom designed Jupyter notebooks in Python

using both gumpy [46] and MNE [219, 220] toolboxes. For data analysis, 50 trials in total

for the five stimulation conditions were used. EEG signals were band-pass–filtered between

0.5 and 70 Hz using a fourth-order Butterworth filter and notch filtered thereafter at 50 Hz.

All signals were extracted from the recordings in 3000 ms epochs and used for further anal-

ysis. Epochs were baseline-corrected to the pre-stimulus mean [151]. Muscle artifacts were

rejected by the Automatic Artifact Rejection (AAR) [221], as well as independent compo-

nent analysis (ICA), was used to remove eye movement artifacts [222]. Additionally, epochs

containing high-amplitude artifacts or high-frequency muscle noise (visually inspected) were
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rejected from the analysis using a threshold-based method [146]. EEG data collected over

several trials of the same experiment were averaged together. All EEG scalp topographies

were plotted using the MNE toolbox, by matching channel location with its value given the

defined latency. Topographies are color encoded, where the green or yellow present null

values, blue color presents negative values, and red encodes positive values; with the color

intensity correlating with the channel value. Chosen time latencies in the topographic maps

were based on an algorithm [219] that computes and finds the highest peaks at each time

point from all electrodes. For feature extraction and classifying the five conditions clustered

in different binary groups from EEG, we implemented and tested a wide range of classical

machine-learning approaches that are based on hand-crafted features. The common spatial

patterns (CSP) [62] was used as a feature extraction method. Linear Discrimination Analysis

(LDA) was selected to classify the extracted features from EEG data. A principal component

analysis (PCA) with only two components was used for dimensionality reduction, and the

two components were fed thereafter to the different classifiers resulting in the presented 2D

feature space (Figure 7.6). During the test phase, data were divided into 80% for training

and 20% for testing. As the total number of 50 trials was small when splitting the data into

validation and test sets (solely few trials remained for each condition during the test phase),

a data augmentation was performed [190]. This yielded 10 separate trials from each one

of the initial 50 trials (by using the whole 30 seconds and splitting them into a 3-sec trial

length), thus forming a total number of 500 trials. It should be mentioned that the 500 tri-

als (after data augmentation) were only used when performing the PCA, splitting the data,

computing the test accuracy, as well as when doing the spectra analysis. Overall, 10-fold

cross-validation was performed on training data to validate the model (validation accuracy)

and the remaining 20% were using for the test phase. It should be noted for all analyses, bal-

anced accuracy (bACC) was chosen as an evaluation metric for the trained models. bACC

is calculated as the average of the proportion corrects of each class individually, where the

same number of examples in each class was used.

7.3.5 GFP computation

The computed Global Field Power (GFP) shown in Figure 7.4 is the standard deviation of the

potentials at all EEG channels of an average given reference map [223]. The GFP formula

is shown below in equation 7.1:

GFP =

√∑N
i=0(µi − µ2)
N

(7.1)
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where µi is the voltage of the map µ for a given electrode i, µ is the mean voltage of all

EEG electrodes of the map u and N is the number of electrodes of the map µ. High GFP

wis explained by peak EEG activities as well as steep gradients. In Figure 7.4, GFP shows

the amount of activity at each time point in the field considering the data from all the 64

recording electrodes simultaneously [224].

7.3.6 Source localization

MNE toolbox [219] combined with gumpy [46] Python toolbox were used for EEG process-

ing and for source localization. First, cortical surface reconstruction using FreeSurfer [225].

Second, the forward solution and the forward model were computed using the boundary-

element model (BEM) [66]. Thereafter, the regularized noise-covariance matrix, which gives

information about potential patterns describing uninteresting noise source, was computed

and estimated. Afterward, we computed the singular value decomposition (SVD) of the ma-

trix composed of both estimated noise-covariance and the source covariance matrix. Finally,

dynamic statistical parametric maps (dSPM) [226] was computed and used for source local-

ization and reconstruction. For dSPM, an anatomical linear estimation approach is applied.

This assumes the sources are distributed in the cerebral cortex [227]. A linear collocation

single-layer boundary-element method (BEM) [228] is used to compute the forward solu-

tion which models the generated signal pattern at each location of the cortical surface. A

noise-normalized minimum norm estimate is estimated at each cortical location resulting in

an F-distributed estimation of the cortical current. Overall, dSPM identifies the locations of

statistically increased current-dipolar strength relative to the noise level.

7.3.7 Data analysis and statistics

All relevant information related to the obtained results is presented alongside their corre-

sponding figures. For all statistical analyses, a normality check was first performed as well

as data independence before choosing the adequate statistical test. The data normality

(for the five thermal stimulation conditions) was checked using one-sample Kolmogorov-

Smirnov test, which is a strict normality test, and as was suggested in the study by Strauss

et.al [229]. Afterwards, the independence was checked using the Mann-Whitney U Test

was used (frequently used when data is not normally distributed) and we found that the

conditions are statistically independent (p < 0.001). As two conditions were not normally

distributed, we applied a Kruskal-Wallis test instead of ANOVA [229]. The Kruskal-Wallis test

was combined with the post-hoc test for multiple group (pairwise) comparison. The software

for the statistical analysis was implemented in python using the scipy and stats libraries.
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The Kruskal-Wallis H statistic was assumed to have a chi square distribution. No Tukey-

Kramer correction for multi-group comparison was applied. For all the obtained results, we

considered p < 0.05 statistically significant to reject the null hypothesis.

7.4 Main results of EEG analysis for the five thermal stimuli

7.4.1 Thermal stimuli elicit a decrease in EEG alpha power

Five thermal stimuli (very cold, cold, very hot, hot, and warm) were delivered to three healthy

subjects’ right hands using a customized thermal stimulator. Based on the collected behav-

ioral data, these five conditions were clustered into three categories: very intense conditions

denoted by NOX (very cold and very hot stimuli), moderately intense conditions denoted by

MOD (cold and hot stimuli), and innocuous stimulus denoted by INNO (warm stimulus).

Throughout the experiment, a thermal sensation scale was used. The NOX stimulations

were reported by all the three participants as uncomfortable, the MOD stimulations were

reported as slightly less noticeable/intense compared to the NOX stimulation, and the INNO

was reported as pleasant. The mean ± SD subjective responsivity of very cold, very hot,

cold, hot, and warm was 6.6 ± 0.48 , 5.9 ± 0.83, 4.5 ± 0.5, 3.9 ± 0.3, 2.6 ± 0.48, respec-

tively, on a thermal sensation scale from 0 to 9, with 9 being an intolerable thermal sen-

sation. EEG signal was used to quantify brain activity during each thermal stimulation and

to understand oscillatory neural responses en route to identifying specific brain patterns of

nociceptive thermal stimuli processing in the brain. For that, averaged EEG alpha power

(8-12 Hz) across all trials was analyzed. Our results reveal a suppression of alpha oscilla-

tory activities characterized by a decrease in the alpha frequency band power [p < 0.001,

Kruskal-Wallis test was combined with the post-hoc (Tukey HSD tests)]. It should be noted

that this power decrease is detected ipsilaterally and contralaterally but is dominantly ob-

served at contralateral-central electrodes (as presented in Figure 7.3). Our analysis reveals

negative correlations between alpha power and the stimulation condition’s discomfort level

at contralateral-central electrodes (left side of the brain) (p < 0.05). Thus, the more intense

the condition is, the higher and more visible the decrease is (as shown in Figure 7.3).

