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Abstract
Highway safety has attracted significant research interest in recent years, especially as innovative technologies such as con-
nected and autonomous vehicles (CAVs) are fast becoming a reality. Identification and prediction of driving intention are fun-
damental for avoiding collisions as it can provide useful information to drivers and vehicles in their vicinity. However, the
state-of-the-art in maneuver prediction requires the utilization of large labeled datasets, which demand a significant amount
of processing and might hinder real-time applications. In this paper, an end-to-end machine learning model for predicting
lane-change maneuvers from unlabeled data using a limited number of features is developed and presented. The model is built
on a novel comprehensive dataset (i.e., highD) obtained from German highways with camera-equipped drones. Density-based
clustering is used to identify lane-changing and lane-keeping maneuvers and a support vector machine (SVM) model is then
trained to learn the boundaries of the clustered labels and automatically label the new raw data. The labeled data are then
input to a long short-term memory (LSTM) model which is used to predict maneuver class. The classification results show
that lane changes can efficiently be predicted in real-time, with an average detection time of at least 3 s with a small percent-
age of false alarms. The utilization of unlabeled data and vehicle characteristics as features increases the prospects of transfer-
ability of the approach and its practical application for highway safety.

Connected and autonomous vehicles (CAVs) are currently
an emerging topic among transportation researchers and
practitioners because of advancements in sensing and vehi-
cle technologies, as well as the rapid development of pow-
erful software modules. The most promising advantage of
autonomous vehicles (AVs) is in relation to road safety, as
the human element will be removed from the task of driv-
ing, and thus, many collisions and driving mistakes will be
eradicated (1, 2). To ensure the safety of AV passengers
and, in general, of traffic participants, an AV should sense
its surroundings appropriately, plan its motion using the
safest options, and move according to the plan based on
the current measurements received by its sensors (3).
Decision-making usually is part of the planning module of
AVs and, more specifically, of maneuver planning, which
includes motion prediction and risk assessment (4, 5).
Therefore, the necessity for AVs to safely navigate through
dense urban traffic, complex road infrastructure, and areas
with inconsistent traffic dynamics, leads to the need for
correct predictions with regards to the behavior of drivers
in the vicinity of an AV.

In recent approaches, it has been noted that predicting
trajectories of vehicles in the vicinity of an AV is

computationally complex and, therefore, not suitable for
real-time applications (6, 7). Furthermore, it has been
recognized that a large amount of data is usually needed
to ‘‘learn’’ vehicle maneuvers to be able to recognize them
efficiently in real-world driving (8, 9). Nevertheless, the
state-of-the-art in the prediction of vehicle behavior for
AV applications utilizes data that are either disclosed from
the car manufacturing companies, simulated, captured for
a specific vehicle type, or limited in relation to size, which
leads to limited transferability of their potential results
(10).

This paper aims to extend the state-of-the-art by pro-
viding a data-driven approach for unsupervised labeling
and the subsequent prediction of lane-changing maneu-
vers. The main contribution of this paper is the use of

1Department of Civil, Geo, and Environmental Engineering, Technical

University of Munich, Munich, Germany
2Department of Transportation Planning and Engineering, National

Technical University of Athens, Athens, Greece

Corresponding Author:

Christos Katrakazas, ckatrakazas@mail.ntua.gr

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/0361198120922210
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0361198120922210&domain=pdf&date_stamp=2020-06-12


density-based clustering to distinguish between lane-
changing and lane-keeping maneuvers for automatic label-
ing. The approach is envisioned to reduce the effort of
manually labeling driving maneuvers, and additionally
provides an efficient real-time sequence classification meth-
odology to predict lane changing proactively. Toward this
aim, highly disaggregated naturalistic driving data from
the highD dataset are utilized (11). The dataset consists of
more than 45,000km of naturalistic driving behavior from
16.5h of drone-captured video data. Initially, patterns in
the data are found through density-based clustering, and
the obtained clusters are used as an input for a real-time
long-short term memory (LSTM) deep neural network to
identify lane-changing maneuvers.

