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Abstract
Direct numerical simulation based on incompressible Navier–Stokes equations with an 
immersed boundary method is used to simulate accelerating porous media flow through 
a bed of uniform spheres arranged in hexagonal close packing order. The transient flow 
is realised by driving initially resting fluid by a constant pressure gradient. A wide spec-
trum of Reynolds number based on the sphere diameter and volume-averaged velocity is 
considered, which ranges from creeping flow up to a Reynolds number of approximately 
350, where turbulent flow structures are evident inside the pores. It is found that nonlinear 
dependence of the volume-averaged velocity with respect to the applied pressure gradi-
ent is the consequence of emergence of streamwise jets and the accompanying streamwise 
vortices, as previously observed for other sphere pack arrangements. Furthermore, two 
distinct flow modes are identified in the steady flow regime which satisfy full geometric 
symmetries. The flow then becomes unsteady around Reynolds number of 90 which coin-
cides with a partial breaking of the symmetries, and pore-scale turbulence emerges once 
all the symmetries vanish when Reynolds number is larger than 200. For all the considered 
unsteady flow, independent of being turbulent or not, we observe a consistent sequence of 
flow structure evolution during the flow development with progressively broken symme-
tries albeit at widely varying instantaneous Reynolds numbers. Moreover, we show that the 
symmetry breaking takes place in larger pore spaces first, then propagate into smaller pores 
located in downstream.

Keywords Direct numerical simulation · Porous media · Hexagonal sphere-pack · transient 
flow

1 Introduction

There are many real-world porous media flow problems that are transient rather than 
steady, for instance, flow through our respiratory system, a forest inside a developing 
atmospheric boundary layer, and wave-induced current inside a coral community (Lowe 
et al. 2008; Rogers et al. 2016). However the majority of the studies in the literature focus 
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on steady-state flow, with few exceptions such as Hill et al. (2001a) who numerically stud-
ied transient ordered/random sphere-pack flow being accelerated from rest, however only 
in the zero Reynolds number limit. Whilst the typical Reynolds number range of such flow 
is indeed low (i.e. viscosity-dominated), in some technical and environmental applications 
the governing non-dimensional number can be significantly higher than unity, meaning 
that the inertial influence is significant and even pore-scale turbulence may appear. For the 
steady-state flow, it is known that different flow regimes emerge depending on the Reynolds 
number, namely: steady linear, steady nonlinear, periodic/quasi-periodic nonlinear, chaotic 
or turbulent (Dybbs and Edwards 1984; Hill and Koch 2002). To our knowledge, how those 
flow regimes develop in transient (development) phase is yet to be investigated. Moreover, 
the precise Reynolds number limits to distinguish those flow regimes vary greatly in the 
literature—possibly due to the diverse porous media geometries that were considered—and 
they remain topics of active research. To contribute to this aspect, we consider a porous 
medium consisting of uniform touching spheres packed in the well-defined arrangement 
called hexagonal closed packing (HCP). Our motivation to choose such regular yet more 
complex sphere-pack geometry than some of the other popular geometries [e.g. simple 
cubic or face-centred-cubic (FCC)] is to address our knowledge gap between those simpler 
geometries and the random pack of spheres which is also frequently studied (e.g. Hill et al. 
2001a; Fand et al. 1987; Ghaddar 1995; Koch and Ladd 1997; Hill et al. 2001b).

Due to the high geometrical and dynamical complexities, the porous media flow is often 
treated macroscopically by means of the volume-averaged quantities and models. Though 
there exists well-established steady-state models, the time-dependent counterparts still 
require significant improvement. Currently, many of the unsteady models are constructed 
by extending the steady-state models. However, during the development phase towards 
equilibrium, the porous media flow would undergo a series of qualitative transitions, which 
may require new modelling approaches that are significantly different from the steady-state 
models. Consequently one may ask: Can we simply relate the intermediate states during 
development at certain transient Reynolds number to the fully-developed picture of the 
equivalent Reynolds number? Alternatively, the transient dynamics might be governed by a 
significantly different set of non-dimensional parameters. To address this question directly, 
we investigate the possible link between the qualitative change in the bulk quantities and 
the corresponding pore-scale flow structures. Potentially, this microscopic approach allows 
us to evaluate the generality of our findings, as it can be used as an additional phenom-
enological indicator to associate, or differentiate, the flow through different porous media 
geometries.

Independent of whether we study the time-dependent flow through porous media 
numerically or experimentally, the key technical challenge arises from the extreme spatio-
temporal resolution requirements. Experimentally capturing the fully three-dimensional 
flow structures, whose length-scales are typically in the order of the measurement probe 
size, is extremely challenging. The limited optical access imposed by the complex geom-
etry also hinders the possibility to perform any quantitative image-based measurements. 
Similarly, the high computational effort required to fully resolve the fine-scale dynamics 
inside the complex pores had been equally challenging on the simulation front. However, 
the recent development in advanced numerical techniques, such as immersed boundary 
methods combined with the conventional Navier–Stokes solvers (Chan-Braun et al. 2011), 
or lattice-Boltzmann method (Hill et al. 2001b; Jin et al. 2015; Suga 2016), opened up new 
possibilities to simulate such complex flow phenomena with a realistic effort.

Therefore we identified our research questions to be addressed in this paper as follow-
ing. At which Reynolds number nonlinearity (i.e. significant inertial footprint) emerges for 
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the hexagonal sphere pack flow? How does the nonlinearity manifest inside the pore space 
as structural features? Similarly, at which Reynolds number does the chaotic or turbulent 
flow regime appear, and how? Are the terms “chaotic” and “turbulent” flow equivalent in 
the flow configuration? If not, how do they differ? How those structural features in dif-
ferent flow regime emerge in the developing flow? Do each of flow regime follows own 
unique development “path”, or are those paths somehow related?

Consequently, we define the following objectives for this paper. We perform a series 
of fully-resolved direct numerical simulations of flow through hexagonal sphere pack at 
the close limit, covering different (steady-state) flow regimes by varying Reynolds number. 
The step between the Reynolds numbers need to be fine enough to adequately locate the 
limits of those flow regimes.