7.4.2 Spatial-temporal patterns for thermal stimuli brain processing

The aforementioned alpha power topography analysis was extended by aiming to identify

distinct brain patterns distinguishing between the five thermal stimuli and investigate spatial

and temporal brain responses for each stimulation condition. For both NOX stimulations, we

find out, as shown in Figure 7.4 ((d) and (e)) that the highest brain activation is detected at
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Figure 7.3: EEG alpha power topographic maps. (a), (b), (c), (d), (e), and (f) represent topographic
scalp maps of the EEG alpha power for pre-stimulus, INNO (warm), MOD (hot and cold),
and NOX (very hot and very cold) stimuli, respectively, using the average of all trials for
each condition and across all three subjects. Suppression of alpha oscillatory activities
was found in MOD and NOX conditions ((c), (d), (e), (f)), whereas no decrease in alpha
power was detected for the pre-stimulus and INNO conditions ((a), (b)). The discom-
fort level represents the average of all subjects’ rating of each condition on a thermal
sensation scale from 0 to 9 is also presented.

the pre-fontal cortex, contralateral somatosensory area, and the central cortex compared to

the other three thermal stimulations. For MOD conditions (cold and hot stimuli), the highest

brain response is observed in the parietal area, mainly on the right parietal electrodes, with

a central and frontal deactivation compared to NOX conditions (Figure 7.4) ((b) and (c))

[p < 0.001, Kruskal-Wallis test was combined with the post-hoc (using Tukey HSD test) for

multiple group comparison]. No significant activation is detected for the warm condition,

which was reported as a pleasant sensation. Additionally, as depicted in Figure 7.5 ((d)

and (e)), the highest activation for NOX conditions is localized at the vertex electrode in the

middle of the scalp (Cz) when comparing it to MOD and warm stimuli (Figure 7.5 ((a), (b)

and (c))) with relatively high activation also being detected in C3 and C5 electrodes. Thus,

a positive correlation between Cz activity and the condition’s discomfort level is observed

and the highest Cz activity is detected for the very cold stimulus. Our results reveal that the

highest activation for NOX conditions was detected in the first 450 ms (Figure 7.4 ((d) and

(e))) post stimulation, whereas the highest activation for the other two groups is observed

with a delay of 500 ms post stimulation as presented in Figure 7.4 ((b) and (c))). Based on

our findings, we postulate that the NOX stimulations lead to high and continuous activation

of the central lobe in the brain, which is responsible for motor movement planning.
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Figure 7.4: Spatial-temporal EEG features for all five thermal conditions. (a), (b), (c), (d), (e), and
(f) represent topographic scalp map of the EEG amplitude response for warm, hot, cold,
very hot, and very cold stimuli, respectively, using the average of all trials for each con-
dition and across all subjects. All topographic maps are plotted for the first three-second
post-stimulation time window (average of across each condition’s trials). The get peak
algorithm in the MNE software [219] is used to compute and detect the amplitude of the
maximum EEG response (local maxima) for the very intense stimulation as well as the
location (EEG channel) and latency of the detected peak amplitude. Time courses of
NOX stimulation identified and found using the get peak algorithm is used thereafter for
analysis and benchmarking with the other two conditions. The global field power (GPF)
is plotted for each stimulation condition.
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Figure 7.5: Cz activity for all five thermal conditions. (a), (b) (c), (d), and (e) represent EEG activity
in Cz for warm, hot, cold, very hot, and very cold stimulus, respectively.

7.4.3 Classification of the five different thermal stimulation conditions

After investigating spectral, and spatio-temporal patterns for the five different stimuli, we

sought to classify them. Unlike previous studies [248, 244] where the focus was on either on

classifying hot and cold stimuli or distinguishing between innocuous and intense stimuli, the

novelty of this study resides in the ability to distinguish between five different temperature

levels. We wish to mention that the focus of this study was not to do a multi-class classifica-

tion task but rather to distinguish between specific pairs of thermal stimuli which are difficult

to classify and have not been addressed before in the literature. In the present study, we

are able to achieve a mean balanced accuracy (bACC) of 86.89%± 3%, 78.16%± 6.66%,

84.53%± 3%, and 100%, when classifying very hot and hot, very cold and cold, warm and

cold, and very hot and very cold stimuli, respectively, yielding an average validation accuracy

of 87.4% within all classified conditions and across the three subjects. Classification results

are summarized in Figure 7.6. A mean bACC of 87% is obtained in the test phase within

all sub-classes and across all the three subjects. For that, data were split into 80% and

20% where stratified 10-fold cross-validation was performed on 80% of the data (validation

phase) and the saved model was used to predict correct labels on the remaining 20% of

the trials in the test phase. A principal component analysis (PCA) was performed on the ex-

tracted features, which resulted in a clear separation between the different classes as shown

in Figure 7.6. Figure 7.6 shows that very hot and very cold are easily classified, whereas

very cold and cold are hardly distinguishable. By analyzing each individual subject’s per-

formance, we observe a high variability between the three subjects. The third subject (S3)

clearly outperforms the others (Figure 7.6 (e)) with an average accuracy of 90.75% for all

the four classification tasks, whereas S2 and S1 reach an average validation accuracy of

89.675% and 81.275%, respectively.
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Figure 7.6: 2D feature space after performing PCA highlighting a clear separation between the dif-
ferent sub-classes. x1 and x2 represent the first two components after performing PCA.
(a), (b), (c), and (d) represent the feature space when classifying (very hot, very cold),
(very cold, cold), (cold, warm), and (very hot, hot), respectively. (e) shows the validation
accuracy for the three subjects (S1, S2, S3) and for the four classification tasks using a
polar bar plot. This circular plot shows the accuracy range mean± SD achieved by the
three different subjects. The three horizontal bars represent the min, median (black bar),
and max accuracy values.

7.4.4 Very intense stimuli induce high and early activation of the ACC

To extend our findings and analysis, we studied brain activity at the source level for the five

stimulation conditions, grouped into the three classes: NOX, MOD, and INNO. Localized

sources using EEG signals were used to gain insights into thermal stimulus processing in

the brain and what are the different activated regions involved in the perception of each of

the three groups. All five conditions were investigated as shown in Figure 7.7. For that

purpose, we reconstructed EEG source dynamics using distributed source modeling [232,

233] based on realistic head models [234, 231]. As illustrated in Figure 7.7, only NOX

conditions shows activation of the ACC. Interestingly, this activation does not persist over

time and was only detectable in the 100 ms post-stimulus. Particularly, very cold stimulus

elicits an early response of the ACC at 29 ms and is followed by stronger activation at 53 ms

post-stimulus, which diminishes over time. Similarly, as shown in Figure 7.7, the very hot

stimulus, which was rated less intense than very cold, elicits activation of the ACC at around

29 ms post-stimulus and solely persisted for the first 50 ms. For the remaining conditions,
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no ACC activity is detected and a parietal activity was clearly visible in the first 100ms

post stimulation. Although the latencies of activations are not compatible with conduction

velocities of nociceptive and thermal nerve fibers, we interpret this by an anticipatory brain

behavior, given that the subject knew in advance (with the sound beep displayed 5 seconds

prior to the actual stimulation) that he might be exposed to a thermal stimulus. Overall,

this positive correlation between the condition’s discomfort level and the ACC activation and

time response presents direct evidence of ACC’s role in activating the brain’s autonomic

functions and attention circuitry, as well as an important role in external sensory stimuli

perception [235, 236]. Overall, this is in accordance with previous studies using different

types of noxious stimuli. As the highest and earliest ACC activation is found for the most

NOX condition (very cold), the time snippets for it are used as a reference when analyzing

the other conditions.
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Figure 7.7: ACC-EEG activity analysis for the NOX stimuli (very cold and very hot), as well as for
INNO (warm) stimulus in the first 100 ms (medial view). The dynamic statistical para-
metric maps (dSPM) technique [226] is used to compute the reconstructed sources. The
used scale represents the EEG amplitude activity in uV. Continuous and high EEG ac-
tivity in the ACC starting 20 ms post-stimulus for NOX stimuli which is only detected for
the first 100ms. MOD and INNO conditions elicit an activation of the parietal lobe.
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7.4.5 EEG analysis when stimulating both hands

In a separate investigation, the three subjects were exposed to both very cold and very hot

stimuli at the same time. Very cold stimulus was delivered on the left hand, whereas very hot

was delivered on the right hand. The very cold stimulus was rated as more intense (scored

7 in average at a scale from 0 to 9) than the very hot stimulus (rated 4 in average using the

scoring scale). Interestingly, as illustrated in Figure 7.8 (a), the very cold showed higher con-

tralateral decrease in alpha power (right side) than the very hot (left side). Similarly, higher

frontal and central activity were detected for very cold (contralateral side to to the stimula-

tion) compared to very high hot. These results confirm the main findings of the study, where

a pronounced decrease of alpha power for both conditions but the most intense condition

dominated the less intense one. This decrease was interpreted by an ERD resulting from a

motor movement imagination. The high fronto-central activation for both NOX conditions is

in accordance with our main findings, revealing, therefore, the importance of the the regions

in very intense thermal stimulus perception and processing. Investigations of the brain re-

action when stimulating both hands with two different NOX stimuli should be considered in

future studies.
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Figure 7.8: Thermal sensation rating for very cold and very hot stimuli
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7.4.6 Very intense stimuli elicit high activation of the pre-frontal, frontal and
central cortex, somatosensory areas, as well as the parietal lobe

Next, we attempted to characterize changes in cortical activities during perception of five dif-

ferent thermal stimuli. For our extended source localization analysis, we solely focused on

the most NOX condition (very cold) en route to understanding the brain circuitry involved in

thermal sensation processing. Overall, we observe that brain activity associated with NOX

condition activates more brain regions when comparing it to MOD and INNO stimulations.