The paper is structured as follows: initially, the litera-
ture with regards to driving behavior prediction is
reviewed, and the methodology of the current work is
presented. This is followed by a description of the data
and its pre-processing for the proposed algorithms.
Finally, the results of the unsupervised labeling, as well
as the real-time LSTM model, are presented and dis-
cussed, in order for conclusions to be drawn from the
applications by researchers and practitioners.

Literature Review

Vehicle maneuvers are characterizations of a vehicle’s
motion with regards to its position and speed attributes
on the road (4). With regards to lateral vehicle control,
lane keeping and lane changing are fundamental aspects
of highway driving and are mutually exclusive (12). Lane
keeping describes the task of driving within the current
lane without any intention of leaving it, while lane chang-
ing requires inter-related decisions among drivers in a
definite hierarchy, which are affected by the necessity
and desirability of changing the lane in which a vehicle is
moving (13). Lane changes can be discretionary or man-
datory depending on how the driver perceives conditions
on the current and target lanes, as well as environmental
conditions that influence the decision to change lanes
(14). During lane changing, usually, the speed of the sub-
ject vehicle increases, and disturbances in the adjacent
lane might also be observed, for example, if the lane-
changing maneuver is aggressive (15). To counteract
these disturbances, and enable safe lane changing, drivers
interacting for a lane change should be alert and atten-
tive. However, this is not always the case: it has been
indicated that turn indicators are used for 44% of per-
formed lane changes (16).

Lane-changing prediction, like other driving behavior
prediction tasks, can be formulated as a regression or a
classification problem (17, 18). In a regression formula-
tion, the objective is to predict position and speeds values
to map vehicle motion on the road, while a classification

problem formulation is concerned with discretizing vehi-
cle states which enable faster real-time discrimination
between vehicle behaviors. With regards to data utilized
for predicting lane changing, usually geographic position-
ing system (GPS) traces, or vehicle sensor readings such
as radars and cameras, act as features to lane-changing
prediction algorithms (19–21).

As far as methodological approaches are concerned,
machine learning and data-driven approaches have
gained popularity. Support vector machines (SVMs)
showed good results when trained on a manually labeled
dataset with features and lane positions, to classify lane
keeping and lane changing (22). Furthermore, the situa-
tion of the highway (slower preceding vehicle and free
adjacent lane), along with the lateral movement of the
vehicle, have also been considered for the lane-change
prediction (23). SVM, along with Bayesian filter, has also
been used for lane-change prediction using lateral posi-
tion and steering angle (24). Neural networks can be
trained and used to predict the future positions of a lane-
changing vehicle but only in certain discrete sections and
not over the complete maneuver process (25). Morris
et al. (21) used relevance vector machines (RVM) to dif-
ferentiate between lane changing and lane keeping when
trained on features extracted from the road environment,
vehicle signals, and driver tracking. Lane departures can
be predicted using deep learning methods like convolu-
tional neural network (CNN), which were trained on fea-
tures extracted from physiological signals such as
electrocardiogram heart rate, respiration signals, and so
forth, and rear side view images (26, 27).

Based on the above literature review, certain issues have
been identified. Initially, for the training datasets to be eas-
ily transferrable and valid, there is a need for highly vari-
able attributes. This fact also makes these models depend
on the validity of the sensor measurements used to identify
lane changing. Furthermore, an extensive collection of sig-
nals and dependence on the sensors might hinder the real-
time applicability of the developed classifiers. Moreover, it
is observed that limited, or simulated data are employed
for training and testing the developed classifiers. More
importantly, it is prominent that data is either manually
labeled or extensive post-processing took place, usually
based on extra information such as lane position for data
to be labeled as lane-keeping or lane-changing instances.
Consequently, there is a gap in the literature with regards
to the utilization of large naturalistic driving datasets and
automatic unsupervised labeling of data, which could
accelerate inference and real-time applications. Therefore,
this study aims to extend the state-of-the-art by using a
two-step approach, where initially classes are identified
through density-based clustering, and then a deep learning
algorithm is utilized for real-time intention prediction on a
large naturalistic driving dataset.
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Methodology

This study uses a two-step prediction process from raw
data observations: Initially, an unsupervised method is
used for learning driving intentions in relation to lane
keeping or lane changing, and the results are used for
labeling the raw measurements. The labeled data then
act as input for the prediction of lane driving intention
using a deep learning model. The purpose is to develop a
data-driven method, which is not concerned with manual
labeling of data.

