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Valence effect on the thermopower of Eu systems
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We investigated the thermoelectric transport properties of EuNi2P2 and EuIr2Si2 to evaluate the relevance
of Kondo interaction and valence fluctuations in these materials. While the thermal conductivities behave
conventionally, the thermopower curves exhibit large values with pronounced maxima as typically observed
in Ce- and Yb-based heavy-fermion materials. However, neither the positions of these maxima nor the absolute
thermopower values at low temperature are in line with the heavy-fermion scenario and the moderately enhanced
effective charge carrier masses. Instead, we may relate the thermopower in our materials to the temperature-
dependent Eu valence by taking into account changes in the chemical potential. Our analysis confirms that
valence fluctuations play an important role in EuNi2P2 and EuIr2Si2.
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I. INTRODUCTION

Intermetallic Eu compounds exhibit various exotic phe-
nomena such as noninteger valence, valence transitions, and
valence fluctuations. They are related to the existence of two
Eu configurations with relatively small energetic distance: the
nonmagnetic one of Eu3+(4 f 6) and the magnetic one of Eu2+

(4 f 7) [1]. A noninteger average Eu valence may arise due to
several physical reasons: (1) A trivial case is mixed-valent
systems containing more than one crystallographic Eu site
with different valences as, for example, Eu3O4 [2]. More
interesting are materials with a single Eu site: (2) Valence-
fluctuating (VF) systems such as Eu4Pd29+xB8 [3] exhibit
a noninteger valence due to thermal fluctuations between
the two close-lying integer Eu configurations. The respective
characteristic energy scale is given by the valence fluctuation
temperature TVF. (3) In intermediate valent (IV) systems,
a noninteger Eu valence originates from hybridization be-
tween the Eu 4 f and the conduction electron states due to
Kondo interaction, for example in EuCu2(Ge1−xSix )2 close
to x = 0.7 [4,5]. In this case, the characteristic energy scale
corresponds to the Kondo temperature TK. Unfortunately,
notations in literature are not consistent, and frequently the
terms valence fluctuating, intermediate valent, and sometimes
even mixed valent are used as synonyms. The situation is
also complicated by the fact that more than one effect may
be relevant in a material. For example, the two distinct Eu
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configurations of a VF material usually also experience some
energetic broadening due to interactions with the conduction
electron states. Another possibility are mixed-valent systems
with valence fluctuations, which may even be site dependent
as discussed for Eu3Pd20Ge6 [6].

EuNi2P2 and EuIr2Si2 have been classified as systems with
VF or IV character. They exhibit a strongly temperature-
dependent Eu valence ν that remains fractional down to
lowest temperature T as revealed by Mössbauer spectroscopy
[7,8]. Both materials have moderately enhanced effective
charge carrier masses indicative of significant hybridization
between Eu 4 f and conduction electron states [9–12]. Re-
cently, EuNi2P2 and EuIr2Si2 attracted considerable interest
due to the question of how this hybridization, which is usually
observed in Ce and Yb-based Kondo systems, is related to the
fluctuating Eu valence [11,13–15].

In fact, some of the low-temperature properties of
EuNi2P2 and EuIr2Si2 can be explained in the framework of
a simple model for VF materials: the interconfiguration fluc-
tuation model [16,17]. In its simplest form, it considers Eu2+

and Eu3+ states that are close in energy. A phenomenological
spin-fluctuation energy is introduced to also account for in-
teractions with conduction electron states. The model yields
a temperature-dependent effective Eu valence via thermal
excitations from the low-energy Eu3+ into the higher Eu2+

state. It has been applied to fit the magnetic susceptibility of
EuNi2P2 [7]. Likewise, the T dependencies of the magnetic
susceptibility and valence of EuIr2Si2 can be described within
this model, although not with a single set of parameters [14].