Our results reveal that NOX sensations elicit high activation of the pre-frontal, frontal and

central cortex, somatosensory areas, as well as the right parietal cortex. Similarly, we ob-

serve that, for NOX conditions, contralateral activity is higher than the ipsilateral one, which

is aligned with the literature [127]. These activated regions seem to form a complex inter-

connected circuitry for noxious stimulus perception and processing as was reported in the

literature [127]. Figure 7.9 (left) summarizes the main activated brain regions for NOX con-

ditions using EEG localized sources, whereas the right side of Figure 7.9 highlights the time

response of those activated regions. Overall, as shown in the figure, the most NOX stimulus

induces activation of the parietal areas, which is followed by an activation of both frontal (23

and 242 ms) and central area (76 and 292 ms). Despite the incompatibility with conduction

velocities of nociceptive and thermal nerve fibers, these early activations are explained by

an anticipatory brain component.

Somatosensory cortex

Frontal Cortex

Parietal Cortex

Central Cortex

Anterior Cingulate Cortex

Sensory PathwayThermal

0.010s 0.023s 0.076s 0.292s0.242s

Very Cold (NOX)

Figure 7.9: Main activated region for the very intense stimuli after performing EEG source localiza-
tion. ACC, central cortex, pre-frontal and parietal areas are the main activated brain
regions for NOX conditions (left). NOX condition localized sources with brain time re-
sponses in the first 300 ms window of post stimulation
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Figure 7.10: Source localization for the very cold condition in the time window [200 - 500] ms.

7.5 Discussion on thermal stimuli responses in the human brain

using EEG

In this study, temporal, spatial, and spectral EEG changes for five different thermal stimuli

were characterized using brain signals collected from three healthy subjects. The choice of

using EEG to quantify brain changes and to develop distinct patterns for different thermal

stimuli was motivated by its good compromise between the level of invasiveness and high

temporal resolution [3, 51, 18].

7.5.1 Neural patterns of thermal stimuli-evoked activity

As shown in Figure 7.9, EEG-alpha power was found to be negatively correlated with stim-

ulus intensities. Overall, a pronounced decrease of alpha power in the central areas was

identified for NOX conditions. Although this decrease was detected contralaterally and ip-

silaterally, it was higher on the contralateral side of the stimulation. We postulate that this

power difference is explained by an event-related desynchronization (ERD) [151, 190], which

is usually evoked by phasic endogenous or exogenous stimulation, frequently applied in vi-

sual, auditory, and movement experimental paradigms [249]. As this decrease was mainly

detected in central electrodes, overlapping with somatosensory regions, we hypothesize that

for NOX conditions, subjects had the intention to move their limbs away from the very in-

tense/unpleasant stimulus, which potentially resulted in a motor imagery movement [250, 3]

and led to a clear ERD pattern similar to the one widely used in brain-computer interfaces.

Overall, our results concur with most previous studies investigating the relationship between

EEG-alpha power and noxious stimuli [251, 127], as well as further extend upon these stud-

ies by analyzing five distinct thermal conditions. In [127] where only two conditions (painful

cold and cool water) were investigated, authors reported an initial decrease in alpha power

in the first minute post-stimulus, which was thereafter followed by an alpha power increase

in bilateral frontal and posterior electrodes. Similarly, they reported that cool (warm) stimu-

lation produced less alpha power change than the cold painful condition. Along the same
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lines, the pronounced decrease of Alpha amplitude in the central areas was also detected

in [245], where subjects participated in an ice-cube cold pressor experiment. It should be

noted, however, that in some previous studies painful stimulations were rather associated

with an increase in alpha activities [252]. This discrepancy between our results and some of

the previously reported ones is likely to be explained by the chosen stimulation type or sub-

ject’s age difference, as reported in the study [252], where transcutaneous electrical nerve

stimulation (TENS) was used to elicit painful sensations and was tested for both young

and elderly people. It is worth noting that no statistical significance was found when ana-

lyzing theta (4-7Hz), beta (13-30Hz) and gamma (25-140Hz) frequency bands, and hence

they were excluded from further analysis. As depicted in Figure 7.4, our results reveal that

that NOX conditions (very cold, very hot) generated high activity around Cz central elec-

trode compared to MOD (hot, cold), and INNO (warm) conditions. Additionally, as shown

in Figure 7.4, very intense thermal stimuli generated higher brain activity in the first 450

ms post-stimulus, whereas MOD and warm conditions showed higher brain activity starting

500 ms post-stimulus. We hypothesize that only the NOX conditions trigger the withdrawal

mechanism in the brain, reflecting the subjects’ intention to escape the potential source of

noxious sensation, which heavily involves central brain areas, and hence explains the higher

activation of Cz electrode for NOX stimuli compared to the other stimulation conditions. This

result is in accordance with previous studies where high activation Cz was also reported

when using different NOX stimuli with amputees [253] and infants [211].

7.5.2 Neuronal responses to varying thermal stimulus tolerability: Relation
with Aδ- skin nociceptors

Even though the interpretation of the exact mechanisms responsible for the detected latency

difference when responding to different tolerable and intolerable thermal sensations remains

unclear, we postulate that there seems to be a strong correlation with the Aδ- skin nocicep-

tors’ time responses. Noticeably, the brain time response for the very intense thermal stimuli

(as shown in Figure 7.4) matches the response time of Aδ, whereas time response for MOD

and INNO conditions match the one of C-fibres, as reported in this previous study [246].

Aδ-fibres, which are ’fast’ myelinated nociceptive nerve fibres that respond to noxious ther-

mal stimuli by carrying rapid nervous messages from the skin to the brain [254] and play

an important role in the ascending pain-control pathway [255], were shown in the study by

Hu. et.al [246] to have a strong brain response in the first 400 ms after noxious stimulation.

Thus, this could present evidence of their involvement in processing NOX conditions and

explain the observed latency when processing the two NOX stimuli.
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7.5.3 ACC’s strong and early activation reveals its role in thermal sensation
anticipation and focal attention

The role of ACC in thermal stimulus processing and its related cognitive functions has been

widely investigated in the literature [251, 256, 43]. Overall, its role is believed to be associ-

ated with pain perception, as well as prediction and avoidance of nociceptive stimuli, with a

particularly significant response when processing heat stimuli [257, 43, 258]. In the present

study, we observe strong and early activation of the ACC for the very intense thermal stimuli

in the first 100 ms post-stimulation (Figure 7.7). Noticeably, this activation does not seem

to persist after 100 ms. Unlike the very cold and very hot conditions, this early high ACC

activation was not detected when processing the other thermal conditions. Our results re-

veal the important role of the ACC in the central processing of noxious stimuli [259] and

during the experience of pain [125]. It is worth noting that during the experiment a warn-

ing beep was used before each trial (fixed time) so the subjects knew that the stimulation

would happen in a few seconds. Hence, this could explain the anticipatory pattern, as the

identified latencies of brain responses are not compatible with thermal/nociceptive fibers.

