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Abstract

Proteins play a pivotal role in a variety of biological processes. Their structures are
stabilized by tons of invisible physical contacts between residues and most of their
functions are performed by interacting to other proteins, ligands, or other macro-
molecules. Atomic-level three-dimensional (3D) protein structures allow a de-
tailed analysis of protein functions and interaction mechanisms. Notwithstanding
a large quantity of protein structures have still not been determined experimen-
tally due to the costly and laborious nature inherent to experimental techniques.
Computational prediction of residue contacts and interaction sites can cope with
the intractable tasks. Transmembrane (TM) proteins across plasma membranes
mediate a wide range of signaling activities between intracellular and extracellu-
lar environments, which makes them indispensable to cellular activities. Besides,
TM protein targets have been found to be pharmaceutically instrumental for drug
development. Currently, most computational methods are confined to globular
proteins. In this thesis, we have sought to establish a comprehensive pipeline for
constructing accurate contact maps and interaction site potentials of TM proteins
by computationally detecting residue contacts at an intra-protein level and inter-
action sites at an inter-protein level, respectively.

One of the longest-standing challenges in structural biology is the accurate
prediction of residue contacts that provide spatial distance constraints used sub-
sequently for 3D modeling of protein structures. The centerpiece of accurate con-
tact prediction lies in advanced algorithms and well-curated informative features.
Undoubtedly, evolutionary coupling analysis (ECA) methods have been success-
fully applied to tackling the conundrum and capturing covariant residues that are
highly-relevant to spatial proximities between them. Over the past decade, deep
learning heralding the next generation of intelligent algorithms has achieved un-
rivaled successes across a broad spectrum of biological applications compared
to traditional techniques. Very recently deep residual neural networks (ResNets)
have enabled considerable progress in predicting secondary structures, residue
contacts, and 3D protein structures. We have built on this emerging technique and
the coevolutionary features to develop two novel deep-learning-based systems,
DeepHelicon and DeepTMInter, for sequence-based prediction of residue contacts
and interaction sites in TM proteins, respectively. Both systems have undergone
systematic supervised-learning processes followed by performance refinement on
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the currently largest datasets of TM proteins at the <22% and <25% sequence
identity levels, respectively. Using a dataset of 44 TM proteins, DeepHelicon out-
performed two state-of-the-art techniques, DeepMetaPSICOV and Membrane2, in
terms of the mean precision/recall/f1-score/MCC values of 77.84%/27.52%/38.8-
2%/44.43%, 87.42%/12.70%/21.48%/31.99%, and 91.33%/6.58%/12.06%/23.60%
in predicting the top L/2, L/5, and L/10 inter-helical contacts, respectively. These
results have so far been the best records based on these TM proteins. We also
found that DeepHelicon is well-suited for predicting contacts in those accommo-
dating abundant helices. Our second method, DeepTMInter, presented a sub-
stantial improvement for interaction site prediction on a rigorously redundancy-
reduced test dataset with the AUC/AUCPR values of 0.689/0.598 compared to
0.589/0.493 of a previously best performing method, MBpred.

Furthermore, we used DeepTMInter to systematically investigate the interac-
tion network connectivity of human transmembrane proteome and found that the
percentage of per-protein interaction sites is directly proportional to the number
of human interaction partners. Our findings also show that among all functional
families of human TM protein, the ion channels were identified to accommodate
the largest number of interaction sites per protein. The resulting data are helpful
for both academia and industry in aiding the follow-up analysis related to human
transmembrane proteins, such as drug development.
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Zusammenfassung

Proteine spielen eine zentrale Rolle in einer Vielzahl von biologischen Prozessen.
Ihre Strukturen werden durch Tonnen unsichtbarer physikalischer Kontakte zwis-
chen Rückständen stabilisiert und die meisten ihrer Funktionen werden durch In-
teraktion mit anderen Proteinen, Liganden oder anderen Makromolekülen durch-
geführt. Dreidimensionale (3D) Proteinstrukturen auf Atomebene ermöglichen
eine detaillierte Analyse von Proteinfunktionen und Interaktionsmechanismen.
Ungeachtet einer großen Menge an Proteinstrukturen wurden aufgrund der kost-
spieligen und mühsamen Natur, die experimentellen Techniken innewohnt, noch
nicht experimentell bestimmt. Die Berechnungsvorhersage von Rückstandskon-
takten und Interaktionsstellen kann die unlösbaren Aufgaben bewältigen. Trans-
membran-Proteine (TM) über Plasmamembranen hinweg vermitteln eine breite
Palette von Signalaktivitäten zwischen intrazellulärer und extrazellulärer Umge-
bung, was sie für zelluläre Aktivitäten unentbehrlich macht. Außerdem, TM
Protein-Ziele wurden gefunden, um pharmazeutisch instrumental für die Entwick-
lung von Medikamenten. Derzeit beschränken sich die meisten Rechenmethoden
auf Kugelproteine. In dieser These haben wir versucht, eine umfassende Pipeline
für die Erstellung genauer Kontaktkarten und Interaktionsstandortpotenziale von
TM-Proteinen zu etablieren, indem wir rechenweise Rückstandskontakte auf in-
traproteinebener Ebene und Interaktionsstandorte auf Interproteinebene erken-
nen.

Eine der ältesten Herausforderungen in der Strukturbiologie ist die genaue
Vorhersage von Rückstandskontakten, die räumliche Entfernungseinschränkun-
gen liefern, die anschließend für die 3D-Modellierung von Proteinstrukturen ver-
wendet werden. Das Herzstück der genauen Kontaktvorhersage liegt in fortschrit-
tlichen Algorithmen und gut kuratierten informativen Funktionen. Zweifellos
wurden methoden der evolutionären Kopplungsanalyse (ECA) erfolgreich einge-
setzt, um das Problem zu bekämpfen und kovariante Rückstände zu erfassen,
die für räumliche Probleme zwischen ihnen hochrelevant sind. In den letzten
zehn Jahren hat Deep Learning, das die nächste Generation intelligenter Algo-
rithmen ankündigt, im Vergleich zu herkömmlichen Techniken unübertroffene
Erfolge in einem breiten Spektrum biologischer Anwendungen erzielt. In jüngster
Zeit haben tiefe verbleibende neuronale Netzwerke (ResNets) erhebliche Fortsch-
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ritte bei der Vorhersage von Sekundärstrukturen, Rückstandskontakten und 3D-
Proteinstrukturen ermöglicht. Wir haben auf dieser aufkommenden Technik und
den koevolutionären Merkmalen aufgebaut, um zwei neuartige Deep-Learning-
basierte Systeme zu entwickeln, DeepHelicon und DeepTMInter, für die sequenz-
basierte Vorhersage von Rückstandskontakten bzw. Interaktionsstellen in TM-
Proteinen. Beide Systeme wurden systematisch überwachten Lernprozessen un-
terzogen, gefolgt von einer Leistungsverfeinerung der derzeit größten Datensätze
von TM-Proteinen auf den <22% bzw. <25%-Sequenzidentitätsniveaus. Mit einem
Datensatz von 44 TM-Proteinen übertraf DeepHelicon zwei hochmoderne Tech-
niken, DeepMetaPSICOV und Membrane2, in Bezug auf die durchschnittlichen
Genauigkeits-/Rückruf-/F1-Score/MCC-Werte von 77.84%/27.52%/38.82%/44.-
43%, 87.42%/12.70%/21.48%/31.99%, und 91.33%/6.58%/12.06%/23.60% bei der
Vorhersage der oberen L/2, L/5 und L/10 interhelical Kontakte. Diese Ergebnisse
waren bisher die besten Aufzeichnungen, die auf diesen TM-Proteinen basieren.
Wir fanden auch heraus, dass DeepHelicon gut geeignet ist, kontakte bei den Kon-
takten zu prognostizieren, die reichlich Helices aufnehmen. Unsere zweite Meth-
ode, DeepTMInter, präsentierte eine wesentliche Verbesserung für die Vorhersage
von Interaktions-Standorten auf einem streng redundanzreduzierten Testdaten-
satz mit den AUC/AUCPR-Werten von 0.689/0.598 im Vergleich zu 0.589/0.493
einer zuvor leistungsstärksten Methode, MBpred.

Darüber hinaus haben wir DeepTMInter verwendet, um die Interaktionsnet-
zwerkkonnektivität von humanem Transmembranproteom systematisch zu un-
tersuchen, und festgestellt, dass der Prozentsatz der Pro-Protein-Interaktionsstellen
direkt proportional zur Anzahl der menschlichen Interaktionspartner ist. Unsere
Ergebnisse zeigen auch, dass unter allen funktionellen Familien des menschlichen
TM-Proteins die Ionenkanäle identifiziert wurden, um die größte Anzahl von In-
teraktionsstellen pro Protein aufzunehmen. Die daraus resultierenden Daten sind
sowohl für die Wissenschaft als auch für die Industrie hilfreich, wenn es um die
Folgeanalyse im Zusammenhang mit menschlichen Transmembranproteinen wie
der Arzneimittelentwicklung geht.
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Chapter 1

Introduction

1.1 Membrane proteins

1.1.1 Protein topology

Most of membrane proteins are characterized by membrane-spanning α-helices
(Lee, 2011; Miyazawa, Fujiyoshi, and Unwin, 2003) roughly orientated perpen-
dicularly to the membrane plane (Heijne, 2006; Fuchs, Kirschner, and Frishman,
2009), e.g., one α-helix in the transmembrane region of glycophorin (Lemmon et
al., 1992). The helix-bundle membrane proteins can either cross the lipid bilayer
or be interrupted within the membrane (Heijne, 2006), which are therefore clas-
sified into transmembrane proteins and peripheral membrane proteins (Pollard
et al., 2016). It has been established that the former ones which are predominant
in size (Zaucha et al., 2020) are exposed to the intracellular (i.e., cytoplasmic) and
extracellular surfaces of the membranes. Thus, the topology of transmembrane
proteins encompasses the three kinds of regions (see an example shown in Fig.
1.1a): transmembrane regions (Adamian and Liang, 2001), cytoplasmic regions,
and extracellular regions, which are all vital to life activities.

1.1.2 Membrane permeability mediated by transmembrane pro-

teins

Transmembrane proteins play a crucial role in bridging the gap between the intra-
cellular and extracellular environment, allowing entrances of chemical substrates
and ions into cytoplasm of cells and organelles through plasma membranes, bind-
ing of ligands to intra- or extra-cellular domains for specialized biochemical re-
actions, and communication between cells (Hopf et al., 2012). Transmembrane
proteins are perceived as natural barriers to allow membranes to be impermeable
to external ions and macromolecules (Phillips et al., 2009). The impermeability
of membranes ensures compartmentalization as necessity for cellular activities
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(Zaucha et al., 2020). Transmembrane proteins that regulate the membrane im-
permeability can be divided into the three classes: pumps, carriers, and channels
according to a broad spectrum of characteristics (see chapter 14 in Pollard et al.,
2016), e.g., pump needs energy input while the other two do not need it.

1.1.3 Human transmembrane protein families

Transmembrane proteins in the human transmembrane proteome are widely found
to be targeted by chemical compounds or small molecules that are pharmacologi-
cally and immunologically therapeutic to human diseases (Armstrong et al., 2020;
Alexander et al., 2019; Sokolina et al., 2017), e.g., schizophrenia (Moreno, Sealfon,
and González-Maeso, 2009) and Parkinson disease (Gan-día et al., 2013). Accord-
ing to the Guide to PHARMACOLOGY (GtoPdb available at https://www.guide
topharmacology.org/) (Armstrong et al., 2020; Alexander et al., 2019), an expert-
curated database of ligand-activity-target relationships, human transmembrane
proteins are categorized into 8 major classes, namely, G-protein-coupled recep-
tors, catalytic receptors, ligand-gated ion channels, voltage-gated ion channels,
other ion channels, transporter, enzyme, and other protein targets. On the other
hand, Almén’s work (Almén et al., 2009) classified human transmembrane pro-
teins into three major functional groups: receptors (63 sub-groups), transporters
(89 sub-groups), and enzymes (7 sub-groups). Transporters construct intricate
networks of carriers, pumps, and translocators (Saier Jr et al., 2016) to carry sub-
strates or other molecules across the membrane by exploiting electrochemical gra-
dients (Pollard et al., 2016). Enzymes are responsible for catalyzing biochemi-
cal reactions (Omelchenko et al., 2010). G-protein-coupled receptors, the largest
family of transmembrane receptors, are crucial for mediating signal transduction
pathways (Sokolina et al., 2017). Transmembrane protein ion channels perform bi-
ological functions, e.g., regulating electrical potential, by allowing ions to diffuse
across cell membranes (Pollard et al., 2016).

1.1.4 Experimentally determined structures

It has long been clear that the full understanding of biological mechanisms of
proteins relies on their known 3-dimensional (3D) structures at an atomic level
(Baker and Sali, 2001). To date, most of 3D structures of proteins in structural
biology are experimentally determined by three key methods, namely, X-ray crys-
tallography, nuclear magnetic resonance (NMR) spectroscopy, and cryogenic elec-
tron microscopy (cryo-EM) (Wlodawer, Li, and Dauter, 2017). Since its invention,
the X-ray crystallography method has been the most prevailing method to deter-
mine structures (Wang and Wang, 2017), e.g., with a total of 141,566 entries (see

https://www.guidetopharmacology.org/
https://www.guidetopharmacology.org/
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Fig. 1.1b) available in PDB in 2019. The first structure, myoglobin, was deter-
mined by using the X-ray technique in 1958 (Wlodawer, Li, and Dauter, 2017;
Kendrew et al., 1958). Thanks to the high sensitivity to the nuances of local struc-
tural changes, NMR spectroscopy has emerged as a powerful tool for determina-
tion of proteins that bind to ligands, which is extremely useful for drug discovery
(Geraets, Pothula, and Schröder, 2020). The downside of both methods is the low-
precision determination of large proteins (Schmidt and Urlaub, 2017). Cryo-EM
has become increasingly instrumental in determining macromolecular complexes
(Hendrickson, 2016; Shoemaker and Ando, 2018), e.g., membrane protein assem-
blies (Cheng, 2018). One typical case of large protein determination is that the
transmembrane spike glycoprotein of SARS-CoV-2 was determined by cryo-EM
(Walls et al., 2020). Despite how experimentally determined structures grow, the
number of transmembrane protein structures is still small. Around 20-30% gene-
encoding proteins in genomes are membrane proteins (Wallin and Heijne, 1998;
Sharpe, Stevens, and Munro, 2010) whose structures only account for 2%-3% of
the all experimentally-determined structures available in PDB (Xia et al., 2018).
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FIGURE 1.1: Experimentally determined structures. (a) shows an ex-
ample of the 3D structure of pseudomonas aeruginosa PAO1 (PDB
code: 5x5y) from Escherichia coli BL21(DE3). Portions in yellow rep-
resent transmembrane regions and portions in cyan and pink repre-
sent either intra- or extra-cellular regions. Membranes are bounded
by grey planes. (b) shows the number of experimentally determined
structures deposited in PDB by the end of 2019 by using X-ray crys-
tallography, NMR spectroscopy, and cryo-EM techniques, respec-
tively. Each technique includes two bars, the left one for the cu-
mulative number and the right one for the annual number of de-
termined structures. (c) shows the number of experimentally deter-
mined structures of α-helical, β-barrel, and all transmembrane pro-
teins, by the end of 2019, curated in the mpstruc (α-helical and β-
barrel data not shown), PDBTM, and OPM databases, respectively.

1.1.5 Databases of membrane protein structures

Membrane protein structures together with all others are comprehensively de-
posited in the protein data bank (PDB, https://www.rcsb.org/) (Goodsell et al.,
2020). Detailed annotations of membrane protein structures are elucidated by
the three widely-used databases (Shimizu et al., 2018, see Fig. 1.1c): mpstruc
(https://blanco.biomol.uci.edu/mpstruc/) (White, 2009), PDBTM (Kozma, Si-
mon, and Tusnady, 2012) (http://pdbtm.enzim.hu/), and orientations of proteins
in membranes (OPM, https://opm.phar.umich.edu/) (Lomize et al., 2012). mp-
struc is a well-curated database for annotations of membrane proteins in PDB
but do not provide membrane protein topologies. PDBTM is a repository of
only transmembrane protein structures by using the TMDET algorithm (Tusnády,
Dosztányi, and Simon, 2004) to geometrically localize membrane planes and to
distinguish transmembrane proteins from non-transmembrane proteins. OPM is

https://www.rcsb.org/
https://blanco.biomol.uci.edu/mpstruc/
http://pdbtm.enzim.hu/
https://opm.phar.umich.edu/
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an archive of membrane proteins whose orientation to the membrane is deter-
mined by minimizing a transfer energy function from water to the lipid bilayer.
In addition, other subject-specific databases for membrane proteins also become
available, e.g., the Membranome (Lomize, Hage, and Pogozheva, 2018) (https:
//membranome.org/) database for single-spanning transmembrane proteins that
are the most functionally diverse group of membrane proteins (Lomize et al.,
2017).

1.2 Prediction of transmembrane protein structures and

residue contacts

1.2.1 Retrieval tools for generating multiple sequence alignments

Multiple sequence alignments (MSAs) lay the foundation for structural biology
and immensely impact on the accurate prediction of residue contacts. The qual-
ity of protein MSAs relies on retrieval tools and sequence databases. Two pop-
ularly used tools for retrieving homologous sequences are HHblits (Remmert
et al., 2012) and JackHmmer (Johnson, Eddy, and Portugaly, 2010). Protein se-
quences databases against which HHblits retrieves the homologous sequences are
often curated and regularly released by their own team. It also provides the way
to customize a sequence database by users. In order to obtain reliable results,
one often uses the alignments large enough for tackling structural biology prob-
lems (Söding, 2017). Recently, large alignments generated from metagenomics
databases have been used for accurate modeling of a large number of protein
families (Ovchinnikov et al., 2017).

1.2.2 Computational modeling of proteins

Although available protein sequence databases are growing exponentially (Finn
et al., 2016), biological functions of proteins of unknown structures remain elu-
sive in that only a far small number of proteins have been experimentally deter-
mined. Yet, despite the fast-paced growth of the number of protein sequences,
efforts of accurate protein structure determination are still hampered by existing
experimental technologies e.g., time-consuming and costly nature through X-ray
crystallography and NMR spectroscopy (Ding et al., 2013). To circumvent the
problems, insight is therefore being given into devising computational algorithms
to predict 3D protein structures from amino acid sequences (Dill and MacCallum,
2012). Spatial proximities at an inter-residue level are depicted by protein con-
tact maps through which protein 3D models can be built by structure prediction

https://membranome.org/
https://membranome.org/
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programs, such as CONFOLD2 (Adhikari and Cheng, 2018) and Rosetta (Ovchin-
nikov et al., 2017), and by de novo modeling as exemplified in the three studies
(Hopf et al., 2012; Hopf et al., 2017; Sjodt et al., 2018). Recently, the inter-helical
residue contacts can also facilitate the structural modeling of TM proteins (Yang
et al., 2016). Unsatisfactory prediction performance of inter-helical residue con-
tacts in TM proteins has been the main impediment to the development of trans-
membrane protein modeling. Therefore, a direct motivation here is to predict
inter-helical residue contacts using advanced computational approaches. In addi-
tion, distance-based prediction has recently started to show a powerful ability in
protein modeling (Xu, 2019).

1.2.3 Dominant role of deep learning in contact prediction

Recent years have witnessed a prosperous development of machine- and deep-
learning techniques in the area of information technology, led by using machines
trained and optimized to perform extremely complicated tasks (LeCun, Bengio,
and Hinton, 2015), such as image recognition (Krizhevsky, Sutskever, and Hin-
ton, 2012) and automatic speech recognition (Hinton et al., 2012) as well as other
artificial intelligent applications (Silver et al., 2017; He and Deng, 2017). In con-
trast to traditional machine learning techniques, deep learning approaches au-
tomatically learn representations from input data, which vastly reduces tedious
and repetitive engineering work for feature extraction (LeCun, Bengio, and Hin-
ton, 2015). The number of bioinformatics applications developed by deep learn-
ing has drastically increased since 2012 (Min, Lee, and Yoon, 2017) that tallies
with the time when the deep-learning-based ImageNet achieved ideal perfor-
mance in the ILSVRC-2012 image competition (Krizhevsky, Sutskever, and Hin-
ton, 2012). ImageNet has attracted much attention since its inception. Nowadays,
deep-learning techniques are expanding to different kinds of biological analyses
driven by a considerable amount of multi-omics (e.g., genomics, proteomics, and
metabolomics) data (Li, Wu, and Ngom, 2018; Wainberg et al., 2018; Eraslan et al.,
2019). Concomitantly, these learning techniques have led to a rapid growth of
precise protein modeling; other structure-related prediction problems including
the contact and distance prediction are also ongoing. With the fast development
of deep learning, precision of predicting residue contacts has been substantially
boosted by a dozen of methods (Wang et al., 2017; Kandathil, Greener, and Jones,
2019a; Ding et al., 2018), providing a promising perspective for how to incorpo-
rate deep learning algorithms into sequence-based contact prediction. In struc-
tural bioinformatics the quality of residue contact prediction is assessed by the
critical assessment of protein structure prediction (CASP) organization (Ezkurdia
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et al., 2009; Monastyrskyy et al., 2016). The most recent two CASP competitions
are briefly introduced below.
a. CASP12

One of the most striking successes in CASP12 is that among the best per-
forming groups, the average precision of 47% on the L/5 long-range contacts in
CASP12 nearly doubles the average precision of 27% in CASP11 (Schaarschmidt
et al., 2018). In some cases with abundant homologous sequences the precision
can even reach up to 100%. The average precision increment from CASP11 to
CASP12 is only 6% between their respective best performing groups. In CASP12
ultra-deep residual neural networks (He et al., 2016a) are first applied into residue
contact prediction.
b. CASP13

With the large improvement of predicting residue contacts in CASP12, the per-
formance of predictors was systematically examined in CASP13 where we saw
a quantum leap in average precision of almost up to 70% from 47% of CASP12
(Shrestha et al., 2019). Another silent feature of CASP13 is that deep learning
approaches are widely used and are dominant in top performing groups. All
best performing models, such as RaptorX (Xu and Wang, 2019), TripletRes (Li et
al., 2019a), and DeepMetaPSICOV (Kandathil, Greener, and Jones, 2019a), were
developed by using deep residual neural networks that significantly led in the
CASP13 competition (Kandathil, Greener, and Jones, 2019b).