Due to the high computational effort required to generate such high-fidelity dataset, 
we limit ourselves to consider a single pressure gradient direction.We then investigate the 
pore-scale flow structure development in the transient flow in different flow regimes by 
identifying the key structural features for each flow state. These identified flow features are 
then compared with the equivalent structures in other more well-understood pore geometry 
in their steady-state.

In the subsequent section, we will detail the numerical methods and the simulation set-
up, then we will discuss about our simulation results in Sect. 3 including Reynolds number 
dependence of steady-state superficial velocity, and pore-scale flow structure analysis of 
linear, steady/unsteady nonlinear and turbulent flow regime. We will then conclude this 
paper with summary and outlook in Sect. 4.

2  Numerical Methods and Simulation Set‑Up

We employ our in-house fluid solver MGLET which solves the incompressible 
Navier–Stokes equations for the primitive variables (i.e. velocity and pressure) in the Car-
tesian coordinate system:

where � = [u, v,w] is velocity vector corresponding to the spatial coordinate � = [x, y, z] , 
whilst p is pressure. Moreover, � and � are fluid density and the kinematic viscosity respec-
tively. Those variables are stored in a staggered grid arrangement, and discretised in space 
using second-order central finite-volume method. An explicit three-step low-storage 
Runge–Kutta time integration scheme is used (Williamson 1980), which is combined with 
Chorin’s projection method to decouple velocity and pressure computations (Chorin 1968). 
Consequently, a pressure Poisson equation is solved for each Runge–Kutta substep, which 
is done by the Strongly Implicit Procedure (SIP) iterative solver (Stone 1968).

To resolve the complex geometry of the porous media, a second-order spatially-accurate 
mass-conserving immersed boundary method is employed (Peller et al. 2006; Peller 2010).

For completeness, an outline of the employed immersed boundary method is given as 
follows. For setting the internal boundaries, grid cells that are intersected by the geometries 
are omitted from the computation. Instead, the velocities which belong to the interface cells 
are determined in two different ways: first variant is done by point-wise interpolation based 

(1)∇ ⋅ � =0

(2)
��

�t
+ (� ⋅ ∇)� = −

1

�
∇p + �∇2

�,
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on the prescribed Dirichlet boundary conditions and the neighbouring fluid-phase cell val-
ues; whereas second variant is also based on the boundary conditions and the adjacent fluid 
cell values, but by computing the mass flux through the open face areas instead. The physical 
dimension of the second variant is made consistent with the first variant by dividing them by 
the open face areas, and their mass conservation property is maintained by distributing the 
divergence to the neighbouring cells based on their open areas (Peller 2010). In the frame-
work of the projection method, the first non-divergence-free variant is used to compute the 
advective and diffusive terms in order to determine the intermediate velocity field. Then, the 
interface cell values are overwritten by the divergence-free flux variant in prior to the pressure 
correction step.

The code is MPI-parallel. The parallelisation is done based on a conventional domain 
decomposition, which can be combined with a local grid refinement strategy by adding grid 
boxes with finer resolutions in an octree-like, hierarchical and overlapping manner (Manhart 
2004). The parallel implementation of the code has recently undergone intensive optimisation 
for the modern massively-parallel architectures, and the applied methods and improvements 
have been documented in Sakai et al. (2019).

In our simulations, the porous media flow domain is represented by a triply-periodic 
numerical box of [Lx, Ly, Lz] = [2d,

√
3d,

2
√
6d

3
] , which is filled by spheres with uniform 

diameter d. The spheres are arranged in the HCP arrangement:

where i, j, k = 0… n are the sphere indices in x, y, z-direction respectively. The resulting 
sphere pack has the following two global geometric symmetries: reflectional symmetry 
along z-axis, and �∕3-rotational symmetry on xy-plane. Moreover, the sphere pack forms 
two distinct types of pore geometries, namely tetrahedral and octahedral pores, which are 
depicted in Fig. 1. On a yz-plane, where we will extensively place our attention on in the 
following analysis part of this paper, there exist two local perpendicular reflectional sym-
metry lines for each pore type (cf. Fig. 1b) in addition to the global z-axis symmetry. Those 
two distinct types of pores are interconnected and appear in an alternating order in the 
x-direction, following a split-and-merging pattern as: one octahedral pore splitting into a 
pair of tetrahedral pores, and merging into the subsequent octahedral pore (cf. Fig. 1c and 
d).

Along such pore network, those two pore geometries are separated by 0.5d in x-direction.
The porosity of the sphere pack is at the close-pack limit of � ≈ 0.26 (or the correspond-

ing solid volume fraction � = 1 − � ≈ 0.74 ), which means all spheres are in contact to 
their neighbours.

To simulate the transient behaviour of our porous media flow, resting flow is accelerated 
by a constant pressure gradient in x-direction, namely ∇xp =

�p

�x
= C , and simulated until 

the amplitude of the following superficial (volume-averaged) streamwise velocity reaches 
to the steady-state level visually:

where V is the total volume of numerical domain including the solid phase. The velocity 
inside the solid phase is fixed at zero, therefore the intrinsic (i.e. fluid volume averaged) 

⎡⎢⎢⎣
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yc
zc
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=
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(3)⟨u⟩s = 1

V ∭ u(x, y, z) dx dy dz .
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Fig. 1  Visualisations of simulation domain: a 2D projection view on a xy-plane where the pores coloured in 
purple and red indicate tetrahedral and octahedral pores respectively; b 3D parallel projection view on a yz-
plane; c streamline visualisation of the pore network; d streamwise velocity contour at u = 2 together with 
the same quantity plotted on a yz-plane at x∕d = 1.5 where the opacity is scaled with the magnitude
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velocity ⟨u⟩i can be computed from ⟨u⟩s , as ⟨u⟩i = ⟨u⟩s∕�.For the cases with unsteady oscil-
lations, we simulate longer than the above criterion so that we can determine the long-term 
behaviour. Throughout this paper, we use the Reynolds number based on the superficial 
velocity ⟨u⟩s and sphere diameter d, as:

where � is the dynamic viscosity. Additionally, we refer to the Reynolds number based on 
the steady-state ⟨u⟩s as Resteady , where ⟨u⟩s is averaged over the statistical steady-state:

To control the Reynolds number, we fix ∇xp , d and � , whereas � is varied to adjust kin-
ematic viscosity � = �∕�.

