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Abstract 
 

Proteins are one of the most important biological macro-molecules and work as parts of 

complex networks. The biological properties of a protein molecule depend on its 

physical interaction with other molecules, especially proteins, DNA and RNA. Thus, the 

intricate details of how proteins bind to them, are crucial for understanding the 

mechanism of almost all biological processes. Goal of this thesis was to complete a 

high-throughput analysis of how those binding residues affect genetic variants and vice 

versa. Toward this end, the first task was the development of a new and comprehensive 

system (named ProNA2020) that takes only protein sequence as input to predict binding 

of protein to DNA, RNA and other proteins and the corresponding binding residues. 

Then it was applied to the analysis of SAVs from 60,706 people. This revealed that 

SAVs on those macro-molecular binding residues have more effect on protein function 

than SAVs outside of those binding residues. Overall, this novel research about binding 

residues might benefit future research in molecular and medical biology (e.g. precision 

medicine) both in terms of the methodology and in terms of being used as prediction 

method that is available through an online server and through github. 
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Zusammenfassung 
 

Proteine Proteine sind eines der wichtigsten biologischen Makromoleküle. Fast jeder 

Prozess in der Zelle beinhaltet ein oder mehrere Proteine. Anstatt isoliert zu wirken, 

arbeiten Proteine als Teile komplexer Netzwerke. Die biologischen Eigenschaften eines 

Proteinmoleküls hängen von seiner physikalischen Wechselwirkung mit anderen 

Molekülen ab, insbesondere Proteinen, DNA und RNA. Daher sind die komplizierten 

Details, wie Proteine an Proteine, DNA und RNA binden, entscheidend für das 

Verständnis des Mechanismus fast aller biologischen Prozesse. Ziel dieser Arbeit war 

es, eine Hochdurchsatzanalyse durchzuführen, wie diese Bindungsreste genetische 

Varianten beeinflussen und umgekehrt. Zu diesem Zweck bestand die erste Aufgabe in 

der Entwicklung eines neuen und umfassenden Systems, das nur die Proteinsequenz 

als Input verwendet, um die Bindung von Protein an DNA, RNA und andere Proteine 

und die entsprechenden Bindungsreste vorherzusagen. Das System kombinierte 

homologiebasierte Inferenz mit maschinellem Lernen und deckte sowohl Vorhersagen 

pro Protein (Protein bindet / nicht) als auch pro Rest (Bindung wo) ab. Die Vorhersage 

des Proteinspiegels beim maschinellen Lernen kombinierte motivbasierte 

Profilkernansätze mit wortbasierten (ProtVec) Lösungen. Nach der Festlegung der 

Methode wurde sie auf die Analyse von SAVs (auch als SAVs bezeichnet: Single Amino 

Acid Variants oder Missense SNV) von 60.706 Personen angewendet. Dies zeigte, dass 

SAVs auf diesen makromolekularen Bindungsresten einen größeren Einfluss auf die 

Proteinfunktion haben als SAVs außerhalb dieser Bindungsreste. Insgesamt könnte 

diese neuartige Forschung über Bindungsreste der zukünftigen Forschung in der 

Molekular- und Medizinbiologie (z. B. Präzisionsmedizin) sowohl hinsichtlich der 

Methodik (bestimmte Kombination von Werkzeugen zu einem Vorhersagesystem) als 

auch hinsichtlich der Verwendung als verfügbare Vorhersagemethode zugute kommen 

über einen Online-Server und über Github. 
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Chapter 1 
 

1 Introduction 
 

Proteins are polymers comprising 20 chemically and structurally different building 

blocks (amino acids) that fold into a highly specific tertiary structure (Reichmann et al., 

2007). It is one of the most important biological macro-molecular. Almost every event 

that occurs in the cell involves one or more proteins. More importantly, proteins do not 

act in isolation but instead work as part of complex networks. The biological properties 

of a protein molecule depend on its physical interaction with other molecules, especially 

proteins, DNA and RNA. Thus, the researches focusing on the binding sites and 

binding residues of proteins will lead to a better understanding of how proteins function. 

And it can further reveal the mechanism of various biological process. 

 

1.1 Interaction between protein and macro-molecules  

1.1.1 Protein-protein interaction 

Genome sequencing of more than 10,000 plants, animals, and fungi has been done 

over the past 60 years (van Straalen and Roelofs, 2006). Scientists thought the 

information about an organism’s genome size should be a foundation to understand the 
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genetic content (complexity) of the organism. However, there is an extraordinary lack of 

correspondence between organism complexity and their genome size. For example, 

the genome size of Protopterus aethiopicus (marbled lungfish) is over 40 times larger 

than that of human. One haploid copy of this fish's genome is composed of 133 billion 

base pairs, and one copy of a human haploid genome has only 2.9 billion (Table 1.1). 