Looking deeper, approximately all off-the-shelf deep neural network models
for residue contact prediction are generated using coevolutionary information.
Several studies have investigated this issue and have partially revealed the cen-
tral role of coevolutionary information in the strikingly successful performance.
EPSILON-CP (Stahl, Schneider, and Brock, 2017) and MemConP (Hönigschmid
and Frishman, 2016) have sought to quantify the contribution of coevolutionary
information by using Gini impurity (GI, also known as mean decrease of im-
purity) (Louppe et al., 2013). In both studies, coevolutionary information has
the highest GI scores that emphasize the importance of the features. Obviously,
the coevolutionary information have geared the accurate prediction towards fast
growth. Owing to the residue correlations inferred by coevolutionary informa-
tion, accurate deep-learning predictors integrated with the coevolutionary infor-
mation as features has undergone an unprecedented development and improve-
ment (Wang and Wang, 2017). The underlying principle is that coevolutionary in-
formation agrees to physical contacts (or distances) between residues (see Figure
1.1 in (Marks et al., 2011)). Some statistical inference techniques generate corre-
lation results carrying the coevolutionary information (Feinauer et al., 2014). As
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such, the more accurate the statistical inference techniques are, the more accu-
rate the correlations between residues are. The correlations essentially reflect the
physical contact strengths between residues. We will discuss the methods or the
techniques that are used to yield the coevolutionary information in detail in the
next section.

1.2.4 Residue contacts identified by evolutionary coupling anal-

ysis

Given 21 types of symbols qt, t = 1, 2, . . . , L; L = 21 (20 amino acids and 1 gap),
a common way of measuring the correlation between any alignment column pair
(i, j) is the mutual information (MI) (Lapedes et al., 1999):

MIij =
L

∑
k=l=1

fij (qk, ql)
fij (qk, ql)

fi (qk) fi (ql)
(1.1)

The result obtained by eq. (1.1) fails to describe an accurate coevolutionary
strength. For example, if R1R2 and R2R3 are two contacting residue pairs, R1R3

is also thought of as being in contact because of the transitive correlation be-
tween R1R2 and R2R3 (Weigt et al., 2009; Morcos et al., 2011). However, R1R3

may not directly be in physical contact but using MI R1R3 is considered as indi-
rectly contacting by the confounding factor (i.e., transitivity by which MI is in-
herently limited) (Marks et al., 2011). One the other hand, MI is seen as a local
method as it is calculated by considering only a column pair at one time, which
ignores the influences of other alignment columns on it (Stein, Marks, and Sander,
2015). Apart from MI, other two local examples are Pearson’s correlation (Stein,
Marks, and Sander, 2015) and CRoSS (Thattai, Burak, and Shraiman, 2007; Weigt
et al., 2009). Direct coupling analysis (DCA) methods obtained statistical infer-
ences for residue contacts from maximum entropy modeling (a global approxi-
mation technique), which disentangles directly coupled residues from indirectly
coupled ones. This method uses pDI

ij (qk, ql) to estimate the coevolutionary cou-
pling strengths between alignment columns i and j, which satisfies the following
condition:

pDI
ij (qk, ql) = ∑

{qt,t 6=i,j}
P (q1, q2, . . . , qLs) (1.2)

where Ls is the length of the protein of interest. The right part in eq. (1.2) is a
probability inferred from a global statistical model - maximum-entropy model.
Direct information (DI) expounded by Morcos et al., 2011 (Morcos et al., 2011)
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substitutes pDI
ij (qk, ql) for fij (qk, ql) in eq. (1.1), leading to

DIij =
L

∑
k=l=1

pDI
ij (qk, ql)

pDI
ij (qk, ql)

fi (qk) fi (ql)
(1.3)

DIij is able to eliminate the indirect coupling effects between any two columns
of a MSA. Over a past decade, a collection of mathematical methods has been
proposed to predict residue contacts using evolutionary coupling analysis (ECA)
methods that have quantified proximities between residues and have extended
to mutation detection (Figliuzzi et al., 2016; Hopf et al., 2017). ECA methods
includes both the above DCA methods thereof and other closely related meth-
ods based on two clusters: cluster i - sparse inverse covariance estimation (SICE)
solved by graphical LASSO methods (Friedman, Hastie, and Tibshirani, 2008; Loh
and Wainwright, 2012) and cluster ii - pseudolikelihood maximization approaches
(Ekeberg, Hartonen, and Aurell, 2014). We briefly review their representative
methods as follows. For cluster i, PSICOV (Jones et al., 2012) could, to the best
of our knowledge, emerge as the first method to refine residue contact detection
by using graphical LASSO to tackle the SICE problem, followed by COUSCOus
(Rawi et al., 2016); later, CoinDCA enhanced prediction performance by using a
group graphical LASSO method at the expense of a high computational cost (Ma
et al., 2015). plmDCA (Ekeberg et al., 2013) and Gremlin (Balakrishnan et al.,
2011; Kamisetty, Ovchinnikov, and Baker, 2013) as well as CCMpred (Seemayer,
Gruber, and Söding, 2014) are representative of cluster ii, showing more accurate
prediction of residue contacts than those in cluster i (Ekeberg, Hartonen, and Au-
rell, 2014). Among the three methods, CCMpred vastly optimized the running
time by taking advantage of graphics processing units (GPUs). In order to obviate
phylogenetic and entropic bias (Lapedes et al., 1999), most of methods in cluster
i and cluster ii obtained the contact likelihood Sij between alignment i and j by
adopting average-product correction (APC) (Dunn, Wahl, and Gloor, 2008), such
that

Sij = Sraw
ij −

Sraw
i· Sraw

·j
Sraw
··

(1.4)

where Sraw
ij represents the raw contact likelihood achieved directly by statistical

inference in cluster i and cluster ii. Sraw
i· is averaged over the values between col-

umn i (in the raw contact map) and all other columns. Sraw
·j is averaged over the

values between column j and all other columns. Sraw
·· is averaged over the values

in the entire raw contact map. These above methods are, however, either too hard
to be implemented in practice, or to be inefficient in dealing with large proteins.
To allow a distinctly faster speed than the above methods, Gaussian DCA detected
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residue contacts using a multivariate Gaussian model (Baldassi et al., 2014). Ac-
cording to our test, it has so far been the method that has run at the fastest running
speed when computational resources have been allocated to different ECA meth-
ods at the same level. Yet another fast running method is FreeContact (Kaján et
al., 2014), an implementation of the EVfold method (Marks et al., 2011). More re-
cently, pydca has provided a Python-based integrated platform for different ECA
methods (Zerihun et al., 2020).

1.2.5 DeepHelicon

We assumed that neighbors of contacting residues positioned in TMHs might
provide structurally contextual information for the contacting residues. This as-
sumption was implemented/made based on the following two considerations.
First, DeepHelicon learned inter-helical residue contact patterns from complete
contact maps while training only inter-helical residue contacts forms incomplete
contact maps. Previous methods for TM inter-helical residue contact prediction
are solely trained on residue contacts in TMHs (Fuchs, Kirschner, and Frishman,
2009; Hönigschmid and Frishman, 2016; Yang et al., 2016). Accordingly, structure-
or prediction-derived annotations of TMHs should be involved in initially train-
ing these methods. However, it would be virtually impossible for further rounds
of re-training deep learning models based on patches (i.e., squares around residue
pairs of interest) constructed from complete contact maps. Second, deep learning
methods including residual neural networks are methods to learn representations
from input data in an automatic manner; these learned representations containing
structurally contextual information might supply more supporting information
for an accurate prediction of inter-helical residue contacts. MemBrain2.0 (Yang
and Shen, 2018) developed recently also achieved high predictive performance by
learning residue contacts outside TMHs, although it was not inferred exactly to
what degree the learning process and the high performance were linked. Dur-
ing training at stage 1, we compared the performance of two types of models
trained using inter-helical residue pairs and using residue pairs in all sequences,
respectively. We found no silent differences (i.e., comparable performance) be-
tween them at stage 1, and therefore we directly ignored the way of using only
inter-helical residue pairs in the follow-up training. DeepHelicon made use of
such abundant information of neighbors of contacting residues in two ways, that
is, different inter-helical evolutionary coupling values (Marks et al., 2011) at stage
1 and patch learning at stage 2 (Sun and Frishman, 2020). Exclusively evolution-
ary features also characterize DeepHelicon as a unique method differently from
other TM residue contact predictors. Evidently, the plmConv (Golkov et al., 2016)
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and DeepCov (Jones and Kandathil, 2018) methods have successfully applied cou-
pling matrices (Ekeberg et al., 2013) as input features to predict residue-residue
contacts. These two works mainly considered globular proteins as opposed to
TM proteins; therefore, it was for the first time that couplings matrices were used
in predicting inter-helical residue contacts in TM proteins. Considering variance
errors and/or calculation bias, previous methods are given to using a combination
of coevolutionary coupling values produced by different ECA methods (Jones et
al., 2015; Yang and Shen, 2018). DeepHelicon used as input coevolutionary cou-
pling values of four methods: EVfold (Marks et al., 2011), plmDCA (Ekeberg et
al., 2013), CCMpred (Seemayer, Gruber, and Söding, 2014), and Gaussian DCA
(Baldassi et al., 2014). Sliding windows for residue pairs are also leveraged in
DeepHelicon in order to capture the flanking sequential information of residue
pairs.

1.3 Transmembrane protein interactions

1.3.1 Experimental techniques

Protein-protein interactions (PPIs) are experimentally identified by two wid-ely-
used methods, namely, yeast two-hybrid (Y2H) assays and affinity purification/mass
spectrometry (AP-MS) (Keilhauer, Hein, and Mann, 2015; Zhang et al., 2015; Mor-
ris et al., 2014; Xing et al., 2016). Both methods are suitable for high through-
put experiments to map human protein interactome of PPIs on a genome-wide
study (Figeys, 2008). For example, the most up-to-date database published in
2020, HuRI, comprises more than 50,000 binary PPIs detected by using the Y2H
assay (Luck et al., 2020). This method is perceived as an affordable and inexpen-
sive technique as it requires a low resource consumption (Liu et al., 2020a). It
detects the physical contacts occurring in the DNA-binding domain (DBD) and
the activation domain (AD) located in the transcription factor in living yeast cells
(Luban and Goff, 1995; Causier and Davies, 2002; Jessulat et al., 2011). One short-
coming of the Y2H assay is however the high false-positive or false-negative rates
for binary PPI pairs (Jessulat et al., 2011; Liu et al., 2020a). In contrast, AP-MS
identifies interactions in a biological complex formed by a tag-fused bait protein
(e.g., antibody) and its interaction partners, followed by mass spectrometry for
rendering potential interaction partners (Jessulat et al., 2011; Yugandhar, Gupta,
and Yu, 2019). Nevertheless, weak transient interactions are often imperceptible to
AP-MS in that protein complexes undergo intricately and dynamically conforma-
tional changes (Nooren and Thornton, 2003; Luck et al., 2020). Additionally, PPIs
can also be probed by using fluorescence resonance energy transfer (Margineanu
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et al., 2016), protein microarrays (Popescu et al., 2007), X-ray crystallography and
NMR spectroscopy (Shoemaker and Panchenko, 2007) and etc.

1.3.2 PPI Databases

Human interactome map. A complete map of human PPI interactome facilitates
the clear understanding of genotype-phenotype relationships in humans (Rolland
et al., 2014; Menche et al., 2015). The first-generation interactome maps for hu-
mans were made and started in 2005 (Rual et al., 2005). Later, a complementary
database, HI-II-14, reported 13,944 interactions using the Y2H assay and much ex-
panded the size of known PPIs in humans. Very recently, an aggregate of 64,006
binary PPIs is determined by the union of the HI-union and Lit-BM databases
(Luck et al., 2020). The core of the HI-union database is a collection of 52,569 high-
quality expert-curated PPIs from a systematic mapping of human ORFome v9.1
(Luck et al., 2020). The Lit-BM database contains 13,441 PPIs obtained by collating
literature. In addition to human PPI databases, the three most commonly used PPI
databases, covering different species, are BioGRID (Stark et al., 2006; Oughtred et
al., 2019), IntAct (Orchard et al., 2014), and STRING (Szklarczyk et al., 2019), with
each presenting a thorough curation for both/either genetic and/or protein inter-
actions collected from publicly available sources. These resources are rich in PPIs,
with BioGRID (version: 3.5.188) containing 1,858,173 and IntAct (version: 4.1.25)
containing 1,063,382 interactions.

1.3.3 Computational prediction of PPIs

Physical PPIs have implication for understanding the roles of proteins and mecha-
nisms of many biological processes, such as signal transduction and chemical sub-
strate translocation. Thus, the physical PPI detection is of importance. Notwith-
standing much effort of localizing physical interactions, experimental techniques
are inherently limited by a large overlap between PPIs detected by different sorts
of high throughput experiments (Jessulat et al., 2011). Still, PPI interactome maps
remain incomplete. Computational techniques have therefore been exploited for
PPI prediction to map interactions on a proteome-wide scale. Current efforts of
PPI prediction are made primarily using two ways, namely, PPI site prediction
and binary PPI prediction. The strength of either a binary PPI or a PPI site is
inferred from a probability ranging from 0 to 1. Compared to binary PPI predic-
tion, PPI site prediction involves relatively more complicated processes, including
interaction site definition, interaction site extraction, and imbalanced nature of in-
teraction and non-interaction sites and etc. The vast majority of the two types of
methods predict interaction sites by extracting sequence-based features, including
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amino acid composition, relative position, amino acid representation, and evo-
lutionary information based on MSAs of sequences and etc. Publicly available
databases have amassed huge amounts of information that can be pulled for anno-
tations of proteins to be involved in interactions in pairs. Developed by machine
learning or deep learning approaches, prediction performance has been gradually
improved by i) binary PPI methods, including Profppikernel (Hamp and Rost,
2015), ProfPPIdb (Tran, Hamp, and Rost, 2018), DPPI (Hashemifar et al., 2018),
MCDPPI (You et al., 2014), Wei’s work (Wei et al., 2017); ii) site-based PPI meth-
ods, including PSIVER (Murakami and Mizuguchi, 2010), Chen’s work (Chen et
al., 2012), Hamp’s work (Hamp and Rost, 2012), DLPred (Zhang et al., 2019), and
DELPHI (Li and Ilie, 2020). However, a rather small number of prediction meth-
ods, such as Bordner’s work (Bordner, 2009), MBPred (Zeng, Hönigschmid, and
Frishman, 2019), and MPLs-Pred (Lu et al., 2019), have so far been made avail-
able and specialized for transmembrane proteins. In addition, it would also be
possible that DCA methods were successfully extended into inter-protein contact
prediction to reveal PPI network connection (Gueudré et al., 2016; Uguzzoni et al.,
2017; Szurmant and Weigt, 2018; Cong et al., 2019).

1.3.4 DeepTMInter

Transmembrane proteins play an indispensable role in cellular activities. Ho-
wever, only a few methods have become accessible to the prediction of interaction
sites in transmembrane proteins because the vast majority of available methods
have been trained based on solely globular proteins or a hybrid set of globular
and transmembrane proteins. This could impair the performance of predicting
interaction sites in transmembrane proteins in that such methods lack a system-
atical learning and a sufficient training on transmembrane proteins. Apparently,
there is an urgent need for a substantial performance improvement of methods
specialized for transmembrane proteins. Therefore, we developed DeepTMInter
upon which we further made a comprehensive investigation of high-quality trans-
membrane protein sequences collected from the PDBTM database. The resulting
sequences sharing only less than 25% sequence identity to each other comprise
the largest dataset for transmembrane protein interaction site prediction. More
than 50% transmembrane proteins in human proteome are pharmaceutically drug
targets but lack a thorough analysis of the number of their interaction sites. We
particularly explored how per-protein interaction sites in human transmembrane
proteome are distributed over 8 human families.
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Chapter 2

DeepHelicon: accurate prediction of
inter-helical residue contacts in
transmembrane proteins by residual
neural networks

Accurate prediction of amino acid residue contacts is an important prerequisite
for generating high-quality 3D models of transmembrane (TM) proteins. While
a large number of compositional, evolutionary, and structural properties of pro-
teins can be used to train contact prediction methods, recent research suggests
that coevolution between residues provides the strongest indication of their spa-
tial proximity. We have developed a deep learning approach, DeepHelicon, to
predict inter-helical residue contacts in TM proteins by considering only coevolu-
tionary features. DeepHelicon comprises a two-stage supervised learning process
by residual neural networks for a gradual refinement of contact maps, followed by
variance reduction by an ensemble of models. We present a benchmark study of
12 contact predictors and conclude that DeepHelicon together with the two other
state-of-the-art methods DeepMetaPSICOV and Membrain2 outperforms the 10
remaining algorithms on all datasets and at all settings. On a set of 44 TM pro-
teins with an average length of 388 residues DeepHelicon achieves the best per-
formance among all benchmarked methods in predicting the top L/5 and L/2
inter-helical contacts, with the mean precision of 87.42% and 77.84%, respectively.
On a set of 57 relatively small TM proteins with an average length of 298 residues
DeepHelicon ranks second best after DeepMetaPSICOV. DeepHelicon produces
the most accurate predictions for large proteins with more than 10 transmem-
brane helices. Coevolutionary features alone allow to predict inter-helical residue
contacts with an accuracy sufficient for generating acceptable 3D models for up to
30% of proteins using a fully automated modeling method such as CONFOLD2.
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2.1 Introduction

Approximately every third protein in a living cell crosses a biological membrane
(Frishman and Mewes, 1997), and most of the transmembrane (TM) proteins adopt
an α-helical bundle fold. Functional studies on membrane proteins rely heavily
on their 3D structures, but only about 2%−3% of all experimentally determined
3D structures are actually TM proteins (Xia et al., 2018). Over the past decade
the paucity of atomic structures is being increasingly compensated for by a re-
markable progress in computing 3D models of TM proteins from sequence alone
(Hopf et al., 2012; Hayat et al., 2015). At the core of this methodological ad-
vance are significantly improved approaches for predicting amino acid contacts
based on the evolutionary coupling analysis (ECA), which can be additionally
combined with machine learning methods for an even better performance. The
former group of approaches (reviewed in (Stein, Marks, and Sander, 2015)) de-
duces residue contacts based on coevolutionary information contained in multi-
ple sequence alignments (MSAs) and includes algorithms such as EVfold (Marks
et al., 2011), plmDCA (Ekeberg et al., 2013), and CCMpred (Seemayer, Gruber,
and Söding, 2014). The latter group of approaches, which includes algorithms
such as MetaPSICOV (Jones et al., 2015), R2C (Yang et al., 2016), and PconsC3
(Michel et al., 2017), predicts residue contacts by a supervised learning process
aimed at distinguishing contacting from non-contacting residue pairs based on a
specific feature set. These new generation methods exhibit superior performance
compared to the earlier techniques that did not use any coevolutionary (Wu and
Zhang, 2008; Li, Fang, and Fang, 2011) or even MSA-based (Tegge et al., 2009)
features. Adoption of deep learning methods has led to a further improvement
in contact prediction accuracy, as documented by the most recent blind predic-
tion experiment CASP13 (Shrestha et al., 2019). In particular, methods employ-
ing residual neural networks (ResNets) achieve state-of-the-art results for soluble
proteins (Wang et al., 2017; Li et al., 2019b; Kandathil, Greener, and Jones, 2019a).
Compared to other deep learning methods, ResNets allow to increase the depth of
neural networks while maintaining low training cost and a relatively fast training
speed (He et al., 2016a).