Despite this success of the interconfiguration fluctuation
model, there are several observations which require a more
complex picture. Recent nuclear magnetic resonance (NMR)
measurements on EuNi2P2 revealed a strong temperature de-
pendence of the spin-lattice relaxation rate 1/T1 that cannot be
explained assuming a simple combination of Eu2+ and Eu3+

states [13]. The enhanced effective charge carrier masses of
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EuNi2P2 and EuIr2Si2 mentioned above suggest a significant
hybridization between 4 f and conduction electron states at
low T due to Kondo interaction corresponding to a consid-
erable IV character. In fact, the formation of heavy bands
resulting from a hybridization between Eu 4 f and Ni 3d states
has been directly observed in photoemission spectroscopy
on EuNi2P2 [18]. Indication for a hybridization of 4 f and
conduction electron states has also been obtained from optical
conductivity measurements on EuNi2P2 and EuIr2Si2 [19]. In
addition, electrical resistivity and Hall effect measurements
on EuNi2P2 have been interpreted with the formation of a
heavy-fermion (HF) state as typically observed in Ce and
Yb-based Kondo systems [11,15].

The thermopower is known as a sensitive probe for Kondo
scattering in HF systems, where it reaches large absolute
values around the characteristic Kondo temperature TK and
enhanced values of S/T in the zero-temperature limit. The ab-
solute thermopower of Ce- and Yb-based IV systems typically
reaches values of 50–100 μV/K. Here, we present thermal
transport data on EuNi2P2 and EuIr2Si2 with a focus on the
thermopower S(T ) to evaluate the relevance of the Kondo
interaction and valence fluctuations in these materials. In both
compounds, we indeed observe large thermopower values,
larger than in other VF Eu compounds. However, the tem-
perature dependencies S(T ) cannot be explained by simple
models for HF systems with Kondo interaction. Instead, we
may relate S(T ) directly to the temperature dependence of the
Eu valence by considering changes in the chemical potential.
These results suggest that EuNi2P2 and EuIr2Si2 cannot be
understood within a pure Kondo scenario for HF compounds,
but that thermal valence fluctuations between different Eu
configurations have to be taken into account and are the main
origin of the large thermopower in these materials.

II. EXPERIMENTAL DETAILS

We investigated single crystals of EuNi2P2 and
EuIr2Si2 grown by a flux method as described in Refs.
[9,18]. Thermal conductivity κ , thermopower S, and electrical
resistivity ρ were measured simultaneously using the
thermal transport option of a commercial physical property
measurement system (PPMS) from Quantum Design. The
electrical and heat currents were applied within the ab plane
of our platelike single crystals. Measurements have been
performed in the temperature range from 2 K to 300 K.
With increasing temperature, the heat loss via radiation
becomes large. This leads to a strong upturn of our thermal
conductivity data above 200 K. Therefore, we do not show
thermal conductivity data in this temperature range. The
effect is not relevant for thermopower measurements, which
allows us to discuss S(T ) up to 300 K.

The geometry factor of our samples has a large uncertainty
due to the small crystal size of about 4 × 1 × 0.1 mm3 and
the relatively large contacts with a width of approximately
0.5 mm required for a good thermalization of the thermome-
ters. Therefore, we scaled our electrical resistivity data to
results from AC transport measurements on crystals from
the same batches with an optimized geometry. We used the
same scaling factor for our thermal conductivity data. The
analysis of ρ and κ measured on the same contacts reduces

FIG. 1. Temperature dependencies of the total thermal conduc-
tivity κ and the estimated electron (κWF) and phonon contributions
(κph) for EuNi2P2 (a) and EuIr2Si2 (b). The inset (c) shows the
corresponding electrical resistivities measured simultaneously on the
same contacts.

uncertainties of the geometry factor in the estimation of the
electronic thermal conductivity from the Wiedemann-Franz
(WF) law. Thus, the uncertainty of the absolute values for κ

could be reduced to about 10%. The thermopower is in princi-
ple independent of the geometry factor. However, the contact
size in our measurement was not negligible compared to the
sample dimensions. In a previous study on a 4 f substitution
series with the same crystal structure under similar conditions
(platelike single crystals, similar contact geometry, using the
same experimental setup), we could show that this uncertainty
was also below 10% and does not affect the shape of S(T )
[20].