Trajectory data usually contains information on the
position, velocity, acceleration, and lane position of a
vehicle. A vehicle should belong to the ‘‘lane-changing’’
class if, during the recorded trajectory, a full lane-
changing maneuver takes place. On the other hand, if
the vehicle stays in the same lane, it will belong to the
‘‘lane-keeping’’ class. Figure 1 illustrates a lane-changing
process to distinguish between the two classes. A vehicle
is moving straight on the highway in a specific lane and
then decides to change. At point B, the vehicle starts
executing a lane-changing maneuver, which is described
by its lateral movement. At point C, the lane-changing
event occurs as the vehicle’s center crosses from one
lane to the other, while at point D, the driver completes
the lane-changing process and follows its lane.

Therefore, the trajectory of the vehicle consists of two
lane-keeping stages (AB and DE) and one lane-changing
stage (BD). A lane change is fully executed if all points
(i.e., B, C, and D) lie within the observed section of the
highway.

The lateral movement during lane changing is cap-
tured by lateral velocity and lateral acceleration time
series. In this study, only lateral velocity and lateral accel-
eration are used as features. The position of the vehicle is
not used because it is dependent on a particular reference
frame and cannot be easily transformed over a large
study area.

An outline of the proposed methodology is shown in
Figure 2. The trajectory data consists of vehicle motion
characteristics such as velocity and acceleration at each
frame of video recording. Let the x-axis be along the
longitudinal direction of the highway, and the y-axis be
along the lateral direction (perpendicular to the high-
way). Let x denotes the set containing the lateral velocity
and lateral acceleration measurements from trajectory
data. Then, the value of x at time t for the nth vehicle is
given by Equations 1, 2, and 3, where vy and ay represent
velocity and acceleration along the lateral direction.

xt
v

� �n
= vt

y

� �nn o
ð1Þ

Figure 1. Illustration of lane-keeping (AB and DE) and lane-changing processes (BD) of a vehicle.

Figure 2. Flowchart of the proposed methodology.
Note: TS = time series; PCs = principal components.
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Each x belongs to one of the two mutually exclusive
classes, that is, lane keeping or lane changing. Thus, the
primary objective is to classify trajectory measurements
x into an appropriate maneuver class. We extract four
features consisting of mean and standard deviation
(m1,m2,s1,s2) from the bivariate time-series of lateral
velocity and lateral acceleration for each vehicle
(Equations 4 and 5). It is pointed out that other statisti-
cal features such as maximum, skewness, and kurtosis
could also be potential candidates for subsequent analy-
sis, depending on the characteristics of the driving beha-
vior captured by the data. Then, a dimensionality
reduction technique, principal component analysis
(PCA) is used to obtain two principal components P1

and P2 from these features (Equation 6).
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where
N n is the length of bivariate time series for vehicle n;

tnb is the timewhen the nth vehicle enters the frame
of the video;

tne is the timewhen the nth vehicle exits the frame
of the video;

f xð Þ represents the principal component analysis:
The two principal components are then plotted for

ground truth to identify the two distinct classes of trajec-
tories. These groups should represent mutually exclusive
trajectories as far as lane changing is concerned, that is,
the lane-changing class should include at least one lane-
changing maneuver, and the lane-keeping class should
contain no lane-changing maneuver. Furthermore, the
first trajectory group (i.e., lane changers) can contain
both lane-keeping and lane-changing maneuvers, but the
lane-keeping group can only contain lane-keeping
maneuvers.