Specialized contact prediction algorithms for TM proteins utilize a broad spec-
trum of compositional, sequence-based, structural, and coevolutionary features
to characterize residue pairs (Fuchs, Kirschner, and Frishman, 2009; Yang et al.,
2013; Hönigschmid and Frishman, 2016; Yang and Shen, 2018). High dimensional
feature space increases the computational complexity and may make the super-
vised learning process difficult to optimize (Stahl, Schneider, and Brock, 2017).
Some of these standard features, such as amino acids composition, may in fact
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be of little value for contact prediction (Stahl, Schneider, and Brock, 2017), while
coevolutionary features have been shown to be highly informative (Golkov et al.,
2016; Wang et al., 2017; Jones and Kandathil, 2018). Moreover, satisfactory 3D
models can be derived for α-helical TM proteins by considering only inter-helical
contacts (Yang et al., 2013; Yang and Shen, 2018; Ovchinnikov et al., 2015).

Here, we present a novel computational method, DeepHelicon, which em-
ploys a two-stage ResNet combined with residual units (RU) (He et al., 2016b)
for sequence-based prediction of inter-helical residue contacts in α-helical TM
proteins. The first-stage ResNet generates coarse-grained contact maps, which
are further refined by the second-stage ResNet. The prediction performance is
further enhanced by using an ensemble of models, which allows to reduce the
variance errors of individual prediction models. DeepHelicon is the first con-
tact predictor for TM proteins trained exclusively on coevolutionary features and
our experiments suggest that these features alone are sufficient to accurately infer
inter-helical residue contacts in TM proteins.

2.2 Materials and methods

2.2.1 Dataset

We obtained from the PDBTM database (Kozma, Simon, and Tusnady, 2012) 5606
protein chains corresponding to α-helical TM proteins with a resolution better
than 3.5 and with the number of TM helices ranging from 2 to 17. This initial
dataset was made non-redundant at the 23% sequence identity level using an in-
house implementation of the greedy algorithm described in (Curtis, 2003). Note
that cd-hit (Huang et al., 2010), the most commonly used tool for reducing se-
quence redundancy, only works with similarity thresholds greater than 40%. Ad-
ditionally, we required that no two protein chains share a significant structural
similarity by imposing a TM-score (Xu and Zhang, 2010) threshold of 0.4. The
resulting full non-redundant dataset (further referred to as FULL), containing 222
protein chains was used to train our final predictor. In order to evaluate the pre-
dictor we split the FULL dataset into two unequal parts: i) training dataset, con-
taining 165 chains (TRAIN), and ii) independent test dataset (TEST), containing 57
chains. In addition, we also tested our method on a combination of two previously
published datasets – 21 and 30 chains used to test TMhhcp (Wang et al., 2011) and
MemConP (Hönigschmid and Frishman, 2016), respectively. Upon removal of the
7 protein chains contained in our TEST dataset, the final combined dataset, called
PREVIOUS, contains 44 α-helical TM protein chains. Detailed information about
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the TRAIN, TEST, and PREVIOUS datasets can be found in Tables A.1, A.2, A.3,
and Fig. 2.1 respectively.

TRAIN PREVIOUS TEST
0

200

400

600

800

1000

1200

1400

Se
qu

en
ce

 le
ng

th

FIGURE 2.1: Sequence length distribution in the TRAIN, PREVIOUS,
and TEST datasets (average values 392, 388, and 298, respectively).
Each grey triangle represents a protein sequence in its respective
dataset. Each red circle represents the average value of the sequence

length in its respective dataset.

2.2.2 Transmembrane protein topology

Our method is designed to predict inter-helical contacts between residues located
on different transmembrane helices. For comparing DeepHelicon with other meth-
ods, residues were labeled as being in transmembrane regions according to the
PDBTM database. The publicly released DeepHelicon package relies on trans-
membrane helices predicted by the TMHMM2.0 algorithm (Krogh et al., 2001).

2.2.3 Definition of residue contacts

Following the previous work by us (Fuchs, Kirschner, and Frishman, 2009; Hönigschmid
and Frishman, 2016) and others (Yang et al., 2013; Yang and Shen, 2018), we con-
sidered two residues to be in contact if the spatial distance between any pair of
their heavy (non-hydrogen) atoms was below 5.5 and the sequence separation be-
tween the residues was no less than five positions.

2.2.4 Multiple sequence alignments

Multiple sequence alignments (MSA) were generated for all sequences in the TRAIN,
TEST, and PREVIOUS datasets by running three iterations of HHblits searches
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against the UniProt20 (version 2016) database. HHblits is an iterative protein
sequence search tool to generate multiple sequence alignments (MSA) by pro-
file hidden Markov models (Remmert et al., 2012). Uniprot20 (https://github.
com/soedinglab/hh-suite) is a purpose-built da-tabase obtained by clustering of
the UniProt database (Apweiler et al., 2004) at the 20-30% maximum pairwise se-
quence identity (Remmert et al., 2012). In order to generate as many multiple
sequences as possible, we used the following recommended HHblits parameters
(https://github.com/soe
dinglab/CCMpred/wiki/FAQ): maximum filter 100000, realign maximum hits
100000, maximum number of alignments in alignment list 100000, maximum num-
ber of lines in hit list 100000, and E-value cutoff 0.001. We also turned on the -all
option used to obtain all sequences in the significantly similar UniProt20 clusters.
As shown in Fig. 2.2, the average numbers of homologous sequences in the MSAs
generated by the HHblits parameters described above are 32506, 32799, and 31317
for the TRAIN, PREVIOUS, and TEST datasets, respectively. We set an upper limit
of 65000 on the number of sequences in the alignments in order to limit the CPU
resources required for generating evolutionary features.
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FIGURE 2.2: Number distribution of homologs in MSA in the
TRAIN, PREVIOUS, and TEST datasets (average values 32506, 32799,
and 31317, respectively). Each grey triangle represents a protein se-
quence in its respective dataset. Each red circle represents the av-
erage value of the number of homologs in MSA in its respective

dataset.

2.2.5 Protein features

Recent studies by us (MemConP Hönigschmid and Frishman, 2016; MBpred Zeng,
Hönigschmid, and Frishman, 2019) and others (EPSILON-CP, (Stahl, Schneider,

https://github.com/soedinglab/hh-suite
https://github.com/soedinglab/hh-suite
https://github.com/soedinglab/CCMpred/wiki/FAQ
https://github.com/soedinglab/CCMpred/wiki/FAQ
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and Brock, 2017)) indicate that many widely used sequence-derived features of
proteins, such as amino acid composition, physico-chemical properties of amino
acids, sequence separation between contacting residues, and evolutionary con-
servation, have very low importance in predicting both intra- and intermolecu-
lar interactions. By contrast, coevolutionary information ran-ked first in terms
of feature importance in all three studies mentioned above. Given that exces-
sively high-dimensional feature space creates the need for massive amounts of
computing power and also the recent evidence that deep learning models for con-
tact prediction remain well-trained after excluding unnecessary features (Stahl,
Schneider, and Brock, 2017), we opted in this work to use only two most infor-
mative features: coupling matrix and coevolutionary score. These two features
result in a feature space (741 dimensions, see below) comparable in size to the
ones used in MetaPSICOV (Jones et al., 2015) (672-dimensional feature space in
the first training stage and 731-dimensional feature space in the second training
stage) and plmConv (Golkov et al., 2016) (441-dimensional feature space).

2.2.5.1 Evolutionary coupling values

Evolutionary coupling values reflect covariation between MSA columns i and j
and can be inferred from a global maximal entropy model by the direct coupling
analysis (Marks, Hopf, and Sander, 2012). It has been shown that combining evo-
lutionary coupling methods based on different principles and trained on different
datasets allows to achieve higher accuracy in contact prediction (Jones et al., 2015)
and this strategy has been adopted by a number of recent prediction techniques
(Michel et al., 2017; Stahl, Schneider, and Brock, 2017; Liu et al., 2018; Yang and
Shen, 2018; Hanson et al., 2018). In this work we compute evolutionary coupling
values by four established algorithms: i) EVfold (Marks et al., 2011), as imple-
mented by the FreeContact software (Kaján et al., 2014), ii) plmDCA (Ekeberg et
al., 2013), iii) CCMpred (Seemayer, Gruber, and Söding, 2014), and iv) Gaussian
DCA (Baldassi et al., 2014).

Note that we are only interested in contacts between the amino acids located
on different transmembrane helices and facing each other. Following our previ-
ous work (Hönigschmid and Frishman, 2016) for each pair of alignment positions
(i, j) we actually consider the total of 25 evolutionary coupling values at posi-
tions (i + x, j + y), (i + x, j − y), (i − x, j − y), and (i − x, j + y) where (x, y) ∈
{(0, 0), (0, 1), (0, 3), (0, 4), (1, 0), (3, 0), (3, 4), (4, 0), (4, 3), (4, 4)}. These 25 values
are computed by each of the four contact prediction methods mentioned above,
resulting in a feature vector of length 100 (25 × 4). Furthermore, we applied a
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moving window of length 3 to each residue pair, so that the final size of the fea-
ture vector containing evolutionary coupling data is 300 (100× 3).

2.2.5.2 Coupling matrix

In addition to computing evolutionary couplings, we follow the idea of Golkov et
al. (Golkov et al., 2016). and utilize as features coupling matrices, which describe
the co-constraint on the occurrence of 21 symbols (20 amino acids and one gap)
in the alignment columns i and j (Hopf et al., 2017). Each element of these 21×
21 matrices reflects the relative favorability of a specific pair of symbols. Each
coupling matrix is actually represented by a vector of length 441 (21× 21). For
a protein sequence of length N, the total number of coupling matrices will be
N(N−1)

2 . We calculated the coupling matrices using the implementation of the
pseudolikelihood maximization direct-coupling analysis available from https://

github.com/debbiemarkslab/plmc.

2.2.6 Overview of the learning process

We developed a predictor for inter-helical residue contacts in TM proteins, which
employs a two-stage learning process and an ensemble of models to gradually
improve the prediction performance (Fig. 2.3). In the first stage, all residue con-
tacts (i.e. the entire contact map) are predicted with a relatively low precision by
a first-stage deep learning architecture described in section 2.2.6.1. The second-
stage deep learning architecture involves the total of four iterations, as described
in section 2.2.6.2. At the first three iterations complete contact maps are predicted
with a progressively increasing accuracy due to recursive learning of discrimi-
native features from refined contact maps of the previous iteration. At the forth
iteration of the second stage, accurate predictions of inter-helical residue contacts
are made. The final inter-helical residue contact predictions are obtained by an
ensemble of models (see section 2.2.6.3). Both at the first stage and at all four it-
erations of the second stage we trained models on the TRAIN dataset and tested
them (except for the iteration 4 of the second stage) on all residue contacts (con-
tact maps) of the TRAIN dataset. To examine the performance of the inter-helical
residue contact prediction, the models at the first stage and the models at all four
iterations of the second stage as well as the ensemble of models were tested on
the PREVIOUS and TEST datasets. Note that the final model was not trained at
all; instead, it uses the average of the predictions generated by the iterations 2-4
of the second stage. The details on how our final model was built and trained are
explained below.

https://github.com/debbiemarkslab/plmc
https://github.com/debbiemarkslab/plmc
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FIGURE 2.3: Overview of the learning process for inter-helical
residue contact prediction. SS: sequence separation.

2.2.6.1 The first stage of the learning process

At the first stage of the learning process we employed a residual neural network
(ResNets) to predict residue contacts (i.e. contact map) for each TM protein with
a comparatively low precision. Since the network relies on 2D convolutional
layers, the 741-dimensional feature vector for each residue pair described above
was converted to an almost square 26× 28 matrix, ignoring a minor loss of data
(26× 28 = 728 elements instead of 741 elements).

A new type of a residual unit (RU) described by (He et al., 2016b) was used,
which facilitates optimization and allows to reduce overfitting (Fig. 2.4a). The
RU consists of two identical groups of operations, each containing a 2D convo-
lutional layer. Features are extracted by means of 16 filters with 3× 3 elements
each, which are moved both horizontally and vertically over the input data ma-
trix by 1 position (i.e. stride=1). The convolution step thus results in 16 output
matrices, each with the same dimension as the input matrix. Each convolutional
layer is pre-activated by batch normalization (BN) (Ioffe and Szegedy, 2015) and
a rectified linear unit (ReLU) (Nair and Hinton, 2010). BN is an effective way to
speed up the training process and avoid overfitting by normalizing and rescaling
its input data. ReLU sets all negative input values to zero, which results in a faster
convergence of the training process and better performance (He et al., 2016a). As
seen in Fig. 2.4a, the output of the second convolutional layer summed with the
input data serves as the final output of the RU. This approach, referred to as resid-
ual mapping, allows to reduce learning error in deep network architectures (He
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et al., 2016a; He et al., 2016b).
The overall architecture of our ResNet is depicted in Fig. 2.4b. It contains the

total of 30 convolutional layers and 1 dense layer and implements a hybrid ap-
proach, in which different kinds of deep models are combined to achieve better
robustness and effectiveness of learning (see, e.g. (Hanson et al., 2018)). The core
of the system is constituted by four blocks, each containing three RUs described
above. Additional convolutional layers outside of the blocks are not bypassed
by a residual connection. The first block is preceded by a batch-normalized con-
volutional layer employing filters with stride 1, while the other three blocks are
preceded by batch-normalized convolutional layers employing filters with stride
2 and thus reducing the dimensionality of the input data (LeCun, Kavukcuoglu,
and Farabet, 2010; Albawi, Mohammed, and Al-Zawi, 2017). Therefore, the input
matrices of blocks 1, 2, 3, and 4 have the dimensions of 26×28, 13×14, 7×7, and
4×4, respectively. Such down-sampling reduces the computational load of the
convolutional operation and makes the training process more robust with respect
to minor variations in the input data. The last two convolutional layers constitute
an additional 2-layer convolutional neural network (CNN). Subsequently, a dense
(fully-connected) layer (He et al., 2016a) with 256 neurons transforms the result of
the 2-layer CNN into two real values, whose magnitude reflects the likelihood
of two amino acids residues to be in contact, which are then converted into the
probabilities of two possible outcomes (contact/no contact) by a 2-way softmax
activation function (He et al., 2016a).

2.2.6.2 The second stage of the learning process

At the second stage we implemented an iterative learning scheme (Heffernan et
al., 2017) in which models are trained using the features extracted from contact
maps. Parameter settings for the second-stage deep learning architecture were
empirically determined. The ResNet shown in Fig. 2.4c uses the same RU as
at the first stage (Fig. 2.4b), but the overall architecture is different. Each block
contains 6 RUs and the number of neurons in the final dense layer is increased
to 1024. We also found that increasing the number of filters in the convolutional
layers to 64 leads to a better performance, which implies that the predictor is able
to capture more informative features of contacting residue pairs.

The second-stage learning process was designed to take into account the struc-
tural context in which contacts occur. To this end we used as input for the first
iteration 15×15 fragments of the contact map predicted at the first stage, centered
around each residue pair i and j. For the subsequent iterations 2-4 the above op-
eration was repeated, in that square patches centered around each residue pair
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were extracted from the contact map constructed at the preceding iterative train-
ing step (Fig. 2.4). Due to the application of the convolutional operation with the
stride 2, at each iteration the dimension of the patches was reduced from the ini-
tial 15×15 to 8×8 and then to 4×4 (see Fig. 2.4c). Importantly, at iteration 4 we
only extracted inter-helical residue pairs instead of the full contact map. Based
on multiple in silico experiments we found that a further increase of the number
of iterations at the second learning stage only led to a marginal gain in predictive
performance.

2.2.6.3 Ensemble of models

The final predictions of inter-helical contacts were obtained by averaging the out-
put prediction values of models trained at the iterations 2-4 of stage 2 in order to
reduce the variance error if each individual model (Naftaly, Intrator, and Horn,
1997; Keijzer and Babovic, 2000) (Fig. 2.3). Since the performance of the trained
models is affected by a number of factors, such as parameter initialization and
training times, they showed different predictive capacities on the training and
testing datasets. For this reason, the prediction values of the better trained models
at iterations 2-4 were given higher weights and thus contributed more strongly to
the final ensemble prediction. Specifically, models obtained at iterations 3, 2, and
4 were given the weights 0.5, 0.4 and 0.1, respectively. Therefore, the prediction
values pe of the ensemble predictor were expressed as

pe =
4

∑
i=2

wi × pi

where pi represents the prediction values of the trained models at the iteration i
of stage 2, and wi represents the weights.

2.2.7 Training process

ResNets at both stages were trained using Adam, a computationally efficient vari-
ation of stochastic gradient-based descent method for problems with massive
amounts of data and a large number of parameters (Kingma and Ba, 2014). The
cross entropy objective function (Boer et al., 2005) was used for quantitatively
measuring the difference between the actual labels ([0, 1] or [1, 0] for the pres-
ence or absence of a residue contact) and predicted labels, with predicted value
learning rate and training batch size set to 0.001 and 100, respectively. The num-
ber of weight parameters to be learned was calculated as follows. In the first-
stage deep learning architecture, the first convolutional layer takes as input 1
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FIGURE 2.4: Prediction of inter-helical residue contacts in transmem-
brane proteins by deep learning. (a) shows the structure of the Resid-
ual Unit (RU) (He et al., 2016b). (b) and (c) show the overall architec-
tures of the ResNets for the first stage and the second stage, respec-

tively. See text for an explanation.

matrix and outputs 16 matrices, one for each 3×3 filter applied, which results
in 144 (1×16×3×3) weight parameters. Each of the remaining 29 convolutional
layers takes as input 16 matrices and outputs 16 matrices, which results in 2304
(16×16×3×3) weight parameters. The dense layer, which converts data from 256
input neurons to 2 output values for each residue pair, needs 512 (256×2) weight
parameters. Thus, there are the total of 67472 (144+2304×29+512) weight param-
eters to be learned in the deep learning architecture at stage 1. Similarly, in the
second-stage deep learning architecture the first convolutional layer takes as in-
put 1 matrix and outputs 64 matrices, with the same-size filter as applied at stage
1, which results in 576 (1×64×3×3) weight parameters. Each of the subsequent 38
convolutional layers takes as input 64 matrices and outputs 64 matrices, leading to
1400832 (64×64×3×3×38) weight parameters in total. The dense layer involves
2048 (1024×2) weight parameters. As a result, the total of 1403456 weight param-
eters need to be learned at each of the 4 iterations of stage 2.

The first-stage deep learning architecture was trained on residue pairs with
sequence separation (SS)≥5 (Fig. 2.3). At the second stage training was performed
on residue pairs with SS≥5 at the first three iterations, while at the fourth iteration
the deep learning architecture was trained on inter-helical residue pairs.
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2.2.8 Assessment metrics

The prediction performance of our trained deep learning model (Bradley, 1997)
was evaluated using the following measures:

precision = TP
TP+FP

recall = TP
TP+FN

F− score = (1+β2)×precision×recall
β2×precision+recall

Matthews Correlation Coefficient (MCC) = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

where TP (true positive), FP (false positive), TN (true negative) and FN (false
negative) are the number of contacting residue pairs predicted as contacting, the
number of non-contacting residue pairs predicted as contacting, the number of
non-contacting residue pairs predicted as non-contacting, and the number of con-
tacting residue pairs predicted as non-contacting, respectively.

We evaluated the prediction performance of our method separately for inter-
helical residue contacts. Correspondingly, precision was used to assess how many
residue pairs are correctly predicted among the top L, L/2, and L/5 residue con-
tact predictions, where L denote the cumulative length of concatenated trans-
membrane helices. Recall was calculated to quantify the percentage of correctly
predicted residue contacts among all observed contacts in experimentally-determ-
ined structure. F-score is a weighted harmonic mean of precision and recall. A
F1-score is obtained by setting β to 1 in the F-score equation above, such that pre-
cision and recall are equally important. Given that our dataset is strongly imbal-
anced (approximately 1 to 100 ratio between the number of residue contacts and
all possible residue pairs, see Table A.4), we additionally evaluate F0.35 by setting
β to 0.35 in the F-score equation in order to up-weight precision relative to recall.
Note that MCC is not affected by the class imbalance problem.

2.2.9 Cross-validation of the predictor

We used the stratified-shuffle k-fold (k = 5) cross validation (Sharma et al., 2017)
in order to ensure that proteins with different numbers of TM regions are dis-
tributed uniformly and randomly across all folds. To this end we split our full
dataset (165 protein chains) into four TMH classes containing 64 (38.78%), 40
(24.24%), 27 (16.36%), and 34 (20.61%) proteins with 2-4, 5-7, 8-10, and over 10
transmembrane α-helices, respectively. As illustrated in Fig. 2.5, for each of the
5 folds the full dataset is subdivided into a training (132 chains) and a validation
(33 chains) dataset. In each fold the training dataset (represented by grey rectan-
gles in Fig. 2.5) consists of 51, 32, 22, and 27 protein chains obtained by randomly
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picking 80% of proteins from each TMH class described above. Similarly, the val-
idation dataset in each fold (represented by purple rectangles in Fig. 2.5) contains
13, 8, 5, and 7 protein chains drawn from each TMH class. As a consequence,
the training and validation datasets in each fold preserve approximately the same
ratio between TMH classes as in the full dataset.

