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Abstract
Hepatitis D virus (HDV) is a global health threat with more than 15 million
humans affected. Current treatment options are largely unsatisfactory leaving
chronically infected humans at high risk to develop liver cirrhosis and
hepatocellular carcinoma. HDV is the only human satellite virus known. It
encodes only two proteins, and requires Hepatitis B virus (HBV) envelope
protein expression for productive virion release and spread of the infection. How
HDV could evolve and why HBV was selected as a helper virus remains
unknown. Since the discovery of Na+-taurocholate co-transporting polypeptide as
the essential uptake receptor for HBV and HDV, we are beginning to understand
the interactions of HDV and the immune system. While HBV is mostly regarded
a stealth virus, that escapes innate immune recognition, HBV-HDV coinfection is
characterized by a strong innate immune response. Cytoplasmic RNA sensor
melanoma differentiation antigen 5 has been reported to recognize HDV RNA
replication and activate innate immunity. Innate immunity, however, seems not
to impair HDV replication while it inhibits HBV. In this review, we describe what
is known up-to-date about the interplay between HBV as a helper and HDV’s
immune evasion strategy and identify where additional research is required.

Key words: Hepatitis D virus; Hepatitis B virus; Innate immunity; Pathogen-associated
molecular pattern molecules; Immune evasion; Immunosuppression
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Core tip: Hepatitis D virus (HDV) is the only known human satellite virus requiring
hepatitis B virus (HBV) coinfection for productive viral release. However, it was
recently shown that HDV can be disseminated by viruses other than HBV in
experimental setups, so it remains unexplained why HDV chose HBV as a helper virus.
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As HDV might possibly profit from HBV mediated immunosuppression, we first focus
on recent findings on HDV recognition by the innate immune system. Later on, we
summarize partially controversial data on immunomodulatory mechanisms of both, HBV
and HDV.
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INTRODUCTION
First identified in 1977 by Rizzetto et al[1], Hepatitis D virus (HDV) represents a unique
pathogen that defines it’s stand-alone genus Deltavirus. Eight genotypes of HDV
varying in their RNA-genome sequences have been described. As a satellite RNA
virus,  HDV  does  not  encode  its  own  envelope  proteins  for  packaging  of  its
ribonucleoprotein (RNP) and therefore depends on the envelop glycoproteins of the
hepatitis B virus (HBV) for virion assembly, envelopment and transmission. HDV has
a broad cell and host tropism and, theoretically, several virus genera can provide help
by enveloping the HDV RNP[3]. Clinically, however, HDV infection has so far only
been  described  as  coinfection  with  HBV  or  as  a  superinfection  of  chronic  HBV
carriers. Both, co- and superinfection may lead to HDV persistence and inflammatory
liver disease, called hepatitis D. Currently, World Health Organization estimates that
15-20 million people are infected with HDV worldwide, while others predict up to 70
million carriers.

The pathogenesis  of  hepatitis  D has been recently summarized by Koh et  al[6].
Coinfection with HBV and HDV tends to result in both, acute hepatitis B and D at the
same time, leading to most severe disease. In a superinfection scenario, HDV profits
from pre-existing hepatitis B surface antigen (HBsAg) expression for progeny virus
production but at the same time decreases HBV replication rates[7,8]. Chronic hepatitis
D is  the viral  hepatitis  form that is  most likely to lead to liver cirrhosis and it  is
associated with a significant risk of hepatocellular carcinoma development and high
mortality rates[6].  The reasons for  more severe disease progression in HBV-HDV
infection  compared  to  HBV  monoinfection  have  not  been  ultimately  resolved.
Chimpanzee studies indicate that liver damage by HBV is immune mediated whereas
in HDV infection it is mainly cytopathic[9,10]. Direct cytopathic effects and induction of
liver fibrosis by HDV antigen (HDAg) were also indicated in in vitro studies[11-14].