III. RESULTS

The electrical resistivities ρ(T ) of EuNi2P2 and
EuIr2Si2 are plotted in Fig. 1(c). Our results are similar to data
reported in literature [11,14]. Below room temperature, we
observe a negative ∂ρ/∂T for both materials. Maxima
are reached at about 120 K (EuNi2P2) and 160 K
(EuIr2Si2). Toward lower T , the electrical resistivities
strongly decrease. The residual resistivity ratio RRR
determined as ρ(300 K)/ρ(2 K) is significantly larger
for the EuIr2Si2 sample (160) than for the EuNi2P2 sample
(9.3).

The thermal conductivities κ (T ) of EuNi2P2 and
EuIr2Si2 are plotted in Figs. 1(a) and 1(b), respectively.
EuIr2Si2 has a significantly larger thermal conductivity than
EuNi2P2. It exhibits a pronounced maximum around 20 K,
while only a small hump is seen in this temperature region
for EuNi2P2. To evaluate the origin of this difference, we
estimated the thermal conductivity contributions from charge
carriers (κel) and phonons (κph) using the WF law. We assume
that κel = κWF = L0T/ρ with the Lorenz constant L0 and
determine κph as κph = κ − κWF. The results are also shown in
Fig. 1. κWF is always lower than the total thermal conductivity
as expected if the WF law is roughly valid due to a significant
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FIG. 2. Temperature dependence of the thermopower S(T ) for
EuNi2P2 and EuIr2Si2. The lines in the main plot are fits to the data,
taking into account the temperature dependence of the valence as
explained in the text. The hump at around 20 K for EuIr2Si2, which
is not reproduced by the fitted curve, is ascribed to phonon drag. The
inset shows the low-T part as S/T (symbols) in comparison to the
zero-temperature limit of Sd/T (lines) calculated from the effective
charge-carrier masses as explained in the text.

phonon contribution in the investigated temperature range.
We find that the small bump in the thermal conductivity of
EuNi2P2 can be attributed almost completely to κel, while κph

exhibits only a weak temperature dependence. By contrast,
the large maximum in the thermal conductivity of EuIr2Si2 is
most probably due to maxima of both contributions, κel and
κph. Since the WF law is strictly valid only in the zero-T
limit, we cannot exclude that κel of EuIr2Si2 is larger than our
estimate. However, it seems unlikely that κel may account for
the full thermal conductivity maximum. Most probably, the
phonon thermal conductivity of EuIr2Si2 exhibits a maximum
as expected for clean single crystals. The absence of such a
maximum for EuNi2P2 is attributed to a lower sample quality,
where scattering from defects leads to a suppression of κph.
This is also in line with the significantly smaller RRR for our
EuNi2P2 sample compared to the EuIr2Si2 crystal.

The thermopower S(T ) of EuNi2P2 and EuIr2Si2 is plotted
in Fig. 2 for the temperature range between 2 K and 300 K.
Both compounds exhibit a similar qualitative temperature
dependence of S(T ) with large, positive values at low T , and a
change to negative values at higher T . Maxima are observed at
Tmax = 37 K and 81 K for EuNi2P2 and EuIr2Si2, respectively.
The thermopower of EuIr2Si2 exhibits an additional hump at
about 20 K, i.e., close to the position of the maximum in
our estimate of κph. Therefore, we attribute this hump to a
phonon-drag contribution. No such contribution is expected
for EuNi2P2 due to the much lower phonon thermal conduc-
tivity in the respective T range.

An exact evaluation of the thermopower contribution due
to phonon drag is difficult. It depends on the phonon spectrum
and the electron-phonon scattering. Generally, the absolute
phonon-drag thermopower increases initially with increasing

TABLE I. Summary of physical properties and fit results for
EuNi2P2 and EuIr2Si2. Literature data have been summarized from
Refs. [7,8,12,14,42].

