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Coupled dynamics on hypergraphs: Master stability of steady states and synchronization
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In the study of dynamical systems on networks or graphs, a key theme is how the network topology influences
stability for steady states or synchronized states. Ideally, one would like to derive conditions for stability or
instability that, instead of microscopic details of the individual nodes or vertices, rather make the influence of
the network coupling topology visible. The master stability function is an important such tool to achieve this goal.
Here, we generalize the master stability approach to hypergraphs. A hypergraph coupling structure is important
as it allows us to take into account arbitrary higher-order interactions between nodes. As, for instance, in the
theory of coupled map lattices, we study Laplace-type interaction structures in detail. Since the spectral theory
of Laplacians on hypergraphs is richer than on graphs, we see the possibility of different dynamical phenomena.
More generally, our arguments provide a blueprint for how to generalize dynamical structures and results from
graphs to hypergraphs.

DOI: 10.1103/PhysRevE.101.062313

I. INTRODUCTION

Dynamical systems on networks are a fundamental part of
the theory of complex systems [1,2]. A common situation in
network dynamics is that one would like to infer dynamical
conclusions just from the underlying network structure. This
has led to the introduction of the master stability function
formalism [3] (see also the exposition in Ref. [4]). The idea is
to assume sufficient symmetry and/or common dynamics for
each individual node or vertex, which then makes it possible
to rewrite stability conditions for steady states, or even more
complicated synchronized solutions, in terms of network data.
Examples of network data in this context are spectra, e.g., of
the graph Laplacian or the adjacency matrix [5]. The master
stability function approach has been successfully applied in
many applications, particularly in the context of synchroniza-
tion of oscillators [6–8]; see also the surveys [9,10].

However, just considering binary interactions modeled by a
network or graph is often insufficient in applications. One then
needs generalizations of graphs. A first natural generalization
are simplicial complexes [11]. Simplicial complexes have
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appeared in several applications, e.g., in protein classification
[12], in percolation models for statistical physics [13], in
computational neuroscience [14], in modeling dynamics of
social peer pressure [15], or in epidemiology [16,17]. More
generally, these results are examples that higher-order inter-
actions [18–20] are relevant between nodes or vertices, where
we note that the study of higher-order interactions has already
quite a long history, particularly in ecology [21,22]. While
simplicial complexes form a very convenient mathematical
structure, they are also somewhat rigid as not all possible
higher-order interactions are allowed. This led to an interest
to study more general hypergraphs, e.g., for cellular networks
[23], for opinion formation [24], for epidemic spreading [25],
or for social network analysis [26]. For instance, consider
collaboration relations among scientists (see, for instance,
Ref. [27]). We may have scientists A, B,C that coauthor a
paper, and there may also exist a paper written by A and B
without C, as well as single author papers by A and C, but no
others. This would be modeled by a hypergraph with vertices
A, B,C and hyperedges {A}, {C}, {A, B}, {A, B,C}. Neither a
graph nor a simplicial complex would be adequate to capture
this structure.

Therefore, in this paper, we study dynamics on hyper-
graphs. We shall generalize the general tool of master stability
functions from graphs to hypergraphs. In particular, we derive
general conditions for the linear stability of synchronized
dynamics. We then turn to the important special class of
Laplace-type interactions, which arise in many applications,
e.g., in the consensus problem [28,29]. In this context, we can
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apply the recently developed spectral theory for hypergraph
Laplacians [30]. At the end, we provide an outlook for how
our framework could be used as a blueprint to systematically
generalize dynamical aspects of graphs to hypergraphs.

II. SETTING: STABILITY FOR SYSTEMS OF ODEs

We briefly recall linear stability theory for systems of
ordinary differential equations (ODEs) to fix the notation and
the main ideas. Let us consider a set of units i = 1, . . . , N ,
called nodes or vertices, in the sequel, that are dynamically
interacting with each other. This leads to a system of differen-
tial equations,

dxi(t )

dt
= Fi(x1(t ), . . . , xN (t )) for t � 0, (1)

where we assume that the state variables xi could be vector-
valued, xi = (x1

i , . . . , xm
i ). Hence, Fi also is a vector, Fi =

(F 1
i , . . . , F m

i ). We may then also write (1) in matrix form,

dx
dt

= F(x). (2)

A solution x∗ of (1) is called linearly stable, or simply stable
for short in the sequel, if any solution ε of the linearization,

dεi

dt
=

N∑
j=1

∂Fi(x∗
1, . . . , x∗

N )