Overall 16 simulations at their final grid resolutions are performed for this study, and 
their numerical and physical parameters are summarised in Table 1. All of the production 
simulations were performed on CoolMUC-2 Linux Cluster hosted by Leibniz Supercom-
puting Center of the Bavarian Academy of Sciences and Humanities (LRZ). The smaller 
cases with the d∕Δx = 160 spatial resolution (i.e. L1-6, SNL1-3) required 1 Intel Haswell 
node with 28 cores/node, whereas the larger cases with d∕Δx = 320 (SNL4, UNL1-2, 
T1-4) were performed on 32 nodes (896 MPI processes). Moreover, one additional simu-
lation with d∕Δx = 640 was performed to evaluate the grid convergence. Due to its sig-
nificantly larger problem size, this particular simulation was run on SuperMUC Phase 2 of 
LRZ, employing 256 Intel Haswell nodes and 7168 MPI processes. The total walltime of 
each simulation ranges between 1 and 9 days.

(4)Re =
�⟨u⟩sd

�
=

⟨u⟩sd
�

(5)Resteady =

�
�⟨u⟩sd

�

�

steady

.

Table 1  Numerical and physical parameters of the simulations performed for this study

The case name suffixes stand for: L, linear; SNL, steady nonlinear; UNL, unsteady nonlinear; T, turbulent

Case Resteady � [Nx,Ny,Nz] d∕Δx ΔT��∕K ΔT⟨u⟩s∕d
L1 5.62 × 10−7 5 × 10−7 [320, 280, 264] 160 40.5 1.34 × 10−8

L2 5.62 × 10−6 5 × 10−6 [320, 280, 264] 160 30.4 1.01 × 10−7

L3 1.12 × 10−5 10−5 [320, 280, 264] 160 30.4 2.01 × 10−7

L4 1.12 × 10−2 10−2 [320, 280, 264] 160 18.2 1.21 × 10−4

L5 1.12 × 10−1 10−1 [320, 280, 264] 160 18.6 1.23 × 10−3

L6 1 1 [320, 280, 264] 160 16.9 10−2

SNL1 10 10 [320, 280, 264] 160 84.4 5.00 × 10−1

SNL2 36 50 [320, 280, 264] 160 8.44 1.80 × 10−1

SNL3 48 75 [320, 280, 264] 160 5.63 1.60 × 10−1

SNL4 59 100 [640, 560, 528] 320 15.2 5.31 × 10−1

UNL1 91 200 [640, 560, 528] 320 25.33 1.36
UNL2 138 400 [640, 560, 528] 320 12.67 1.04
T1 209 800 [640, 560, 528] 320 16.45 2.04
T2 254 1200 [640, 560, 528] 320 4.38 6.59 × 10−1

T3 305 1600 [640, 560, 528] 320 3.80 6.86 × 10−1

T4 347 2000 [640, 560, 528] 320 4.56 9.34 × 10−1



587Flow, Turbulence and Combustion (2020) 105:581–606 

1 3

Darcy permeability K of the sphere pack was calculated a-posteriori using the result of 
the L1 case and the following 1D version of Darcy’s linear empirical relation:

The resulting normalised permeability K∕d2 = 1.731 × 10−4 compares reasonably to the 
one from the well-known Kozeny–Carman equation (Kozeny 1927; Carman 1937, 1956):

and the FCC sphere pack result of Chapman and Higdon (1992) 
( KChapman∕d

2 = 1.736 × 10−4).
We employ an equidistant grid point distribution in each direction, and the grid spac-

ing in all directions are approximately identical, i.e. Δx ≈ Δy ≈ Δz . Grid resolution of 160 
finite-volume cells per diameter up to Resteady = 48 , and 320 points per diameter between 
59 ≤ Resteady ≤ 347 are used. This particularly high grid resolution is required for our 
sphere pack simulations partially because all the spheres are in contact with their neigh-
bours at this close-pack limit. Sufficiently resolving the flow around the contact points is 
one of the most computationally expensive aspects of our simulations. A visual representa-
tion of the d∕Δx = 320 grid shown in Fig. 2 highlights the required high resolution around 
the critical regions.

Sufficiency of the grid resolution was validated in terms of the convergence of the 
superficial streamwise velocity at Re = 59 (cf. Fig.  3a) and Re = 347 (cf. Fig.  3b). 
The grid resolutions of d∕Δx = [80, 160, 320] were considered for the former, whilst 
d∕Δx = [160, 320, 640] were evaluated for the higher Reynolds number case. In case of 
Re = 59 , the discrepancy between the finest and the subsequent resolution in terms of 
the peak ⟨u⟩s was found at 0.85% , whereas 0.8% discrepancy with respect to the steady-
state value was observed. From this, we concluded that d∕Δx = 160 is sufficient. On the 

(6)∇xp = −
�

K
⟨u⟩s .

(7)
KKozeny

d2
=

�3

180(1 − �)2
= 1.783 × 10−4

Fig. 2  Grid visualisation on yz-plane at x∕d = 0 with d∕Δx = 320 resolution. a Overview of tetrahedral 
pore region; b zoom-up of the contact point in a 
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other hand, we concluded that d∕Δx = 320 is sufficient for the Re = 347 case since the 
peak value discrepancy of 0.06% (Fig. 3c) and the steady-state discrepancy of 2.5% were 
observed between d∕Δx = 320 and d∕Δx = 640 grid resolutions. Note that the relatively 
large discrepancy for the steady-state value can be attributed to the short averaging period 
for the highest resolution case due to the high computational effort. Also note that Fig. 3c 
exhibits convergences that are higher than second-order, which we attribute to gradual 
opening of the sphere contacting regions with increasing grid resolution. Those regions are 
otherwise impermeable, since the current immersed boundary method blocks an entire cell 
when multiple boundaries intersect within the cell. We decided to use d∕Δx = 320 even 
from Resteady = 59 to be on the safe side for the reason which will be introduced shortly, 
and the same philosophy applies to the maximum CFL number which was kept under 0.16.