For maneuver identification and prediction, it is nec-
essary to recognize the motion within a trajectory and
classify the segments of trajectory as either ‘‘lane-chang-
ing’’ or ‘‘lane-keeping.’’ This will be achieved by cluster-
ing the points from the bivariate time series (xt)n by
using the density-based spatial clustering of applications
with noise (DBSCAN) algorithm. DBSCAN is effective
in discovering clusters of arbitrary shapes with the least

domain knowledge (28, 29). The tunable parameters for
this type of clustering are the maximum distance for
neighborhood point (eps), the minimum number of
points to define a core point (minimum samples), and a
metric for calculating distances. The points are randomly
sampled from the selected trajectories to reduce the
amount of computation load on the clustering algorithm.
This forms the basis for our labeling of the time series
into two classes. An SVM classifier is trained on the clus-
tered labels to capture the distribution of the identified
clusters, such that each (xt)n can be assigned to one of
the two maneuver classes (Equation 7). The main tun-
able parameters for SVM are the penalty parameter (C)
and kernel function. The trained SVM classifier is used
to label the time series into two maneuver classes.

Mt
j

� �n

= hð xtð ÞnÞ; ð7Þ

where Mj is corresponding label Lane Changing; Lanef
Keepingg 8 j 1; 2f g obtained
from clustering, h xð Þrepresents the SVMclassifier

After obtaining the labeled data, a moving window
time series classification for maneuver prediction will be
employed with the use of an LSTM deep learning model.
The following parameters affect the input for the time
series classification:

� Frame frequency, F is the frequency of data, for
example, 25Hz.

� Frame granularity, f is the sampling rate of the
time series data for using as an input for the
model. If f=2, this means the effective frame fre-
quency is 12.5Hz.

� Prediction horizon time, pt is the time in the future
at which the prediction is being made.

� Prediction horizon length, p is the time series steps
corresponding to pt and f. Thus, p=F*pt/f

� Lookback time, kt is the past time (and corre-
sponding data) used to make the prediction.

� Lookback length, k is the time series steps corre-
sponding to kt and f. Thus, k=F*kt/f

� Discard Threshold, T is the length below which tra-
jectories are not considered for training. Further
T. p+ k or T=p+ k+ b where b is the buffer
length. The value of b=10 for this study.

Only the vehicle trajectories, which showed at least
one change, are selected from the dataset to account for
class imbalance, since the majority of the trajectories do
not execute lane-change. The time series for each vehicle
is sampled at the rate of frame granularity, f, such that
the time series for the nth vehicle with corresponding
labels is shown in Equation 8:

Mahajan et al 339



X ; y½ �n =
xtb ; xtb + f ; xtb + 2f . . . xtb +N�2f ; xtb +N�f
� �n

; Mtb ;Mtb + f ;Mtb + 2f . . . Mtb +N�2f ;Mtb +N�f
� �n	 
 ð8Þ

where N =F*ðte � tb + 1Þ
The short trajectories with length less than the discard

threshold, T, are eliminated from the training dataset.
The time-series data is transformed into rolling window
data (Equation 9). In other words, the past time-series
data of constant length is used to predict the class label
at a future time step. The data is scaled to the range [0,
1] and split into training and validation data set so that
vehicles in the training data are not included in the vali-
dation data.