Current treatment options rely on interferon alpha and are largely unsatisfactory
leaving chronically infected at high risk to develop liver cirrhosis and hepatocellular
carcinoma. New treatment options include interferon lambda, a farnesyl transferase
inhibitor (Lonafarnib), the entry inhibitor peptide Mycludex B (Bulevirtide), nucleic
acid  polymers  (e.g.  REP 2139-Ca)  that  are  applied alone or  in  combination with
interferon and show promising results in phase II clinical trials[6].

HDV
The viral genome of HDV is a single-stranded, circular, negative sense RNA with a
length of approximately 1680 nucleotides. Due to broad base pairing within the RNA
molecule, the genome appears as a double stranded, rod-like structure resembling a
plant viroid. During HDV replication, exclusively taking place in the nucleus, three
distinct RNAs, which includes the genome, the positive-stranded antigenome, and
viral  mRNA,  are  generated  by  host  RNA  polymerases.  RNA-Pol  I  drives  the
transcription of  genome to  antigenome in  the  nucleolus,  whereas  RNA-Pol  II  is
responsible for genome replication using the antigenome as template on the one hand
and for  transcription  of  mRNA in  the  nucleoplasm on the  other  hand.  Genome
replication  functions  via  a  double  rolling-circle  mechanism.  RNA  oligomers  of
genomic and antigenomic orientation are generated, followed by self-cleavage into
monomers through genome and antigenome intrinsic ribozyme activity, respectively.

Although there are several open reading frames within the HDV genome, only a
single one is actively transcribed leading to the expression of two isoforms of HDAg.
The small HDAg (S-HDAg) is composed of 195 amino acids, and the large HDAg (L-
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HDAg) is comprised of 214 amino acids. Initially, only S-HDAg is expressed because
a termination codon prevents protein translation of L-HDAg. In order to produce the
large  isoform,  the  stop-codon  (UAG)  within  the  antigenome  is  mutated  into  a
tryptophan codon (UGG) by the cellular enzyme Adenosine Deaminase Acting on
RNA (ADAR1). ADAR1 is an “RNA editor” induced by interferon. Transcription of
this modified genome into mRNA extends the open reading frame until the next stop
codon is reached, resulting in the translation of L-HDAg harbouring an additional 19
C-terminal amino acids[23,24].

For both isoforms, post-translational modifications play an important role. For S-
HDAg it has been shown that phosphorylation of a serine residue enables interactions
with the cellular RNA-Pol II, which is essential for HDV replication. Due to its C-
terminal elongation, L-HDAg incorporates a nuclear export signal and a prenylation
site, which allows farnesylation. The farnesylated form of L-HDAg inhibits HDV
replication by masking a conformational epitope present in S-HDAg that is essential
for trans-activating HDV RNA replication. The farnesylated L-HDAg is also crucial
for virion assembly through its promotion of the interaction of the viral genome with
a tryptophan-rich domain in the cytosolic loop of HBsAg. Common arginine rich
motifs within S- and L-HDAg allow their mutual binding to RNA, leading to the
formation of the so-called RNP complex, which consists of HDV genomic RNA and
both HDAg isoforms. The RNP is subsequently exported into the cytoplasm, where
virion assembly takes place. Export is likely mediated by nuclear export factor 1 and
the  cellular  RNA  export  factor  REF/Aly.  During  these  different  steps  of  viral
replication, HDV induces a pronounced cytokine response and activates a broad
range of host defence mechanisms[31-33]. This review focuses on the mode of HDV-
detection by cellular pattern recognition receptors (PRRs) and selective modulatory
properties  of  the  HDV  antigens.  Additionally,  immune-evasive  and  immuno-
suppressive strategies of HDV, and its coexisting host virus HBV, are discussed.

PATTERN RECOGNITION OF VIRUSES
The immune system of vertebrates acts as protective mechanism against damage on
cellular and organism level, and is subdivided into two branches, the innate and the
adaptive immune systems[34]. Innate immunity, as the evolutionary older system, is
the frontline of host defence which upon infection with a pathogen initiates and fine-
tunes  pathogen-specific  adaptive  immunity.  For  this  purpose,  innate  immunity
possesses the capacity to distinguish between self and non-self, as well as different
classes  of  pathogens  by recognizing certain  structural  patterns.  This  function is
enabled by the expression of PRRs that detect distinct pathogen associated molecular
patterns, also referred to as “PAMPs”, such as unusually structured or located nucleic
acids or  characteristic  bacterial  proteins  which are  not  found in a  given cellular
compartment under physiological conditions. In the case of viral infections, innate
immune sensing mostly depends on characteristic modifications of viral genomes or
genome-replication intermediates  and mRNA as well  as  special  RNA structures
which are normally absent in eukaryotic cells.