Additionally, recordings were performed in two different sessions, when the subjects were

exposed to one of the two NOX stimuli (either very hot of very cold), which was random-

ized with the MOD and INNO stimuli. As a result, we hypothesize that the subjects had

expectations preceding the stimuli and this triggered activation of certain brain regions even

before the stimulus occurrence, so-called “anticipation”. This seems to provide an expla-

nation to this early ACC activation (29 ms) shown in Figure 6.7, further demonstrating its

role in perceptual-anticipation of NOX stimuli, and presenting evidence that this stimulus

anticipation triggered the salience network [260]. This network pre-activates particular brain

regions [261] in which ACC is one of the central nodes. Our findings are also in accordance

with the literature, where other studies showed, using invasive neuroimaging techniques, an

ACC activation prior to the stimulus [261]. Interestingly, as our results reveal that this ACC

activation was generally associated with high fronto-central activity, As this activation per-

sists for the 100 ms post-stimulus and solely for NOX conditions, this highlights its role not

only in anticipation but also in the second phase of sensory processing and focal attention

to NOX stimuli. Hence, this clear ACC activity (at 53 and 88 ms) shown in Figure 6.7 could

be linked to the subjects’ inhibitory intention and withdrawal behavior when being exposed

to NOX conditions [262]. One intuitive reason why this activation was only present for NOX

conditions is that the other stimuli (cold, hot, warm) did not present any potential risk and

were not considered by the subjects as harmful or damaging stimuli. Additionally, as this

activation was only detected for NOX conditions, we postulate that this could be explained
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by an internal brain model that is anticipating these stimuli and only reacting to the most

intense ones. Overall, using a high-temporal resolution neuroimaging technique, our results

solidify and extend upon previous findings on the essential role of the ACC as an early warn-

ing system to alert humans about potential risks, and could further explain its involvement

in autonomic functions.

7.5.4 Interpretation of central role of prefrontal, parietal, central, and
somatosensory areas in thermal stimuli processing

In this study, we report strong brain activation of pre-frontal, frontal, somatosensory, and

central areas for NOX conditions [p < 0.0001], whereas high activation of the right parietal

cortex was found for MOD and INNO conditions [p < 0.001] as was illustrated in Figure 7.7

and 7.5. Overall, the involvement of these cortical areas in pain perception and process-

ing has been previously confirmed in different neurophysiological studies [127]. Particularly,

Pardo et al. [119] showed, using PET techniques, the specific role of the right posterior

parietal cortex in focal attention and processing of sensory input, regardless of whether it

is painful or not. It is also proven that the parietal area is part of a larger network of sen-

sory stimuli processing, which involves attentional allocation, orientation and preparedness

for withdrawal reactions. This could provide an explanation of the observed right poste-

rior parietal activity when processing MOD and INNO stimuli. Interestingly, this seems to

involve more regions when perceiving NOX sensory stimuli, mainly bilateral prefrontal, me-

dial frontal, pre-motor cortex and the ACC, forming, therefore, a complex attention circuitry

[119]. The activation of the frontal area reflects ”vigilance” [125], focal attention, and action

planning [44]. Similarly, it could be also linked to its connection to the basal ganglia which

has different roles in pain processing, including sensory discrimination, information gating,

and provide warning input to different motor areas [263, 264]. We postulate that this could

reveal the subjects’ intention to either move their arms when being exposed to pain (a motor

imagery function) or an internal suppression and inhibition of NOX sensations, given that

they were strictly instructed not to move during the recordings. As the frontal area is heav-

ily connected to the ACC, their observed simultaneous co-activation for NOX stimuli could

be further interpreted by a stimulus evoked attention which may lead to motor initiation or

suppression, and hence activate the pre-motor cortex.
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7.6 Summary

In this study, EEG recordings from three healthy human subjects were used to identify spa-

tial, temporal, and spectral patterns of brain activity during five different thermal stimulations

ranging from extremely cold and hot stimuli (very intense), moderately cold and hot stimuli

(intense), to a warm stimulus (innocuous). Our main findings reported a decrease in alpha

power and induced high activation of the prefrontal, somatosensory, and central brain areas

with the highest activation shown in the central area (Cz electrode) in the first 400 ms post-

stimulus, whereas intense stimuli (cold and hot) induce high activation of the parietal area

starting 500 ms post-stimulation. Localized sources were performed and revealed strong

and early activation of the ACC. Based on these extracted features, a system for classifying

the different thermal stimuli perception and reaction in the brain was validated. Overall, this

study proposed new approaches to quantify non-invasive brain activity changes evoked by

five different thermal stimuli.
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8 Conclusions and Outlook

Conclusions

The development of algorithms for reliable BCI systems can greatly enhance the bidirec-

tional control of upper-limb prostheses. Overall, such a development is a multidisciplinary

endeavor that involves various disciplines, such as robotics, software engineering, cognitive

science, neurophysiology, psychology, and it requires the utilization of different emerging

techniques and methods spanning from signal processing to advanced machine learning

techniques for interpreting changes in non-stationary biosignals. Previous studies in the lit-

erature have shown different limitations of existing BCI algorithms, particularly when used

in the context of sensory-enabled prostheses control. In this thesis, two main control ap-

proaches on both sides of the equation (efferent and afferent) were investigated. From a

feed-forward control standpoint, EEG brain activity was used alongside other biosignals to

decode in real-time participants’ intention to control reach-to-grasp robotic arms movements.

For the sensory substitution and the perceptual path, EEG was used to quantify brain ac-

tivity during electrotactile, and thermal stimulations, with a particular focus on very intense

stimuli perception and processing in the human brain.

Deep neural networks improve the real-time decoding of two motor imagery
movements from EEG signals for a robotic arm control

The first study presented in chapter 3 demonstrated the main benefit of using deep neu-

ral network to decode two classic motor imagery movements from EEG signals and use

them for a real-time control a robotic arm. In this study, one observation was that traditional

machine learning methods still rely on hand-crafted features [3, 51, 18], which are difficult

to extract and are task/subject-dependent. Our obtained results by changing and adapting

the internal architectures of three different deep learning models achieved better classifica-

tion performance compared to state-of-the art machine learning techniques. Our proposed

model (pCNN), which relies on extracted spectrograms from EEG time series data, was

evaluated and validated on our recorded data from 20 healthy subjects, as well as on the

Graz data set B from the BCI Competition 2009 [144]. This study was able to underpin
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the real-time capability of the proposed model by showing the successful real-time control

of two states (left, right) of a robotic arm. Although several models for BCI-based MI have

been proposed in the literature, the study presented in chapter 3 showed the reliable on-

line decoding of two motor imagery movements using the pCNN model. Overall, the pCNN

model achieved a mean accuracy of 84.24% (±14.69%) across 20 different subjects. An-

other result was the high stability of the pCNN model’s accuracy within trials and across

the 20 subjects, which was evaluated in both the training and the validation phases. The

model showed a high stability across test splits with a mean SD of less than 3.32%. This

was surprising, given the existence of overfitting potential due to the high number of param-

eters (170,734) used to train the model. Overall, this work was only a validation study of

different deep neural network architectures for real-time control of a robotic arm using two

decoded left and right motor imagery movements. Thus, some future considerations and

improvements still need to be further investigated to further assess the robustness of such

a system when used in daily life scenarios, as well as its scalability to decode more complex

movements (see Outlook below).

Combining multiple biosignals (EOG, EMG, EEG) allows the real-time
decoding of more complex reach-to-grasp movements when interacting with
robotic systems

The next follow-up study (Chapter 4) demonstrated the feasibility to decode from complex

movements by investigating the combination of different biosignals. For that, two different

approaches and experiments were performed and tested. For that, we validated a real-time

human-robot interface system based on the combination of EOG and EMG decoding to con-

trol, in real-time, reach-to-grasp movements, circumventing, therefore, the limitation of the

number of the possibly decoded movements from EEG presented in the first study (Chapter

3). 5 different reach movements were decoded from EOG to steer an industrial robotic arm

in real-time, with a mean validation and online accuracy of 93.62% and 91.66%, respectively.