This finding suggests that genome size is not an indicator of the genomic or biological 

complexity of an organism. And it revolutionizes the system biology era, and the 

postgenomic events takes extra attention toward explaining the phenotypical 

complexity (Keskin et al., 2016). 

 

 

Table 1.1: Genome Size and Number of Protein-Coding Genes for a Selected 
Handful of Species (van Straalen and Roelofs, 2006) 

Species and Common Name Estimated Total 
Size of Genome 
(bp) 

Estimated Number 
of Protein-Encoding 
Genes 

Saccharomyces cerevisiae 
(unicellular budding yeast) 

12 million 6,000 

Trichomonas vaginalis 160 million 60,000 
Protopterus aethiopicus 133 billion NA 
Plasmodium falciparum  
(unicellular malaria parasite) 

23 million 5,000 

Caenorhabditis elegans  
(nematode) 

95.5 million 18,000 

Drosophila melanogaster  
(fruit fly) 

170 million 14,000 

Arabidopsis thaliana  
(mustard; thale cress) 

125 million 25,000 

Oryza sativa (rice) 470 million 51,000 
Gallus gallus (chicken) 1 billion 20,000-23,000 
Canis familiaris (domestic dog) 2.4 billion 19,000 
Mus musculus (laboratory mouse) 2.5 billion 30,000 
Homo sapiens (human) 2.9 billion 20,000-25,000 
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One of the mechanisms amplifying the biological complexity is the communication 

between proteins. Instead of acting in isolation, more than 80% of all proteins in the cell 

interact with other molecules to become functional (Berggard et al., 2007).  Many 

cellular processes such as transcription, replication, communication between cells, 

signaling transduction and membrane transport are dependent on protein interactions. 

Specific protein-protein interactions (PPIs) are essential for maintaining a robust 

phenotype (Viswanathan et al., 2019). And studies also find the dysfunction or 

malfunction of signaling pathways and alterations in protein interactions is the cause of 

diseases, such as neurodegenerative diseases or cancer (del Sol et al., 2010) 

(Grechkin et al., 2016). 

And, interestingly, 20 natural amino acids are not equally important to obtain tight and 

specific protein-protein binding. In one study, Sidhu and co-workers (Fellouse et al., 

2006) obtained an antigen-binding fragment called Fab-YADS2 from a library with 

chemical diversity restricted to only four amino acids (Tyr, Ser, Ala and Asp). 

Fab-YADS2 can recognize vascular endothelial growth factor (VEGF). Mutagenesis 

experiments reveal that the structural paratope is dominated by Tyr side chains, which 

represent 11 of the 15 functionally important residues. Isothermal titration calorimetry 

and cell-based assays show that restricted chemical diversity does not limit the affinity 

or specificity of Fab-YADS2 relative to natural antibodies. Furthermore, the Tyr has 

been found to be the most common amino acid in binding sites (Nooren and Thornton, 

2003).  

There was also a study about the extent of exchangeability of amino acids at the 

binding site (Pal et al., 2006). They used the complex between human growth hormone 

(hGH) and its receptor (hGHR) as their experimental platform. The hGH site 1 binding 

to the hGHR contained 35 residues distributing across four regions: helices 1 and 4 of 

the four-helix bundle (residues 14 –29 and 164 –183) and two connecting loops 

(residues 41– 48 and 60 – 67). With shotgun approach, they introduced any one of the 

20 natural amino acids at all 35 interface positions. This was a rather unusual approach, 

because mutational analysis was most often restricted to alanine substitution, which 

didn’t not provide a comprehensive view of the allowed amino acid space at any 

specific position (Reichmann et al., 2007). And their results was rather interesting. They 

verified that the interface was highly adaptable to mutations, but the tolerated mutations 
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were neither chemically nor evolutionarily conserved. Actually, neither chemical nor 

evolutionary conservation, which seemed to be very context dependent, was a good 

indicator of allowed mutations. Some of the alanine scanning hotspot positions showed 

high specificity against substitution, and others did not. However, some highly specific 

positions were not hotspots at all. 

 

 

1.1.2 Protein-DNA interaction 

Protein–DNA interactions are widely distributed in all living organisms. Previous studies 

have estimated that 2%–3% of a prokaryotic genome and 6%–7% of a eukaryotic 

genome encodes DNA-binding proteins (Luscombe et al., 2000). There are many 

different DNA-binding proteins (DBPs) with different domains, which involve in a variety 

of important biological processes. 