Note that the above grid resolutions are significantly finer than the ones used in the 
previous numerical simulations of sphere-pack flow in the literature. For instance, Hill and 
Koch (2002) used, in their lattice-Boltzmann simulations, up to 98 lattices per diameter to 
simulate flow through a bed of uniform spheres in FCC arrangement up to Re = O(102) . 
Jin et al. (2015) performed direct numerical simulations of flow through a porous matrix 
consisting of periodically-placed infinitely-long square cross-section bars with up to 
Re = 700 , with 80 finite-volume cells per cross-sectional edge length. On the other hand, 

(a)

(c)

(b)

Fig. 3  Grid convergence study of: a Resteady = 59 and b Resteady = 347 case. The different line symbols indi-
cate different grid resolutions: ◦ , d∕Δx = 80 ; × , d∕Δx = 160 ; + , d∕Δx = 320 ; △ , d∕Δx = 640 . c Relative 
error of max(⟨u⟩s) with respect to the solution of the finest resolutions. Dashed line indicates 2nd-order 
convergence
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Chu et al. (2018) performed direct numerical simulations of flow through a staggered array 
of square cylinders up to Re = 1500 using 94 cells per unit square length. More recently, 
He et al. (2019) simulated the flow through a close-pack of spheres in FCC arrangement up 
to Re = 740 based on the superficial velocity using 250 points per sphere diameter. Note 
that all those studies focused on the steady-state dynamics when the pore-scale flow struc-
tures are already fully-developed, whereas our developing porous media flow forms infi-
nitely thin boundary layers next to the sphere boundaries when the flow is suddenly accel-
erated from rest. To resolve the thin developing boundary layers at adequate accuracy, it is 
essential to use such exceptionally fine grid resolutions.

3  Results and Discussions

3.1  Reynolds Number Dependence of the Steady‑State Superficial Streamwise 
Velocity

Although our main focus in this paper is the transient part for the porous media flow, first 
we discuss about the Reynolds number dependency of the steady-state superficial stream-
wise velocity. As it will become apparent, such information can be related to the evolution 
of the pore-scale flow structures that will be discussed in the following section. Steady-
state is visibly achieved for all the simulations, however, we observe that the flow with 
Resteady ≥ 91 becomes unsteady, therefore the values from the cases with above-threshold 
Reynolds number need to be treated with care.

To evaluate the above Re-dependence, we plot the normalised Darcy permeability using 
the simulated ⟨u⟩s and other parameters that are included in Eq. (6) as a function of Resteady 
in Fig.  4. Figure  4a illustrates that the Darcy permeability is independent of Reynolds 
number between 5 × 10−7 ≤ Resteady ≤ 1 , therefore the simulation results in this Reynolds 
number range are in accordance with Darcy’s linear relation between the imposed pressure 
gradient and ⟨u⟩s.

Some previous studies suggest the existence of a so-called pre-Darcy flow regime indi-
cated by localised increase of flow resistance (i.e. lower permeability) in comparison to 
the following linear Darcy flow regime (cf. Fand et al. 1987; Kececioglu and Jiang 1994; 
Baǧci et al. 2014; Kundu et al. 2016). For instance, Fand et al. suggested, albeit without 

(a) (b)

Fig. 4  Steady-state superficial streamwise velocity as a function of Reynolds number, in: a semi-logarith-
mic, b double-linear scale. Dotted and solid lines in b correspond respectively to: a = −1.679 × 104 and 
b = 1.028 × 104 ; and a = −4.844 × 104 and b = 7.980 × 104 in Eq. (8)
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supporting data, that the lower limit of Reynolds number where the Darcy’s law holds is 
around Re ≈ 10−5 (Fand et al. 1987). Our simulation results, however, do not support the 
existence of such flow regime which is associated with extremely low Reynolds number at 
least for this flow configuration, which agrees well with the experimental study of Farkas 
et al. that such flow regime cannot be observed (Farkas et al. 1999).

For Resteady > 1 , the non-dimensional pressure gradient appears to be linearly propor-
tional to Reynolds number, which supports the quadratic Forchheimer correction (Forch-
heimer 1901), namely:

where a can be set as − �

K
 as in Eq. (6), whereas b is referred to as Forchheimer coeffi-

cient. Notice that the gradient of the linear correlations slightly but noticeably differ in 
two different Reynolds number ranges, and the transition occurs somewhere between 
91 ≤ Resteady ≤ 138 . The above observation indicates the existence of the Reynolds num-
ber dependence for the Forchheimer coefficient. Particularly, the range 10 ≤ Resteady ≤ 59 
yields a = −1.679 × 104 and b = 1.028 × 104 , whereas the subsequent 91 ≤ Resteady ≤ 347 
cases result a = −4.8435 × 104 and b = 7.9804 × 104.

In the form of non-dimensional drag force employed in Hill et  al. (2001a), Hill and 
Koch (2002):

the current results yield:

This observation agrees with the experimental finding of Fand et al. that the gradient of the 
linear Re-dependence of permeability changes somewhere between Re = 80 and 120, and 
they relate it to the onset of unsteady oscillations (Fand et al. 1987). As you will see in the 
following discussion, indeed the first onset of unsteady oscillation was observed for our 
case at Resteady = 91 , which coincides with their observation. Although for different sphere 
pack geometry, Hill and Koch (2002) also reported such transition around Re = 160.

They reported F = 365 + 5.45Re for 20 < Re < 160 , and F = 462 + 4.93Re for 
Re > 160 , for their FCC sphere pack flow.

3.2  Steady‑State Pore‑Scale Flow Structures

In the following, we investigate the flow structures which appear inside the pores for vari-
ous Reynolds numbers at which the flow develops to a steady-state. In other words, the 
considered Reynolds number range covers from the very low (Darcy) limit up to the steady 
nonlinear regime, which we identify to be up to Resteady = 59 . We select four representative 
Reynolds numbers, namely Resteady = 10−5 and 10−2 (linear), 10 and 59 (steady nonlinear) 
and discuss their flow structures in detail. Due to the complex nature of the pore geometry 

(8)∇xp = a⟨u⟩s + b⟨u⟩2
s

(9)F =
∇xp d2

18(1 − �)�⟨u⟩s ,

(10)F = 685.726 (Resteady ≤ 1)

(11)F = 400.865 + 7.447Resteady (10 ≤ Resteady ≤ 59)

(12)F = 471.272 + 6.802Resteady (91 ≤ Resteady ≤ 347).
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in the hexagonal sphere pack, we study the two-dimensional cross-sectional view of the 
flow structures first. Then, when it is appropriate, we will supplement those 2D findings 
with the corresponding three-dimensional view.