Extensive studies have narrowed viral RNA detection down to two families of
PRRs: Endosomal Toll like receptors (TLRs) and cytosolic RIG I like receptors (RLRs)
(Figure 1). The latter consists of two activating PRRs, retinoic acid inducible gene 1
(RIG I) and melanoma differentiation associated gene 5 (MDA5), as well as a third
signalling-incompetent  accessory  molecule  termed  laboratory  of  genetics  and
physiology 2. Double-stranded RNA regions are both required for RIG I and MDA5
activation,  although  MDA5 was  reported  to  bind  longer  double-stranded  RNA
whereas RIG I activation is mostly thought to be triggered by shorter double-stranded
RNA or hairpin structures with a 5’ phosphorylation. Interaction of RLRs with their
specific RNA patterns results in intramolecular conformational changes, exposing
their  “Caspase  activation and recruitment  domain” site  for  interaction with  the
mitochondrial antiviral signalling (MAVS) protein[37]. Subsequently, MAVS functions
as  a  scaffold  and  initiates  two  divergent  immune  signalling  pathways:  (1)
Proinflammatory cytokine release is provoked in a nuclear factor “kappa-light-chain-
enhancer” of activated B-cells (NF-κB) dependent manner; and (2) Phosphorylation
and nuclear translocation of “Signal transducer and activator of transcription” (STAT
1/2) induces production of interferon (IFN). IFN signalling activates the expression of
interferon-stimulated  gene  (ISGs)  by  modulating  cellular  homeostasis  in  both
autocrine and paracrine manners, resulting in an antiviral state that protects both
infected and noninfected cells and suppresses viral replication and progeny virus
production.
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Figure 1

Figure 1  RNA-sensing by pattern recognition receptors. Intracellular pathogenic RNA is sensed by endosomal Toll-like receptors (TLRs) and retinoic acid
inducible gene I (RIG I) like receptors. TLR3 detects double-stranded RNA (dsRNA), whereas TLR7 and TLR8 detect single-stranded RNA in a sequence-specific
manner and signal via their Toll/interleukin-1 receptor homology domains. RIG I and melanoma differentiation antigen 5 bind cytoplasmatic dsRNA structures and
activate conformational changes leading to the exposure of Caspase activation and recruitment domains (CARDs). Signalling-deficient laboratory of genetics and
physiology 2 only consists of a helicase and a C-terminal domain and functions as an accessory receptor. This enables interaction of CARDs with mitochondrial
antiviral signalling protein (MAVS), resulting in subsequent signalling cascades that release nuclear factor “kappa-light-chain-enhancer” of activated B-cells inducing a
proinflammatory cytokine response. MAVS also activates interferon regulatory factor 3/7 signalling and signal transducers and activators of transcription 1/2-
dependent type I interferon production and antiviral state with upregulation of interferon-stimulated genes in the host cell. TLRs: Toll-like receptors; RIG I: Retinoic acid
inducible gene I; LGP2: Laboratory of genetics and physiology 2; ssRNA: Single-stranded RNA; CTD: C-terminal domain; RLRs: RIG I like receptors; NF-κB: Nuclear
factor “kappa-light-chain-enhancer” of activated B-cells; MAVS: Mitochondrial antiviral signalling protein; TIR: Toll/interleukin-1 receptor; dsRNA: Double-stranded
RNA; MDA5: Melanoma differentiation antigen 5; CARDs: Caspase activation and recruitment domains; IRF: Interferon regulatory factor; STAT1/2: Signal transducers
and activators of transcription 1/2; Type I IFN: Type I interferon; ISGs: Interferon-stimulated genes.