Compound EuNi2P2 EuIr2Si2

Literature data
Tsf (K) 53–80 84–101
1

kB
Eexc (K) 160–192 269–390

Measurement results
Tmax (K) 37 81

Fit results
e

kB
A1 (K) 310 306

A2 (μV/K2) −0.10 −0.19

temperature and phonon density. At higher T , as phonon-
phonon interactions become more important, the phonon-drag
thermopower decreases again. The maximum is observed
typically at 0.1–0.3 of the Debye temperature �D [21]. For
EuIr2Si2, a value of �D = 270 K has been estimated from
specific-heat measurements [14]. Therefore, for a simple De-
bye approximation, we expect the phonon-drag contribution
to be largest between 27 K and 80 K, which is in reasonable
agreement with the observed hump in the thermopower.

At first glance, the thermopower of EuNi2P2 and
EuIr2Si2 resembles those of other Eu systems discussed either
as VF or IV materials (apart from the presumed phonon-drag
contribution for EuIr2Si2). Eu-based VF systems usually have
a positive thermopower with a single maximum close to the
valence fluctuation temperature TVF [22] as seen, for instance,
in Eu3Pd20Ge6 [23] and Eu4Pd29+xB8 [3]. Our thermopower
curves for EuNi2P2 and EuIr2Si2 exhibit a similar behavior,
however, with some important differences: (1) Our absolute
thermopower values are much larger, exceeding 50 μV/K at
the maxima compared to about 10 μV/K in Eu3Pd20Ge6 and
Eu4Pd29+xB8. In fact, the maxima of S(T ) of EuNi2P2 and
EuIr2Si2 are comparable to those of Ce- and Yb-based IV
systems or of Eu systems discussed as HF compounds with
strong Kondo interaction such as EuCu2Si2 [4]. (2) Above
150 K, our thermopower curves change signs to negative
values. (3) Moreover, the maxima in S(T ) are observed at
rather low T compared to TVF. An estimate for TVF is given
by the excitation energy Eexc between the two Eu config-
urations of the interconfiguration fluctuation model. Fits to
Mössbauer spectroscopy and magnetic susceptibility data of
EuNi2P2 [7,12] yielded values between 160 K and 190 K
for Eexc/kB compared to Tmax = 37 K. Respective values for
Eexc/kB of EuIr2Si2 have been determined from susceptibility
and x-ray absorption measurements on crystals grown under
the same conditions as those used in our study. The results
correspond to 269 K and 390 K, whereas Tmax = 81 K [14].
These numbers, as well as other important parameters are
summarized in Table I. It turns out that for both materials, the
maximum in S(T ) is observed at significantly lower T than
expected from Eexc. Actually, Tmax is much closer to the spin-
fluctuation temperature Tsf determined from the same fits to
the interconfiguration-fluctuation model: Tsf of EuNi2P2 takes
values from 53 K to 80 K, results for EuIr2Si2 range from
84 K to 101 K. Since the spin-fluctuation temperature of the
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model accounts for interactions between the Eu states and the
conduction electron states, this observation suggests that the
Kondo interaction might be responsible for the T dependence
of the thermopower of EuNi2P2 and EuIr2Si2.

Therefore, and in view of the rather large thermopower
values, we compare our S(T ) curves to those of IV systems.
IV materials usually exhibit large absolute thermopower val-
ues of about 50−100 μV/K with a maximum around the
characteristic Kondo temperature TK [24]. An estimate for
the Kondo temperature of EuNi2P2 has been obtained from
specific heat and thermal expansion data [11]. The value of
TK ≈ 80 K is about a factor of 2 larger than Tmax. No such
evaluation has been performed for EuIr2Si2. However, the
Sommerfeld coefficient γ0 of EuIr2Si2 is significantly smaller
than that of EuNi2P2 (33 mJ/mole K vs 103 mJ/mole K
[10,14]). Using TK ∝ 1/γ0, we estimate a Kondo temperature
of about 250 K for EuIr2Si2 compared to Tmax = 81 K. It turns
out that, for both materials, the maximum in S(T ) is observed
at significantly lower T than expected from TK.