At Re ≪ 1 , the flow behaves according to Stokes equation where viscous forces domi-
nate over inertial forces. Based on the Re-dependence of the streamwise superficial veloc-
ity shown in Fig. 4, we can expect that at Reynolds numbers larger than approximately ten 
nonlinearity emerges and the steady-state flow structure undergoes a series of transitions, 
which is in a good agreement with the previous observations as following.

For instance, using the measurements of flow inside complex rod porous media struc-
ture, Dybbs and Edwards (1984) distinguished between the linear and the steady nonlin-
ear flow regime by development of boundary layers from the porous media surfaces and 
the subsequent appearance of “inertial cores”, or streamwise jets existing outside of the 
boundary layers. The transition to the steady nonlinear flow regime takes place somewhere 
between Re = 1 and 10, and persists until Re = 150 where their flow starts to oscillate.

Hill et al. also observed such inertial core in their simple cubic and FCC sphere pack 
flow. Moreover, they showed that the critical Reynolds number for the onset of unsteady 
oscillations is sensitive to the direction in which the pressure gradient is applied. They con-
jectured the directional dependence is related to whether the pressure gradient axis is in 
alignment to the geometric symmetries of their pore geometry (Hill et al. 2001a). In the 
subsequent work, Hill and Koch showed the limit of steady flow is around Re ≈ 60 for their 
FCC sphere pack when the pressure gradient is applied in the symmetry line. Moreover, 
they showed that, on the verge of onset of unsteady oscillations, there exists a steady-state 
eight-vortex mode with �∕2 rotational symmetry, which consists of four counter-rotating 
vortex pairs (cf. their Fig. 9) (Hill and Koch 2002).

Figure  5 shows the steady-state flow fields of the four representative Reynolds num-
bers in terms of streamwise velocity and vorticity on a cross-sectional plane at x∕d = 0 . 
The cross-sectional plane features two larger quadrilateral pores and four smaller triangular 
pores, which are the intersections of the cross-sectional plane with the octahedral and tetra-
hedral pores in 3D, which were introduced in Sect. 2. To avoid confusion, we will continue 
referring those two-dimensional pores by the corresponding three-dimensional terminolo-
gies. As we detailed in Sect. 2, those cross-sectional pores satisfy the global reflectional 
symmetry about the horizontal axis along z∕d =

√
6∕3 ≈ 0.816 , as well as two additional 

reflectional symmetry lines local to the pore cross-sections that are perpendicular to each 
other (cf. also Fig. 1b). Lastly, the cross-sectional plane passes through only the spheres’ 
centroid and the contact points between two spheres, therefore there is no inclination in 
x-direction. Consequently in the Stokes flow limit, there is no cross-flow velocity compo-
nents imposed by curvature of the geometry.

The 2D flow structures of the L3 ( Resteady = 10−5 ) and the L4 ( Resteady = 10−2 ) cases 
are shown in Fig. 5a and b, and it can be seen that the flow feature is dominated by indi-
vidual high-velocity jets that are filling the both pores rather uniformly. Although the 
boundary layers are already visibly developed at these Reynolds numbers, it is reasonable 
to argue that the flat velocity distribution is in accordance with the conjecture of Dybbs and 
Edwards (1984), that the inertial cores do not exist in this low-Re flow regime. In Fig. 5b, 
those high-velocity jets are surrounded by streamwise vortices which are first observed at 
this Reynolds number, whereas at lower Reynolds numbers only the streamwise jets are 
detected (cf. Fig. 5a). The octahedral-pore jets are surrounded by a four-vortex structure in 
weak intensity, whilst the tetrahedral-pore jets are accompanied by pairs of counter-rotating 
vortices with significantly higher intensity. Notice that thin vorticity layers exist between 
those vortex pairs and the sphere surface. The existence of the finite streamwise vorticity 
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indicates the development of cross-streamwise velocity components already at this Reyn-
olds number. Finally, it is important to note that all the flow features satisfy both global and 
local symmetries that were discussed earlier.

By increasing the Reynolds number to Resteady = 10 , the four-vortex mode in the octa-
hedral pores has intensified and additional thin near-wall vorticity layers have established 
also inside the octahedral pores. Consequently, the profile of the octahedral jets becomes 
noticeably rounder, indicating that the stream can no longer follow the curvature of the pore 
geometries due to the elevated inertial influence. Recall that for Resteady ≥ 10 , the intensity 
of streamwise superficial velocity starts to deviate from the linear Darcy’s law, indicat-
ing an emergence of nonlinearity. Figure 6 illustrates the corresponding three-dimensional 
view of the flow structure topology, where iso-surfaces of arbitrary positive streamwise 
velocity, positive and negative streamwise vorticity are depicted. The flow direction is from 
the bottom-left corner to the top-right corner, and only a part of the numerical domain is 
shown for better visibility. The entrance to this sub-domain is an octahedral pore, which is 
followed by a pair of tetrahedral pores in the narrow space between the touching spheres. 
From this view, it is visible that tetrahedral-pore shear layers—which exist as early as 
Resteady = 10−2—evolve into counter-rotating four vortices in the subsequent octahedral 
pores. This observation on the intense vortex formation coinciding with the emergence of 
nonlinearity is in a reasonable agreement with the explanation of Nield and Bejan (2006) 
that the nonlinear transition is associated with the occurrence of first (intense) eddies. The 
intensity of the vorticity in the tetrahedral pores also increases, however its structural fea-
tures are maintained. Finally, the symmetry property remains unchanged.