EMG signals were decoded in parallel to perform the grasping movement using an attached

gripper with an online accuracy of 99.50%. This experiment was a demonstration of such

approach to decode more complex movements, compared to a single signal decoding. In

another investigation, both EEG and EMG signals were also successfully combined and

classified with a mean validation of 89.6%, when performing the same reach-to-grasp with

another industrial robotic arm with an attached 3D-prosthetic hand. The decoding of EEG

signals was performed using the pCNN model proposed in first study (chapter 3), whereas

the EMG decoding was performed using a classic machine learning model (SVM).
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Decoding of EEG signals when perceiving three distinct sensory stimuli
induced by TENS: An amputee case study

Beyond proposing and using different BCI algorithms to improve the feedforward control of

different robotic arm movements presented in chapter 3 and 4, EEG signals were used

to quantify the human brain perception of different sensory stimuli, ranging from gentle

touch (innocuous) to very intense sensations. One observation when investigating this

other side of the equation was that most of the previously presented studies either focused

on healthy subjects with a very limited number of encoded sensory stimuli or investigated

fMRI and invasive signals to analyse brain responses. The study presented in Chapter 6

demonstrated the ability to use non-invasive EEG data to analyze somatosensory evoked

responses recorded when receiving three different types of sensations profiles, ranging from

pleasant to uncomfortable sensation. These signals were encoding the level of sharpness of

different objects manipulated by an embodied prosthesis. The study presented spatial and

temporal features to identify, analyze, and accurately decode the three sensations, namely

innocuous (INNO), moderately intense (MOD) and noxious (NOX) stimulation of an am-

putee’s phantom hand delivered through TENS [117]. The main findings of the study show

that the NOX stimulation activates the pre-motor cortex with the highest activation detected

in the central cortex (Cz electrode) between 450 ms and 750 ms post-stimulation, whereas

the highest activation for the MOD stimulation was detected in the parietal lobe (P2, P4,

and P6 electrodes). Additionally, brain regions were source localized for NOX condition, and

an early strong activation of the anterior cingulate cortex (ACC) was found. Similarly, the

posterior cingulate cortex (PCC) was found to be strongly activated for the NOX condition.

By relying on these identified biomarkers, an offline system was developed to recognize the

three sensory stimuli perception in the brain, achieving a test accuracy of 94.66% when

distinguishing between them using the recorded EEG data. The scope of this study to com-

plement the work performed by Osborn et.al [117], where they relied on the internal reflex

system of the prosthesis to protect it from any damaging stimuli. Our motivation behind

using EEG data to develop this reflex system was to involve the amputee in the withdrawal

reaction, to increase their sense of embodiment and the sense of ownership, as well as to

reduce the latency thanks to the EEG high temporal resolution and hence the intuitiveness

of the control of these devices. Our source localization results, particularly the ACC re-

sponses, consolidate the previous findings about the attention and perceptual brain circuitry

involved in the withdrawal reaction. Despite being a single case study, highlighting therefore

some limitations of this work (See Outlook below), this study was among the very few to
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present a novel approach to analyze and classify neural activity when perceiving external

noxious sensations in an amputee’s phantom limb.

The development of distinct brain patterns for five thermal stimuli perception
reveals an anticipatory brain activity

In a follow-up study described in chapter 7, we presented effective spatial, temporal and

spectral patterns from EEG signals when analysing and decoding nociceptive thermal stim-

uli in three healthy subjects. This further investigation of noxious stimuli perception and

processing in the human brain was motivated by:

In the previous study (chapter 6), only TENS-based stimulation was analyzed and no other

sensory stimuli were studied. Second, the previous study was performed in an amputee with

en embodied prosthesis but did not include any healthy participants. For that, we tested a

new experimental paradigm to study thermal sensation perception dynamics, its related cor-

tical activations, as well as its decoding using effective features, which are still elusive. For

that, we identified spatial, temporal, and spectral signatures of brain response to several

distinct stimulation conditions ranging from extremely cold and hot stimuli, moderately cold

and hot stimuli, to a warm stimulus. We first show that very intense thermal stimuli elicit a

decrease in alpha power compared to moderately intense and innocuous stimulations. Sec-

ond, our spatio-temporal analysis indicates that an increase of brain activity in the prefrontal

and central brain areas for very intense stimulation was observed in the first 400 ms follow-

ing the noxious stimulation (very cold, very hot), whereas high activity of the parietal area

was observed post-500 ms following the intense stimulation (cold, hot), and no particular

activity was detected for the innocuous stimulus. Similar to the previous study, the same

strategy was followed by relying on those identified features to develop an offline system for

detecting thermal sensation perception in the brain. This system was able to classify the five

different thermal stimulation conditions with an average test accuracy of 87% across all the

three participants. Furthermore, we analyzed brain data at the source level or each of the

five thermal stimuli conditions, reporting an anticipatory component in the ACC (before 400

ms) following the noxious stimulation. Additionally, an activation of the pre-frontal cortex, so-

matosensory, central, and parietal areas, was observed in the first 400 ms post-stimulation

for noxious conditions and starting 500 ms post-stimuli for intense conditions.
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Outlook

Beyond the work developed in this thesis, further future investigations and validations are

required. These investigations should be mainly touching upon the topics of:

(1) Further validating the robustness and reliability of both developed BCI systems, pre-

sented in chapters 3 and 4, when used with severely paralyzed people as well as with

amputees. Along these lines, calibration time, variability across different patients, and the

ability to be used ”off-the-shelf” should be proven.

(2) Integration of the different sensory feedback modalities and include them in real-time.

(3) The ultimate goal of the studies presented in chapters 6 and 7 is to develop a real-time

withdrawal reaction when amputees interact with their prostheses, which can first protect

the prosthesis from damaging stimuli, but particularly, increase the sense of agency, the

intuitiveness of control, and more importantly, reduce the withdrawal reaction time using the

identified effective features from EEG signals.

(4) The investigation of attention and perceptual brain circuitry involved in the withdrawal

reaction in both healthy subjects and amputees could lead to the prediction of unpleas-

ant sensation. A prediction of noxious sensation has clinical applications, such as chronic

pain treatment, and the mitigation of the PLP problem. Therefore, future work should be

performed in investigating the use of our proposed algorithms and findings for clinical appli-

cations.
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(de)synchronization and EEG single-trial classification of different motor imagery

tasks. NeuroImage, 31(1):153 – 159, 2006.

140



[76] K. Liao, R. Xiao, J. Gonzalez, and L. Ding. Decoding individual finger movements

from one hand using human EEG signals. PLOS ONE, 9(1):1–12, 2014.

[77] Q. Li, D. Ding, and M. Conti. Brain-computer interface applications: Security and

privacy challenges. pages 663–666, 2015.

[78] R. Barea Navarro, L. Boquete Vázquez, and E. López Guillén. Chapter 16 - EOG-

based wheelchair control. In Smart Wheelchairs and Brain-Computer Interfaces,

pages 381 – 403. Academic Press, 2018.

[79] E. Rocon, J. Gallego, L. Barrios, A. Victoria, J. Ibáñez, D. Farina, F. Negro, J. Diderik-
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[174] A. Bulling, D. Roggen, and G. Tröster. Wearable EOG goggles: Seamless sensing

and context-awareness in everyday environments. Journal of Ambient Intelligence

and Smart Environments, 1(2):157–171, 2009.

[175] Q. Huang, S. He, Q. Wang, Z. Gu, N. Peng, K. Li, Y. Zhang, M. Shao, and Y. Li. An

EOG-based human–machine interface for wheelchair control. IEEE Transactions on

Biomedical Engineering, 65(9):2023–2032, 2017.

[176] L. Minati, N. Yoshimura, and Y. Koike. Hybrid control of a vision-guided robot arm

by EOG, EMG, EEG biosignals and head movement acquired via a consumer-grade

wearable device. Ieee Access, 4:9528–9541, 2016.

[177] Y. Nam, B. Koo, A. Cichocki, and S. Choi. GOM-face: GKP, EOG, and EMG-based

multimodal interface with application to humanoid robot control. IEEE Transactions on

Biomedical Engineering, 61(2):453–462, 2013.

[178] et al. DelPreto, J. Plug-and-play supervisory control using muscle and brain signals

for real-time gesture and error detection. In Robotics: Science and Systems XIV,

Robotics: Science and Systems Foundation, volume 44, page 1303–1322, 2020.

[179] J. Ma, Y. Zhang, A. Cichocki, and F. Matsuno. A novel EOG/EEG hybrid human–

machine interface adopting eye movements and erps: Application to robot control.

IEEE Transactions on Biomedical Engineering, 62(3):876–889, 2014.