0 20 40 60 80 100 120 140 160
Number of Transmembrane Protein Chains

cv 1

cv 2

cv 3

cv 4

cv 5

TMH class

Training sample Test sample TMH num 2-4 TMH num 5-7 TMH num 8-10 TMH num >10

FIGURE 2.5: Visualization of 165 α-helical TM protein chains com-
partmentalized by stratified-shuffle 5-fold cross validation. Yellow,
pink, green, or blue rectangles in the bottom plot (all 165 chains) rep-
resent protein chains with 2-4, 5-7, 8-10, or at least 11 TM helices, re-
spectively. On all other plots grey rectangles (132 protein chains) or
purple rectangles (33 protein chains) indicate whether these protein
chains are chosen for training or validation in each fold, respectively.

2.2.10 Benchmarking predictor performance

We compared the performance of DeepHelicon with a collection of predictors em-
ploying ECA, machine learning (ML) or deep learning (DL) (Tables A.5 and A.6).

2.2.11 Protein structure prediction

We employed CONFOLD2 (Adhikari and Cheng, 2018) to conduct contact-driven
3D structure modelling of α-helical TM proteins. For each target protein of length
N, CONFOLD2 returns top five spatial architectures assembled from the top N/x
residue contacts and three-state secondary structure; the latter was predicted by
SCRATCH1.0 (Magnan and Baldi, 2014). Results for each protein are reported
based on the maximal TM-score and/or minimal Cα-RMSD (C-alpha atomic root
mean square deviation) among the top five predicted structures compared to the
native structure (https://zhanglab.ccmb.med.umich.edu/TM-score/).

https://zhanglab.ccmb.med.umich.edu/TM-score/
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2.3 Results and discussion

2.3.1 Performance assessment of DeepHelicon

As described in the section 2.2.6, we tested the performance of our models in
predicting inter-helical contacts on the PREVIOUS and TEST datasets at the first
stage (Table A.7) and at all four iterations of the second stage (Tables A.8 and
A.9) (Figs. 2.6 and 2.7). The publicly released DeepHelicon package employs the
ensemble of models, whose performance is summarized in Table A.10.

Stage 2 predictions (Tables A.8 and A.9) represent a significant improvement
over stage 1 predictions (Fig. 2.6a, Table A.7 and Fig. 2.7a) in terms of preci-
sion. For example, for the top L predictions for the PREVIOUS dataset the pre-
cision increases from 55.81% at stage 1 to 61.35% at the first iteration of stage 2.
These observations parallel the results obtained with the two-stage algorithms
Membrain-contact 2.0 (Yang and Shen, 2018)(Yang and Shen, 2018) and MetaP-
SICOV (Jones et al., 2015), where deep refinement of the coarse-grained contact
maps obtained in the first stage enhances the performance at the second stage. In
addition, the gain in prediction performance by approximately 1% is due to using
a larger number of filters in each layer of the second-stage architecture (Fig. 2.4).

On the PREVIOUS dataset at stage 2 (Figs. 2.6b and 2.7b, and Table A.8), the
precision at L raises sharply from 61.35% to 63.17% between the first and the sec-
ond iteration, but then stagnates at the third and the fourth iteration (63.12% and
63.71%, respectively). At L/10 the precision actually drops off gradually over the
four iterations (90.07%, 90.09%, 89.46%, 88.73%), while at L/5 there is no clear
trend in the variation of precision (85.72%, 86.93%, 85.61%, 85.93%). A similar
behavior was observed on the TEST dataset. These findings imply that increas-
ing the number of iterations does not as such lead to further improvement of the
prediction accuracy at the second stage. However, we found that combining the
contact maps obtained at the last three iterations of stage 2 is beneficial for the
ensemble models (Fig. 2.3, see section 2.2.6.3). For example, if only the first two
iterations are used, the final results deteriorate by 1-2%. Based on a number of
experiments we settled for the number of iterations of four.

Compared to the individual models at stage 2, the ensemble of models (Table
A.10) achieves a slightly better prediction performance by most of evaluation met-
rics. In particular, on the PREVIOUS dataset at L/10 the precision increases from
90.09% (the best result among all iterations) to 91.33%, and on the TEST dataset at
L/2 the precision increases from 75.14% to 76.16%.
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FIGURE 2.6: Precision of DeepHelicon for each protein in the PREVI-
OUS dataset. (a) Precision at stage 1 compared to iteration 1 of stage
2. (b) Precision at iteration 2 of stage 2 compared to iteration 1 of

stage 2.
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FIGURE 2.7: Precision of DeepHelicon for each protein in the TEST
dataset. (a) Precision at stage 1 compared to iteration 1 of stage 2. (b)
Precision at iteration 2 of stage 2 compared to iteration 1 of stage 2.

2.3.2 Comparison of DeepHelicon with other contact prediction

methods

We compared the inter-helical residue contact prediction performance of Deep-
Helicon with 12 publicly available methods listed in Table A.5 (Fig. 2.8). On the
PREVIOUS dataset (Table 2.1) DeepHelicon outperforms all other predictors by
all assessment metrics except for the performance for the top L contacts, which
lags behind the DeepMetaPSICOV, one of the best predictors in CASP 13 (Kan-
dathil, Greener, and Jones, 2019a). For instance, our method achieves the preci-
sion of 77.84%, 87.42%, and 91.33% at L/2, L/5, and L/10, respectively, compared
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to 77.60%, 86.24% and 88.28% for the next best method, DeepMetaPSICOV. Deep-
Helicon’s recall values (27.52%, 12.70%, and 6.58%) at L/2, L/5, and L/10 are also
higher than those of DeepMetaPSICOV (26.72%, 12.12%, and 6.03%). DeepHeli-
con is also superior to other methods in terms of the F1, F0.35, and MCC measures.
For example, its F1 and MCC values are 49.47% and 50.41% at L compared to
44.51% and 45.05% of Membrain2.

On the TEST dataset (Table 2.2), DeepMetaPSICOV outperforms all other pre-
dictors (precision of 67.76%, 80.76%, 87.63%, and 90.39% at L, L/2, L/5, and
L/10). DeepHelicon is second best at L and L/2 (62.13% and 76.16%), better than
Membrain2 (58.75% and 74.46%), while at L/5 and L/10 Membrain2 achieves a
higher precision (86.64% and 91.27%) than DeepHelicon (84.98% and 87.44%).

Overall, DeepHelicon, Membrain2, and DeepMetaPSICOV outperform all other
predictors on both datasets and at all settings. The common property of these
three predictors is that they exploit a combination of four, five, and three different
ECA methods as input features for training, respectively. DeepMetaPSICOV and
DeepHelicon also leverage evolutionary information - covariance matrices and
coupling matrices. Both Membrain2 and DeepHelicon employ a multiple-stage
training process to construct their models.
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FIGURE 2.8: Prediction performance of DeepHelicon and other
methods on inter-helical residue contacts. (a) and (b) show the mean
precision and recall, respectively, on the PREVIOUS dataset, while
(c) and (d) show the mean precision and recall on the TEST dataset,

respectively.

Among the six ECA-based predictors, CCMpred achieves the best performance
on both datasets. As seen in Fig. 2.8, Gremlin performs slightly better than
plmDCA at L/2 and L/5 on the TEST dataset with precision (60.93% vs. 59.57%
and 73.90% vs. 73.26%) while lagging marginally behind plmDCA at all thresh-
olds on the PREVIOUS dataset. In terms of precision and recall, Gaussian DCA,
EVfold, and PSICOV are ranked as the last three of all ECA-based predictors. Un-
expectedly, we found that DeepCov’s performance (precision 39.98%) was com-
parable to Gaussian DCA (precision 40.37%) for the top L inter-helical contact
predictions on the TEST dataset. Interestingly, CCMpred exhibits an even bet-
ter prediction performance for inter-helical residue contacts than some machine
learning and deep learning techniques. For example, for the top L/5 inter-helical
contact predictions it achieves the precision of 72.02% and 74.41% on the PREVI-
OUS and TEST datasets, respectively, while for MetaPSICOV the corresponding
values are 66.51% and 68.43%. CCMpred outperforms PconsC4 in terms of pre-
cision (72.02% vs.70.75%) and MCC (25.64% vs.25.49%) on the top L/5 contact
predictions.
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TABLE 2.1: Prediction performance on the PREVIOUS dataset for
inter-helical residue contacts.

Predictor Threshold Precision Recall F1 F0.35 MCC
PSICOV L 31.90 21.31 24.75 29.84 24.10

EVfold L 37.42 25.23 29.10 35.03 28.72

CCMpred L 44.25 29.58 34.24 41.36 34.19

Gaussian DCA L 38.74 26.34 30.21 36.27 29.91

plmDCA L 42.87 29.05 33.29 40.10 33.21

Gremlin L 39.95 25.05 30.19 37.17 29.87

DeepCov L 33.36 23.44 26.24 31.30 25.80

MetaPSICOV L 43.71 28.99 33.62 40.80 33.59

PconsC3 L 48.19 33.01 37.81 45.21 37.86

Pconsc4 L 45.30 30.91 35.28 42.41 35.33

Membrain2 L 57.69 38.11 44.51 53.91 45.05

DeepMetaPSICOV L 67.42 45.18 52.35 63.13 53.28

DeepHelicon L 63.69 43.26 49.47 59.59 50.41

PSICOV L/2 44.48 14.87 21.67 35.75 24.25

EVfold L/2 49.66 16.75 24.29 39.97 27.34

CCMpred L/2 59.64 20.30 29.21 47.95 33.18

Gaussian DCA L/2 52.86 18.07 25.99 42.56 29.32

plmDCA L/2 58.02 19.69 28.38 46.64 32.21

Gremlin L/2 56.81 18.24 27.05 45.37 30.85

DeepCov L/2 43.08 15.43 21.58 34.86 24.04

MetaPSICOV L/2 55.62 18.43 26.94 44.63 30.58

PconsC3 L/2 61.45 21.37 30.53 49.70 34.58

PconsC4 L/2 58.87 20.29 29.12 47.51 32.97

Membrain2 L/2 72.40 24.63 35.52 58.33 40.68

DeepMetaPSICOV L/2 77.60 26.72 38.36 62.69 43.89

DeepHelicon L/2 77.84 27.52 38.82 62.93 44.43

PSICOV L/5 61.19 8.24 14.26 34.86 21.47

EVfold L/5 62.68 8.51 14.67 35.77 22.07

CCMpred L/5 72.02 9.98 17.07 41.16 25.64

Gaussian DCA L/5 67.24 9.35 16.00 38.54 23.94

plmDCA L/5 70.75 9.72 16.66 40.33 25.08

Gremlin L/5 68.94 9.17 15.93 39.17 24.20

DeepCov L/5 53.96 7.62 12.90 30.96 19.11

MetaPSICOV L/5 66.51 8.78 15.27 37.66 23.23

PconsC3 L/5 72.75 10.07 17.39 42.01 26.07
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PconsC4 L/5 70.75 10.09 17.14 40.81 25.49

Membrain2 L/5 83.50 11.31 19.61 47.82 29.79

DeepMetaPSICOV L/5 86.24 12.12 20.69 49.80 31.15

DeepHelicon L/5 87.42 12.70 21.48 50.74 31.99

PSICOV L/10 69.84 4.78 8.83 27.12 17.52

EVfold L/10 70.69 4.94 9.09 27.68 17.89

CCMpred L/10 78.25 5.48 10.07 30.55 19.85

Gaussian DCA L/10 74.94 5.29 9.71 29.41 19.06

plmDCA L/10 76.10 5.29 9.73 29.60 19.22

Gremlin L/10 75.17 5.00 9.30 28.95 18.74

DeepCov L/10 60.96 4.40 7.98 23.93 15.45

MetaPSICOV L/10 71.84 4.73 8.80 27.49 17.78

PconsC3 L/10 78.75 5.39 10.01 30.86 19.93

PconsC4 L/10 75.00 5.52 10.05 29.85 19.36

Membrain2 L/10 88.21 5.98 11.10 34.35 22.31

DeepMetaPSICOV L/10 88.28 6.03 11.19 34.55 22.39

DeepHelicon L/10 91.33 6.58 12.06 36.25 23.60

TABLE 2.2: Prediction performance on the TEST dataset for inter-
helical residue contacts.

Predictor Threshold Precision F1 F0.35 MCC
PSICOV L 31.55 22.44 25.49 29.83 24.39

EVfold L 40.37 29.18 32.89 38.25 32.16

CCMpred L 46.04 33.14 37.41 43.58 36.93

Gaussian DCA L 40.37 29.18 32.87 38.24 32.15

plmDCA L 44.58 31.95 36.13 42.18 35.59

Gremlin L 40.78 28.88 32.86 38.53 32.18

DeepCov L 39.98 29.89 33.03 37.98 32.39

MetaPSICOV L 45.62 33.03 37.19 43.22 36.70

PconsC4 L 49.16 35.78 40.28 46.65 39.87

Membrain2 L 58.75 42.50 47.89 55.67 48.01

DeepMetaPSICOV L 67.76 51.76 56.70 64.60 57.19

DeepHelicon L 62.13 45.75 51.01 58.95 51.26

PSICOV L/2 44.04 16.00 22.83 36.17 24.88

EVfold L/2 53.57 19.63 27.95 44.10 30.78

CCMpred L/2 61.28 22.50 32.03 50.47 35.49

Gaussian DCA L/2 53.64 19.67 27.99 44.15 30.83
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plmDCA L/2 59.57 21.69 30.95 48.97 34.31

Gremlin L/2 60.93 22.20 31.67 50.09 35.15

DeepCov L/2 52.91 20.05 28.16 43.81 30.90

MetaPSICOV L/2 58.17 21.26 30.33 47.88 33.56

PconsC4 L/2 62.98 23.24 33.09 52.00 36.66

Membrain2 L/2 74.46 27.54 39.12 61.45 43.72

DeepMetaPSICOV L/2 80.76 31.81 44.06 67.37 48.91

DeepHelicon L/2 76.16 28.55 40.30 62.96 44.98

PSICOV L/5 60.12 9.031 15.42 35.98 22.18

EVfold L/5 67.51 10.17 17.34 40.42 25.06

CCMpred L/5 74.41 11.32 19.27 44.72 27.86

Gaussian DCA L/5 68.85 10.49 17.85 41.37 25.71

plmDCA L/5 73.26 11.03 18.81 43.84 27.27

Gremlin L/5 73.90 11.26 19.16 44.40 27.68

DeepCov L/5 66.23 10.18 17.29 39.93 24.81

MetaPSICOV L/5 68.43 10.08 17.31 40.78 25.20

PconsC4 L/5 74.81 11.24 19.23 44.92 27.91

Membrain2 L/5 86.64 13.14 22.37 52.02 32.61

DeepMetaPSICOV L/5 87.63 13.95 23.54 53.53 33.71

DeepHelicon L/5 84.98 13.05 22.17 51.24 32.12

PSICOV L/10 69.08 5.28 9.68 28.69 18.24

EVfold L/10 74.37 5.72 10.49 31.03 19.77

CCMpred L/10 79.78 6.17 11.30 33.33 21.29

Gaussian DCA L/10 75.65 5.88 10.76 31.69 20.20

plmDCA L/10 79.32 6.17 11.30 33.23 21.23

Gremlin L/10 79.34 6.17 11.30 33.22 21.22

DeepCov L/10 69.90 5.43 9.96 29.57 18.81

MetaPSICOV L/10 72.21 5.36 9.88 29.65 18.87

PconsC4 L/10 81.34 6.28 11.52 34.10 21.76

Membrain2 L/10 91.27 7.05 12.92 38.17 24.50

DeepMetaPSICOV L/10 90.39 7.24 13.23 38.55 24.66

DeepHelicon L/10 87.44 6.76 12.40 36.58 23.44

Overall, the results of our comparative evaluation are in line with the previous
studies by us and others. CCMpred ranks above MetaPSICOV in terms of top L/5
contact predictions (Hönigschmid and Frishman, 2016) and achieves the best per-
formance among all ECA-based predictors (Yang and Shen, 2018). CCMpred was
reported to outperform Gremlin and plmDCA by Seemayer et al. for globular
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proteins (Seemayer, Gruber, and Söding, 2014), while plmDCA, in its turn, per-
forms better than Gaussian DCA (Baldassi et al., 2014; Michel et al., 2017). Similar
to our findings, all four predictors were previously reported to outperform PSI-
COV and EVfold (Kamisetty, Ovchinnikov, and Baker, 2013; Seemayer, Gruber,
and Söding, 2014; Baldassi et al., 2014; Feinauer et al., 2014). In our work we
have also confirmed the excellent performance of DeepMetaPSICOV in predict-
ing residue contacts in transmembrane proteins (Kandathil, Greener, and Jones,
2019a). To the best of our knowledge, PconsC3, PconsC4, and DeepCov have not,
so far, been systematically tested on transmembrane proteins, but on globular pro-
teins PconsC3 and PconsC4 reportedly perform better than ECA-based predictors
(Michel et al., 2017; Michel, Menéndez Hurtado, and Elofsson, 2019). In our tests,
these two predictors also outperform the ECA-based predictors, but lag behind
Membrain2, DeepMetaPSICOV, and DeepHelicon.

2.3.3 Dependence of mean precision on protein characteristics

We benchmarked the mean precision of DeepHelicon in predicting the top L/2
inter-helical residue contacts with respect to the log number of effective sequences
in MSA ln(Meff) (Wang et al., 2017), the number of TM helices, and the total num-
ber of homologs in MSA. The ln(Meff) measure essentially reflects the amount
of homologous information in an MSA and is calculated as the number of non-
redundant protein sequences at a 70% sequence identity cutoff (Wang et al., 2017).
For each of the three characteristics, its value range was split into five equal bins
and the mean precision was calculated for each bin separately.

For the majority of the predictors the mean precision rises with the increase in
the number of effective sequences both on the PREVIOUS (Fig. 2.9a) and, espe-
cially, on the TEST (Fig. A.1a) datasets. Overall, a similar trend is observed with
respect to the total number of sequences in the MSA (Figs. 2.9b and A.1b), but it
is less pronounced, which implies that the quality of the alignments is more im-
portant than their sheer size, as previously reported (Jones and Kandathil, 2018).
DeepHelicon outperforms other predictors on proteins with a large number of TM
helices (Figs. 2.9c and A.1c). For example, the mean precision for proteins with
12-15 TM helices is 75.59% compared to 73.68% for Membrain2 and 70.61% for
DeepMetaPSICOV (PREVIOUS dataset), while for proteins with 10-12 TM helices
it is 82.89% compared to 75.18% of Membrain2 and 82.04% of DeepMetaPSICOV
(TEST dataset). Most of the predictors exhibit a good prediction performance on
both datasets for the TM proteins with five to eight helices.
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FIGURE 2.9: Mean precision of Top L/2 inter-helical contact predic-
tions on the PREVIOUS dataset for different ranges of ln(Meff) (a),
the number of all homologs in MSA (b), and the number of TM he-
lices (c). ns: the number of sequences. Some of the large protein
chains were omitted from this comparison because the webservers
or standalone packages we tested did not return results for them (see

section 2.2.10 and Table A.6).

2.3.4 Contact-driven modeling of α-helical TM proteins by CON-

FOLD2

We employed CONFOLD2 to model 3D structures guided by the top-ranked N/5
and N/2 contacts predicted by DeepHelicon and DeepMetaPSICOV (Tables A.11
and A.12). Note that DeepHelicon is only trained to predict inter-helical contacts
while for DeepMetaPSICOV we considered both inter-helical (Deep- MetaPSICOV-
ih) as well as all non-local contacts (DeepMetaPSICOV-all) formed by residue
pairs with a sequence separation at least 6. As seen in Fig. 2.10, CONFOLD2
models exhibit a comparable quality both in terms of TM-scores and Cα-RMSD
values using predicted contacts generated by either of the methods. With regard
to the 3D models guided by inter-helical contacts at N/5 we found that out of the
51 proteins in the TEST dataset DeepHelicon generates 14 models with TM-scores
higher than 0.4 (27.45%), while DeepMetaPSICOV generates 8 models (15.69%)
(Table A.12). At N/2 both methods lead to 15 models with TM-scores higher than
0.4 (29.41%). These results demonstrate that using a fully automated modeling
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method such as CONFOLD2 in conjunction with state-of-the-art contact predic-
tion methods, acceptable models can be generated for almost 30% of α-helical
transmembrane proteins, even when only inter-helical contacts are taken into ac-
count.
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FIGURE 2.10: Comparison of TM-scores and Cα-RMSD values ob-
tained for individual 3D models guided by inter-helical residue con-
tacts in the TEST dataset. Distribution of TM-scores and Cα-RMSD
values at L/5 (a) and (b) and at L/2 (c) and (d), respectively. TM-
scores and Cα-RMSD values of DeepHelicon for each protein com-
pared to DeepMetaPSICOV-ih at L/5 (e) and (f) and at L/2 (g) and
(h), respectively, and DeepMetaPSICOV-all at L/5 (i) and (j) and at

L/2 (k) and (l), respectively.