PATTERN RECOGNITION OF HDV
Partial dependence on RLR signalling has been reported by Suárez-Amarán et al[38] in
immune pattern recognition of HDV. The authors used adenovirus-associated virus
(AAV) to deliver HBV and HDV genomes (AAV-HBV and AAV-HDV) into murine
liver cells to circumvent species-specific limitations of viral entry. Both wildtype (wt)
and MAVS-knockout (MAVS-ko) mice showed HDV gene expression and replication,
but the innate immune response to HDV infection was diminished in MAVS-ko cells.
HDV-induced immune activation resulting in type I and type III IFN production was
later  found to  be dependent  on MDA5 in both primary human hepatocytes  and
hepatoma-cell  lines[32].  While pattern recognition of HDV RNA is considered the
primary source of immune activation, direct induction of IFN-signalling by L-HDAg
has also been reported[39]. Nevertheless, pattern recognition of HDV infection has not
been conclusively resolved.  As residual  IFN-responses are still  detectable in the
absence of RLR-signalling[38],  the impact of synergic immune activating pathways
require further investigation. Additionally, the nature of HDV-specific molecular
patterns that activate PRRs and changes in HBV-induced cellular immunoregulatory
pathways are  still  poorly characterized.  Considering that  HDV only occurs  as  a
satellite  virus  and  chose  HBV  as  a  helper  under  natural  conditions  although
theoretically a broad variety of viruses could provide their envelops[3], the detailed
characterization of pattern recognition should regard potential confounding effects of
HBV coinfection.

IMPACT OF HBV COINFECTION
The impact  of  HBV infection on innate  immunity has  been subject  to  numerous
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studies  and  discussions.  Numerous  studies  proved  that  HBV  is  sensitive  to
interferons  and  other  antiviral  cytokines  in  vivo  in  the  liver[40,41],  in  primary
hepatocytes  or  in  HepaRG cells  that  have  maintained their  sensitivity  to  innate
immune stimulation[42,43]. Cytokines can block HBV replication at transcriptional and
posttranscriptional steps (Summarized in: Xia et al 2017) and affect cccDNA stability
by inducing the enzymes that edit and subsequently digest it[45,46].  Up to date, the
discussion is ongoing whether HBV can actively interfere with or suppress innate
immunity, and thus support HDV persistence.

HBV is primarily regarded a stealth virus,  neither activating nor inhibiting an
innate immune response during virus replication[47-49]. Macrophages may, however,
recognize virus particles  early during infection[50,51].  This  may be responsible  for
suppression of HBV replication shortly after infection and allow to prevent early
activation of adaptive immunity. Several HBV proteins have been reported to have
distinct features resulting in active interference with immune recognition or immune
suppression. A number of these studies were done in settings where HBV proteins
were overexpressed resulting in controversial discussions about the physiological
relevance of the results[42,52-55]. An inhibition of interferon responses by HBV, however,
has also been described in mice with humanized livers[56]. An inhibition of interferon
responses by HBV, however, has also been described in mice with humanized livers.
One  would  expect  these  livers  to  be  close  to  the  human physiological  situation
although HBV replication levels may be higher due to the lack of adaptive immunity
and a cross-talk between human hepatocytes and murine non-hepatocytes.

A recent publication showed that HDV can be efficiently disseminated by helper
viruses  other  than  HBV  from  different  genera,  including  flavivirus,  vesicular
stomatitis  virus  and  the  hepatitis  C  virus  in  vitro  and  in  mice[3].  HDV particles
packaged within a vesicular stomatitis virus envelope were able to overcome liver
specificity conferred by the HBV envelope proteins and efficiently infect  human
embryonic kidney cell derived 293 cells[3].  In the context of tissue-specific pattern
recognition, liver tropism may only confer a minor advantage for HDV since dsRNA-
detecting TLR3, RIG I and MDA5 functions have been verified despite low protein
expression levels in vitro[42,57,58] and in vivo[59].