[180] J. Zhang, B. Wang, C. Zhang, Y. Xiao, and M. Y. Wang. An EEG/EMG/EOG-based

multimodal human-machine interface to real-time control of a soft robot hand. Fron-

tiers in neurorobotics, 13(7), 2019.

[181] G. Pfurtscheller, B. Allison, G. Bauernfeind, C. Brunner, T. Solis Escalante, R. Scherer,

T. Zander, G. Mueller-Putz, C. Neuper, and N. Birbaumer. The hybrid BCI. Frontiers

in Neuroscience, 4:3, 2010.

[182] R. Leeb, H. Sagha, R. Chavarriaga, and J. d. R. Millán. A hybrid BCI based on the

fusion of EEG and EMG activities. Journal of Neural Engineering, 8:225–229, 2011.
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[236] R. Peyron, L. G. L., M. C. Grégoire, N. Costes, P. Convers, F. Lavenne, F. Mauguière,

D. Michel, and B. Laurent. Haemodynamic brain responses to acute pain in humans:

Sensory and attentional networks. Brain, 122(9):1765–1780, 1999.

[237] O. Hauk, D. Wakeman, and R. Henson. Comparison of noise-normalized minimum

norm estimates for MEG analysis using multiple resolution metrics. NeuroImage,

54(3):1966–1974, 2010.

[238] F. Wei and M. Zhuo. Potentiation of synaptic responses in the anterior cingulate cortex

following digital amputation in rat. The Journal of physiology, 532:823–833, 2001.

155



[239] A. Mouraux, G. D. Iannetti, E. Colon, S. Nozaradan, V. Legrain, and L. Plaghki. Noci-

ceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of

cutaneous nociceptors. Journal of Neuroscience, 31(16):6079–6087, 2011.

[240] E. Colon, V. Legrain, and A. Mouraux. EEG frequency tagging to dissociate the cor-

tical responses to nociceptive and nonnociceptive stimuli. Journal of cognitive neuro-

science, 26(10):2262–2274, 2014.

[241] Bianca A. S., Cornelius T. G., and Johannes G. The neural circuits of innate fear:

detection, integration, action, and memorization. Learning memory, 23(10):544–555,

2016.

[242] C. Woo, L. Schmidt, A. Krishnan, M. Jepma, Mathieu Roy, M. Lindquist, L. Atlas,

and T. Wager. Quantifying cerebral contributions to pain beyond nociception. Nature

Communications, 8:14211, 2017.
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My main contributions as first author: designed and implemented the majority of

gumpy modules, prepared the figures and wrote the manuscript. Nicolai Waniek re-

vised the software and improved its main functions and features, as well as co-wrote

the paper. Juri Fedjaev, Nejla Ghaboosi, Leonard Rychly, and Christian Widderich

assisted in developing the software code for the deep learning module. Jonas Braun

and Matteo Saveriano assisted in developing the software code for the hybrid experi-

ment. Christoph Richter, Gordon Cheng, and Jörg Conradt supervised this work and

assisted in writing the manuscript.

A.1 Overview

Objective. The objective of this work is to present gumpy, a new free and open source

Python toolbox designed for hybrid brain-computer interface (BCI). Approach. Gumpy pro-

vides state-of-the-art algorithms and includes a rich selection of signal processing methods

that have been employed by the BCI community over the last 20 years. In addition, a wide

range of classification methods that span from classical machine learning algorithms to deep

neural network models are provided. Gumpy can be used for both EEG and EMG biosig-

nal analysis, visualization, real-time streaming and decoding. Results. The usage of the

toolbox was demonstrated through two different offline example studies, namely movement
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prediction from EEG motor imagery, and the decoding of natural grasp movements with

the applied finger forces from surface EMG (sEMG) signals. Additionally, gumpy was used

for real-time control of a robot arm using steady-state visually evoked potentials (SSVEP)

as well as for real-time prosthetic hand control using sEMG. Overall, obtained results with

the gumpy toolbox are comparable or better than previously reported results on the same

datasets. Significance. Gumpy is a free and open source software, which allows end-users

to perform online hybrid BCIs and provides different techniques for processing and decoding

of EEG and EMG signals. More importantly, the achieved results reveal that gumpy ’s deep

learning toolbox can match or outperform the state-of-the-art in terms of accuracy. This can

therefore enable BCI researchers to develop more robust decoding algorithms using novel

techniques and hence chart a route ahead for new BCI improvements.

A.2 Introduction

Paralyzed people wish to control assistive devices such as wheelchairs, spellers, prosthet-

ics, or exoskeletons in order to improve their quality of life and ensure their independence

[192]. One way to infer their desired actions is to measure their cortical activity, for instance

by functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), elec-

trocorticography (ECoG), or electroencephalography (EEG) and subsequently decode the

intended movement from the measurements. Of these methods, EEG has become the most

frequently used technique for BCIs, because it is non-invasive and comparably inexpensive.

Although BCI technology has seen improvements over the last few years [3, 18], it still lacks

reliability and accuracy. Hybrid BCIs in general [265], and particularly those which combine

EEG and EMG signals are promising improvements [182]. Despite the successful multi-

dimensional EEG-based BCI control achieved using simple classifiers [266, 18], reliable

decoding of complex movements from brain signals is still challenging and requires ad-

vanced algorithms [267]. Recent developed techniques such as deep neural networks [268]

could represent a promising solution to develop more robust decoding algorithms [267]. In

order to make such algorithms readily available to a wide BCI community we developed

gumpy, a Python library along with well documented application examples that we introduce

in this paper. Gumpy is an easy-to-use, robust, and powerful software package for EEG and

EMG signal analysis and decoding that tightly incorporates different recording paradigms,

essential signal processing techniques, and state-of-the-art machine learning algorithms.

Gumpy can be used for offline as well as for online processing of electrophysiological sig-

nals. Several similar BCI software packages exist and are widely used by the community

[269]. Gumpy is free of charge, permissively licensed and written in Python, an open source
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programming language that is not only backed by an extensive standard library, but also by

vast scientific computing libraries. Moreover, it is widely used by many machine learning

experts, engineers and neuroscientists. Gumpy offers users the opportunity to reproduce

achieved results previously by other BCI researchers through implementing a wide range of

signal processing and classification methods for time series signal analysis. Furthermore,

the toolbox features several deep learning models such as deep convolutional neural net-

works (CNN) [130], recurrent convolutional neural networks (RCNN) and Long Short-Term

Memory (LSTM) [129]. Those approaches have hitherto been rarely investigated by BCI re-

searchers [73] and to the best of our knowledge no existing BCI software integrates similar

techniques. This paper introduces the basic concept of gumpy, its main features and three

successful BCI applications.

A.2.1 Related work on software frameworks for BCI

This section provides an overview of the most widely-used open source BCI platforms for

research and highlights the distinctive features of gumpy with respect to them. Table 1 sum-

marizes their main functions and limitations. References [269, 8] provide a more compre-

hensive survey. The discussion focuses on a particular feature set that we deem essential

for the successful development of future hybrid BCI systems.

A.2.1.1 BCILAB

BCILAB [270] is among the earliest publicly available BCI software packages for research

purposes. It is a free, open source toolbox developed in Matlab. BCILAB is built to emulate

the plugin concept where various components can be added ”on the fly” during the runtime.

BCILAB was designed as an extension of EEGLAB [271] to support both offline and online

analysis of electrophysiological signals. Besides various feature extraction methods and

experimental paradigms supported by the toolbox, an end-user can choose between three

different classifiers (Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis

(QDA) and Support Vector Machine (SVM)). In addition, BCILAB obliges users to design

their scripts in Matlab [270].

A.2.1.2 BCI2000

BCI2000 [272] is an open source and free of charge BCI software package developed in

2000 to advance real-time BCI systems. It includes different modules such as data acqui-

sition, signal processing and stimulus presentation. The toolbox is written in C++ and does
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not directly support other programming languages such as Matlab or Python, so in this re-

gard it is difficult to extend and integrate with other toolboxes. Furthermore, some important

processing methods such as discrete wavelet transform and some classification techniques

such as deep learning are not included [272].