We illustrate the CONFOLD2 results with the models of one small and one
large protein. For the first example, we present CONFOLD2 models of succinate
dehydrogenase (PDB code 2acz, chain C) from Escherichia coli, guided by top
N/5 predicted inter-helical residue contacts. The backbone of this protein is com-
posed of three α-helices in the transmembrane region and one α-helix in the extra-
cellular region (Fig. 2.11a). The best structure assisted by the inter-helical contacts
predicted by DeepHelicon (Fig. 2.11b) achieves the highest TM-score of 0.620 rel-
ative to the native structure, while contacts generated by DeepMetaPSICOV lead
to a structure with a TM-score of 0.613 (Fig. 2.11c). The Cα-RMSD values for
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DeepHelicon and DeepMetaPSICOV are 5.630 and 9.187, respectively. The sec-
ond example is the CONFOLD2 models of the uracil transporter (PDB code 3qe7,
chain A) from Escherichia coli, guided by top N/2 predicted inter-helical residue
contacts. This protein possesses 14 helices (Fig. 2.11d). The best model guided by
DeepHelicon predictions (Fig. 2.11e) achieves a TM-score of 0.500 and a Cα-RMSD
value of 11.411 relative to the native structure while the DeepMetaPSICOV-guided
model (Fig. 2.11f) has a TM-score of 0.377 and a Cα-RMSD value of 15.029.

FIGURE 2.11: 3D modeling of succinate dehydrogenase (chain
C) and uracil transporter (chain A) from Escherichia coli, guided
by inter-helical residue contacts. (a), (b), and (c) correspond to
the native structure, DeepHelicon-guided, and DeepMetaPSICOV-
guided CONFOLD2 models of succinate dehydrogenase (chain C),
respectively. (d), (e), and (f) correspond to the native structure,
DeepHelicon-guided, and DeepMetaPSICOV-guided CONFOLD2

models for the uracil transporter (chain A), respectively.

2.4 Conclusion

The first specialized predictor for transmembrane proteins exploiting coevolving
residues was developed by our group in 2007 (Fuchs et al., 2007). Subsequent it-
erations of the predictor, published in 2009 and 2016, employed neural networks
(Fuchs, Kirschner, and Frishman, 2009) and a random forest model combined
with direct coupling analysis (Hönigschmid and Frishman, 2016). In this work we
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have developed DeepHelicon, a next-generation deep-learning approach to pre-
dict inter-helical residue contacts in TM proteins. Our method has been trained on
one of the currently largest datasets of membrane proteins, which is however still
much smaller than the datasets containing thousands of globular and membrane
proteins used to train general purpose predictors (Stahl, Schneider, and Brock,
2017; Xiong, Zeng, and Gong, 2017; Jones and Kandathil, 2018). Similar to other
state-of-the-art methods, DeepHelicon relies on a two-stage deep learning archi-
tecture based on residual neural networks, which allow for very fast optimization.
At the first stage two kinds of co-evolutionary features (coupling matrix and co-
evolutionary features) are used to generate coarse-grained contact maps, which
serve as input for the second stage. At the second stage we employ a novel itera-
tive scheme, which leads to a progressive improvement of prediction performance
due to recursive learning of contact maps from a previous iteration. Variance er-
ror is reduced by combining the decisions from multiple models. The contact pre-
diction accuracy is sufficient to generate acceptable 3D models for up to 30% of
proteins using a simple fully automated modeling method such as CONFOLD2.
Moreover, we find that inter-helical contacts alone provide enough constraints for
building 3D models of α-helical membrane proteins.

2.5 Software and data availability

The standalone DeepHelicon software is available at https://github.com/2003100127/
deephelicon. It relies on the following external methods: HHBlits, CCMpred,
Gaussian DCA, FreeContact, plmDCA, TMHMM2.0, and EVCouplings. Deep-
Helicon only takes as input a protein sequence in FASTA format. Residues lo-
cated in the transmembrane regions are detected by the TMHMM2.0 algorithm.
The output contains predicted inter-helical residue contacts. Training and testing
data are available at https://data.mendeley.com/datasets/k8tfvgftv3. We are
currently re-training DeepHelicon based on the most recent UniProt version, an
updated version will be made available.

https://github.com/2003100127/deephelicon
https://github.com/2003100127/deephelicon
https://data.mendeley.com/datasets/k8tfvgftv3
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Chapter 3

DeepTMInter: improving prediction
of interaction sites in transmembrane
protein complexes using deep
residual neural networks

Biophysical interactions between proteins are fundamental for a wide range of
biological processes. Transmembrane (TM) proteins with known interaction sites
are found to be pharmaceutically instrumental for drug discovery and therapy
design. Due to pitfalls inherent to the laborious experimental determination of
TM protein structures, the clear understanding of interaction details at an inter-
molecular level has been hampered for a few decades. Computational techniques
are therefore required to allow large-scale functional annotations of TM protein
interaction sites. Here, we present a novel deep-learning method, DeepTMInter,
for sequence-based prediction of interaction sites in TM proteins by leveraging a
collection of molecular physiochemical and evolutionary properties. Our method,
trained using ultra-deep residual neural networks followed by stacked general-
ization for performance refinements, has enabled a substantial improvement for
predicting interaction sites in cytoplasmic, transmembrane, and extracellular re-
gions as well as full sequences. We showed that DeepTMInter outperformed our
previously best performing method, MBpred, in terms of AUC/AUCPR values of
0.689/0.598 compared to 0.589/0.493 on a stringently redundancy-reduced inde-
pendent dataset. Our systematical investigation of human transmembrane pro-
tein interactome first reveals that proteins of higher percentage of interaction sites
are found to be significantly richer in interaction partners. In addition, the human
ion channel group is identified by DeepTMInter as the largest functional family
to accommodate 25.6% interaction sites per protein.
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3.1 Introduction

Protein-protein interactions (PPIs) lay the foundations for manifold cellular activ-
ities (Kuzmanov and Emili, 2013; Zhang et al., 2019), such as signal transduction
(Moore, Berger, and DeGrado, 2008) and immune response (Hubel et al., 2019; Li,
Fang, and Fang, 2011). The accurate identification of interface patches and, in par-
ticular, specific interaction sites (e.g., drug-binding sites) has implication for drug
discovery (Bai et al., 2016) and disease treatment (Yin and Flynn, 2016). Owing
to difficulties of experimental structure determination, transmembrane proteins
(TM), while accounting for 20-30% of gene-encoding proteins in living organisms
(Fuchs, Kirschner, and Frishman, 2009; Sharpe, Stevens, and Munro, 2010), have
a large number of interaction sites that still remain unknown and unidentified. It
has been reported that transmembrane proteins are targeted by around 50% com-
mercially released pharmaceutical drugs (Varga et al., 2016; Dobson, Reményi,
and Tusnády, 2015). In particular, a clear understanding of interaction sites of hu-
man transmembrane proteome is key to catalyzing the development of various
disease-associated drugs (Lin et al., 2019; Stone and Deber, 2017). On the other
hand, experimentally PPI determined techniques such as yeast two-hybrid (Y2H)
assays (Shoemaker and Panchenko, 2007), although supporting high through-
put on a proteome-wide scale (Figeys, 2008), only provide binary protein inter-
actome maps that are meanwhile intrinsically limited by high false-positive or
false-negative rates (Jessulat et al., 2011; Liu et al., 2020a). Thus, computational
techniques are urgently needed for identification of interaction sites in transmem-
brane proteins.

The current computational tools used for interaction site prediction can roughly
be categorized into two groups i) predicting binary PPIs, such as Profppiker-
nel (Hamp and Rost, 2015), ProfPPIdb (Tran, Hamp, and Rost, 2018), and DPPI
(Hashemifar et al., 2018), and ii) predicting protein interaction sites, such as Hamp’s
work (Hamp and Rost, 2012), DLPred (Zhang et al., 2019), and DELPHI (Li and
Ilie, 2020). The vast majority of the off-the-shelf techniques are trained on glob-
ular proteins while only two available methods, Bordner’s work (Bordner, 2009)
and MBpred (Zeng, Hönigschmid, and Frishman, 2019) are systematically trained
on transmembrane proteins. Over the past decade, deep learning heralding the
next generation of intelligent algorithms (LeCun, Bengio, and Hinton, 2015) has
achieved unrivaled successes across a broad spectrum of biological applications
(Li, Wu, and Ngom, 2018; Wainberg et al., 2018; Eraslan et al., 2019) compared to
traditional techniques. More recently deep residual neural networks (ResNets)
(He et al., 2016a) have enabled considerable progress in predicting secondary
structures (Hanson et al., 2018) and residue contacts (Sun and Frishman, 2020;
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Kandathil, Greener, and Jones, 2019b) as well 3D protein structures (Senior et al.,
2020); nevertheless, rather few studies have indeed applied the ResNet technique
to predicting protein interaction sites.

Here, we introduce a fully automated deep-learning tool, DeepTMInter, to
predict interaction sites in transmembrane proteins. This method has been 5-
fold cross-validated by stratified-shuffle methods (Liu et al., 2020b) using ultra-
deep residual neural networks integrated with 27 residual units, followed by
a thorough refinement of prediction performance using stacked generalization
(Wolpert, 1992) for model ensemble and variance error reduction. DeepTMInter
has been trained on the largest transmembrane protein training dataset consisting
of 301 well-curated high-quality chains from 241 unique transmembrane protein
assemblies. DeepTMInter has significantly outperformed MBpred, our previous-
generation prediction tool, in the light of AUC/AUCPR values of 0.689/0.598
compared to 0.589/0.493 on the independent set of 30 chains whose redundancy
has been strictly reduced to below a 25% sequence identity level to both them-
selves and training chains. We systematically investigated human TM protein in-
teraction networks based on 76,584 high-quality PPIs in the HuRI-Union database
(Li and Ilie, 2020). Our experiments unravel that a high percentage of per-protein
interaction sites predicted by DeepTMInter corresponds to a high number of in-
teraction partners. Furthermore, we found that alignment filtering allowed our
method to run without accuracy loss at a very fast speed risen by around one
order of magnitude.

3.2 Materials and method

3.2.1 Datasets of transmembrane proteins with known 3D struc-

ture

We obtained from the PDBTM database (version: July 2020) (Kozma, Simon, and
Tusnady, 2012) a dataset of 3090 three-dimensional structures of α-helical TM pro-
teins at better than 3.5Å resolution (Fig. 3.1a). Their biological oligomer struc-
tures were generated using the TMDET algorithm (Tusnády, Dosztányi, and Si-
mon, 2004; Tusnády, Dosztányi, and Simon, 2005) based on the PDB BIOMATRIX
records. Upon removing structures with non-biological contacts and those with
less than two chains we were left with 2073 PDB files containing TM protein com-
plexes. Subsequently, a TM protein chain in any of the 2073 complexes was re-
tained only if it possessed at least one residue contact with any other chain in the
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same complex, defined based on the minimal distance between any two nonhy-
drogen atoms of less than 6Å(see section 3.2.2 for detailed information about in-
teraction site definition). This procedure resulted in 10194 unique protein chains.

For comparison purposes we also used two additional datasets described in
our previous work (Zeng, Hönigschmid, and Frishman, 2019). Briefly, the Com-
pData dataset (101 TM protein chains, Table B.1) was derived by imposing a less
than 30% sequence identity cutoff on a dataset of 267 TM protein chains bench-
marked by Bordner (Bordner, 2009). The TestData dataset (Table B.2) contains a
non-redundant (sequence identity <30%) dataset of 36 protein chains deposited
with the PDBTM database between June 2015 and June 2017 and used to test
our previously developed MBpred method (Zeng, Hönigschmid, and Frishman,
2019). The structures of 81 and 35 chains in the CompData and TestData datasets
were determined at better than 3.5Åresolution, respectively. Upon removing these
116 chains from the collection of 10194 chains described above, we were left with
10078 chains. Following the common practice in structural bioinformatics (Zou
et al., 2020; Hanson et al., 2018; Heffernan et al., 2015), we subjected this dataset
to a stringent redundancy reduction procedure by imposing the requirement that
no sequence pair shares a sequence identity above 25%. The resulting 331 chains
were then randomly split into a training dataset (301 protein chains, dubbed Train-
Data) and an independent dataset (30 protein chains, dubbed IndepData) (Tables
B.3 and B.4).
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FIGURE 3.1: Flowchart of our method to predict interaction sites in
TM proteins. (a), (b), and (c) schematically show the dataset genera-

tion, input feature, and prediction process, respectively.
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3.2.2 Definition of interaction sites

Prediction of interaction sites is a class-imbalanced problem as the interacting (mi-
nority) class is strongly under-represented compared to the non-interacting (ma-
jority) class. As discussed in our earlier publication (Zeng, Hönigschmid, and
Frishman, 2019), this problem can be partially alleviated by defining amino acid
residue contacts based on a somewhat larger distance threshold, which will result
in more residues being assigned to the interacting class. For this reason, out of
several alternative residue contact definitions, we selected the one proposed by
Hamp and Rost (Hamp and Rost, 2012), which is based on the distance between
any two non-hydrogen atoms of less than 6Å.

3.2.3 Protein topology

Extracellular (Extra), transmembrane (TM), and cytoplasmic (Cyto) segments were
structure-derived and predicted exactly as in our previous publication (Zeng,
Hönigschmid, and Frishman, 2019). A combination (Combined) of the three seg-
ment types above was also used in benchmarking the performance of predictors.
Note that different from determining protein topologies for DeepHelicon, DeepT-
MInter used structure-derived and Phobius-predicted topologies instead of those
predicted by TMHMM (cf. section 2.2.2 of Chapter 2).

3.2.4 Multiple sequence alignments

The multiple sequence alignments (MSAs) were generated in the same way as
described in section 2.2.4 of Chapter 2. The Uniclust30 database (http://wwwuser.
gwdg.de/~compbiol/uniclust/2020_03/) was used. In order to keep the CPU
and memory requirements for calculating features at a manageable level, HHfilter
(Remmert et al., 2012) was applied to only keep sequences sharing <90% sequence
identity, which resulted in a significant reduction of MSA depth.

3.2.5 Input features

For each amino acid and each MSA position we generated a series of sequence-
based, physiochemical, and evolutionary characteristics (Fig. 3.1b), including
amino acid representation, amino acid physicochemical scales, amino acid com-
position, MSA evolutionary profile, Shannon entropy, evolutionary conservation,
relative position, protein topology, and residue coevolution.

http://wwwuser.gwdg.de/~compbiol/uniclust/2020_03/
http://wwwuser.gwdg.de/~compbiol/uniclust/2020_03/
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3.2.5.1 Amino acid representation

Amino acids in each sequence position were encoded by the one-hot representa-
tion. A boolean vector of length 20 was used to indicate the presence (1) or absence
(0) of the amino acid X, where X is one of the 20 amino acid symbols arranged in
sequential order: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y.

3.2.5.2 Amino acid physicochemical scales

The AAanalysis tool (Breimann et al., manuscript in preparation) was used to
generate a representative set of amino acid physicochemical scales from the 565
redundant scales curated in the AAindex database (Kawashima et al., 2007) and
further 69 scales compiled from other references. The redundancy of scales was
reduced by applying 2-centroid k-means clustering with the Pearson correlation
cutoff of 0.5. The resulting set of non-redundant scales was further clustered into
33 groups and in each group a scale with the highest Pearson correlation value
with the centroid of that group was chosen as representative. The final represen-
tative dataset contains 34 scales falling into the following 7 categories: confor-
mation (16), polarity (5), energy (8), composition (1), accessible surface (1), shape
(1), structure-activity (2) (Table B.5). Each physicochemical scale was rescaled to
the range [0,1]. For comparison purposes we also used several other widely used
amino acid physicochemical scales (Table B.6).

3.2.5.3 Amino acid composition

Amino acid composition of each protein was represented by a vector of length 20
containing the relative frequency of each amino acid.

3.2.5.4 MSA evolutionary profile

The evolutionary profile for each symbol Y of 21 symbols (20 amino acids and one
gap symbol) at MSA column i was calculated as

EPY,i = log2
pY,i

pY

where pY,i is the relative frequency of the symbol Y in the MSA column i and pY

is the relative frequency of Y in the whole MSA.
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3.2.5.5 Shannon entropy and evolutionary conservation

Shannon entropy for each MSA column i was computed as

E = −
n

∑
i=1

pY,i log2 pY,i

where n is 21 (20 amino acids and one gap symbol) and pY,i is the relative fre-
quency of each symbol Y at MSA column i. Lower values of Shannon entropy
correspond to higher conservation. Entropy values were transformed in such a
way that higher values correspond to a stronger evolutionary conservation C:

C = 1− c× E

where the constant c is 1
log2(20) .

3.2.5.6 Relative sequence position

Relative sequence position was computed by normalizing the actual position i by
protein length L : i

L .

3.2.5.7 Protein topology

For each amino acid position i we generated a boolean vector of length 3 contain-
ing a one-hot representation of three topological regions: cytoplasm, transmem-
brane helix, or extracellular region.

3.2.5.8 Residue coevolution

The likelihood of two amino acid residues to be in contact can be measured by the
evolutionary coupling (EC) values predicted by the evolutionary coupling anal-
ysis (ECA) methods (Stein, Marks, and Sander, 2015). In order to quantify the
likelihood of a given residue to be involved in a contact, the evolutionary cou-
pling ratio (ECR) has been proposed (Hopf et al., 2012):

ECR =
ECX

EC/L

where ECx is the sum of all EC values involving the residue X at position i and EC
is the sum of all EC values of all residues in protein of length L. In order to reduce
the variance error, we employed four ECA tools to generate three types of EC val-
ues, namely: mutual information and EVfold (generated by FreeContact ftp://
rostlab.org/free/) and Gaussian DCA (https://github.com/carlobaldassi/

ftp://rostlab.org/free/
ftp://rostlab.org/free/
https://github.com/carlobaldassi/GaussDCA.jl
https://github.com/carlobaldassi/GaussDCA.jl
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GaussDCA.jl). The ECR feature is thus represented by a vector of length 3. Note
that DeepHelicon utilizes four tools for generating coevolutionary features (see
section 2.2.5.1).

3.2.6 The deep learning approach

3.2.6.1 Sequence window size and feature vector dimension

The choice of the sequence window size is crucial for optimizing the speed of
training and also because it determines the dimension of the feature vector. For
each window centered around a certain sequence position we tested three differ-
ent setups: i) a comparatively large window size of 9, ii) a comparatively small
window size of 3, and iii) a combination of two different window sizes, 9 and 3,
dependent on a particular group of features being used. Upon conducting exten-
sive computational experiments (data not shown) we found the setup iii to deliver
the most optimal results in terms of the number of epochs required for training.
We finally chose the window size of 9 for three features - physicochemical scales,
evolutionary profile, and residue coevolution – while for all other features we
used the windows of length 3. This choice resulted in a feature vector of length
660 (Table B.7).

3.2.6.2 Residual neural network architecture

We developed a deep learning architecture based on a residual neural network
(ResNet) for predicting interacting amino acid residues in transmembrane pro-
teins (Fig. 3.2). The architecture settings are similar to those in DeepHelicon (see
explanations for batch normalization and ReLU described in section 2.2.6 of Chap-
ter 2). For each amino acid position, the 678-dimensional feature vector (section
3.2.6.1) was reshaped into a 26×26 matrix (i.e. with 676 elements, with 16 dimen-
sions padded by 0), which was batch-normalized in order to speed up the training
process (Ioffe and Szegedy, 2015).

At the core of our ResNet architecture are 27 residual units (also called resid-
ual blocks), all with the same structure (Fig. 3.2). For comparison, the number
of residual units in some of the recently published ResNet architectures were 9
(Wu et al., 2020), 18 (Jones and Kandathil, 2018), and 22 (Li et al., 2019b). This
design of the residual unit, already used in our previous work (Sun and Frish-
man, 2020), allows to accelerate the optimization and to avoid overfitting of the
ResNet architecture (He et al., 2016b). We plugged an additional block comprising

https://github.com/carlobaldassi/GaussDCA.jl
https://github.com/carlobaldassi/GaussDCA.jl
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batch normalization and a convolutional layer with stride 2 for reducing data di-
mensionality and the computational cost (Fig. 3.2). We implemented the deep ar-
chitecture by using Google’s Tensorflow library (version 1.12.0) based on Python
programming language.

Dimension reduction
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Residual unit

Residual unit

Residual unit

Conv Layer,64 filters,
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Batch normalization
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+
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reshape

64, 26×26 output 
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FIGURE 3.2: Layout of the deep ResNet architecture to predict inter-
acting amino acid residues in TM proteins.

3.2.6.3 Settings for training the ResNet architecture

The training procedure is similar to that for training DeepHelicon described in
section 2.2.7 of Chapter 2.