From an evolutionary standpoint, one would argue that coinfection with HBV must
be favourable for HDV, leading to the question of what benefit this confers.  One
possible  explanation  could  be  that  HBV  does  indeed  prevent  or  block  innate
immunity and that HDV profits from this. Regarding HDV recognition by MDA5,
downregulation of MAVS-induced signalling by HBV-encoded X-protein has been
proposed[60-64]. Interference has also be reported by the HBV polymerase[65] or by HBV
induced microRNA146a[66] – all of which could support the survival of HDV infected
cells.  Proving this,  however,  requires  additional  studies  using infection  models
because there are potential confounding effects from overexpression of HBV proteins
in these experiments. The impact of HBV infection on downstream immune pathways
also  remains  controversial.  Direct  blocking  of  interferon-signalling  by  HBV
polymerase[52,54,67], HBV envelope protein[68], X-protein[69,70] or microRNA 146a[71] has
been reported, which could also benefit HDV infection. These effects may well be
subtle as HDV envelopment requires a certain level of interferon activity to allow
induction of expression of the interferon-stimulated ADAR1 that is essential for L-
HDAg  expression.  Regardless  of  the  exact  mode  of  HBV-induced  immuno-
suppression, dependency of HDV on help to survive innate immunity seems likely,
given that it only encodes for a single protein.

SENSITIVITY OF HDV TO ANTIVIRAL CYTOKINES
In addition to exploiting immunosuppressive and immune-evasive mechanisms,
HDV possesses some resistance to interferon-mediated antiviral effects. In contrast to
HBV, HDV induces interferon signalling in both cell lines and mice without viral
replication being affected[31,32,38]. The most prominent interferon-induced protein in
HDV infection is ADAR1, which both inhibits viral replication and promotes RNA
packaging. ADAR1 exists in two isoforms, constitutively expressed short ADAR1p110
present in the nucleus and IFN-inducible long ADAR1p150 which is both present in
the cytoplasm and nucleus. In untreated Huh7-cells, non-inducible ADAR1p110 is
mainly responsible for L-HDAg expression, whereas ADAR1p150 can enhance HDV-
RNA editing rates up to one-third upon IFN-treatment[24,74,75]. Though ADAR1p150
editing  was  hypothesized  to  be  partially  responsible  for  the  antiviral  effects  of
interferon-α therapy, this effect seems to be limited due to additional regulatory
mechanisms.

HDV  production  appears  to  remain  unaffected  or  even  promoted  during
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proinflammatory  cytokine  responses.  Various  groups  have  reported  L-HDAg
enhanced  NF-κB  translocation  to  the  nucleus  and  the  upregulation  of
proinflammatory genes in response to transfection of HDV-encoding plasmid[76-78].
This might be necessary for viral assembly as L-HDAg translocation from nucleus to
cytoplasm was  reported  to  be  induced by  NF-κB activation.  However,  all  these
experiments were performed as transient HDAg overexpressions, which could also
induce unfolded protein response in the endoplasmatic reticulum, leading to NF-κB
activation[80,81]. These circumstances were caused by unavailability of HDV-susceptible
cell  lines until  the identification of Na+-taurocholate co-transporting polypeptide
(NTCP) as an essential factor for HBV/HDV infection[82]. Newly developed infection
systems  utilizing  AAV-HDV,  as  well  as  NTCP-expressing  cell  lines  and  mouse
models,  should  be  used to  strengthen previously  published results  on  antiviral
activity of cytokines against HDV.