Next, we consider the magnitude of our thermopower data.
The diffusion thermopower Sd of a Fermi liquid Sd/T is
expected to reach a constant value in the zero-temperature
limit. Within a free electron model, Sd/T is related directly
to the Sommerfeld coefficient γ0 via a dimensionless constant
q as Sd/T = q(NAe)−1γ0 with NAe being Faraday’s number
[25]. For a wide range of compounds, including a number
of HF materials, q has been demonstrated to be close to ±1,
whereas the sign of q depends on the type of charge carriers.
This observation has also been substantiated theoretically
for HF materials [26]. In the inset of Fig. 2, we show the
low-temperature part of our thermopower curves as S/T vs
T . The values expected from the Sommerfeld coefficients
are indicated by lines. It turns out that over a considerable
temperature range, the thermopower of our materials is much
larger than the one expected from this simple estimation. In
the case of EuIr2Si2, this may be attributed at least to some
extent to the phonon-drag contribution. However, the large
thermopower values of EuNi2P2 cannot be explained solely
by the hybridization effects responsible for the moderately
enhanced Sommerfeld coefficients. In fact, S/T of EuNi2P2 is
increasing down to 2 K, without indication for a saturation.
This is not surprising since the valence of the system remains
temperature dependent down to low T . The situation is less
clear for EuIr2Si2 due to the relatively large scattering of the
thermopower data. However, the phonon-drag contribution for
this sample is expected to mask any linear behavior of the
diffusion thermopower in this T range. Altogether, neither the
shape nor the absolute thermopower values of EuNi2P2 and
EuIr2Si2 can be understood in terms of pure Kondo interaction
and an IV scenario.

IV. DISCUSSION

So far, we have discussed the thermopower curves of
EuNi2P2 and EuIr2Si2 rather qualitatively. In the following,
we compare our thermopower data to several models consid-
ering valence fluctuations and Kondo interaction. Thereafter,
we propose a very simple, phenomenological description of
our thermopower curves taking into account only the temper-
ature dependence of the valence. Examples of calculated ther-

FIG. 3. Thermopower of EuNi2P2 (a) and EuIr2Si2 (b) in com-
parison to different calculated or fitted curves. The solid lines corre-
spond to our fits using the temperature dependence of the valence,
which is also shown in Fig. 2. The other curves are calculated for
different models as explained in the text.

mopower curves for EuNi2P2 and EuIr2Si2 are summarized in
Fig. 3.

The thermopower of 4 f systems is frequently discussed in
relation to the density of states (DOS). This approach is based
on a simplified Mott expression derived from the Boltzmann
equation using various approximations, amongst others the
Sommerfeld approximation, a spherical Fermi surface, and
an isotropic relaxation time [27,28]. It relates the diffusion
thermopower to the energy derivative of the logarithmic DOS
N (E ): S/T ∝ ∂ ln N/∂E |EF . The large thermopower values
in Kondo systems can then be qualitatively explained by
the strong peak in the DOS appearing at low temperature.
However, a calculation of the thermopower based on this
equation requires exact knowledge of the DOS close to the
Fermi level. Alternatively, one may start with a model DOS to
calculate the thermopower of 4 f systems.

This procedure is used in a phenomenological model in-
troduced by Hirst [29], which yields a very simple expres-
sion for the thermopower of 4 f systems. It starts with two
competing configurations and a finite mixing interaction. The
4 f DOS is approximated by a Lorentzian form with half
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width � and the maximum at an energy ε0 − εF with respect
to the Fermi level. Within Boltzmann theory and using the
relaxation time approximation, the thermopower then takes
the form S = AT/(B2 + T 2) [30]. The parameters A and
B are related to � and ε0 − εF. Fitting thermopower data
of Ce- and Yb-based IV materials to this simple relation
often yields reasonable agreement with measured curves,
especially at intermediate T around the maximum [31,32].
However, the model does not describe our thermopower data
for EuNi2P2 and EuIr2Si2 in a wide temperature range. In
Fig. 3, we show calculated curves (model 1) for EuNi2P2 and
EuIr2Si2. A and B have been adjusted to fit the data around
the maxima. Although the maxima of S(T ) are reproduced
quite well, there are significant deviations, especially at higher
T . In particular, the model cannot account for the sign
changes.