∂x j
ε j, (3)

or in the more abstract version corresponding to (2),

dε

dt
= DF(x∗)ε, (4)

converges to 0 for t → ∞. Here, ∂Fi (x∗
1 ,...,x

∗
N )

∂x j
is the vector with

components ∂Fi (x∗
1 ,...,x

∗
N )

∂xα
j

, α = 1, . . . , m, and similarly for ε,

and therefore, in (3) there is an implicit sum over α. Linear
stability is simply a condition on the Lyapunov exponents of
the tensor DF(x∗) [note that this tensor will in general depend
on time t , since we are not assuming that x∗(t ) is constant].
The stability condition then can be expressed in terms of a
Lyapunov exponent (see, for instance, Ref. [31]),

lim sup
t→∞

1

t
log ‖etDF(x∗(t ))‖ < 1. (5)

There are two special cases that are of particular interest.
(1) The solution x∗ is constant in time, that is, steady

or stationary. This means that for each i, x∗
i (t ) = x∗

i (0) is
independent of time t . Such a stationary state simply satisfies

Fi(x∗
1, . . . , x∗

N ) = 0 for t � 0. (6)

For such a solution, the stability condition is simply (5).
(2) The solution x∗(t ) represents a synchronized state. This

means that it is independent of the vertex i, that is, x∗
i (t ) =

x∗
j (t ) for all i and j, and all t . To make such a solution feasible,

we should also assume that Fi is the same for all i. For the
stability of synchronization, we only need to require that any
nonsynchronized solution of (3) converges to 0 for t → ∞.

In the sequel, we shall only consider the second case. The
first case succumbs to a similar, but easier, analysis.

III. INTERACTION ON NETWORKS

We now consider the situation where a vertex i does not
interact indiscriminately with all other vertices but only main-
tains interactions with a subset of vertices; those vertices are
called the neighbors of i, and one writes j ∼ i when j is such a
neighbor of i. When one considers network interactions, these
interactions are assumed to be pairwise only. That means that
we are able to write the dynamical system (1) in the form

dxi

dt
= fi(xi ) +

∑
j, j∼i

gi j (xi, x j ) for t � 0. (7)

Here, fi is a self-interaction term of i, whereas gi j stands for
the pairwise interaction between i and j. In order to make
the interaction structure more explicit, one often considers
particular subclasses of systems of the form (7) such as (see
also Ref. [4])

dxi

dt
= f (xi ) +

∑
j

ai jg(xi, x j ) (8)

or the even simpler subclass (see also Ref. [3])

dxi

dt
= f (xi) +

∑
j

ai jh(x j ), (9)

where the (vector-valued) dynamical functions f, g, h no
longer depend on the vertices. The reason to consider simpler
subclasses such as (8) and/or (9) is twofold. First, these struc-
tures appear frequently in modeling, e.g., in the context of
neuroscience and for various problems regarding synchroniza-
tion. Second, a general result for the stability of systems (7)
cannot be expected as there is too little specific mathematical
structure, so we have to strike a balance between modeling
simplifications and obtainable theoretical results. The forms
(8) and (9) have shown to be very useful in the context of
graphs [3,4], so they form a natural starting point for an
extension to hypergraphs. Based on these considerations, the
focus then is on the interaction matrix A = (ai j )i, j=1,...,N . The
neighborhood structure can be included in that matrix by
stipulating that ai j = 0 unless j ∼ i.

We consider (9), as the analysis of (8) is similar. The
resulting stability condition has been referred to in the liter-
ature as the master stability condition. If one wishes to make
synchronized dynamics possible, one usually assumes that

a :=
∑

j

ai j (10)

does not depend on i. In that case, a synchronized solution x∗
of (9) would satisfy

dx∗(t )

dt
= f (x∗(t )) + ah(x∗(t )). (11)

The linear stability equation (4) for (9) at a solution x∗ is [3]

dε

dt
= [Id ⊗ Df (x∗) + A ⊗ Dh(x∗)]ε, (12)
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where Id always denotes the identity operator of suitable size,
which is simply the N-dimensional identity matrix in the
context of (12). When we assume that the coupling matrix A
can be diagonalized (for instance, if it is symmetric, i.e., ai j =
a ji for all i, j), we let its eigenvalues be μk, k = 1, . . . , N .
Since Id is the identity matrix, we can decompose (12) into
the corresponding modes εk , that is,

dεk

dt
= [Df (x∗) + μkDh(x∗)]εk for k = 1, . . . , N. (13)