By further increasing Reynolds number to Resteady > 10 , the original four octahedral-
pore vortices move apart from each other, consequently forming four additional vortices 
around the pore centre, resulting a new eight-vortex system (cf. Fig. 5c for the example of 
the SNL4 case with Resteady = 59 ). The first appearance of the eight-vortex mode on this 
particular plane is observed at Resteady = 36 , however, the precise limit between the four- 
and eight-vortex modes is still to be determined. Emergence of this eight-vortex system 
is accompanied by the drastically transformed streamwise jets, which are now split into 
a pair of smaller shell-like structures residing between the original outer and the newly-
formed internal vortices. The separated jets can be described in terms of the alternating 
arrangement of the two pore geometries detailed in Sect. 2, where the flow in an octahedral 
pore is split into two in the following tetrahedral pore section before it merges again in the 
subsequent octahedral pore. When the Reynolds number is sufficiently low, the dominant 
viscous effect is strong enough to unify the two jets from a tetrahedral pore pair inside 
the octahedral pore downstream via diffusion. On the contrary, with increasing Reynolds 
number—therefore less viscous influence available—the diffusion process is no longer 
sufficient to unify the split jets, therefore they remain being separated throughout. Con-
sequently, low-velocity cores are formed inside the shell-like streamwise jets. The corre-
sponding cross-sectional pressure distribution shows us the low-velocity cores are coupled 
with higher pressure regions, which may trigger cross-flow from the cores towards the 
sphere surfaces. Meanwhile, the vortical structure inside the triangular pores evolves into a 
four-vortex mode.

Fig. 5  (left) Steady-state streamwise velocity normalised by −K∇xp∕� , and (right) stream-
wise vorticity ( �x ) contours at x∕d = 0 , from different Reynolds number: a Resteady = 10−5 (L3); b 
Resteady = 10−2 (L4); c Resteady = 10 (SNL1); d Resteady = 59 (SNL4). The contour lines are plotted for 
[−0.9max |�x| ∶ 0.18max |�x| ∶ 0.9max |�x|] and the dashed lines indicate negative values

▸
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The corresponding three-dimensional view is shown in Fig.  7, and reveals that the 
appearance of the eight-vortex mode is the consequence of wall shear layers in octahedral 
pores evolving into additional smaller vortices, extending until the subsequent octahedral 
pores (cf. Fig. 7b). In fact, the emergence of the four-vortex system in tetrahedral pores is 
also a footprint of these additional vortices, whose filament-like tails extend until the fol-
lowing tetrahedral pores. These intensified octahedral-pore shear-layers eventually forming 
the eight-vortex can be described as a consequence of the streamwise jets being closer to 
the sphere walls due to the aforementioned splitting.

Lastly, first appearance of reversed flow inside the octahedral pores can be observed 
in this flow mode (cf. Fig. 7a). Through a closer inspection, it becomes visible that there 
are two regions where such reverse flow can be observed: One in the close vicinity of the 
sphere surfaces on the downstream side due to flow separation, and the other in between 
the split jets on the upstream side. Once again, all those transformed flow structures still 
follow the aforementioned global and local reflectional symmetries.

3.3  Transition to Unsteady Flow and Local Symmetry Breaking

Let us now proceed into the unsteady nonlinear flow regime, where the applied pressure 
gradient and the superficial velocity relation continues to be nonlinear whilst the flow 
becomes unsteady in addition.

Early experimental study of Jolls and Hanratty (1966) detected the onset of velocity 
fluctuations in flow through a random pack of spheres at around Re = 110 , using a mass-
transfer measurement method combined with flow visualisation via dye injection. Similarly 
with their measurement of flow through complex rod structure, Dybbs and Edwards (1984) 

Fig. 6  3D flow structure inside the pores for Resteady = 10 (SNL1), corresponding to Fig.  5b. Each plot 
includes iso-surface of: a positive streamwise velocity ( +u , green); b positive streamwise vorticity ( +�x , 
red); c combination of a and b, as well as negative streamwise vorticity ( −�x , blue). d Same as c with 
crossflow velocity vectors plotted on yz-plane at x∕d = 0.02 , using every 10th grid cells
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observed the first appearance of periodic oscillations over Re = 150–250 using flow visu-
alisation by injected dye. Moreover, they showed that the oscillations first appear in pores, 
or open spaces, between the rods.

In contrast, Hill and Koch (2002) observed first appearance of periodic oscillations, 
only in the streamwise direction, at Re ≈ 60 in their FCC sphere pack simulations. They 
showed that the periodic oscillations are the consequence of their eight vortex mode 
rotating around x-axis, alternating between clockwise and anticlockwise rotations, which 
still maintains �∕2 rotational symmetry but looses reflectional symmetries along y- and 
z-direction at this point. Using a sequence of cross-sectional velocity field visualisation, 
they described the alternation of rotational direction in terms of periodic merging and coa-
lescing processes of the base-state eight-vortex mode, which is triggered by initial pertur-
bation to the steady-state base mode. Subsequently at Re ≈ 90 , their flow field looses even 
the rotational symmetry, giving a rise to quasi-periodic oscillations in all spatial directions 
via bifurcation of frequencies. It is important to clarify the fact that Hill et al. started their 
simulations from fully-developed unsteady flow fields to avoid the long development time 
required especially for lower near-critical Reynolds number cases.

We observe the first appearance of subtle flow oscillations at Resteady = 91 (the UNL1 
case, cf. Fig. 8b), which coincides with the first break-down of the aforementioned eight-
vortex mode as we will discuss in the following. At Resteady = 138 , more noticeable flow 
oscillations develop (cf. Fig. 8c).

At both Reynolds numbers, the fully symmetric eight-vortex mode with the shell-
like streamwise jets appears almost immediately during the initial flow develop-
ment (cf. Fig.  9a). The cross-sectional profile of the eight-vortex mode is remarkably 
similar to the one we observe at Resteady = 59 although those instantaneous Reynolds 
numbers are significantly different ( Re(t) = 59 and 141 for Figs.  5c and 9a), thus this 

Fig. 7  3D flow structure inside the pores for Resteady = 59 (SNL4), corresponding to Fig. 5c. Colour scheme 
for the iso-surface is as of Fig. 6, in addition to negative streamwise velocity coloured in purple in a. a, c To 
improve the visibility, only one side of the shell-like positive streamwise velocity jet is shown
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non-dimensional number can be ruled out as a governing parameter of this process. 
Similarly, the time-scale required for the eight-vortex mode to appear cannot be scaled 
by the viscous time-scale we apply in this paper.