X ; y½ �n = xt�kf ; xt� k�1ð Þf . . . . . . xt�2f ; xt�f ; xt
� �n

; Mt + pf
� �n

h i
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where t=af, a is an integer, and f is the frame
granularity

LSTM Networks

A special kind of neural network called recurrent neural
networks (RNNs) consist of a chain-like structure con-
sisting of multiple neural networks (30). This chain-like
structure can be used for modeling temporal dependen-
cies in a sequence. RNNs can model temporal dependen-
cies well, but in practice, they face difficulties in modeling
long dependencies (31, 32). LSTM is a special kind of
RNN which is capable of learning long-term dependen-
cies (33). LSTM has a similar chain-like structure but
with modifications in the individual unit. LSTM consists
of a memory cell and controls the flow of information by
using input, forget, and output gate layers that discard
the non-essential information and memorize only essen-
tial information for the purpose. LSTMs are successful in
many tasks such as language translation, handwriting
recognition, and image captioning (34–36). They have
also been applied to highway trajectory prediction and
driver intention at intersections (17, 18). Random forests
(RFs) are selected as a benchmark model for comparing
the results with the LSTM model because of its simple
tunable parameters yet robustness to variance in results
(37). The main parameters for RF classifier are the num-
ber of estimators, maximum depth of the tree, and mea-
surement criteria for the quality of the split.

Evaluation Criteria

The end-to-end detection model consists of multiple
steps, such as clustering, labeling, and prediction. Thus,
the performance of the complete model is dependent on
the performance of these individual models. Clustering,
label classification, and time-series classification-

prediction are evaluated independently based on the
common performance metrics for these algorithms. In
addition to that, the performance of the complete model
will also be evaluated using the classification evaluation
metrics and advance detection time (ADT). These mea-
sures are discussed in the next paragraphs.

The ground truth labels for maneuver classification are
not available, so the evaluation of the clusters is per-
formed using one of the internal indices which measure
the goodness of the clustering structure without external
information (38, 39). One such internal index is the silhou-
ette coefficient, with which each cluster is described by its
silhouette based on the comparison of its separation and
tightness (40). The silhouette coefficient is calculated using
the mean intra-clustering distance and mean nearest-
cluster distance for each sample. Silhouette score has a
range of 21 to 1, with scores closer to 1 indicating good
clustering performance. The classification algorithm is
evaluated using the precision, recall, and accuracy scores
(Equations 10, 11, and 12), and the LSTM training uses
categorical cross-entropy loss (Equation 13).

Precision=
TP

TP+FP
ð10Þ

Recall=
TP

TP+FN
ð11Þ

Acuracy=
TP+TN

TP+TN+FP+FN
ð12Þ

where TP : TruePositive;TN : TrueNegative;FP : False
Positive, FN: False Negative

CE= �
XM

i

Mi log sið Þ ð13Þ

where Mi and si are the ground truth and LSTM predic-
tion for each maneuver class i in M.

The accuracy for LSTM is defined similarly to the
classification accuracy defined above and is given by
comparing the true value with the predicted value, and
the percentage of correctly classified cases is reported as
accuracy. The performance of the complete model is eval-
uated based on the correct classification and detection of
the maneuvers in the trajectory. In addition to the afore-
mentioned classification metrics, ADT is used to assess
the predictive range of the model, as it shows how much
in advance a prediction is made before a vehicle crosses
the lane marking (i.e., point C in Figure 1). It should be
noted here that ADT is different from the aforemen-
tioned prediction horizon time. The ADT depends on the
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performance of both the maneuver classification (SVM)
as well as the prediction horizon time, pt (LSTM).

Data Description

This study uses the highD trajectory dataset (11). The
highD dataset is a naturalistic vehicle driving dataset col-
lected on German highways using drone videography.
The dataset consists of 60 recordings over 16.5 h from six
locations (labeled 1–6) at a frame frequency of 25Hz.
The dataset covers four-lane (two per direction) and six-
lane (three per direction) highways with central dividing
median and hard shoulders on the outer edge. The data-
set was recorded on highways with either no speed limit
or with a limit of 120 km/h and 130km/h. Recording of
the data took place on weekdays between 08:00 and
19:00. The total distance driven by 110,000 vehicles (81%
cars and 19% trucks) in the dataset is 45,000km, with
5,600 complete lane changes (11). Krajewski et al. applied
algorithms and post-processing to retrieve smooth posi-
tion, velocities, and accelerations in both x and y direc-
tions (11). Besides, the dataset also contains the vehicle’s
lane position and surrounding vehicles in each frame.