When we assume (10), one of the eigenvectors of A is
constant. Therefore, at a synchronized state x∗, we obtain a
mode ε1(t ) with ε1

i (t ) = ε1
j (t ) for all i, j. The evolution of the

mode therefore leaves the synchronization manifold invariant.
Synchronization is stable when all other modes decay. Let us
consider the case where f = h. Then (13) becomes

dεk

dt
= (1 + μk )Df (x∗)εk for k = 1, . . . , N. (14)

The stability condition then is (see Ref. [32])

lim sup
t→∞

1

t
log ‖et (1+μk )Df (x∗ )‖ < 1, (15)

that is,

|1 + μk|�f < 1, (16)

where, as in (5),

�f := lim sup
t→∞

1

t
log ‖etDf (x∗ )‖ (17)

is the maximal Lyapunov exponent of f (at the particular so-
lution x∗, but in order to have a general criterion, we may take
the supremum over all solutions). The inequality (16) now
separates and relates the condition for the dynamical update
f and the network connectivity as encoded in the coupling
matrix A and its eigenvalues. In the interesting case, we have
�f > 1, that is, the dynamics generated by f is unstable. But if
the eigenvalues μ2, . . . , μN lie between −2 and 0 and satisfy
(16), synchronization may still be a stable state. Similar to
Ref. [32], we now consider the case where

dxi

dt
= f (xi ) − σ (�f )(xi). (18)

Here, 0 � σ � 1 is a parameter and

(�u)(xi ) := u(xi ) − 1

deg(i)

∑
j∼i

u(x j ) (19)

is the normalized Laplace operator of the network (see, for
instance, Refs. [5,33] for the theory, but note that the con-
ventions employed here are somewhat different from those in
these references). The eigenvalues of � satisfy

0 = λ1 � λ2 � · · · � λN � 2, (20)

where the eigenfunction for λ1 = 0 is constant. The stability
condition (16) then becomes

|1 − σλk|�f < 1 for k = 2, . . . , N, (21)

that is, by (20),

λ2 >
1 − �−1

f

σ
and λN <

1 + �−1
f

σ
. (22)

Thus, we need at the same time a lower bound for the first
nonzero eigenvalue and an upper bound for the largest eigen-
value. λ2 is controlled from below by the so-called Cheeger
inequality [34,35] which quantifies the cohesion of the graph.
λ2 is largest when the graph is complete, and of course, a
complete graph is more conducive to synchronized dynamics
than a less coherent one. In particular, λ2 = 0 precisely if the
graph is disconnected, and for such a graph, we obviously
cannot expect dynamics to synchronize. In fact, when the
graph has more than one component, the dynamics could be
synchronized on each component, but not necessarily between
components. Let us consider the case of two components
	1, 	2. An eigenfunction for λ2 = 0 then is constant on each
component (with the weighted sum of the constants being
zero). When �f > 1, but (22) is satisfied now for λ3, then
what we may call the generalized synchronization manifold,
that is, the family of dynamical states that are synchronized
inside the two components only, is stable against perturbations
by other eigenstates. Analogously, of course, for more than
two components.– λN = 2 holds precisely if the graph is
bipartite, and in fact the gap 2 − λN quantifies the deviation
from bipartiteness [36]. On a bipartite graph, antiphase os-
cillations are possible, and thus, there again is an obstacle to
synchronization carried by the mode associated with λN . That
is why we need the upper bound. Given �f and the topology
of the underlying graph, (22) then tells us whether we can
find a range of coupling strengths σ for which synchronized
dynamics are stable.

IV. INTERACTION ON HYPERGRAPHS

So far, we have essentially summarized or reformulated
known results. In particular, in the preceding section, we have
considered dynamics on a network where the dynamics at
each vertex is coupled with the dynamics of its neighbors.
The network thus corresponds to a graph with edges defined
by the neighborhood relations. Thus, all relations are binary.
When we also want to include higher-order interactions, as in
many empirical systems, we need an underlying structure that
is more general than that of a graph. We need a hypergraph. A
hypergraph has a set V of vertices i = 1, . . . , N and a set H ⊂
2V of hyperedges h = 1, . . . , M. Thus, each hyperedge is a
set of vertices h = {ih(1), . . . , ih(mh )} where mh is the number
of vertices contained in the hyperedge h. We can then consider
types of dynamics analogous to those in Eq. (7). These can be
written as

dxi

dt
= f (xi ) +

∑
h:i∈h

gih
(
xih(1) , . . . , xih(mh )

)
. (23)

We note that the number of arguments of an interaction
function gih now depends on the size mh of the hyperedge
h. When we linearize (23), we therefore need the N × M
incidence matrix I := (Iih) defined by

Iih :=
{

1 if i ∈ h,

0 otherwise.