Transcription factors, are proteins that can regulate the transcription of genetic 

information from DNA to messenger RNA, by binding to a specific DNA sequence. 

DNA polymerases, are enzymes that synthesize DNA molecules from 

deoxyribonucleotides, which are essential for DNA replication. These enzymes usually 

work in pairs to create two identical DNA strands from a single original DNA molecule. 

Nucleases, are enzymes which are essential machinery for many aspects of DNA 

repairing in living organisms. Nucleases are capable of cleaving the phosphodiester 

bonds between nucleotides of nucleic acids. Defects in certain nucleases can cause 

genetic instability or immunodeficiency (Nishino and Morikawa, 2002).  

Histones ,which are comprised of lysine and arginine, are very basic proteins found 

in eukaryotic cell nuclei. Histones can pack and order the DNA into structural units 

called nucleosomes (Redon et al., 2002).  

And those binding residues on DNA binding proteins can form different domains to 

recognize double- or single-strand DNA, such as: Helix-turn-helix, Zinc finger, Leucine 

zipper, Winged helix, and Winged helix-turn-helix. 
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1.1.3 Protein-RNA interaction 

RNA-binding proteins (RBPs) are typically thought as proteins that bind RNA through 

one or multiple globular RNA-binding domains (RBDs) and can change the fate or 

function of the bound RNAs. RBPs are involved in almost every central process in the 

cell and often serve essentially functional roles:  

Alternative splicing, is a mechanism by which different forms of mature mRNAs 

(messengers RNAs) are generated from the same gene. Actually, alternative splicing is 

another mechanism amplifying the genomic/biological complexity besides PPI (Keskin 

et al., 2016). More than 90% of all human genes are found to generate alternatively 

spliced mRNA isoforms (Wang et al., 2008). 

mRNA localization, is a spatial mechanism for regulating gene activity. mRNA 

transportation can increase the efficiency and temporal resolution of protein synthesis 

in response to cellular cues, and facilitate the formation of protein complexes due to 

higher local concentration of the necessary mRNAs (Re et al., 2014).mRNA translation, 

can be directly regulated by RBPs. For example, mRNA-specific RBPs can inhibit the 

interaction between the ribosome 43S complex and the mRNA by physical hindrance in 

a cap-dependent manner (Muckenthaler et al., 1998). 

RNA editing, is a molecular process through which some cells can make changes to 

some specific nucleotide sequences within an RNA molecule after transcription. The 

most common type of RNA editing is A-to-I editing by double-stranded RNA-specific 

adenosine deaminase (ADAR) enzymes which are RBPs binding specific dsRNA 

structures (Eisenberg and Levanon, 2018). 

 

1.2 Sequence variants on protein binding residues 

A genome is the entire set of genetic material (DNA or RNA) for an organism. For 

human genome, 99.5% of all DNA is shared in human population. Genetic variants are 

the rest 0.5%, and it’s the differences that make each person’s genome unique (Mayor, 

2007). Those 0.5% really matter. The genetic variants are associated with various 

phenotypes such as skin color (Sarkar and Nandineni, 2018), vision and health of our 
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eyes (Singh and Tyagi, 2018) and height (Lango Allen et al., 2010). Single-nucleotide 

variants (SNVs) are the vast majority of genetic variants in the human population. 

There are about 3–4 million SNVs apparent in a typical comparison of one human 

versus the reference, and the dbSNP catalog (build 151) has over 660 million SNVs 

from diverse sequencing studies (Lappalainen et al., 2019).  

On protein level, SNVs would refer to single amino acid variants (SAVs). Since the 

protein-, DNA- and RNA-protein interactions are so important in a large number of 

biological processing, the variants or mutations on those binding proteins or residues 

will lead to serious consequences. 

Recently, to investigate the mechanisms by which cancer mutations peturb 

protein-protein interactions, H. Billur Engin et al have analyzed the distribution of 

1,297,414 somatic missense mutations from 138 genes using 3D protein structures. 

They find an over-representation of missense mutations at PPI interface residues in 

both tumor suppressors and oncogenes, which indicates that mutations in cancer tend 

to affect the PPIs.  

Ornithine carbamoyltransferase (OCT) catalyzes the conversion of ornithine and 

carbamoyl phosphate to citrulline during the second step of the urea cycle. OCT is a 

homotrimer with active sites located at each of the protein-protein interfaces. Nearly 

300 mutations have been identified in OCT, with the vast majority leading to either 

neonatal or late onset OCT deficiency. Over half of the disease mutations (59%) are 

linked to changes in protomer stability, and approximately 15% are found to disrupt 

substrate binding (Jubb et al., 2017). 