A.2.1.3 MNE

MNE is an open source python package for MEG/EEG data analysis. MNE implements

a wide range of functions for time-frequency analysis and connectivity estimation as well

as simple decoding algorithms [220]. Similar to gumpy, it is built on top of widely used

scientific computing libraries such as Numpy [273], Scipy [274], pandas and Scikit-learn

[275]. Moreover, MNE offers functions for neuroimaging data interpretation such as fMRI

analysis. Despite recent developments, the toolbox still lacks some important functions

and methods, such as common spatial pattern algorithm (CSP) [62] and various popular

machine learning classifiers.

A.2.1.4 Wyrm

Wyrm [276] is an open source BCI package written in Python. The toolbox implements

several functions for processing and visualization of electrophysiological data such as EEG

and ECoG signals. Moreover, Wyrm is suitable for both offline processing and real-time

applications. Furthermore, the toolbox integrates Mushu [187] a free software for signals

acquisition, and Pyff [277], which is a framework for BCI feedback applications.

A.2.1.5 OpenViBE

OpenViBE [278], another open source BCI platform, is designed in a modular fashion and in-

corporates an elegant graphical user interface for novice users. Moreover, it provides a wide

range of signal processing techniques and supports many acquisition and BCI paradigms

such as P300 [279, 280] and SSVEP [281]. One of OpenViBE’s advantages with respect to

the previously mentioned toolboxes is that it can be scripted using both LUA and Python. In

addition, it offers a direct interface to Matlab. OpenViBE currently provides three classifiers:

LDA, SVM as well as a combined classifier for a multi-class problem classification.

A.2.2 Distinctive features of gumpy

Despite the tremendous number of features that current BCI toolboxes offer, they still ex-

hibit some limitations [8] such as lack of important processing and classification methods,
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Table A.1: General Overview of Existing BCI toolboxes.
Software platform Programming language Features
BCILAB Matlab Wide range of algorithms
Well-designed GUI
BCI2000 C++ Simple and Robust
Wide usage by BCI community
Modular programming
MNE Python EEG, MEG and fMRI data analysis
Good documentation
Wyrm Python EEG and ECoG signals
Real-time capabilities
Integration with other platforms
OpenViBE LUA, Python Modular API
Supports many acquisition devices
Gumpy Python Hybrid BCI
Real-time capabilities
Offline and online analyses
Deep learning toolbox

limited real-time performance, lack of recording experimental paradigms to conduct online

BCI experiments and more importantly, none of the existing packages combine classic ma-

chine learning algorithms and deep learning techniques for signals decoding. However,

gumpy covers a wide range of classification methods including several machine learning

classifiers, voting classifiers, feature selection algorithms and different deep learning archi-

tectures such as LSTM, CNN and RCNN. Additionally, we provide many showcase examples

of the usage of gumpy for EEG and EMG signals decoding, thereby facilitating the design

of hybrid BCI systems. Furthermore, gumpy integrates different experimental paradigms for

motor imagery, EMG, SSVEP, EEG reach-to-grasp movements recording and for the hybrid

BCI, which they can be easily used and extended by end-users. Importantly, gumpy sup-

ports offline analysis as well as online BCI applications. With the lab streaming layer (LSL)

[159] for data acquisition, the provided experimental paradigms for biosignals recording and

gumpy package for EEG and EMG data processing and decoding, we envision gumpy to

be a suitable toolkit for conducting online hybrid BCI experiments.

A.3 Gumpy toolbox: design, main functions and features

A.3.1 General overview of gumpy ’s modules

Gumpy comprises six modules for plotting, processing and classification of EEG and EMG

signals. Moreover, gumpy incorporates different deep learning models and experimental

recording paradigms. This section provides a condensed overview of gumpy ’s modules
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and its main functionality which are summarized in Figure A.1. Some of the modules are

described in more details in the following section on exemplary use-cases. Particularly, sec-

tion 3.3 covers the available deep learning classifiers. Where possible, gumpy leverages

existing and well established scientific and numerical libraries such as numpy [273], scipy

[274] and scikit-learn [275] to compute the classification results or to perform signal analysis.

For instance, gumpy ’s SVM classifier utilizes scikit-learn. However, gumpy preconfigures its

classifiers with default parameters that were found to be suitable in typical BCI applications.

In addition, gumpy can perform a grid search to tune their settings. One of gumpy ’s core de-

sign principles is to allow users to easily extend its functionality, thereby facilitating usability,

customizability and collaborative development. The latter is further enabled using our public

git repository at https://github.com/gumpy-hybridBCI through which we solicit the community

to contribute feedback and code. In addition, the website http://gumpy.org/ provides an API

reference and usage examples in the form of Jupyter notebooks.
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Figure A.1: Overview of gumpy toolbox modules and functions.

A.3.2 Gumpy’s experimental paradigms

A.3.2.1 Classic motor imagery movements

Gumpy provides a cue-based screening paradigm to record classic motor imagery; namely
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the imagination of the movement of left hand, right hand or both hands. At predefined times,

a cue in the form of an arrow pointing is displayed on the screen either on the left, right or on

both sides (both hands) and the participant has to perform a hand movement imagination

as the cue was displayed.

A.3.2.2 Reach-to-grasp motor imagery movements

Gumpy incorporates a paradigm to record EEG reach-to-grasp movements imagination of

six different objects placed on a shelf with fixed positions as shown in Figure A.2. The

subject is asked to imagine reach movement by bringing the cursor (square) toward one

of the six center-out target locations (up-left, up-right, center-left, center-right, down-left,

down-right). Once the square hits the target, it turns red which triggers the participant to

now imagine performing a grasping movement on that specific target.

Figure A.2: Illustration of recording paradigm for reach-to-grasp movements. (a) Display requests
subject to imaginatively reach for the mid-left cup in the shelf. (b) Subject is requested
to imagine grasping the center-right cup.

A.3.2.3 Grasp poses and related finger forces from surface EMG signals

A special experimental paradigm was designed to record sEMG signals from the forearm

during four different hand movements (2-digit grasp, 3-digit grasp, fist, hand open) as shown

in Figure A.2 with two possible force levels (high, low). Strain gauge sensors placed on the

fingertips measured the applied grasping force [195].
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A.3.2.4 Gumpy-SSVEP paradigm

The SSVEP paradigm consists of four flickering checkerboards blinking at different frequen-

cies (13, 15, 17 and 19 Hz), as shown in Figure A.3. The subject has to focus on one of

the flickering checkerboards in order to evoke an SSVEP response. Simultaneously, EEG

signals recording from O1, OZ and O2 electrodes were performed. The paradigm was imple-

mented using PyGame [282], a gaming-oriented Python library for graphical user interfaces.

Figure A.3: Illustration of the recording paradigm for SSVEP.

A.3.2.5 Gumpy’s experimental paradigm for real-time hybrid BCI

The hybrid BCI paradigm allows end users to perform online hybrid BCI experiments. For

instance, this paradigm was used to perform a sequential hybrid BCI task, where the sub-

ject was asked to imagine left or right hand movement imagination and execute thereafter

the same imagined movement. For that, a simultaneous recording of EEG and sEMG sig-

nals was performed using two synchronized g.USBamp devices. Signals were sampled at

512 Hz and the LSL was used for data acquisition in a master-slave communication fash-

ion. It should be noted that the developed paradigm could be used to simultaneously collect
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data from other devices (e.g. Myo armband [203] and the g.USBamp) and could be eas-

ily modified to acquire other types of biosignals. A detailed documentation of the hybrid

paradigm as well as the developed code are made publicly available withing gumpy under

https://github.com/gumpy-hybridBCI/hybrid-BCI.

A.3.3 Gumpy’s deep learning module

Despite the numerous successful applications of deep neural networks [130], the develop-

ment of deep learning methods in the BCI field is still quite rare [73]. The toolbox has a

deep learning module, which is based on Theano [147] and Keras [148], as well as different

implemented and available network architectures.

A.4 Case studies

In this section, we show how to use gumpy to perform offline analysis of EEG/EMG data

as well as how to conduct online BCI experiments. As a result, researchers can easily

reproduce the obtained results using our provided gumpy ’s Jupyter notebooks, our freely

available EEG/EMG recorded data or the EEG dataset 2b from BCI competition [144] as

well as gumpy ’s available experimental paradigms.