Subsequently, the model was extended by including a
temperature dependence of the 4 f line width W = 2� of
the form W = Tsf exp(−Tsf/T ) [33]. The thermopower is
then given by S = c1T T0/(T 2

0 + W 2) with kBT0 = ε0 − εF.
A second term c2T is frequently added to account for a
band of light charge carriers (d or s type) [33,34]. However,
this approach is problematic since thermopower contribu-
tions from different scattering channels do not add directly,
but are weighted by the electrical resistivities according to
the Nordheim-Gorter relation. Moreover, the temperature-
dependent 4 f line width of the model goes to zero in the
zero-temperature limit, a situation that is not consistent with
the noninteger valence of EuNi2P2 and EuIr2Si2. Actually, we
can describe our thermopower data by this model, however,
only when the linear term is large — much larger than
expected for light charge carriers and those typically observed
in Ce-based IV systems [33,34]. We show the respective
curves for EuNi2P2 and EuIr2Si2 in Fig. 3 (model 2). For
EuIr2Si2, the agreement between fit and data is almost perfect.
In the case of EuNi2P2, the deviations are somewhat larger
and the shape of S(T ) is not well reproduced. Since the
assumptions of the model are not applicable for our materials,
it seems that the good quality of the fit is accidental and
probably also facilitated by the relatively large number of
— in total four — free parameters. Other attempts to extend
the model, for instance, by also introducing a temperature
dependence of T0 [35], even further increase the number of fit
parameters.

A different starting point to understand the thermopower
of IV systems is the Anderson impurity model, which con-
siders the Kondo interaction between conduction and Eu 4 f
electrons. It is frequently used to discuss the thermopower of
HF compounds with Ce and Yb [24] but has been applied
also successfully to Eu-based IV materials [36]. The main
parameters of this model are the position of the (undisturbed)
4 f level and the hybridization strength. Thermopower curves
were calculated using the noncrossing approximation for dif-
ferent sets of parameters. S(T ) exhibits a maximum at low
temperatures and a sign change at higher T as observed in our
measurements. However, these curves are highly assymmetric
close to the maxima, which is not in agreement with our
experiments. To illustrate this, we show one curve from Ref.
[36] in Fig. 3 (model 3). The sign change of this curve is
expected above 300 K.

Another approach to discuss the thermopower of IV Eu
systems is based on the Falicov-Kimball model [37], which
consists of a combination of localized and itinerant states
with varying occupation due to thermal fluctuations [38,39].
However, in the zero-temperature limit, this model predicts an
integer valence, which is not valid for our materials. In fact, as
pointed out in Ref. [38], a complete theoretical description of
4 f fluctuating states requires a combination of the periodic
Anderson model with the Falicov-Kimball model. This ap-
pears to be rather challenging and has not been accomplished
till now.

All models discussed so far are microscopic ones in the
sense that they assume either a certain shape of the DOS
or a specific type of interaction and then calculate the ther-
mopower. In what follows, we use a different approach,
namely, we evaluate directly the effect of the valence change
with temperature on the thermopower without considering
the reason for the valence change. In fact, any temperature
gradient in our materials is accompanied by a valence gradient
because of the strong T dependence of ν. This gives rise
to a thermopower contribution SVF due to the variation of
the number of available charge carriers or, more precisely,
the change of the chemical potential μ along the samples.
It has been shown [40,41], that this anomalous contribution
is approximately proportional to the valence change with
temperature dν/dT . In brief, this relation is obtained from the
generalized transport equations by using the electrochemical
potential μ + e
 instead of the electrical potential e
, e
being the electron charge. For simplicity, we only consider the
isotropic situation, where the transport coefficients are scalar.
The thermopower then contains two contributions:

S = L12/L11 − 1

e

dμ

dT
= Sref + SVF. (1)

L11 and L12 are the transport coefficients. If dμ/dT can be
ignored, then S = Sref = L12/L11, which is the well-known
relation for S of (physically) homogeneous materials without
a temperature-dependent valence, i.e., Sref corresponds to the
thermopower of a suitable reference material. We approxi-
mate this contribution by a linear thermopower Sref ∝ T , as
expected for a simple metal. The second term of Eq. (1) arises
due to the temperature dependence of the chemical potential.
Assuming that this is dominated by the valence effect, we may
replace the temperature derivative of the chemical potential
by the one of the valence. In this case, the anomalous ther-
mopower contribution has the form

SVF = −1

e

∂μ

∂ν

dν

dT
= −A1

dν

dT
. (2)

In Refs. [40,41], it was suggested that ∂μ/∂ν should be of the
order of the Fermi energy EF which was then related to the
DOS D as EF ∝ 1/D. However, since in our case the valence
change arises due to excitations from the J = 0 state of Eu3+

to the J = 7/2 state of Eu2+, the relevant energy scale is
rather the excitation energy Eexc, so eA1 should be of similar
magnitude as Eexc. Above, we have already used this energy as
an estimate for the valence fluctuation temperature TVF. The
respective values determined from fits to the interconfigura-
tion fluctuation model are given in Table I.
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In conclusion, we get a very simple relation for the ther-
mopower of materials with a strongly temperature-dependent
valence:

S = A2T − A1
dν

dT
. (3)

At this point, we would like to mention that there is an
important difference between our linear-in-T term to the
thermopower and the linear thermopower contribution often
added in literature to account for light charge carriers — a
procedure that may be questioned as discussed above. In our
case, the simple sum for the two thermopower contributions
stems from using the electrochemical potential, which con-
sists of two components, the electrical and the chemical one,
i.e., the sum describes the thermopower of a single channel
but with a temperature-dependent number of carriers.

We fitted our thermopower curves for EuNi2P2 and
EuIr2Si2 to Eq. (3) omitting the data below 30 K in case of
EuIr2Si2. To reduce the scattering, we used modeled curves
for ν(T ) from Ref. [7] (EuNi2P2) and Ref. [14] (EuIr2Si2)
instead of measured valence data to calculate the derivatives
dν/dT . The results of this procedure are shown in Fig. 2 in
comparison to the data. The curves are also plotted in Fig. 3
[fit using ν(T )] to allow for a direct comparison to the other
calculated curves. The fit parameters (e/kB)A1 and A2 are
given in Table I.

It turns out that the simple relation Eq. (3) describes the
measured thermopower curves fairly well. The fit parameters
A1 and A2 are mainly determined by the height of the maxi-
mum in S(T ) and the thermopower value at room temperature.
By contrast, the position of the maximum Tmax depends only
weakly on the fit parameters and mostly on the derivative
dν/dT . Tmax is very well reproduced by the fit, especially for
EuIr2Si2. This provides strong evidence that the maximum
in S(T ) is indeed caused by the temperature-dependent Eu
valence and not by Kondo interaction. Further confirmation
for this picture is given by the values for the fit parameter A1.
For EuIr2Si2, (e/kB)A1 actually lies within the range expected
from Eexc/kB. The agreement for EuNi2P2 is less perfect,
which is discussed below.

The quality of the fits is also illustrated by Fig. 3, which
compares the different calculated thermopower curves and fits
to the measured data of EuNi2P2 and EuIr2Si2. Only model
2 provides a similar good description of the data as Eq. (3),
however, by using four instead of two free parameters. For
EuIr2Si2, the differences between these two curves and the
data are small. In the case of EuNi2P2, the actual maximum in
S(T ) is at slightly lower T than predicted by our fit to Eq. (3).
However, the overall shape of S(T ) is well reproduced by this
relation, while model 2 oscillates around the data.