The current study uses only the lateral velocity and
lateral acceleration time series from the dataset. The clas-
sification and prediction models are trained only on the
trajectory data from recording no. 45 in location 1. The
selected data contains 2,449 vehicles (2,034 cars and 415
trucks) recorded in 18min, out of which 334 vehicles exe-
cuted a lane change. The presence of cars and trucks in
the dataset is useful for capturing driver behavior in
mixed traffic. The configuration of the highway in this
recording is six lanes. This data is split in 80:20 propor-
tion for training and validation. The test data consists of
10,645 trajectories (6,128 trajectories with full lane
change and 4,517 trajectories with no lane change),
sampled from all the six locations in the dataset. In this
study, trajectories are said to contain full lane-change if
the lane-changing maneuver is between two lane-keeping
maneuvers, as shown in Figure 1. This is the reason why
the lane-changing trajectories in the test data are more
than the full lane-change in the highD dataset, where
lane-change is modeled using mathematical curves. This
test data mostly represents free-flow traffic conditions,
along with a few instances of the congestion in recording
no. 12, 25, and 26. The congestion is used to refer to the
traffic state when average lane speed is less than 75km/
h, which shows a speed drop when compared with the
speed limit.

Results

The principal components obtained from the aggregate
trajectory metrics, that is, m1,m2,s1,s2 explain 98% of the

variance in the data. The principal component P1

explains up to 94% of the variance. The scatter plot of
the trajectories with P1 and P2 as axes show the two sep-
arate clusters of trajectories (Figure 3). This shows that
lateral velocity and lateral acceleration are useful to dis-
tinguish between lane changing and no lane changing.

Figure 4 shows the result of the density-based cluster-
ing of the maneuvers. The parameters for clustering are
eps=0.05 and minimum samples=80 with the
Euclidean metric for distance calculation. These para-
meters are obtained by tuning the clustering for the
Silhouette score. The Silhouette score for the two identi-
fied clusters corresponding to two maneuver classes is
0.74, which indicates good clustering performance. Each
point in this scatter plot corresponds to the lateral accel-
eration and lateral velocity of a vehicle at one frame
instance. The distribution plot of transverse acceleration
and transverse velocity for lane-keeping maneuver fol-
lows a unimodal distribution with a mean close to 0 and
a narrow deviation. This is because of the reason that
during lane keeping, there are small deviations from the
intended path. The distribution of lane changing has a
bimodal distribution with a wide deviation. This is
because of the reason that a lane-changing maneuver
involves a significant acceleration and velocity during
the lateral movement. The two peaks in the velocity dis-
tribution for lane changing are because of the left- and
right-side lane changes.

An SVM is trained on the clustered labels to learn the
representations of the two maneuvers and thus label the
bivariate time-series data during the inference stage. The
best parameters for SVM are C=0.5, with a radial basis
function as a kernel. Table 1 shows the performance of
the SVM maneuver classifier on the validation data. The
maneuver classifier achieved an accuracy of 99.8% with
high recall and precision, which shows the excellent per-
formance of the SVM in distinguishing both classes.
Based on the labeling, the duration of a full lane change
is about 5.68 s, with a standard deviation of 0.77 s.

The best configuration of the LSTM predictor is iden-
tified by its performance on the validation dataset and
the training time. The selected model consists of two
LSTM layers, each containing 50 units. The layers are
stacked on top of each other to enable the model to learn
higher-level temporal dependencies. The second LSTM
layer returns its output to a dense layer with 20 neurons.
A dense layer is a fully connected layer in which all the
inputs are connected with all the outputs. This dense
layer is further connected with two dense layers with 20
and 10 neurons. The final layer is also dense, but with
softmax activation, and the output of the final layer is
the probability of the two maneuver classes. Adam opti-
mizer is used for adapting the learning rate (41). The
training is stopped when validation accuracy does not
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Figure 4. (Left) Maneuver clustering and (center) probability density plots of the lateral velocity and (right) lateral acceleration for the
lane-changing and lane-keeping maneuvers.