We observe that, for each i and j,

Iih · I jh =
{

1 if i, j ∈ h,

0 otherwise.
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Therefore,

(I · I
)i j =
M∑

h=1

Iih · I

h j =

M∑
h=1

Iih · I jh = |h : i, j ∈ h|.

(24)

Returning to the general system (23), its linearized version at
a solution x∗ then is

dεi

dt
= ∂f (x∗

i )

∂xi
εi +

∑
h:i∈h

∑
j∈h

∂gih
(
x∗

ih(1)
, . . . , x∗

ih(mh )

)
∂x j

ε j

= ∂f (x∗
i )

∂xi
εi +

∑
h:i∈h

∑
j

I jh

∂gih
(
x∗

ih(1)
, . . . , x∗

ih(mh )

)
∂x j

ε j .

(25)

For the stability of x∗, we need to check as before whether
ε(t ) → 0 as t → ∞ for any solution of (25).

After this general result, we now want to discuss the
possibility and the stability of synchronized dynamics on
hypergraphs. When we want to consider the analog of (8)
or (9) and again assume uniform interaction functions, these
functions will now still depend on the size of the hyperedges,
as the number of their arguments varies with the size m of the
underlying hyperedge. Thus, we have functions gm. When we
have an interaction matrix A = aih, the dynamics then are of
the form

dxi

dt
= f (xi ) +

∑
h:i∈h

aihgmh

(
xih(1) , . . . , xih(mh )

)
. (26)

When, for instance, aih = Iih, (25) becomes

dεi

dt
= ∂f (x∗

i )

∂xi
εi +

∑
j,h

IihI jh

∂gmh

(
x∗

ih(1)
, . . . , x∗

ih(mh )

)
∂x j

ε j .

(27)

We thus see (24) in action. Furthermore, we require the analog
of (10), that is, a := ∑

h Iih does not depend on i.
As explained already for the case of graphs, it is neces-

sary to make additional assumptions to obtain a theoretically
tractable, yet interesting and applicable, coupling structure.
Hence, we consider the case where gm(y1, . . . , ym) is a nor-
malized symmetric function of its entries, for instance,

gm(y1, . . . , ym) = g

⎛
⎝ 1

m

m∑
j=1

y j

⎞
⎠

or

gm(y1, . . . , ym) = g

⎧⎨
⎩

⎛
⎝ m∏

j=1

y j

⎞
⎠

1/m⎫⎬
⎭

for some function g (when the entries are vectors, as consid-
ered here, these functions can be evaluated componentwise).

Importantly, we can again consider a Laplacian-type cou-
pling. The corresponding hypergraph Laplacian was con-
structed in Ref. [30], where the authors worked on the more
general setting of chemical hypergraphs. Here, we choose

to work on this more general setting, as this offers more
possibilities of modeling, and we recall some properties of the
corresponding Laplacian. A chemical hypergraph is given by
a collection of vertices i = 1, . . . , N and a collection of ori-
ented hyperedges h = 1, . . . , M. An oriented hyperedge is a
nonempty ordered subset (Vh,Wh) of 2V × 2V . The vertices in
Vh and Wh are called the inputs and outputs of h. Changing the
orientation of h simply means replacing (Vh,Wh) by (Wh,Vh).
Vh and Wh need not be disjoint, and the vertices in Vh ∩ Wh are
called catalysts of h. The hypergraph Laplacian of Ref. [30]
then is defined as

�̃u(xi )

:=
∑

hin:i input

(∑
i′ input of hin

u(xi′ ) − ∑
j′ output of hin

u(x j′ )
)

deg(i)

−
∑

hout:i output

(∑
î input of hout

u(xî )−
∑

ĵ output of hout
u(x ĵ )

)
deg(i)

.

This definition is invariant under changes of orientation of
hyperedges. For a graph, an oriented edge is simply a pair
of vertices, and the definition of the hypergraph Laplacian
reduces to (19). Also, chemical hypergraphs that have either
only inputs or only outputs correspond to classical hyper-
graphs with no orientation.