Rett syndrome (RTT) is a severe neurological disorder caused by MECP2 gene 

mutations. MeCP2 is a protein with high expression level in the brain that participates in 

the genetic expression and the regulation of RNA splicing. Molecular dynamics 

simulations find that P152R mutation within MeCP2 can influence the protein binding to 

DNA. P152R mutation makes MeCP2 Methyl-CpG-binding domain bind more strongly 

to DNA, while selectively decreases binding affinity to methylated DNA (Franklin, 

2019). 

And it is same for protein-RNA interaction. It is known that many diseases are caused 

by mutations on RNA binding proteins. Mutations in PRPF31, PRPF8 and HPRP3, 
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which result in defect of SnRNP assembly, lead to retinitis pigmentosa (Wang and 

Cooper, 2007). Mutations in TERC and TERT, which result in defects of RNP 

telomerase activity, lead to dyskeratosis congenital (Collins and Mitchell, 2002). 

Mutations in UPF3B, which result in defect in nonsense-mediated mRNA decay 

surveillance, lead to syndromic mental retardation and nonsyndromic mental 

retardation (Tarpey et al., 2007) 

Overall, mutation or sequence variants on the protein-, DNA- and RNA-protein binding 

proteins or residues will lead to significantly mutated phenotype which could be serious 

diseases. So, it is very necessary to do the analysis about the binding residues in 

human SAVs, which can benefit for both biology and medicine research (e.g. precision 

medicine). To do so, we firstly need to identify those binding proteins or residues. 

 

 

 

1.3 Binding proteins/residues identification 

1.3.1 Experimental based binding proteins/residues identification 

 

There are a lot of experimental methods which have been developed to identify those 

interactions and the binding proteins. For example, fluorescence resonance energy 

transfer (FRET) can identify PPI. In FRET, bait and prey proteins are fused to donor 

(don) and acceptor (acc) molecules such as cyan (CFP) and yellow (YFP) variants of 

GFP. An interaction between the bait and prey proteins brings the donor and acceptor 

into close proximity, and excitation of the donor fluorophore results in non-radiative 

energy transfer and acceptor fluorescence emission at a specific wavelength  

(Petschnigg et al., 2011).  

For protein-nucleotide binding, there are methods such as DNA/RNA pull-down assay 

which can detect the protein-DNA/RNA interaction. A pull-down assay using 

DNA/RNA-conjugated beads is widely used in various research fields, which is a direct 

and versatile tool to study DNA/RNA-protein interaction (Sui et al., 2020). First the 
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biotinylated-DNA/RNA is incubated with streptavidin, then the recombinant or 

cellular-extract proteins can bind to DNA/RNA. After being washed, the beads are 

boiled to identify DNA/RNA-bound proteins. 

 

For the residue level identification (binding residues), it needs to determine the 3D 

structure of the binding proteins. The wildly used experimental methods are X single 

crystal X-ray diffraction (SC-XRD), nuclear magnetic resonance (NMR) and 

cryo-electron microscopy (Cryo-EM). According to the statistics of PDB, about 90% 

protein structures are resolved by SC-XRD (Burley et al., 2017). However, there is no 

“universal” method since all three of them have their advantages as well as limitations. 

The SC-XRD can yield high atomic resolution and is not limited by the molecular weight 

of the sample. It is suitable for water-soluble proteins, membrane proteins as well as 

macromolecular complexes. However, SC-XRD also has disadvantages such as the 

difficulty for crystallization and diffraction. Especially, for membrane proteins, the large 

size leads to the poor solubilization of the crystallization (Table 1.2). 

NMR can measure the three-dimensional structure of macromolecules in the natural 

state directly with a very high resolution. But NMR cannot be applied in analyzing large 

biomolecules and it needs relatively large amounts of pure samples (Table 1.2). 

Cryo-EM is a much easier method compared with the two methods above. It requires 

only a small amount of sample, demands less on sample purity, and does not need to 

crystalize protein. But, as a cost, it has high levels of noise and relatively low resolution 

(Table 1.2). 