3.2.6.4 Cross validation of the ResNet architecture

We categorized protein chains in the TrainData dataset into 5 classes according
to their length: <200 (104 chains), 200-400 (125 chains), 401-600 (51 chains), 601-
800 (16 chains), and >800 (4 chains). The 5-fold stratified-shuffle cross validation
(Liu et al., 2020b) method described in section 2.2.9 of Chapter 2 was employed to
evenly allocate protein chains of different length classes for training and valida-
tion at each iteration (Fig. B.1).
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3.2.6.5 Avoiding over-training

Over-training is detrimental to the performance of models on unseen validation
data (Prechelt, 1998; Amari et al., 1997; Hawkins, 2004), even if they achieve ideal
performance on training data (Tetko, Livingstone, and Luik, 1995) (Fig. B.2). In or-
der to avoid over-training, the early stopping strategy (Tetko and Villa, 1997) was
adopted, which involves aborting the training when the performance on valida-
tion data begins to worsen (Amari et al., 1996). At each round of cross-validation,
the model was chosen at one of the training epochs over which the performance
on validation data continued to show an optimal trend (Tetko, Livingstone, and
Luik, 1995; Tetko and Villa, 1997).

3.2.6.6 Stacked generalization

Stacked generalization (Wolpert, 1992), an approach for implementing model en-
sembles (Anifowose, Labadin, and Abdulraheem, 2015), was used to minimize
the generalization errors of the models trained by the ResNet architecture (He et
al., 2013) (Fig. 3.3). The combined output, which was constructed by merging the
output (by column) of the five models generated by a 5-round training on the full
TrainData dataset (see section 3.3.1), served as input for a multi-layer perceptron
(MLP) (Gardner and Dorling, 1998) and a Gaussian Naive Bayes (GNB) classi-
fier (Lou et al., 2014) (Fig. 3.3). The output of the MLP and GNB models was
then fitted by logistic regression. The resulting final model was used to report
and evaluate the performance of the interaction site predictor reported in this pa-
per. The MLP, GNB, and logistic regression models were implemented using the
scikit-learn package (https://scikit-learn.org).

3.2.7 Evaluation criteria

The overall performance of DeepTMInter was evaluated based on two threshold-
free (Saito and Rehmsmeier, 2015; Yuan et al., 2018) measures: the area under
the ROC (Receiver Operating Characteristic) curve (AUC) and the area under the
Precision-Recall curve (AUCPR) (Boyd, Eng, and Page, 2013). Most of single-
threshold performance measures used here (Saito and Rehmsmeier, 2015) have
been introduced in section 2.2.8 of Chapter 2, except:

Jaccard similarity coefficient (JSC) = TP
TP+FP+FN

where TP (true positive), FP (false positive), TN (true negative) and FN (false
negative) are the number of interacting residues predicted as interacting, the num-
ber of non-interacting residues predicted as interacting, the number of non-interacting

https://scikit-learn.org
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spective obtained models.

residues predicted as non-interacting, and the number of interacting residues pre-
dicted as non-interacting, respectively. For each protein of length L we evaluated
prediction based on the top-ranked L/5 interaction sites.

3.2.8 Comparison with MBPred

We compared the performance of DeepTMInter on three test datasets (see sec-
tion 3.2.1) with the MBPred algorithm previously developed in our group ((Zeng,
Hönigschmid, and Frishman, 2019); https://github.com/bojigu/MBPred). The
standalone MBPred suite contains four individual predictors - MBPredTM, MBPred-
Cyto, MBPredExtra, and MBPredAll - trained on transmembrane, cytoplasmic,
and extracellular regions as well as full-length TM protein sequences, respec-
tively. Additionally, we also compared DeepTMInter with MBPredCombined,
which combines MBPredTM, MBPredCyto, and MBPredExtra predictions.

https://github.com/bojigu/MBPred
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3.2.9 Human transmembrane proteins

We obtained 5,178 human protein sequences with at least one annotated trans-
membrane region from the UniProtKB/Swiss-Prot database (UniProt consortium,
2019). Interaction sites of the proteins were predicted by DeepTMInter. Topolo-
gies of the human transmembrane proteins were annotated according to UniProt.
We finally retained for further analysis 5,051 human transmembrane proteins with
the MSA depth in the range between 20 and 10,000 after filtering (see section
3.2.4 for alignment generation). Thus, shallow MSAs providing insufficient evolu-
tionary information as well as excessively deep MSAs imposing excessively high
CPU requirements were excluded. These proteins were classified into eight ma-
jor functional classes - G-protein-coupled receptor (GPCR), catalytic receptor, ligand-
gated ion channel (LGIC), voltage-gated ion channel (VGIC), other ion channel, trans-
porter, enzyme, and other protein target - according to the expert-curated “Guide
to PHARMACOLOGY” database (GtoPdb; https://www.guidetopharmacology.
org/) (Armstrong et al., 2020; Alexander et al., 2019).

3.2.10 Protein-protein interaction databases

For human transmembrane proteins we obtained 76,584 unique pairs of interact-
ing proteins from a high-quality expert-curated resource HuRI-Union (Luck et al.,
2020), which represents the union of the HI-union and Lit-BM databases. The
64,006 binary proteins interactions (PPIs) in the HI-union database were system-
atically identified by the yeast two-hybrid (Y2H) assay, while the Lit-BM database
comprises a collection of 13,441 high-confidence binary PPIs from literature. In-
teraction partners for the proteins in our three test datasets (TestData, CompData,
and IndepData) were obtained by merging 1,858,173 binary interactions from the
BioGRID database (version 3.5.188) (Oughtred et al., 2019) and 1,063,382 binary
interactions from the IntAct database (version: 4.1.25) (Orchard et al., 2014), re-
spectively. A mapping between the PDB codes and UniProt IDs of proteins was
obtained by PyPDB (Gilpin, 2016).

3.3 Results

3.3.1 Prediction performance of DeepTMInter

In addition to performing a 5-fold cross-validation procedure, we also conducted
5 rounds of training on the full TrainData dataset in order to eliminate the influ-
ence on the prediction performance of some random factors, such as the initial-
ization parameters of the residual neural network (see sections 3.2.6.4 and 3.2.6.6).

https://www.guidetopharmacology.org/
https://www.guidetopharmacology.org/
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Note that no protein chain in the TrainData dataset shares more than 25% se-
quence identity with any protein from the IndepData dataset (see section 3.2.1),
on which our method was assessed.

As seen in Fig. 3.4, the best performance on validation data is achieved in the
vicinity of epoch 60 and the corresponding models were chosen for final assess-
ment according to the early stopping strategy. Overall, the performance of mod-
els trained on the full TrainData dataset is significantly better in terms of mean
AUC values, AUCPR values, and cross-entropy error function than that of mod-
els trained on TrainData subsets in the course of cross validation (Figs. 3.4a-3.4c,
Tables B.9 and B.10). The ∼20% increase in the number of protein chains between
each cross-validation subset and the full training set and the concomitant increase
in the number of interaction sites (from ∼82,000 for each of cross validations to
10,2685, see Table B.8) lead to a surge in prediction performance. Thus, we finally
settled for the models trained based on the full TrainData dataset, which were fur-
ther used to construct the final ensemble model referred to as DeepTMInter (see
section 3.2.6.6). The application of the stacked generalization to the final ensemble
model results in an approximate 0.5%-3% increase in terms of AUC performance
using different regions (Table B.10).
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FIGURE 3.4: Performance of our method on the IndepData dataset
based on the 80% subsets and the full TrainData dataset. (a), (b),
and (c) show AUC, AUCPR, and cross-entropy error values over 100
training epochs. The errors in (c) measure the difference between ac-
tual and predicted labels of interaction sites using the cross entropy
objective function (see section 3.2.6.3). Blue lines and red dots rep-
resent the mean AUC, AUCPR, and error values produced by the
models trained over 5 rounds on the full training set or the models
trained on the 80% subsets in the course of 5-fold cross validation,
respectively. For each red dot the upper and lower bounds corre-
spond to the maximum and minimum values produced by 5 cross-

validation models at each of the 100 epochs, respectively.
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3.3.2 Influence of MSA depth on prediction performance

MSA depth is a major factor determining the CPU and memory requirements for
feature generation. We therefore evaluated the performance of our method on full
MSAs (this model is referred to as DeepTMInter-Unfiltered) and on shallow MSAs
filtered by HHfilter (see section 3.2.4) (referred to as DeepTMInter). The perfor-
mance of these two models is in general comparable (Figs. 3.5a-3.5c), with DeepT-
MInter even overperforming DeepTMInter-Unfiltered in some cases using the
four types of either structure-derived or Phobius-predicted regions (Cyto, TMH,
Extra, and Combined) (Figs. 3.5e and 3.5f). For example, using the structure-
derived Extra region the AUC and AUCPR values of DeepTMInter (0.688 and
0.458, respectively) are significantly higher than the values achieved by DeepTMInter-
Unfiltered (0.656 and 0.425, respectively) (Table B.11). Thus, significantly reducing
alignment depth (Fig. 3.5d) allowed to speed up our method without sacrificing
prediction performance.
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FIGURE 3.5: Performance comparison of DeepTMInter and
DeepTMInter-Unfiltered on the IndepData dataset. (a), (b), and
(c) show mean AUC, AUCPR, and cross-entropy error values with
(solid line) and without (dashed line) HHfilter over 100 training
epochs produced by the models trained over 5 rounds on the full
training set. (d) presents the number of homologous sequences in
MSAs generated with and without using HHfilter, with the mean
values of 39,553 and 12,663, respectively. (e) and (f) show the AUC
and AUCPR values produced by the final ensemble models (stacked
generalization, see section 2.6.6) on four types of structure-derived
and Phobius-predicted regions (Cyto, TMH, Extra, and Combined).
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3.3.3 Selection of amino acid physicochemical scales

In order to investigate how the choice of amino acid physicochemical scales in-
fluences model performance, two groups of scales were prepared: one generated
by the AAanalysis tool and the other one manually collected from literature (see
Methods, section 3.2.5.2). Our final model, DeepTMInter, was trained with the
scales generated by the AAanalysis tool and all the other features. For compari-
son, the model trained with the scales collected from references and all the other
features is further referred to as DeepTMInter-Lit.

Overall, DeepTMInter shows a better performance than DeepTMInter-Lit in
terms of AUC values on all test datasets (Fig. 3.6, Tables B.10 and B.12).

For instance, using Phobius-predicted combined regions on the IndepData
dataset DeepTMInter achieves the AUC value of 0.690 (AUCPR=0.599) compared
to 0.676 (0.595) of DeepTMInter-Lit (Tables B.10 and B.12). We assume that this
gain in performance stems from the fact that the AAanalysis tool selects the rep-
resentative scales of each kind and thus significantly reduces data redundancy,
which is detrimental to learning algorithms (Mandal and Mukhopadhyay, 2013;
Chormunge and Jena, 2018).

3.3.4 Performance comparison of DeepTMInter with the MBPred

suite

We compared the prediction performance of DeepTMInter with the four underly-
ing predictors (MBPredTM, MBPredCyto, MBPredExtra, and MBPredAll) in the
MBPred suite and with the ensemble predictor MBPredCombined (see section
3.2.8). Due to the adoption of the early stopping strategy to prevent over-training
(see section 3.2.6.5), our trained model achieved high prediction performance not
only on the two previous test datasets (TestData and CompData), but also on the
independent test dataset (IndepData) (Figs. 3.7-3.8 and Tables B.13-B.16).

3.3.4.1 Performance comparison using threshold-free measures

On all test datasets the AUC and AUCPR performance of predictors was bench-
marked using the Cyto, TMH, Extra and Combined regions either defined ac-
cording to PDBTM or predicted by Phobius. For the three specialized predic-
tors (MBPredCyto, MBPredTM, and MBPredExtra), we calculated the AUC and
AUCPR values not only for their specialized regions but also for the regions on
which they were not trained (Tables B.13-B.14). Overall, DeepTMInter shows a
significant improvement in terms of the AUC and AUCPR performance. For
example, on the IndepData dataset our method gives the AUC value of 0.661
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FIGURE 3.6: Performance comparison of DeepTMInter and
DeepTMInter-Lit based on the IndepData dataset. (a), (b), and
(c) show mean AUC, AUCPR, and cross-entropy error values over
100 training epochs produced by the DeepTMInter (solid line) and
DeepTMInter-Lit (dashed line) models trained over 5 rounds on the
full training set. (d) shows the AUC and AUCPR values produced
by the final ensemble models (stacked generalization, see section
3.2.6.6) on four types of structure-derived and Phobius-predicted re-
gions (Cyto, TMH, Extra, and Combined). (e) and (f) display the

distribution of MCC and recall values of protein chains.

(AUCPR=0.603), distinctly higher than 0.603 (0.513) of MBPredTM using structure-
derived TMH regions. MBPredCyto, MBPredTM, and MBPredExtra have been
reported to perform best in predicting interacting amino acid residues located in
their respective regions (Cyto, TMH, and Extra) on the TestData dataset (Zeng,
Hönigschmid, and Frishman, 2019). Indeed, we found that this is the case both on
the CompData and IndepData datasets. For example, on the CompData dataset
among all specialized predictors in the MBPred suite MBPredCyto, MBPredTM,
and MBPredExtra yield the highest AUC values of 0.618, 0.650, and 0.643 (AUC-
PR=0.622, 0.558, and 0.586).

Fig. 3.7 shows the ROC and Precision-Recall curves of predictors using their
specialized structure-derived regions on all test datasets. DeepTMInter is clearly
superior to the MBPred suite and achieves the highest AUC (0.793, 0.796, and
0.689) (Figs. 3.7a-3.7c) and AUCPR values (0.718, 0.738, and 0.598) (Figs. 3.7d-
3.7f). On all test datasets MBPred predictors exhibit comparable performance in
predicting interaction sites located in the regions they are specifically trained on.
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For example, on the IndepData dataset MBPredCyto and MBPredTM produce
similar ROC curves corresponding to the AUC values of 0.624 and 0.603, respec-
tively.
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FIGURE 3.7: Performance comparison between MBPred and DeepT-
MInter. (a), (b), and (c) show the ROC curves on the TestData, Com-
pData, and IndepData datasets, respectively, while (d), (e), and (f)
show the Precision-Recall curves on the TestData, CompData, and

IndepData datasets, respectively.

3.3.4.2 Performance comparison using single-threshold measures

For proteins in all test datasets mean precision, recall, F1-score, MCC, and HL
were calculated using entire combined structure-derived and Phobius-predicted
regions (Tables B.15-B.16). Based on these performance measures DeepTMInter
is also way ahead of the MBPred suite. For example, on the CompData dataset
DeepTMInter achieved the highest precision 0.783, recall 0.324, F1-score 0.432,
and MCC 0.239 values. In addition, JSC (Jaccard similarity coefficient, see sec-
tion 3.2.7) was used to assess the similarity between a set of actual labels and a
set of predicted labels for sites in TM proteins (Tan, Steinbach, and Kumar, 2016;
Fosso et al., 2018). A high JSC is indicative of high performance of a predictor.
For the three structure-derived regions (Cyto, TMH, and Extra) on the TestData
dataset we compared JSCs of DeepTMInter to those of the MBPredTM, MBPred-
Cyto, and MBPredExtra, respectively, for each individual protein. As seen in Fig.
3.8, DeepTMInter vastly outperforms the three underlying MBPred predictors on
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all 36 proteins and in all the three structure-derived regions (Cyto, TMH, and Ex-
tra), with mean JSCs 0.258, 0.298, and 0.274 (averaged over JSCs of all proteins
in that dataset) compared to 0.182, 0.199, and 0.194 of MBPredCyto, MBPredTM,
and MBPredExtra. Mean JSC values indicate that the set of predicted labels corre-
sponding to protein sites produced by DeepTMInter shows a stronger agreement
to the experimentally determined sites (the set of their actual labels) than those
produced by MBPred.
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FIGURE 3.8: Comparison of JSCs (Jaccard similarity coefficients)
between DeepTMInter and the three specialized MBPred predic-
tors (MBPredTM, MBPredCyto, and MBPredExtra) on the TestData

dataset. Each dot corresponds to one protein chain.

3.3.5 Performance evaluation using different residue contact def-

initions

To evaluate how DeepTMInter performance in predicting interaction sites de-
pends on the choice of a particular residue contact definition, the AUC and AUCPR
values were calculated on TestData, CompData, and IndepData datasets and com-
pared using the BordInter (Bordner, 2009), FuchInter (Fuchs, Kirschner, and Frish-
man, 2009), and RostInter (Hamp and Rost, 2012) residue contact definitions (Fig.
3.9 and Table B.17). Note that the sites in the full protein sequences (the Combined



3.3. Results 59

region) obtained by DeepTMInter were involved in the calculation of the two cri-
teria above. The numbers of interacting (NI) and non-interacting (NNI) amino
acid residues were derived from experimental 3D structures (Fig. 3.9 and Table
B.18). As expected, the number of residue contacts increases progressively with
the spatial distance cutoff according to the BordInter (4Å), FuchInter (5.5Å), and
RostInter (6Å) definitions. The RostInter definition leads to the highest AUC and
AUCPR values on the three test datasets. For example, on the CompData dataset
the AUC (0.762, 0.790, and 0.796) and AUCPR values (0.527, 0.690, and 0.738) were
obtained using the BordInter, FuchInter, and RostInter definitions, respectively. A
higher distance threshold (RostInter) also results in more residues labeled as in-
teracting, thus partially alleviating the imbalance between the two residue classes
(interacting and non-interacting).
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FIGURE 3.9: Statistics and performance comparison using the Bor-
dInter, FuchInter, and RostInter residue contact definitions on the
TestData (a), CompData (b), and IndepData (c) datasets. Left side:
NI - number of interacting amino acid residues; NNI - number of
non-interacting amino acid residues. Right side: AUC and AUCPR.

3.3.6 Evolutionary conservation of interaction sites

We compared the conservation scores (ranging from 0 to 1) of interaction and
non-interaction sites in the Cyto, TMH, Extra, and Combined regions (Fig. 3.10),
disregarding alignment columns with more than 50% of gaps. In line with Bor-
dner (Bordner, 2009) and our own previous work (Zeng, Hönigschmid, and Fr-
ishman, 2019), interaction sites are significantly more evolutionarily conserved
than non-interaction sites in all four regions (Cyto, TMH, Extra, and Combined).
The Combined region (i.e., the full sequence) displays the most statistically signif-
icant difference between interaction and non-interaction sites (p-value 2.39e-24, t-
Test). Interaction sites in the transmembrane domains, while still more conserved
compared to the positions not involved in interactions, exhibit a lower p-value of
5.32e-06 due to the degenerate amino acid composition and hence stronger over-
all conservation of hydrophobic, lipid-immersed sequence segments (Lynch and
Koshland, 1991; Riek et al., 1995).
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FIGURE 3.10: Evolutionary conservation of interaction sites across
all the three test datasets (TestData, CompData, and IndepData) in
the Cyto, TMH, Extra, and Combined (the full protein sequence) re-
gions. Statistical significance of the difference between interaction
and non-interaction sites is inferred by p-values obtained by t-Test.

3.3.7 Family-specific analysis of interaction sites and network con-

nectivity in human transmembrane proteins

We investigated the relationship between the percentages of per-protein interac-
tion sites predicted by DeepTMInter and the number of interaction partners on the
human transmembrane PPI networks constructed using the HuRI-union database
(see section 3.2.10). Using bins created by logarithm values, the number of inter-
action sites is directly proportional to the number of interaction partners across
all human transmembrane proteins (Fig. 3.11a). For proteins in the three test
datasets, the dependence of the interaction partners on the percentage of inter-
action sites is shown in Figs. B.3 and B.4. Additionally, in order to understand
the relationship between the biological activities of proteins and their interac-
tion patterns, we analyzed the average percentages of per-protein interaction sites
in the eight major membrane protein families (see section 3.2.10) curated by the
GtoPdb database (Figs. 3.11b and 3.11c, and Table B.19). Overall, ion channels
(LGIC, VGIC, and other ion channel) account for the most abundant interaction
sites per protein (Fig. 3.11b) with the highest percentages of 21.6%, 22.9%, and
32.4%, respectively. Interestingly, Other ion channel and Other protein target are the
major families of the first two largest percentages of per-protein interaction sites.
By ranking the percentages of 8 sub-families in Other ion channel (Fig. B.5), we
found that orai channels (Liu et al., 2019), connexins, and pannexins (Molica et
al., 2018) possess more than 60% and 40% of per-protein interaction sites, respec-
tively, strongly contributing on to the high percentages.
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FIGURE 3.11: Percentage of per-protein interaction sites in human
transmembrane proteins. (a) shows the dependence of interaction
partners (HuRI-union database, (Luck et al., 2020)) on percentages
of per-protein interaction sites in all human transmembrane proteins.
The number of interaction sites was equally divided into 6 bins ac-
cording to the range of logarithm values. Logarithm binning is used
to reveal the deeper significant trend and distribution behind data
(Milojević, 2010; Wang et al., 2017). The mean number of interac-
tion partners (NIPs) of human transmembrane proteins at each bin
was evaluated. The percentage of per-protein interaction sites in-
creases in ascending order of bin number. ns: number of sequences.
(b) shows the average percentages of per-protein interaction sites in
the full sequences with respect to eight major functional families. (c)
shows the average percentages of per-protein interaction sites in the
TMH, Cyto, and Extra regions with respect to eight major functional

families.