As before, the stability condition couples the Lyapunov
exponent of the dynamical nonlinearity f , the structure of the
hypergraph as encoded by the eigenvalues λ̃k of �̃, and the
coupling parameter σ . Indeed, if we replace in (18) the usual
graph Laplacian by the hypergraph Laplacian �̃, then we get
a stability condition

|1 − σ λ̃k|�f < 1 for k = 1, . . . , N, (28)

Note carefully that although we have

0 � λ̃1 � λ̃2 � · · · � λ̃N , (29)

we do not have the same strong bounds as for the usual graph
Laplacian as presented in (20). Yet, we can still rewrite (29)
as

λ̃min >
1 − �−1

f

σ
and λ̃N <

1 + �−1
f

σ
, (30)

where λ̃min is the smallest nonzero eigenvalue. Even for a
connected hypergraph, λ̃2 need not be greater than 0. This, in
fact, leads to an interesting class of dynamics. Let us assume
that λ̃1 = · · · = λ̃k = 0, but λ̃k+1 satisfies (30), that is, λ̃k+1 >
1−�−1

f
σ

. Then the class of dynamics that belongs to eigenstates
of the Laplacian for the eigenvalue λ̃ = 0 is stable. This class
can be larger than the locally synchronized dynamics. For
instance, consider a graph with three vertices 1,2,3 and a
single hyperedge with V = {1},W = {2, 3}. One eigenstate
for λ̃ = 0 is constant, but another one is given by u(1) = 1,
u(2) = u(3) = 1

2 . This would correspond to a dynamical state
x∗ with g(x∗

2 ) = g(x∗
3 ) = 1

2 g(x∗
1 ), which would be stable under

our conditions. That is, the dynamical activity at 1 is equally
split into the activities at 2 and 3, as prescribed by the topology
of the hypergraph. Conversely, it may also happen that all
eigenvalues of a hypergraph are positive. Take, for instance,
again three vertices, and for each i a hyperedge hi with Vhi =
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{i},Whi = {i + 1, i + 2}, counting the vertices mod 3. Then
all eigenvalues are positive (see Ref. [30]), precluding the
possibility of synchronized dynamics. Furthermore, another
difference with the graph case is that 2 does not give an upper
bound to λ̃N . In fact, λ̃N is equal to N in some cases and it
is not known yet whether this is the largest possible value
for λN . Nevertheless, the geometrical meaning of the largest
eigenvalue does not change. It is in fact known that, given a
hypergraph 	 with largest eigenvalue λ̃N , then

λ̃N � λ̃′
N ,

where λ̃′
N is the largest eigenvalue of a bipartite hypergraph

that has the same number of hyperedges as 	 and also the
same number of inputs and the same number of outputs in
each hyperedge (catalysts are not included). Also, the equality
holds if and only if 	 is bipartite.

In summary, we find that once the hypergraph Laplacian
appears in the dynamics directly, one can still derive a master
stability condition. But one has to be careful, e.g., in treating
the dimension of the synchronization manifold as well as
possible degenerate additional neutral modes associated with
zero eigenvalues, which may appear on a linear level for the
hypergraph Laplacian. In addition, it is clear that hypergraph
coupling can shift the stability regions. This lends some
interest to results for a particular model in the special case of
simplicial complexes [16]. However, note that our master sta-
bility conditions only operate on the level of the linearization.
The case of higher-order interactions and bifurcations, where
nonlinearities matter even locally, is far more involved [37].

Finally, we point out that while in this paper we have con-
sidered time-continuous dynamics, our scheme also applies
to time-discrete dynamics. For instance, one can study the
phenomenon of the synchronization of chaos [38] on analogs
of coupled map lattices on hypergraphs.

V. CONCLUSION AND OUTLOOK

In this paper we have shown how to extend the master
stability function framework from graphs to hypergraphs. In
particular, we noticed how the spectral properties of the hy-
pergraph Laplacian enter the stability condition, and how this
changes the statements we may make regarding the interplay
between network topology and dynamics. For example, it is
now possible that the upper bound on the largest eigenvalue
grows significantly, while already the smallest eigenvalue can
be bigger than zero. Conversely, even for connected hyper-
graphs, the multiplicity of the eigenvalue 0 can be larger
than 1, and this leads to interesting classes of dynamics
that are more general than synchronization, but may still be
locally stable under appropriate conditions. Furthermore, we
found that the incidence matrix plays an important role in
hypergraph dynamics, and it interacts in a nontrivial way with
the master stability condition(s).

We point out that the approach we have taken here provides
a general strategy for lifting results about dynamics on graphs
to hypergraphs. The key is to identify the steps where the
adjacency matrix or the graph Laplacian play key roles, and
then replace them with analogous hypergraph objects. The
spectral theory of hypergraphs is richer than that of graphs,
and that lead us to identify different classes of dynamics
that are more general than synchronization but for which we
can still derive stability conditions analogous to those for
synchronized dynamics on graphs.
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