Figure 3. Principal components of features derived from lateral velocity and acceleration for different recordings (blue: vehicle
trajectories without any lane change; red: trajectories which executed at least one lane change).
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improve over five consecutive iterations/epochs to avoid
overfitting. The class with a higher probability score is
the predicted class. Keras framework with TensorFlow
as the backend is used for training the LSTM model (42,
43). The RF classifier is trained with the number of esti-
mators=10 and the maximum depth of the tree=15.
Gini impurity is used to measure the quality of the split.

The lookback period greater than 1 s did not seem to
have a significant improvement in the performance of
the model. It was found that sampling the data with
frame granularity, f. 1, results in longer training times,
whereas training the model at the raw frame frequency,

Figure 5. (Top) Loss and accuracy curves from the training and validation of the LSTM model for different prediction horizons, (bottom)
Distribution and cumulative distribution of ADT.
Note: ADT = advance detection time; LSTM = long short-term memory.

Table 1. Evaluation Metrics of the Support Vector Machine in
Maneuver Classification

Maneuver class Precision Recall

Lane changing 0.99 0.99
Lane keeping 1.00 1.00

Table 2. Evaluation Metrics for Long Short-Term Memory
(LSTM) and Random Forest (RF) Model

Accuracy (%)

Look back time (s) Prediction horizon (s) RF LSTM

1 0.5 97.2 98.8
1 1 94.5 97.6
1 2 88 93.0
1 3 83 88
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that is, f=1, is faster and achieves the convergence
much earlier. Thus, values of f=1 and kt=1 s are used
for the model training and evaluation. The loss and accu-
racy curves of the LSTM model for training data and
validation data for different values of prediction horizon
time pt is shown in Figure 5. It can be seen that accuracy
decreases with an increase in the prediction horizon since
the dependencies are too long to be learned even by the
LSTM model. Table 2 compares the results of maneuver
prediction using the RF and LSTM models. At small
prediction horizons, it can be seen that RF is as accurate
as LSTM. However, when the prediction horizon
increases, LSTM performs better than RFs. This is
because LSTM is better designed to model the sequence
or temporal dependencies. The LSTM model achieves an
accuracy of above 97% for prediction horizon up to 1 s,
which is very significant for highway driving scenarios.
The accuracy drops significantly for prediction time
greater than 1 s. As a result, the LSTM model, with a
prediction horizon of 0.5 s, is used for the test data
because of its high accuracy. Thus, the LSTM model can

predict the lane-change maneuver 0.5 s before the start of
maneuver with high accuracy.

The complete lane-change detection model is evaluated
on the test data by using recall, precision, and ADT. The
number of TP, FN, TN, and FP are 6,121, 7, 4,442, and
75, respectively. The model can detect the lane-change
maneuver with a recall of 0.99 and a precision of 0.98 with
a small percentage of false alarms (1.66%). The ADT has
a mean of 3.18 s and a standard deviation of 0.98 s (Figure
5). This value is better than the detection time of 2.3 s
obtained on simulation results and 1.3 s on real data (23,
24). The minimum, 90th percentile, 99th percentile, and
maximum time for advance detection are 20.52 s, 4.04 s,
5.12 s, and 9.04 s, respectively. The negative minimum time
corresponds to the case when the model detects the lane
change 0.52 s after the vehicle crosses the lane marking.
A few examples of the maneuver prediction are shown in
Figure 6. Here, the actual trajectory is color-coded as per
the prediction and actual status of the maneuver. The ini-
tial length of trajectory is colored in black, since suffi-
cient data is not available to make the predictions. The