Similarly, among 20 sub-families in Other protein target the largest three per-
centages of per-protein interaction sites (>40%) were displayed in other pattern
recognition receptors, sigma receptors and abscisic acid receptor complex, respec-
tively (Fig. B.9). Proteins in the three sub-families play an important role in signal-
ing pathways (Ishikawa and Barber, 2008; Santiago et al., 2009; Aydar et al., 2002).
The existence of these sub-families above essentially contributes to the high aver-
age percentage of per-protein interaction sites. Other ion channels and other protein
target classes consist of proteins of the lowest average length (Fig. B.13). If pro-
teins from these two classes and those from other classes have similar numbers
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of interaction sites, the proteins from the two classes are more likely to achieve
higher percentages of interaction sites than those from other classes. Other ion
channel reaches the maximum percentages of per-protein interaction sites in the
TMH and the Extra regions (Fig. 3.11c and Figs. B.6-B.8), whereas Other protein
target has the largest concentration of per-protein interaction site in the Cyto re-
gion (Figs. 3.11c and B.10-B.12). The enzyme family is highlighted by a high
percentage of 34.2% on the Cyto region, which declares a functionally active role
in intracellular activities.

3.3.8 Case studies

3.3.8.1 Human cardiac voltage-gated sodium channel

We present a case study for the assessment of the DeepTMInter prediction perfor-
mance in the major interaction domains of human cardiac voltage-gated sodium
channel – Nav1.5 (encoded by gene SCN5A) (Grant, 2009). Nav1.5 is crucial in me-
diating upstroke of the action potential (Schroeter et al., 2010; Rook et al., 2012).
By pulling 19 interaction partner information from BioGRID, we found that the
tail of the Nav1.5 C-terminal is functionally important in Na+ gating inactivation
(Cormier et al., 2002). Four motifs, PY (sites: 1974-1976) (Luo et al., 2017), ex-
tended PY (sites: 1974-1980) (Rougier et al., 2005), SXV (sites: 2014-2016) (Gee
et al., 1998), and IQ (sites: 1901-1927) (Chagot and Chazin, 2011), localized in
the tail of the Nav1.5 C-terminal, frequently interact with other proteins (see Ta-
ble available at https://data.mendeley.com/datasets/2t8kgwzp35). Our results
show that the interaction sites predicted by DeepTMInter give a better agreement
to some of the experimentally established interfaces. For example, 5 out of 7 in-
teraction sites were precisely detected in the extended PY motif. In addition, we
also found that interactions between proteins can occur in the same interfaces, e.g.,
three proteins encoded by genes NEDD4, NEDD4L, and WWP2 were discovered
to interact with Nav1.5 in the PY motif.

3.3.8.2 Comparison of predicted interfaces of testing proteins

Three example models from the TestData, CompData, and IndepData datasets are
displayed in Figs. B.14-B.16, respectively.

3.4 Conclusions

We have developed a new deep learning approach, DeepTMInter, for sequence-
based prediction of interaction sites in transmembrane proteins. DeepTMInter

https://data.mendeley.com/datasets/2t8kgwzp35
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was first trained using deep residual neural networks integrated with 27 residual
units, followed by further error reduction using a stacked generalization of en-
semble of machine learning methods. We showed that by evaluating performance
on an independent dataset <25% sequence-identical to the training dataset, DeepT-
MInter achieved the state-of-the-art performance with the overall highest AUC
value of 0.689 and AUCPR value of 0.598 significantly better than MBPred previ-
ously established by our group. DeepTMInter revealed that among eight ma-
jor functional families, the ion channel family of human transmembrane pro-
teins were identified as the largest group to accommodate 25.6% interaction sites
per protein. Our prediction strongly agreed to the experimentally validated in-
terfaces of some functionally important motifs/domains in the human cardiac
Nav1.5 channel. Furthermore, analysis of interaction network connectivity based
on the HuRI database discovered around 17 interaction partners per human trans-
membrane protein. Our findings also suggested that the number of interaction
partners directly proportionally changed with the percentage of interaction sites
in human transmembrane proteins.

3.5 Software availability

A repository of the standalone package of DeepTMInter was built at https://
github.com/2003100127/deeptminter.

https://github.com/2003100127/deeptminter
https://github.com/2003100127/deeptminter
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Concluding remarks

The research presented in this thesis aims to decipher the intricate connection net-
works of residue-residue contacts and protein-protein interaction (PPI) sites in
transmembrane proteins. The main contribution of this thesis is the integration of
predicted contact maps at an intra-protein level and predicted interaction site po-
tentials at an inter-protein level. The integration facilitates the construction of the
whole interaction systems for transmembrane proteins to illuminate their biolog-
ical roles in cellular activities. Deep residual neural networks have been shown
to produce highly reliable and intelligible models for different biological applica-
tions. Aided by these recent advances, we have developed two novel methods for
accurate prediction of residue contacts and interaction sites.

Our first deep-learning tool, termed DeepHelicon, described in Chapter 2, has
been trained on 17,029,854 residue pairs, with each characterized by a 728-length
feature vector. DeepHelicon has been shown to be powerful and resilient to those
randomly-allocated and low sequence-identity proteins. We conclude that i) Deep-
Helicon is the most accurate method for large transmembrane proteins rich in he-
lices and ii) using CONFOLD2 around 30% satisfactory transmembrane protein
models can be guided by residue contacts predicted by DeepHelicon.

Our second deep-learning system, termed DeepTMInter, described in Chapter
3, has been designed to predict interaction sites in transmembrane proteins. By
carrying out a thorough analysis of a set of 167 testing proteins, DeepTMInter has
been confirmed to be more accurate than the previously best performing method,
MBpred. Following up on the progress in prediction performance, we subse-
quently analyzed the network connectivity and the interaction-site occurrences of
all human transmembrane proteins. We conclude that i) the percentage of interac-
tion sites per human transmembrane protein is highly responsive to the number
of its interaction partners and ii) human ion channels examined by DeepTMInter
have the largest percentage of per-protein interaction sites.

Currently, one grand challenge that researchers are confronted with is the ur-
gent need of new intelligent algorithms to cope with the rapidly growing volume
of protein data. Apparently, residue contact prediction involves a huge amount of
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data that are extremely biased towards negative data samples. With more trans-
membrane proteins available, the emerging deep-learning techniques offer ample
opportunities in more accurate prediction of residue contacts and interaction sites.
In the future, since transmembrane proteins are disease-associated targets, it will
be particularly interesting to discern disease-specific patterns in its PPI networks.
We believe that the accurate results predicted by DeepHelicon and DeepTMInter
can largely promote the understanding of transmembrane protein functions and
their molecular mechanisms, which are important for the follow-up analysis in
both academia and industry, such as drug development and disease therapy.
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Tables

TABLE A.1: 165 α-helical TM protein chains in the TRAIN dataset.

PDB Codes

1aig L 1h7c A 1jb0 A 1kqf C 1p49 A 1pw4 A 2a06 P 2ahy A
2axt A 2bhw A 2c3e A 2cfp A 2e74 B 2e74 A 2f93 B 2jkv A
2pri A 2vl1 A 2yev B 3a3y A 3abk B 3abk C 3abv D 3abv C
3aoa A 3aou A 3aqp A 3ayf A 3b44 A 3d31 C 3det A 3dh4 A
3egw C 3g6b A 3h90 A 3jyc A 3m71 A 3nym A 3qnq A 3tx3 A
3waj A 3wo6 A 3wvf A 3zcc A 4a01 A 4a2n B 4a82 A 4a97 A
4ain A 4al0 A 4aps A 4avm A 4aw6 B 4bbj A 4bem A 4bpd A
4cad C 4d1a A 4dji A 4dw0 A 4ev6 A 4ezc A 4f4c A 4fz0 A
4g7v S 4gd3 A 4gx0 A 4hkr A 4ikp A 4iu8 A 4jkv A 4jta B
4k1c A 4khz F 4m64 B 4mnd A 4phz A 4quv A 4rdq A 4u1w A
4wd7 A 4wis A 4ymk A 4zr1 A 5a1s A 5a43 A 5a44 A 5a63 B
5a63 C 5aex A 5aji A 5aww Y 5aym A 5azb A 5bw8 D 5bw8 C
5bzb A 5c65 A 5c6p A 5cgc A 5ckr A 5ctg A 5d0y A 5d3m D
5d91 A 5da0 A 5dir A 5djq A 5djq C 5doq B 5duo A 5ec5 A
5edl A 5egi A 5eiy A 5eke A 5er7 B 5ezm A 5fgn A 5gko A
5h1q A 5hwx A 5iji A 5irx A 5iwk A 5iws A 5jwy A 5khn B
5l8r G 5lki A 5lwy A 5m87 A 5mrw A 5n6h A 5nv9 A 5oge A
5ogl A 5sv0 B 5t4d A 5t77 A 5tcx A 5tj6 A 5u73 A 5ul0 A
5v7p A 5v8k A 5w3s A 5x5y F 5y78 A 5yi2 B 5z96 A 5zdh A
6b3j R 6bat A 6bcj B 6bhu A 6bml A 6bw5 A 6c96 A 6eti A
6ezn E 6ezn B 6ezn H 6ezn F 6ezn C
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TABLE A.2: 57 α-helical TM protein chains in the TEST dataset.

PDB Codes

1jb0 L 2a06 C 2a65 A 2abm A 2acz C 2acz D 2axt B 2axt Z
2bs2 C 2zuq A 3abk A 3b4r A 3mp7 A 3o7p A 3tui A 3ux4 A

3wdo A 4a4m A 4bw5 A 4dnt A 4dxw A 4f35 B 4fc4 A 4he8 D
4he8 F 4j05 A 4kpp A 4mes A 4oqy A 4p79 A 4pgr A 4phz B
4phz K 4q2e A 4qtn A 4rp8 A 4ryi A 4tqu M 4xks A 4yms D
5a8e A 5b57 A 5c6n A 5doq A 5guf A 5guw B 5jki A 5kbw A
5l26 A 5o0t A 5x5y G 5xjj A 5xu1 M 6awf C 6awf D 6bar A
6cb2 A

TABLE A.3: 44 α-helical TM protein chains in the PREVIOUS dataset.

PDB Codes

1xqf A 2cfq A 2jln A 2nq2 A 2r6g F 2r6g G 2rh1 A 2w2e A
2wsc 2 2wsw A 2xq2 A 2yev A 2yvx A 2z73 A 2zxe A 2zy9 A
3b9w A 3c02 A 3ddl A 3eam A 3gd8 A 3gia A 3hd6 A 3k3f A
3kly A 3m7l A 3m73 A 3qe7 A 3rko L 3rvy A 3t9n A 3tij A

3ukm A 3usi A 3v5u A 4czb B 4hyg A 4ikw A 4m5b A 4q2g B
4r0c B 4twd A 4u1x C 4wd8 B

TABLE A.4: Summary of residue contacts in the TRAIN (165 TM
chains), PREVIOUS (44 TM chains), and TEST (57 TM chains)

datasets.

Dataset Number of
contacts

Number of
non-contacts

Total Contact vs.
non-contacts (%)

TRAIN 167216 16862638 17029854 0.99

PREVIOUS 45033 3757418 3802451 1.20

TEST 42493 3123828 3166321 1.36
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TABLE A.7: Prediction performance at stage 1 on the PREVIOUS and
TEST datasets for inter-helical residue contacts.

Metrics Threshold
Stage 1

PREVIOUS TEST

Precision

L 55.81 56.75
L/2 69.03 69.93
L/5 79.62 80.01

L/10 83.91 84.14

Recall

L 38.51 41.61
L/2 24.44 26.10
L/5 11.19 12.24

L/10 5.86 6.52

F1

L 43.43 46.48
L/2 34.30 36.90
L/5 19.08 20.81

L/10 10.79 11.94

Fb

L 52.22 53.81
L/2 55.71 57.76
L/5 45.78 48.17

L/10 32.86 35.18

MCC

L 44.10 46.49
L/2 39.16 41.06
L/5 28.66 30.12

L/10 21.35 22.52

TABLE A.8: Prediction performance at 4 iterations of stage 2 on the
PREVIOUS dataset for inter-helical residue contacts.

Metrics Threshold
Stage 2

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Precision

L 61.35 63.17 63.12 63.71
L/2 75.13 76.23 77.20 77.18
L/5 85.72 86.93 85.61 85.93

L/10 90.07 90.09 89.46 88.73

Recall

L 41.76 42.88 42.87 43.30
L/2 26.44 27.01 27.30 27.35
L/5 12.32 12.45 12.48 12.53

L/10 6.46 6.50 6.47 6.42

F1

L 47.68 49.05 49.04 49.51
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L/2 37.31 38.02 38.50 38.54
L/5 20.91 21.15 21.11 21.17

L/10 11.86 11.91 11.85 11.75

Fb

L 57.41 59.10 59.06 59.61
L/2 60.65 61.62 62.41 62.41
L/5 49.64 50.31 49.79 49.93

L/10 35.71 35.76 35.56 35.27

MCC

L 48.52 49.97 49.95 50.45
L/2 42.71 43.49 44.06 44.08
L/5 31.23 31.64 31.37 31.48

L/10 23.24 23.28 23.14 22.95

TABLE A.9: Prediction performance at 4 iterations of stage 2 on the
TEST dataset for inter-helical residue contacts.

Metrics Threshold
Stage 2

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Precision

L 59.81 61.79 61.18 61.48
L/2 74.17 75.14 74.57 74.95
L/5 83.88 83.92 83.48 84.45

L/10 87.61 86.41 86.74 87.27

Recall

L 43.93 45.52 45.07 45.11
L/2 27.71 28.10 28.05 28.21
L/5 12.82 12.88 12.78 12.95

L/10 6.74 6.73 6.71 6.66

F1

L 49.05 50.74 50.25 50.42
L/2 39.16 39.71 39.53 39.76
L/5 21.80 21.88 21.73 22.02

L/10 12.37 12.34 12.30 12.24

Fb

L 56.74 58.64 58.06 58.33
L/2 61.28 62.10 61.67 62.00
L/5 50.49 50.59 50.30 50.94

L/10 36.59 36.32 36.30 36.32

MCC

L 49.20 50.98 50.46 50.62
L/2 43.68 44.31 44.06 44.31
L/5 31.62 31.70 31.50 31.91

L/10 23.44 23.24 23.25 23.27
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TABLE A.10: Performance of the final ensemble predictor on the
PREVIOUS and TEST datasets for inter-helical residue contacts.

Metrics Threshold
Ensemble

PREVIOUS TEST

Precision

L 63.69 62.13
L/2 77.84 76.16
L/5 87.42 84.98

L/10 91.33 87.44

Recall

L 43.26 45.75
L/2 27.52 28.55
L/5 12.70 13.05

L/10 6.58 6.76

F1

L 49.47 51.01
L/2 38.82 40.30
L/5 21.48 22.17

L/10 12.06 12.40

Fb

L 59.59 58.95
L/2 62.93 62.96
L/5 50.74 51.24

L/10 36.25 36.58

MCC

L 50.41 51.26
L/2 44.43 44.98
L/5 31.99 32.12

L/10 23.60 23.44
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FIGURE A.1: Mean precision of top L/2 inter-helical contact predic-
tions on the TEST dataset with respect to ln(Meff) (a), number of all
homologs in MSA (b), and number of TM helices (c). ns: the number

of sequences.
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Appendix B

Tables

TABLE B.1: 101 α-helical TM protein chains in CompData dataset
used in MBpred.

PDB Codes

1fft A 1fft B 1fft C 1h2s A 1jb0 A 1jb0 F 1jb0 I 1jb0 K
1kf6 C 1kf6 D 1kqf B 1kqf C 1lgh A 1lgh B 1lnq A 1m56 B
1nek C 1nek D 1nkz A 1ots A 1q16 C 1q90 A 1q90 B 1q90 G
1rh5 A 1rh5 B 1rzh L 1rzh M 1s5l B 1s5l C 1s5l D 1s5l E
1s5l I 1s5l J 1s5l K 1s5l L 1s5l M 1s5l T 1s5l X 1s5l Z
1v54 I 1v54 J 1v54 K 1v54 L 1v54 M 1vf5 B 1vf5 D 1vf5 F
1xl4 A 1xme A 1xme B 1yew A 1yew B 1yew C 1zcd A 2bhw A
2fyu E 2fyu G 2fyu K 2h88 C 2h88 D 2hyd A 2ih3 C 2iub A
2nq2 A 2nwl A 2o01 G 2o01 H 2o01 I 2o01 J 2o01 L 2oar A
2r6g F 2rdd B 2vl0 A 2vv5 A 2yvx A 3cx5 C 3cx5 D 3cx5 H

3eam A 1jb0 M 1jb0 X 1m56 C 1m56 D 1q90 N 1q90 R 1s5l F
1s5l H 1v54 D 1v54 G 1vf5 G 1vf5 H 2bl2 A 2bs2 C 2j8s A
2j58 A 2q67 A 2qts A 3cx5 I 3d31 C

TABLE B.2: 36 α-helical TM protein chains in TEST dataset used in
MBpred.

PDB Codes

3jcu H 3jcu I 3jcu T 3jcu W 3jcu X 4y28 K 5azd A 5b0w A
5b1a L 5b1a M 5b57 A 5b5e A 5b5e M 5b5e T 5b5e Z 5bn2 A
5djq N 5eg1 A 5eiy A 5fl7 K 5hv9 A 5i32 A 5jje B 5jnq A

5mkk A 5mrw C 5mrw D 5ul7 A 5x3x q 5x5y G 5kaf Y 5l22 B
5bqg A 5c2t D 5b1a J 5b1a K
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TABLE B.3: 301 α-helical TM protein chains in the TrainData dataset.

PDB Codes

1aig L 1bcc E 1be3 G 1dxr H 1ezv G 1fx8 A 1h2s C 1kf6 O
1kf6 P 1kpl B 1occ K 1occ L 1zcd C 2axt E 2j58 B 2nq2 B
1kqf E 1kqf F 1lgh D 1m57 B 1nek G 1nek H 1occ D 1occ I
1ocr J 1orq C 1q90 E 1qle C 1sqq K 1vf5 Q 1w5c D 1xl6 A

2b6p A 2bl2 B 2bs2 F 2e74 A 2e74 B 2fyn B 2h8a A 2hyd B
2nrf A 2nuu A 2onk C 2q72 A 2qpd A 2uui A 2vpw C 2vr0 F

2w1p A 2wpd J 3hd7 B 3jcu w 3oax A 3odu A 3rko N 3tui A
2wsw A 2xq2 A 2yev A 2yev B 2zy9 B 3b9y A 3egw C 3hd7 A

3lut B 3m6e A 3m73 A 3mk7 A 3mk7 B 3mk7 C 3mp7 A 3mp7 B
3puv F 3q7k C 3qbg A 3qe7 A 3qnq A 3rko J 3rko L 3rko M
3ukm A 3vou A 3w5a A 3wgu D 4a01 A 4bem J 4bpd A 4c9q B
4cz8 A 4dnt A 4huq T 4i0u B 4o93 B 4phz B 4tnw A 4u2p B
4dxw B 4ev6 E 4gd3 A 4gd3 Q 4gx2 B 4hg6 A 4hkr A 4huq S
4iff A 4ire B 4jkv A 4lep A 4mnd A 4n7w A 4o6m B 4o7g B
4pi0 A 4pl0 B 4qnd A 4qtn C 4r0c A 4rdq A 4rp9 A 4ryi A

4u4w A 4uuj C 5dwy B 5ec5 A 5jnq B 5l2a A 5oy0 K 5sv0 A
4wis A 4xig M 4xig N 4xu4 A 4ymk A 4yzi A 4z90 A 5a1s A
5a63 C 5a63 D 5aww Y 5bz3 A 5ctg B 5doq A 5doq B 5dqq A
5eik A 5eiy B 5f1c B 5f8u A 5fvn A 5h1q A 5iji A 5j4i A
5lil B 5lwe B 5m94 A 5mrw A 5mrw B 5nik A 5nkq A 5oy0 A
5tj6 A 5uen A 5zji L 5zx5 A 6cnm A 6coy A 6f34 A 6fv8 A
5ul7 B 5v2c b 5v2c c 5v8k A 5vre A 5w3s A 5x3x m 5x5y F
5xan B 5xnl 4 5xu1 M 5y78 A 5ys3 A 5z96 A 5zdh A 5zji H
6btm A 6btm C 6btm F 6bvg A 6bwj B 6c5w A 6c96 A 6cjt A
6d0j B 6djz B 6e3y R 6ezn A 6ezn B 6ezn E 6ezn F 6ezn G
6g2j J 6g2j N 6hu9 g 6hum L 6idf B 6idf E 6k7g C 6k7l A
6g2j Y 6g2j Z 6g2j a 6g2j b 6g2j g 6g2j h 6g2j i 6g2j j
6g2j k 6g2j l 6h2f H 6h5a B 6hbu A 6hcy A 6hd8 B 6hu9 J

6hum P 6hwh A 6hwh L 6hwh N 6hwh b 6i1z B 6i8w A 6idf A
6irs A 6itc B 6iu3 A 6iv3 A 6j5i 8 6j5i b 6j5t C 6j8g B
6kkr A 6kls C 6qti A 6qum N 6rx4 B 6sem D 6v4j A 6vja C
6lum D 6lum G 6lyp A 6m17 A 6m18 B 6m96 B 6mgv A 6mit C
6mit G 6mrt A 6nf4 A 6np0 A 6oht A 6oly B 6p25 A 6p2j A
6peq F 6pl6 A 6pl6 B 6pqp A 6pw5 B 6qp6 A 6qq6 A 6qsk E
6r7x A 6rd4 3 6rd4 9 6rfq 6 6rfq X 6rfq g 6rfq i 6rfq j
6sp2 A 6su4 A 6t15 e 6t9o A 6u9w A 6uqf A 6v00 A 6v1q A
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6vtk A 6vwk a 6wbf A 6wc9 A 6wej A 6wiv B 6wqz A 6ww7 A
7bvc B 6pe4 A 6pe4 E 6ww7 C 6ww7 F

TABLE B.4: 30 α-helical TM protein chains in the IndepData dataset.