IMMUNE EVASION BY HDV
Despite the very limited coding capacity of its genome, HDV has evolved mechanisms
to escape immunity (Figure 2). First of all, the HDV genome avoids direct contact with
cytoplasmic or endosomal PRRs by replicating in the nucleus, taking advantage of
cellular compartmentalization. Furthermore, it forms a circular RNA genome without
“open” 5’ or 3’ ends to prevent PRR binding, as circular RNA has been reported not to
activate  RIG  I[83],  and  an  RNP  complex  reducing  the  binding  of  PRRs  to  virus-
characteristic structures. Transfection of HDV-cDNA and HDV-encoding plasmid
pSVL(D3) in Huh7 cells reduced STAT-signalling and expression of ISGs in response
to IFN-α treatment and inhibited phosphorylation and nuclear translocation of STAT-
proteins. This direct inhibition of interferon signalling was hypothesized to account
for poor responsiveness to IFN treatment in infected patients. However, these results
have not been reproduced in HDV-infection so far and, contradictory to the complete
blocking of IFN signalling observed in this study, HDV triggers immune activation via
MDA-5[32].  Whether HDV immune recognition by alternate PRR plays a role and
which  HDV-RNA structures  trigger  HDV-immune  recognition  still  needs  to  be
identified. It also remains ambiguous if HDV initiates IFN production in infected
patients, since as to the authors’ knowledge no data exist on this so far. HDV also
offers little for adaptive immunity to attack since there is only two proteins expressed,
and S-HDAg and L-HDAg largely overlap in their protein sequence. Thus, few HDV-
derived peptides can be presented on infected cells and recognized by T cells. In a
systematic screen to define CD8 epitopes, the overall number of epitopes identified
was very low compared to other hepatotropic viruses[85]. When sequences of HDV
RNA and HLA class I alleles that present epitope peptides to CD8+ T cells in patients
with persistent HDV infection were analyzed, HDV variants were identified that can
escape T cell-mediated immunity[85,86]. As an RNA virus, HDV genomes are mutated
during virus replication allowing immune escape variants to emerge. Hereby, HDV
escape from the immune response was associated with uncommon HLA class I alleles,
indicating that HDV has evolved, at the population level, to evade recognition by
common HLA class I alleles[86,87]. T cell exhaustion doesn’t seem to be a major reason
for  failure  to  clear  HDV. Activated HDV-specific  CD8+ T cells  target  conserved
epitopes and seem to contribute to disease progression. Even memory-like HDV-
specific CD8+ T cells remain functional but are unable to clear HDV because of the
presence  of  escape  variants[86,87].  Thus,  HDV mainly  escapes  adaptive  immunity
because there are so few epitopes that may be presented by human HLA haplotype
repertoire and recognized by T cells.

CONCLUSION
As the only known satellite  virus known in humans,  HDV has chosen HBV as a
helper virus although HDV per se is promiscuous. HDV seems to profit from the co-
existence of HBV. Whether the advantage conferred is the strict liver tropism of HBV
where pattern recognition is tuned down due to the constant exposure to bacterial
components,  or  whether  active  HBV-induced  immunosuppression  contributes
remains open. HDV shows some capabilities to escape immune responses and also a
certain degree of resistance to interferon activity. Detailed studies on the mode of
HDV-induced immune regulation and immune activation could contribute valuable
key information to target this virus and develop new therapies against this fatal
disease.
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Figure 2

Figure 2  Immune evasion and immunomodulation in hepatitis D virus infection. Pattern recognition of hepatitis D virus RNA was reported to be both inhibited by
hepatitis B virus (HBV) specific proteins like HBV X protein, HBV envelope proteins, HBV polymerase as well as the hepatitis delta antigen and in particular its large
variant. Inhibitions of major pathways are indicated with red flat arrows, activation of cytokine response is indicated in green pointed arrows. HBV: Hepatitis B virus;
HDV: Hepatitis D virus; HBx: Hepatitis B virus X protein; HBV env: Hepatitis B virus envelope proteins; HBV pol: Hepatitis B virus polymerase; HDAg: Hepatitis delta
antigen; L-HDAg: Large hepatitis delta antigen; TLRs: Toll-like receptors; RIG I: Retinoic acid inducible gene I; LGP2: Laboratory of genetics and physiology 2;
ssRNA: Single-stranded RNA; CTD: C-terminal domain; RLRs: RIG I like receptors; NF-κB: Nuclear factor “kappa-light-chain-enhancer” of activated B-cells; MAVS:
Mitochondrial antiviral signalling protein; TIR: Toll/interleukin-1 receptor; dsRNA: Double-stranded RNA; MDA5: Melanoma differentiation antigen 5; CARDs: Caspase
activation and recruitment domains; IRF: Interferon regulatory factor; STAT1/2: Signal transducers and activators of transcription 1/2; Type I IFN: Type I interferon;
ISGs: Interferon-stimulated genes.
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