Figure 6. Examples of model predictions of the maneuver class for different trajectories. The maneuver prediction from LSTM at each point
of the trajectory is compared with the labeled class. The blue star and green square indicate correct prediction for LK and LC, respectively.
Note: ADT = advance detection time; LK = lane keeping; LC = lane changing; LSTM = long short-term memory.
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correct prediction for lane changing and lane keeping is
shown by green and blue colors, respectively. It can be
seen that the model performs accurately for different
lane-change scenarios, such as left lane change, and right
lane change. The few instances of misclassification of
lane changing and lane keeping are shown in red and
orange colors. Thus, the model can predict very well in
advance before the vehicle crosses into an adjacent lane.
The algorithm is expected to be reasonable for the CAV
as shown by the ADT being more than the CAV’s reac-
tion time, which is expected to be smaller than the human
driver’s reaction time (0.4 s to 2.7 s) (44).

Conclusion

Lane-changing and lane-keeping maneuvers are the two
primary driving behaviors on highways. Their timely
detection is one of the keys to highway safety and coop-
erative driving. However, data-driven prediction of these
maneuvers has been so far constrained by data collection
approaches and the manual labeling of training datasets.
This study bridges the gap in the literature by demon-
strating that only with lateral movement data in relation
to velocity and acceleration it is possible to distinguish
whether a vehicle will carry out a lane change or not. A
density-based clustering approach and an SVM classifier
demonstrated good results for automatically identifying
and labeling maneuvers as lane keeping or lane changing.
The unsupervised labeling approach is generic and can
easily be transferred to other locations or scenarios for
developing end-to-end maneuver detection models.
Furthermore, the developed LSTM model for predicting
maneuvers over trajectories from different highway loca-
tions shows a significant performance and can detect
lane change at least 3 s before the vehicle crosses the lane
markings.

The results of the study are envisioned to enhance
highway safety, as successful and timely prediction can
lead to better coordination among vehicles, and to proac-
tive alerts to the drivers in the near and probably auto-
mated future. Furthermore, it is demonstrated that data
from drones provide explicit information for extracting
vehicle trajectories and should be further researched in
the future, as suggested by previous studies (45).

Nevertheless, the presented research is not without
limitations. The data recorded were obtained from a
short highway segment, which consequently limits the
number and nature of the identified maneuvers.
Observing interactions over a longer road segment could
help in observing more interactions. The data from
radars, cameras, in-vehicle sensors, or automated traffic
can also be used for validating the proposed lane-change
detection method. Certain parts of methodology such as
input pre-processing and model training will need to be

adapted according to local data, and thus the future
work will evaluate the application of the proposed meth-
odology to different driving cultures or contexts. Finally,
this study does not differentiate labels into the left or
right lane change, and as a result, the utilization of the
direction of the velocity to a frame of reference should
be further researched.
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20. Özgüner, Ü., C. Stiller, and K. Redmill. Systems for Safety

and Autonomous Behavior in Cars: The DARPA Grand

Challenge Experience. Proceedings of the IEEE, Vol. 95,

No. 2, 2007, pp. 397–412. https://doi.org/10.1109/JPROC.

2006.888394.
21. Morris, B., A. Doshi, and M. Trivedi. Lane Change Intent

Prediction for Driver Assistance: On-Road Design and

Evaluation. Proc., IEEE Intelligent Vehicles Symposium

(IV), Baden-Baden, Germany, 2011, pp. 895–901. https://

doi.org/10.1109/IVS.2011.5940538.
22. Mandalia, H. M., and M. D. Salvucci. Using Support Vec-

tor Machines for Lane-Change Detection. Proceedings of

the Human Factors and Ergonomics Society Annual Meet-

ing, Vol. 49, No. 22, 2005, 1965–1969.
23. Wissing, C., T. Nattermann, K. H. Glander, C. Hass, and

T. Bertram. Lane Change Prediction by Combining Move-

ment and Situation Based Probabilities. IFAC-PapersOn-

Line, Vol. 50, No. 1, 2017, pp. 3554–3559. https:

//doi.org/10.1016/j.ifacol.2017.08.960.
24. Kumar, P., M. Perrollaz, S. Lefèvre, and C. Laugier.
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