Subsequently, the four inner vortices become unstable and merge into two vortices 
giving a rise to the overall six-vortex mode (cf. Fig. 9b). This new flow structure has a 
smaller degree of symmetry than the previously-observed four- and eight-vortex modes: 
While the former has two reflectional symmetry lines, the six-vortex mode is only �
-rotationally symmetric around the centre of the octahedral pore. Notice, whilst the 
local symmetry in the octahedral pores is broken as above, the two reflectional symme-
tries in the triangular pores are still maintained. The vortex merging process continues 
inside the octahedral pores and leads to the two inner vortices merging into one inner 
vortex, forming a new five-vortex mode, which again has the above local �-rotational 
symmetry (cf. Fig. 9c). Notice the similarity of this vortex merging process to the one 
observed by Hill and Koch (2002). Meanwhile in the tetrahedral pores, a similar sym-
metry breaking finally takes place at this point: starting from two symmetric vortices 
and ending in three asymmetric vortices. This subsequent, not simultaneous, local sym-
metry breaking indicates the emergence of instability in the more spacious octahedral 
pores propagating towards much narrower therefore more restrictive tetrahedral pores 

(a) (b)

(c) (d)

Fig. 8  a Temporal evolution of pointwise streamwise velocity uprobe from 2 symmetry points at: −, 
[x, y, z]∕d = [0, 0.5, 0.5] ; and × , [0, 0.5, 0.5 + Lz∕2] for: a Resteady = 59 , b Resteady = 91 , c Resteady = 138 and 
d Resteady = 209
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Fig. 9  Temporal evolution of the cross-sectional flow field at x∕d = 0 and Resteady = 138 (UNL2). a 
t��∕K = 1.44 , eight-vortex mode; b t��∕K = 3.62 , six-vortex-mode; c t��∕K = 4.99 , five-vortex mode. 
The contour lines are plotted for [−0.9max |�x| ∶ 0.18max |�x| ∶ 0.9max |�x|] and the dashed lines indi-
cate negative values
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downstream. This instability propagation process agrees well with the aforementioned 
observation by Dybbs and Edwards (1984).

Transformation from the reflectional symmetry to the rotational symmetry can also be 
identified in the corresponding 3D view shown in Fig.  10. Conversely, the global sym-
metry around z∕d =

√
6∕3 is still maintained (cf. Fig. 8). Therefore, we characterise this 

unsteady nonlinear regime with the reduced local symmetry together with the preserved 
global symmetry.

Finally, in addition to the streamwise velocity and vorticity contours, we also plot vor-
tical structures visualised by �2-criterion (Jeong and Hussain 1995) in Fig.  10d. Those 
extracted vortices are mainly quasi-streamwise vortices.

For completeness, development of superficial streamwise velocity of this flow regime 
is depicted in Fig. 11a. It is visible that the local flow oscillations which appeared with the 
local symmetry breaking are reflected in the bulk flow oscillations. Moreover, although 
the global symmetry is still maintained, the superficial streamwise velocity signal for 
Resteady = 138 already exhibits chaotic fluctuations, which indicates that it is not sufficient 
to measure such bulk quantities to detect the transition to turbulence.

3.4  Global Symmetry Breaking and Emergence of Turbulence

In this final part of the discussion, we analyse the flow cases in which the symmetries of the 
pore-scale flow structures, which are imposed by the pore geometry itself, are now entirely 
broken. Additionally, the bulk quantities, such as superficial velocity, shows fully chaotic 
signals. By this definition, we are tempted to call this type of flow “turbulence”, which 
we distinguish it from the term “chaotic flow”. Those two terminologies are often used 

Fig. 10  3D flow structure inside the pores for Resteady = 138 . a–c Colour scheme for the iso-surface is as of 
Fig. 7. d Vortex visualisation using �2-criterion (Jeong and Hussain 1995). The surface of the iso-contours 
are coloured by the sign of �x (red for positive and blue for negative). a, c To improve the visibility, only 
one side of the shell-like positive streamwise velocity jet is shown
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interchangeably, mainly due to the difficulty involved in measuring the highly dynamic 
pore-scale flow structures precisely. However, as it was demonstrated in the previous sec-
tion, chaotic oscillations of spatially-averaged flow quantities do not necessarily mean the 
pore-scale flow field is turbulent. On the other hand, the total breakdown of symmetries is 
also not the solely-defining indicator, as Hill and Koch (2002) showed for their FCC close 
pack simulations that the bulk flow quantities can exhibit quasi-periodic oscillations even 
after the geometrical symmetries vanish. Only after Reynolds number exceeding approxi-
mately 100, they reported chaotic fluctuations of the flow quantities. Conversely, Dybbs 
and Edwards (1984) observed first appearance of chaotic oscillations for Re > 300.

By increasing the Reynolds number of our sphere-pack flow, we first observe that the 
flow structures continue to experience the identical sequence of topology evolution (cf. 
Fig. 12a and b for an example from the Resteady = 347 case), from eight-vortex mode to 
six-vortex mode, before proceeding into more complex and less symmetric flow struc-
tures (cf. Fig. 12c). Eventually the global symmetry around z∕d =

√
6∕3 breaks between 

Resteady = 138 and 209, indicating an emergence of “turbulence” (cf. Fig. 8c and d). Notice 
that the critical point is significantly lower than the value from Dybbs and Edwards, 
whereas noticeably higher than the value from Hill and Koch.

Figure 13 visualises an instantaneous flow field of the T4 ( Resteady = 347 ) case. Con-
versely to the previous flow regime, the pore-scale vortices in this flow are no longer exclu-
sively quasi-streamwise, but aligned in more diverse directions especially in the octahe-
dral pores (cf. Fig. 13d). Notice that the dimensions of those vortices become significantly 
finer in comparison to the previous visualisation (Fig. 10d), as it would be expected due to 
the higher Reynolds number. As the result of the turbulent fluctuations induced by those 
vortices, the other flow structures are highly distorted and displaying the existence of a 
wide range of spatio-temporal scales inside the pore spaces. Turbulent energy spectra from 
two turbulent cases (T1 and T4) in Fig. 14 quantify such range of scales existing inside 
the pores. In addition, the figure also shows the effect of increasing Reynolds number that 
expands the scale range towards finer scale, whilst more noticeable inertial range, which is 
characterised by the −5∕3-exponent, starts to appear. To establish more clear scale separa-
tion between the pore-scale and the much finer dissipative scales, further increase in Reyn-
olds number is required which is out of the scope of this paper.