PDB Codes

6e3y E 6rfq S 6t0b m 5eke C 6wdn E 4tsy A 6rfq J 5guf A
6uiw A 6hwh W 6ww7 E 6g2j f 3vr8 D 5ndc B 6li9 A 6ezn H
4rfs S 4pi2 C 6csm A 3rko A 6o7t h 6j5j f 6cxh C 4kjs A

6btm D 3udc A 3pux G 6kls B 6rd4 6 6ezn C

TABLE B.5: Amino acid physicochemical scales collected from liter-
ature.

Scale name Type Length Source
positive

discrete

3

Barnes and Gray, 2003

negative 2
charged 4

polar 3
aliphatic 2
aromatic 2

hydrophobic 4
small 3
active

continuous

1
weight 1

Edition, 2018
pI 1

pka 1
pkb 1

hydrophobicity 1
Argos et. al., 1982hydration 1

free energy of transfer 1
volume 1

Grantham, 1974
polarity 1

hydrophilicity 1 Hopp and Woods, 1981
total - 34 -
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TABLE B.6: 34 representative amino acid physicochemical scales
generated by the AAanalysis tool.

Scale id Category Sub-category
JANJ780102 Accessible Surface Buried
JOND920101 Composition General AA Composition

CHAM830101 Conformation Coil
QIAN880123 Conformation Extended (Beta-Sheet C-terminal)

KANM800102 Conformation Extended (Beta-Sheet)
KANM800101 Conformation Helix
QIAN880108 Conformation Helix
FINA910103 Conformation Helix (C-terminal inside)
RICJ880113 Conformation Helix (C-terminal inside)

AURR980118 Conformation Helix (C-terminal outside)
RICJ880116 Conformation Helix (C-terminal outside)

QIAN880112 Conformation Helix (C-terminal)
PALJ810108 Conformation Helix (N-terminal inside)

AURR980105 Conformation Helix (N-terminal N-cap
RICJ880103 Conformation Helix (N-terminal N-cap)
RICJ880106 Conformation Helix (N-terminal)

CHOP780214 Conformation Turn (C-terminal)
CHOP780215 Conformation Turn (C-terminal)
COSI940101 Energy Electron-ion Interaction Potential

MUNV940105 Energy Free Energy (Extended)
VASM830102 Energy Free Energy (Extended)
OOBM850104 Energy Non-bonded Energy per Atom
MIYS990104 Energy Partition Energies

CHAM820101 Energy Polarizability
RADA880102 Energy Transfer Free Energy (TFE)
SIMZ760101 Energy Transfer Free Energy (TFE)
WILM950104 Polarity Hydrophobicity
MEEJ800101 Polarity Hydrophobicity
JOND750102 Polarity pK-C
ENGD860101 Polarity Polarity (Hydrophilicity)
PONP800102 Polarity Surrounding Hydrophobicity
KARS160108 Shape Graph-model based
KRIW710101 Structure-Activity Side Chain Interaction
KRIW790102 Structure-Activity Side Chain Interaction

TABLE B.7: Summary of input features.

Feature Length of vector Window size Final feature number
Amino acid representation 20 3 60

Amino acid property 34 9 306
Amino acid composition 20 3 60

Evolutionary profile 21 9 189
Entropy 1 3 3

Conservation 1 3 3
Relative position 1 3 3

Transmembrane topology 3 3 9
Evolutionary coupling ratio (ECR)

27
mutual information 1 9

EVfold 1 9
Gaussian DCA 1 9

Total - - 660
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TABLE B.8: Number of non-interacting and interacting amino acid
residues in the full set and the 5 cross validation sets of the TrainData

dataset used for training.

Dataset
Number of

protein chains
Number of non-

interacting amino acid residues
Number of

interacting amino acid residues
Number of all

amino acid residues
The full set 301 74104 28581 102685
No.1 cv set 240 58745 23346 82091
No.2 cv set 240 59121 22560 81681
No.3 cv set 240 58295 22934 81229
No.4 cv set 240 58638 22813 81451
No.5 cv set 240 58356 23316 81672
Note: cv: cross validation. The 5 cross validation sets are also available alongside the TrainData list on Mendeley at https://xxx.

TABLE B.9: AUC and AUCPR values of models obtained from 5 cross
validations on validation data.

Model Criterion
Structure Phobius

Cyto TMH Extra Combined Cyto TMH Extra Combined
CV 1

AUC

0.667 0.652 0.670 0.662 0.667 0.657 0.672 0.662
CV 2 0.635 0.607 0.657 0.640 0.631 0.619 0.662 0.640
CV 3 0.642 0.606 0.658 0.642 0.654 0.596 0.653 0.643
CV 4 0.661 0.640 0.648 0.656 0.667 0.633 0.654 0.656
CV 5 0.642 0.614 0.650 0.643 0.643 0.631 0.641 0.643
CV 1

AUCPR

0.620 0.594 0.451 0.563 0.612 0.613 0.442 0.563
CV 2 0.586 0.572 0.420 0.543 0.575 0.593 0.418 0.544
CV 3 0.606 0.552 0.444 0.553 0.607 0.568 0.427 0.553
CV 4 0.603 0.591 0.417 0.551 0.598 0.601 0.414 0.551
CV 5 0.591 0.549 0.424 0.540 0.587 0.585 0.409 0.540

Note: cross validation.

TABLE B.10: AUC and AUCPR values of models trained on the full
TrainData set on validation data.

Model Criterion
Structure Phobius

Cyto TMH Extra Combined Cyto TMH Extra Combined
Round 1

AUC

0.672 0.649 0.684 0.678 0.684 0.642 0.681 0.678
Round 2 0.683 0.647 0.680 0.681 0.689 0.651 0.667 0.681
Round 3 0.681 0.632 0.684 0.675 0.688 0.639 0.675 0.675
Round 4 0.676 0.643 0.668 0.673 0.683 0.640 0.664 0.673
Round 5 0.676 0.636 0.682 0.672 0.686 0.636 0.679 0.673

SG (Ensemble) 0.689 0.661 0.688 0.689 0.697 0.657 0.681 0.690
Round 1

AUCPR

0.650 0.594 0.458 0.594 0.659 0.603 0.446 0.594
Round 2 0.652 0.591 0.458 0.593 0.656 0.607 0.442 0.593
Round 3 0.663 0.578 0.476 0.598 0.663 0.608 0.451 0.599
Round 4 0.655 0.582 0.436 0.587 0.656 0.596 0.422 0.587
Round 5 0.654 0.589 0.438 0.588 0.660 0.606 0.428 0.589

SG (Ensemble) 0.657 0.603 0.458 0.598 0.661 0.611 0.447 0.599
Note: SG: stacked generalization.

TABLE B.11: AUC and AUCPR values of DeepTMInter-Unfiltered.

Model Criterion
Structure Phobius

Cyto TMH Extra Combined Cyto TMH Extra Combined
SG (Ensemble) AUC 0.692 0.660 0.656 0.678 0.701 0.654 0.661 0.679
SG (Ensemble) AUCPR 0.665 0.605 0.425 0.595 0.667 0.615 0.415 0.596

https://xxx
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TABLE B.12: AUC and AUCPR values of DeepTMInter-Lit.

Predictor Criterion
Structure Phobius

Cyto TMH Extra Combined Cyto TMH Extra Combined
SG (Ensemble) AUC 0.679 0.642 0.680 0.676 0.685 0.645 0.680 0.676

SG (Ensemble) AUCAP 0.657 0.589 0.461 0.594 0.657 0.612 0.446 0.595

Note that DeepTMInter-Lit was trained by combining the amino acid physiochemical scales randomly collected from
references and other features.

TABLE B.13: AUC values of predictors on the TestData, CompData,
and IndepData datasets.

Predictor Dataset
Structure Phobius

Cyto TMH Extra Combined Cyto TMH Extra Combined
MBPredCyto

TestData

0.760 0.605 0.626 - 0.688 0.625 0.629 -
MBPredTM 0.612 0.753 0.594 - 0.594 0.714 0.597 -

MBPredExtra 0.581 0.581 0.685 - 0.628 0.614 0.644 -
MBPredAll 0.745 0.724 0.672 0.721 0.709 0.720 0.674 0.704

MBPredCombined - - - 0.732 - - - 0.682
DeepTMInter 0.807 0.820 0.738 0.793 0.810 0.827 0.721 0.794
MBPredCyto

CompData

0.618 0.578 0.591 - 0.615 0.614 0.590 -
MBPredTM 0.571 0.650 0.545 - 0.569 0.669 0.545 -

MBPredExtra 0.585 0.576 0.643 - 0.581 0.611 0.640 -
MBPredAll 0.656 0.669 0.635 0.651 0.651 0.673 0.641 0.654

MBPredCombined - - - 0.635 - - - 0.640
DeepTMInter 0.807 0.803 0.777 0.796 0.818 0.803 0.774 0.799
MBPredCyto

IndepData

0.624 0.566 0.571 - 0.616 0.584 0.593 -
MBPredTM 0.568 0.603 0.581 - 0.558 0.605 0.597 -

MBPredExtra 0.591 0.548 0.519 - 0.582 0.565 0.529 -
MBPredAll 0.648 0.593 0.571 0.610 0.642 0.605 0.579 0.611

MBPredCombined - - - 0.589 - - - 0.585
DeepTMInter 0.689 0.661 0.688 0.689 0.697 0.657 0.681 0.690

TABLE B.14: AUCPR values of predictors on the TestData, Comp-
Data, and IndepData datasets.

Predictor Dataset
Structure Phobius

Cyto TMH Extra Combined Cyto TMH Extra Combined
MBPredCyto

TestData

0.539 0.449 0.528 - 0.492 0.510 0.546 -
MBPredTM 0.488 0.507 0.453 - 0.445 0.541 0.465 -

MBPredExtra 0.444 0.410 0.497 - 0.422 0.441 0.510 -
MBPredAll 0.511 0.471 0.518 0.497 0.470 0.513 0.527 0.500

MBPredCombined - - - 0.517 - - - 0.515
DeepTMInter 0.744 0.721 0.685 0.718 0.732 0.750 0.663 0.720
MBPredCyto

CompData

0.622 0.452 0.515 - 0.603 0.497 0.520 -
MBPredTM 0.552 0.558 0.448 - 0.526 0.579 0.453 -

MBPredExtra 0.570 0.444 0.586 - 0.547 0.494 0.586 -
MBPredAll 0.664 0.566 0.581 0.604 0.648 0.586 0.591 0.606

MBPredCombined - - - 0.589 - - - 0.587
DeepTMInter 0.779 0.716 0.712 0.738 0.779 0.730 0.709 0.741
MBPredCyto

IndepData

0.581 0.482 0.355 - 0.567 0.539 0.346 -
MBPredTM 0.522 0.513 0.386 - 0.507 0.547 0.368 -

MBPredExtra 0.540 0.476 0.312 - 0.531 0.512 0.306 -
MBPredAll 0.622 0.502 0.367 0.514 0.612 0.545 0.357 0.514

MBPredCombined - - - 0.493 - - - 0.489
DeepTMInter 0.657 0.603 0.458 0.598 0.661 0.611 0.447 0.599
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TABLE B.15: Performance gauged by mean precision, recall, F1-
score, and MCC at L/5 (L represents protein length) threshold using
structure-derived Combined regions on the TestData, CompData,

and IndepData datasets.

Predictor Dataset precision recall F-score MCC
MBPredAll

TestData
0.654 0.245 0.329 0.111

MBPredCombined 0.665 0.242 0.331 0.118
DeepTMInter 0.759 0.344 0.425 0.234

MBPredAll
CompData

0.679 0.260 0.359 0.129
MBPredCombined 0.687 0.260 0.360 0.134

DeepTMInter 0.773 0.320 0.426 0.229
MBPredAll

IndepData
0.608 0.249 0.344 0.139

MBPredCombined 0.573 0.240 0.325 0.104
DeepTMInter 0.612 0.276 0.360 0.151

TABLE B.16: Performance gauged by mean precision, recall, F1-
score, and MCC at L/5 (L represents protein length) threshold using
Phobius-predicted Combined regions on the TestData, CompData,

and IndepData datasets.

Predictor Dataset precision recall F-score MCC
MBPredAll

TestData
0.655 0.247 0.329 0.111

MBPredCombined 0.657 0.238 0.324 0.097
DeepTMInter 0.770 0.349 0.428 0.239

MBPredAll
CompData

0.679 0.260 0.358 0.128
MBPredCombined 0.685 0.258 0.358 0.128

DeepTMInter 0.783 0.324 0.432 0.239
MBPredAll

IndepData
0.607 0.248 0.343 0.135

MBPredCombined 0.560 0.232 0.316 0.085
DeepTMInter 0.617 0.277 0.360 0.151

TABLE B.17: AUC and AUCPR values on the TestData, CompData,
and IndepData datasets based on the choices of interaction site defi-

nitions.

Criterion Dataset Definition Structure-derived Phobius-predicted

AUC

TestData
BordInter 0.770 0.773
FuchInter 0.789 0.791
RostInter 0.793 0.794

CompData
BordInter 0.762 0.765
FuchInter 0.790 0.792
RostInter 0.796 0.799

IndepData
BordInter 0.675 0.676
FuchInter 0.688 0.689
RostInter 0.689 0.690

AUCPR

TestData
BordInter 0.537 0.540
FuchInter 0.673 0.676
RostInter 0.718 0.720

CompData
BordInter 0.527 0.528
FuchInter 0.690 0.692
RostInter 0.738 0.741

IndepData
BordInter 0.448 0.449
FuchInter 0.568 0.568
RostInter 0.598 0.599
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TABLE B.18: Number of non-interacting and interacting amino acid
residues in the TrainData, TestData, CompData, and IndepData

datasets based on the choices of interaction site definitions.

Dataset Definition
Number of non-interacting

amino acid residues
Number of interacting

amino acid residues
Number of all

amino acid residues

TrainData
BordInter 83978 18707

102685FuchInter 76739 25946
RostInter 74104 28581

TestData
BordInter 5199 1671

6870FuchInter 4679 2191
RostInter 4461 2409

CompData
BordInter 14613 4930

19543FuchInter 12723 6820
RostInter 12047 7496

IndepData
BordInter 4298 1715

6013FuchInter 3711 2302
RostInter 3532 2481

TABLE B.19: Auxiliary reference to sub-families of other protein tar-
get and other ion channel.

Sub-family Detail

Other protein target

Bcl-2 B-cell lymphoma 2 (Bcl-2) protein family
BTN and BTN-like Butyrophilin and butyrophilin-like proteins

CD molecules CD molecules
CLRs C-type lectin-like receptors (CLRs)

AARC Abscisic acid receptor complex
Immunoglobulin-like Immunoglobulin like domain containing proteins
Fc epsilon receptors Fc epsilon receptors

Immunoglobulin C1-set Immunoglobulin C1-set domain-containing proteins
Other immune checkpoint Other immune checkpoint proteins
Reticulons and associated Reticulons and associated proteins

Leucine-rich Leucine-rich repeat proteins
Immunoglobulin C2-set Immunoglobulin C2-set domain-containing proteins
Neuropilins and Plexins Neuropilins and Plexins
Adiponectin receptors Adiponectin receptors

Sigma receptors Sigma receptors
SAB Ig like lectins Sialic acid binding Ig like lectins
Other PR receptors Other pattern recognition receptors

Tumour-associated antigens Tumour-associated antigens
Mitochondrial-associated Mitochondrial-associated proteins

Notch receptors Notch receptors

Other ion channel

CaCC Calcium activated chloride channel
Aquaporins Aquaporins
ClC family ClC family

Orai channels Orai channels
Connexins and Pannexins Connexins and Pannexins

CFTR CFTR
NaVI2.1 Sodium leak channel, non-selective
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240 chains for training60 chains for validation

class 1 class 2 class 3 class 4 class 5

randomly picking 80% of proteins in that class

randomly picking 20% of proteins in that class

one of 5 iterations

300 chains in the TrainData

FIGURE B.1: Sketch of 5-fold stratified-shuffle cross validation for
allocating protein chains of different length classes.
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FIGURE B.2: Schematic illustration of the over-training issue occur-
ring during training process. The performance of validation data
largely fluctuates as training epoch increases. The model continues
to well fit training data but gives bad performance on validation data
with the increase of training epochs, leading to over-training (Amari
et al., 1996 and Tetko and Villa, 1997). The error shown on the y-axis
refers to a measure of differences between actual labels and predicted
labels in terms of binary or multiclass classification problems. For ex-
ample, in deep learning the errors on training or validation data are
often measured using the cross entropy objective function (see sec-

tion 3.2.6.3).
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FIGURE B.3: Summary of interaction partners extracted from the Bi-
oGRID and IntAct databases. Altogether, out of all chains in the
TestData, CompData, and IndepData test datasets, respectively, 25
(69.4%), 72 (71.3%), and 16 (53.3%) were identified with at least
one interaction partner documented in the BioGRID and IntAct
databases. (d), (e), and (f) show the distribution of interaction part-
ners on the TestData, CompData, and IndepData datasets, respec-
tively. Interaction partners of most of these protein chains identified
are densely distributed at a small range approximately from 1 to 10,
with only a few interaction partners (<25) on the TestData dataset
(h) and with a rather wide range of numbers of interaction partners

on the CompData (g) and IndepData (i) datasets.
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FIGURE B.4: Dependence of interaction partners (constructed by the
BioGRID and IntAct databases) on the interaction sites of 167 testing
proteins in the three test datasets (TestData, CompData, and Inde-
pData). The number of interaction sites was equally divided into 6
bins according to the range of logarithm values and the mean num-
ber of interaction partners (NIPs) of human transmembrane proteins
at each bin was evaluated. The number of interaction sites increases
in ascending order of bin number. The graph was plotted by using
the testing protein chains with interaction partners (at least one) that
were found from the union of the BioGRID and IntAct databases (see

section 3.2.10).

Orai channels

Connexins and Pannexins
CaCC

NaVI2.1

Aquaporins
ClC family CFTR

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

interaction sites

FIGURE B.5: Average percentage of per-protein interaction sites in
the full sequences in the seven sub-families (see Table B.19 for refer-

ence) of the Other ion channel family.
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FIGURE B.6: Average percentage of per-protein interaction sites in
the TMH regions in the seven sub-families (see Table B.19 for refer-

ence) of the Other ion channel family.
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FIGURE B.7: Average percentage of per-protein interaction sites in
the Cyto regions in the seven sub-families (see Table B.19 for refer-

ence) of the Other ion channel family.
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FIGURE B.8: Average percentage of per-protein interaction sites in
the Extra regions in the seven sub-families (see Table B.19 for refer-

ence) of the Other ion channel family.
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FIGURE B.9: Average percentage of per-protein interaction sites in
the full sequences in the twenty sub-families (see Table B.19 for ref-

erence) of the Other protein target family.
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FIGURE B.10: Average percentage of per-protein interaction sites in
the TMH regions in the twenty sub-families (see Table B.19 for refer-

ence) of the Other protein target family.
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FIGURE B.14: Example of predicted interaction interfaces of a pro-
tein (PDB code: 5b0w chain A, shown in ‘surface’ view) in the Test-
Data dataset using DeepTMInter, MBPred, and DFLPHI. Known and
predicted interaction interfaces are colored in red and blue, respec-

tively.
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FIGURE B.15: Example of predicted interaction interfaces of a pro-
tein (PDB code: 1m56 chain A, shown in ‘surface’ view) in the Com-
pData dataset using DeepTMInter, MBPred, and DFLPHI. Known
and predicted interaction interfaces are colored in red and blue, re-

spectively.
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FIGURE B.16: Example of predicted interaction interfaces of a pro-
tein (PDB code: 6uiw chain A, shown in ‘surface’ view) in the Indep-
Data dataset using DeepTMInter, MBPred, and DFLPHI. Known and
predicted interaction interfaces are colored in red and blue, respec-

tively.
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