Altogether, the agreement between fit and data is better
for EuIr2Si2 than for EuNi2P2. The same holds for the fit
parameter (e/kB)A1 if compared to Eexc/kB. These deviations
may be partially due to the use of fitted data for ν(T ). Any
deviation between these curves and the real valence will also
lead to systematic errors in the derivatives dν/dT used in our
fitting of S(T ). The valence fit for EuIr2Si2 has been obtained
from valence data measured on samples grown under the same
conditions as those investigated here. By contrast, the valence
curve for EuNi2P2 stems from a fit to susceptibility data,

which is only an indirect measure for ν(T ). The respective
fit parameters reproduced the Mössbauer isomer shift with
limited accuracy, in particular below 40 K, i.e., in the region
of our maximum in S(T ). Therefore, we may not exclude that
the deviations between the peak positions of data and fit for
EuNi2P2 are caused by uncertainties in ν(T ) or due to sample
dependencies.

Actually, the quality of our fits to S(T ) is rather surprising
taking into account the approximations used in the derivation
of Eq. (3). Our assumption of a linear reference thermopower
is a very simple one. Although Sd ∝ T in the free-electron
approximation at very low and at high temperatures, these
two regimes have different slopes and are connected by a
crossover region with deviating behavior [21]. Moreover,
reference materials for EuNi2P2 and EuIr2Si2 in the sense
of Eq. (1) may still exhibit a hybridization between 4 f and
conduction electrons. This may be the reason for the large
values for A2 obtained from our fits. They are significantly
larger than those observed in simple metals, which typically
reach thermopower values of 2 to 10 μV/K at 300 K [21].
It may also give rise to a nonlinear behavior of Sref (T ).
Thus, it appears that deviations from Sref ∝ T are rather to
be expected than unusual. Another assumption, which may
be questioned, is the temperature-independent relation be-
tween μ and ν. It allowed us to use a constant parameter
A ∝ Eexc in Eq. (2). However, early Mössbauer spectroscopy
experiments on EuIr2Si2 suggested a temperature-dependent
excitation energy Eexc [8,42]. It is, therefore, not trivial that
we may fit our data using a constant value for A1. Despite
these approximations, Eq. (3) provides a very good and simple
description of the thermopower of EuNi2P2 and EuIr2Si2 with
only two fit parameters. Since relation Eq. (3) uses directly the
temperature dependence of the valence and does not assume
a specific functional form of S(T ), it might be applicable
more generally. Systematic investigations on a larger number
of materials with a strong temperature dependence of the
valence are necessary to confirm this possibility. The VF
materials Eu3Pd20Ge6 and Eu4Pd29+xB8 mentioned above
have rather weak temperature dependencies of their valence
[3,6]. Therefore, SVF is expected to be small, which is in
line with the relatively small thermopowers observed in these
materials.

Our analysis of the thermopower of EuNi2P2 and
EuIr2Si2 revealed that the large values and the characteristic
temperature dependencies are not caused predominantly by
Kondo interaction between Eu and conduction electron states,
but arise mainly from the strong temperature dependence of
the Eu valence. Both the position and the height of the maxima
in S(T ) are in line with this scenario. This demonstrates that
thermal valence fluctuations between distinct Eu states play
an important role in these materials at least above 10 K.

V. SUMMARY

We studied the thermoelectric transport properties of the
VF compounds EuNi2P2 and EuIr2Si2. The thermal con-
ductivity of these materials shows no unusual behavior. By
contrast, the thermopower of EuNi2P2 and EuIr2Si2 exhibits
large values and a characteristic temperature dependence. We
were able to explain this behavior taking into account the
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temperature dependence of the Eu valence, which leads to
an additional thermopower contribution due to variations in
the chemical potential. Further experimental and theoretical
investigations on the thermopower of materials with a strongly

temperature-dependent valence are necessary to evaluate the
relevance of this effect in general. Our results confirm that
valence fluctuations have to be taken into consideration for an
understanding of EuNi2P2 and EuIr2Si2.
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