A.4.1 Offline analysis

A.4.1.1 Decoding of two motor imagery movements from EEG signals using Graz 2b

dataset

We used gumpy ’s signal and classification developed modules to process and classify an

existing EEG dataset known as 2b EEG dataset from ”BCI Competition IV” [144]. The source

code utilized in these offline examples are freely available as Jupyter notebooks document

under http://gumpy.org/.

a) First approach: Standard Machine learning techniques with band power features

In this section, three feature extraction methods, i.e. logarithmic band power (BP) [156],

common spatial patterns (CSP) [157, 283] and discrete wavelet transform [284], have been

investigated and tested. In general, CSP features maximize the pairwise compound variance

between two or more classes in the least square sense, whereas wavelet features provide an

effective time-frequency representation of non-stationary signals [158]. We wish to empha-

size that those feature extraction methods have been advocated by BCI researchers in [267].

After extracting discriminative features, gumpy.features.sequential feature selector
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was used to automatically select a subset of features in the feature space using the sequen-

tial feature selection algorithm (SFSF) [35]. The gumpy.split module provides several

methods for splitting data. Herein, we used the hold-out strategy by splitting the dataset into

80% for training and 20% for test using the gumpy.split module. A 10-fold cross validation

was performed on the training set to select the best features using six different classifiers

from the gumpy.classification module. Afterwards, the new generated subsets based

on the selected features were fed into each classifier and new predictions were made on the

testing dataset. Furthermore, we wish to mention that the classification module incorporates

a voting classifier, which employs an ensemble of classifiers to ”vote” using their respective

results. Finally, it should be noted that gumpy.classification can also perform a grid

search to select the best hyper parameters for SVM and random forest classifiers for a given

k-fold cross validation. Noticeably, BP slightly outperforms the other two feature extraction

methods and provides overall better results across the different nine subjects. The obtained

classification results with the BP feature extraction method with six different algorithms in-

cluding the voting classifier are shown below in Figure A.4. Overall, the obtained results from
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Figure A.4: Accuracy results obtained for individual participants using the BP features and six dif-
ferent machine learning classifiers, namely quadratic LDA (QLDA), logistic regression
(LR), naive bayes (NB), k-nearest neighbors (KNN), random forest (RF) and the voting
classifier (VotingC).

individual subjects show inter- and intra-subject variability. According to their performance,

the nine participants could be classified into three categories: Bad participants are S1, S2,

S3 and S7 with a classification accuracy between 60 to 70%, good participants are S5, S6,

S8 and S9 with a classification accuracy between 70 to 82%, and an excellent participant
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S4 with an average classification accuracy of 93.75%. It is worth noting that a comparable

performance was obtained with the CSP features. A Jupyter notebook showing how to use

the three different feature extraction methods with the different available classifiers, is made

publicly available under https://github.com/gumpy-hybridBCI.

A.4.1.2 Decoding of natural grasps from surface EMG signals

Making a prosthetic hand grasp an object precisely and effortlessly is a crucial step in pros-

theses design [285]. Additionally, dexterous grasping of objects with different shapes and

sizes seems to be a big challenge in today’s prostheses. In this section, we demonstrate

the usage of gumpy to classify four movements (Fist grasp, 2-digit grasp, 3-digit grasp,

hand open) with two different force levels (low, high). Data used in this example study were

recorded at our lab and are made publicly available at gumpy ’s website. Different steps for

EMG processing using gumpy are described below. Filtering: EMG signals were band-

pass filtered between 20 and 255 Hz and notch filtered at 50 Hz using the gumpy.signal

module. Feature extraction and normalization: Filtered EMG signals were analyzed using

200 ms sliding time windows with 50 ms overlapping [23]. The length of the sliding win-

dow was chosen for the purpose of allowing real-time control. For each interval, the com-

puted mean of the signal was subtracted and divided by the standard deviation. Besides,

the resulting EMG signals were normalized by the maximum voluntary isometric contrac-

tion (MVIC) magnitude. Thereafter, the root mean square (RMS) was computed in each

time window and fed into the classifier. We wish to stress that we used the same feature

extraction method to classify each type of the associated force level (low, high). Feature se-

lection: Herein, the SFFS algorithm was used to select a certain number of features in the k

range (10, 25). Classification: Different classifiers were used to predict one of four possible

hand poses and one of the two force levels. Offline results using SVM with 3-fold stratified

cross validation are illustrated in Figure A.5. Obtained prediction results during the real-time

test, are presented in the next section. The validation accuracy for three different subjects

were 82% (±4%) for posture classification and 96% (±3%) for force classification. It should

be noted that those results were obtained after performing three-fold cross validation using

gumpy ’s validation module.

A.4.2 Gumpy for real-time brain-computer interfacing

Aside of the offline capabilities, gumpy can be used in an online fashion to perform real-time

experiments such as robot arm control using SSVEP, online EMG decoding and real-time
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Figure A.5: Obtained results for hand posture and force classification with 3-fold cross-validation.

control of robot control using EEG signals. All the real-time gumpy case studies as well as

the developed real-time experimental paradigms are made available under https://github.com/gumpy-

hybridBCI/gumpy-Realtime. Importantly, these case studies can be easily modified or ex-

tended by gumpy end-users to suit their specific applications.

A.4.2.1 Real-time Robot Arm Control using SSVEP-based BCI

In this section, we further test and validate gumpy ’s real-time capabilities by online detec-

tion and classification of SSVEP signals for a robot arm control. SSVEP are brain events

measured after a visual flickering stimulation of a frequency between 3.5 Hz and 75 Hz.

They appear as a peak in the frequency spectrum of the EEG signals recorded over the pri-

mary visual cortex at the respective stimulus frequency [281]. The gumpy SSVEP paradigm

described previously in section A.3.2.4 was used for data recording. During the live ex-

periment, the subject had to focus on one of the four displayed checkerboards flickering

at different frequencies. Power spectral density (PSD) features from the electrodes (O1,

O2 and Oz) over the occipital lobe were extracted, normalized and a principal component

analysis (PCA) was performed to reduce the dimensionality. A random forest classifier was

trained offline on recorded data collected from four different subjects (3 males, 1 female). A

5-fold stratified cross validation was performed to evaluate model performance and to tune

hyper-parameters. Afterwards, the trained random forest classifier was used in the testing
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phase to perform an online classification, where new predictions on the test data were per-

formed. Thereafter, a command was sent to move a six degrees of freedom (6-DoF) robot

arm in four different directions according to the position of the detected flickering object. A

flowchart of this SSVEP project is shown in Figure A.6.

Figure A.6: SSVEP project flowchart.
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Figure A.7: Online Accuracy of EMG classification without force.

A.4.2.2 Real-time prosthetic hand using surface EMG signals

Herein, we describe the online decoding of three grasp poses, namely fist grasp, 2-digit

grasp and 3-digit grasp. The offline analysis and processing described previously in section
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A.4.1.2 were used. The developed algorithm was tested on two healthy subjects. 72 trials

(24 for each posture) were first acquired to train the model. Thereafter, new 30 online trials

(10 per posture) were used for online testing. The number of offline trials used for model

training has been reduced in retrospective analysis to evaluate the effect of the training data

size on the online classification accuracy as shown in Figure A.7. It should be noted that

a 3-fold cross validation was used to train the (offline) model in the first place. Figure A.7

shows that with 72 offline trials, an accuracy of 82% and 92% was reached for S1 and

S2, respectively. Overall, it is clear that the accuracy could be even further improved by

increasing the number of training trials. However, by using 24 trials for each posture, a good

compromise between duration of training time and accuracy of training was found.
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Figure B.1: Copyright permission for the content presented in chapter 4

Figure B.2: Co-author permission for use of the content presented in chapter 4
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Figure B.3: Copyright permission for the content presented in chapter 6

Figure B.4: Copyright permission for part of the content presented in chapter 2
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Figure B.5: Copyright permission for the content presented in the appendix
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Figure B.6: Author’s permission for the use of figure 2.5 of chapter 2

Figure B.7: Author’s permission for the use of figure 2.1 of chapter 2
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Figure B.8: Editor’s permission for the use of the content presented in chapter 3

Figure B.9: Copyright permission for the content presented in chapter 3
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Figure B.10: Copyright permission for the content presented in the appendix
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