The primary flow separations in the downstream of the sphere contact points are prom-
inent at this Reynolds number (cf. Fig.  15a), and the d-periodic translational symmetry 

(a) (b)

Fig. 11  Temporal evolution of streamwise superficial velocity in: a unsteady nonlinear and b chaotic flow 
regime
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Fig. 12  Temporal evolution of the cross-sectional flow field on x∕d = 0 at Resteady = 347 (T4). a 
t��∕K = 0.61 , eight-vortex mode; b t��∕K = 0.76 , six-vortex-mode; c t��∕K = 3.04 , turbulent. The con-
tour lines are plotted for [−0.9max |�x| ∶ 0.18max |�x| ∶ 0.9max |�x|] and the dashed lines indicate nega-
tive values
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Fig. 13  3D flow structure inside the pores for Resteady = 347 (T4). a–c Colour scheme for the iso-surface is 
as of Fig. 7. d Vortex visualisation using �2-criterion (Jeong and Hussain 1995). The surface of the iso-con-
tours are coloured by the sign of �x (red for positive and blue for negative). a, c To improve the visibility, 
only one side of the shell-like positive streamwise velocity jet is shown

Fig. 14  Energy spectra of turbulent velocity fluctuations from T1 and T4, sampled at [x, y, z] = [0, 0.5, 0.5]
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in x-direction is clearly broken. Note that observation of such symmetry breaking in the 
streamwise direction was only possible due to the current numerical domain being twice 
as long as the minimum repeating unit in x-direction. The above separation leads to a clear 
distinction between the high-speed, highly ordered flow in the tetrahedral pores and the 
highly turbulent flow in the octahedral pores. It is also interesting to notice that the second-
ary separations can be found only in the top part of Fig. 15a, where the red-coloured jets 
fail to trace the curvature of the spheres.

Figure 15b depicts the time-averaged velocity field. Although the averaged field has not 
yet converged completely, it is readily visible that the aforementioned one-sided secondary 
separation is an instantaneous phenomenon, since the top-bottom reflectional symmetry 
about the horizontal line through the contact points has been recovered in this view. Simi-
larly, the translational symmetry in x-direction is also present. In Fig. 15c, the correspond-
ing mean turbulent kinetic energy (TKE) field is shown. This field coincides well with the 
earlier observation from the instantaneous fields that the flow in the octahedral pores is 
highly turbulent, whereas in the tetrahedral pores the flow is rather quiescent. The maxi-
mum energy is located approximately at the end of the recirculation zones.

Finally, a cross-sectional view of the mean streamwise velocity and vorticity fields are 
plotted in Fig. 16, in which the pore-scale flow structures from the acceleration phase reap-
pears by the averaging operation (compare with, for example, Fig. 12a). The distribution 
of the streamwise velocity inside the octahedral pores is, however, visibly more diffused 
than the counterpart from the acceleration phase (cf. Fig.  16a). This difference can be 
accounted for the emergence of turbulence inside the octahedral pores that scatters around 
the momentum, whereas inside the tetrahedral pores where the flow is significantly more 
quiescent, the velocity profile remains almost unchanged. This turbulent diffusion process 
consequently reduces the streamwise velocity gradient inside the octahedral pores, result-
ing a reduction in the streamwise vorticity with respect to the eight-vortex state during the 
acceleration phase.

4  Summary

We performed a series of fully-resolved direct numerical simulations of accelerating porous 
media flow through hexagonal close pack spheres. The considered Reynolds numbers 
range between 5.6 × 10−7 and 347, which covers steady linear, steady nonlinear, unsteady 
nonlinear and turbulent flow regimes. Our special focus was placed on the pore-scale flow 
structures inside the porous medium, such as vortices and jets, and their evolution process 
during the accelerating phase especially.

We confirmed that the emergence of the nonlinearity takes place when the super-
ficial-velocity-based Reynolds number is between 1 and 10. We found the rise of the 
nonlinearity is related to the formation of pore-scale vortical structures, whilst two dis-
tinct types of flow structures in the steady nonlinear regime, both of which preserve 
global and local reflectional symmetries on the cross-stream plane, were observed. With 
increasing Reynolds number, the symmetries local to the individual pores start to break 

Fig. 15  Instantaneous a and time-averaged b streamwise velocity (colour) and line integral convolution 
(LIC) visualisation (Cabral and Leedom 1993) of the velocity vector parallel to a local symmetry plane 
defined by −

√
3

3
y +

√
6

3
z = −

1

2
 . c time-averaged turbulent kinetic energy on the same plane. Data is from T4 

( Resteady = 347 ) case

▸
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and flow starts to oscillate, which marks a rise of unsteady nonlinear flow regime. Based 
on a sequence of flow structure evolution, we showed that the symmetry breaking takes 
place in larger pore spaces before propagating into the downstream narrower spaces. At 
this point, the volume-averaged flow quantities exhibit chaotic fluctuations despite the 
fact that the global symmetry remains unbroken. Eventually, all the symmetries, both 
local and global, are broken and the emergence of pore-scale turbulence is achieved.

During the initial development phase, it was found that steady/unsteady nonlinear 
and chaotic flow exhibit a consistent sequence of flow structure development, although 
the applicable Reynolds numbers vary significantly (from Resteady = 36 and 347). More-
over, we found that the appearance of such consistent flow structure sequence cannot 
be explained by the viscous time-scale that was used for normalisation throughout this 
paper. Determining the governing parameters of the flow structure development needs 
to be carried out in our future studies.

The key limitation of the current study is the single sphere-pack geometry which is 
exposed to the pressure gradient in one direction only. This is a consequence of the high 
computational efforts necessary to simulate such extensive range of Reynolds number 
covering all four distinct flow regimes that are known to us today. Although certain 
level of generality can be assumed for the current findings based on both qualitative and 
quantitative agreements with the literature, it would still be highly interesting to extend 
the current study to different sphere geometries and/or different pressure gradient direc-
tions as in Hill et al. (2001b), Hill and Koch (2002). By doing so, our understanding in 
the flow structure development in the transient porous media flow will be more com-
plete, and might provide us, for instance, an important basis of effective flow control.
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Fig. 16  (left) mean streamwise velocity normalised by −K∇xp∕� , and (right) mean stream-
wise vorticity contours at x∕d = 0 of Resteady = 347 (T4) case. The contour lines are plotted for 
[−0.9max |�x| ∶ 0.18max |�x| ∶ 0.9max |�x|] and the dashed lines indicate negative values. Reflectional 
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