So far, it is expensive and time-consuming to identify the binding residues with all 

above experimental methods. Especially for high-throughput analysis, it is not possible 

to prepare all the samples. Nowadays, fewer than 0.36% of all proteins with known 

sequence in UniProt correspond to a known experimental 3D structure in the PDB (Qiu 

et al., 2020). Thus, it is necessary to apply in silico method to binding residues 

identification. 
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Table 1.2: The comparison of X-ray crystallography, NMR and Cryo-EM 

Methods Advantages Disadvantages Objects Resolution 
X-ray 
Crystallography 

• Well 
developed 
• High 
resolution 
• Broad 
molecular 
weight range 
• Easy for 
model building 

• Difficult for 
crystallization 
• Difficult for 
diffraction 
• Solid 
structure 
preferred 
• Static 
crystalline 
state structure 

• Crystallizable 
samples 
• Soluble 
proteins, 
membrane 
proteins, 
ribosomes, 
DNA/RNA and 
protein 
complexes 

High 

NMR • High 
resolution 
• 3D structure 
in solution 
• Good for 
dynamic study 

• Need for high 
sample purity 
• Difficult for 
sample 
preparation 
• Difficult for 
computational 
simulation 

• MWs below 
40–50 kDa 
• Water soluble 
samples 

High 

Cryo-EM • Easy sample 
preparation 
• Structure in 
native state 
• Small sample 
size 

• Relatively 
low resolution 
• Applicable to 
samples of 
high molecular 
weights only 
• Highly 
dependent on 
EM techniques 
• Costly EM 
equipment 

• >150 kDa 
• Virions, 
membrane 
proteins, large 
proteins, 
ribosomes, 
complex 
compounds 

Relatively 
Low (<3.5 
Å) 

 

 

1.3.2 Computational based binding proteins/residues identification 

Basically, all the computational methods can be divided into two categories: 

structure-based methods and sequence-based methods. 
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1.3.2.1 Structure-based predictors 

Structure-based predictors use structural features such as solvent-accessible surface 

area, crystallographic B-factor and secondary structure. The growing number of 

available structural complexes assists the accuracy and availability of structure-based 

methods. 

IntPred is a state-of-the-art structure-based RNA-binding residues prediction method 

(Northey et al., 2018). It uses the structure-based features such as intra-chain 

disulphide or hydrogen bonds on the certain residue, secondary structure and planarity 

of the residues which are calculated by finding the root mean squared distance of all 

atoms of the patch from a plane of best fit. Overall, IntPred achieves a high accuracy 

76% with random forest (Northey et al., 2018). 

PRISM, a structure-based PPI prediction method, is another example (Baspinar et al., 

2014). PRISM first extracts the surface residues of the target proteins using the 

relatively accessible surface area values. And each interface in the template interface 

dataset is split into its constituent chains. Then PRISM checks whether complementary 

sides of a template interface are structurally similar to any region on the surface of 

target structures (Shatsky et al., 2004). Once similarities are detected, the two target 

proteins are transformed into the structurally similar template interface constituting a 

predicted complex structure (Baspinar et al., 2014). 

Though structure-based methods achieve good performance in protein binding, there is 

an obvious limitation: they can only be applied to protein, whose 3D structure are 

available. And for proteomic and genomic analysis, which is dependent on large 

amount of predictions, it is necessary to introduce another kind of method which is 

based on the sequence information of proteins rather than structure. 
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1.3.2.2 Sequence-based predictors 

Sequence-based predictors use only the sequence information of the query proteins as 

the input to detect the binding residues. Thus, it can be applied to almost any protein 

and very suitable for high-throughput analysis. Interface residues or binding residues 

are more conserved than the rest of the protein surface and these conserved positions 

can be identified by multiple sequence alignments (MSAs) (Esmaielbeiki et al., 2016). 

Thus, in the past decades, evolutionary information has significantly improved the 

performance of binding residues prediction (Ofran and Rost, 2003). And now, most of 

state-of-the-art methods are based on the combination of the evolutionary information 

with other sequence features.  

The first method (Res et al., 2005), which uses the combination of evolutionary 

information and residue composition, achieves an accuracy of 64%. It increases 6% 

compared with the previous sequence-based study (Ofran and Rost, 2003). Since then, 

many studies try to combine evolutionary information with different sequence features. 

For example, DNA binding residues prediction method DNABR combines evolutionary 

information with composition of amino acid and physiochemical properties of amino 

acids (Ma et al., 2012). And some studies try to combine residue spatial sequence 

profile obtained from the HSSP database with evolutionary information (Wang et al., 

2006).  

Some sequence-based methods take advantage of predicted structural information 

such as surface accessibility and secondary structure. For example, InteractionSites 

improves its accuracy to 68% from a baseline of around 30% (Ofran and Rost, 2007). 

These results suggest that inclusion of predicted structural information can improve the 

accuracy of binding residue prediction. 

For protein level prediction, there are two possible ways to obtain per protein prediction. 

The first way is simply to infer from per-residue prediction. Technically, a protein is 

defined as a binding protein if there is any residue on the protein which is predicted as 

binding residue by per-residue method. The second way is to use protein level specific 

methods. 

The important and most crucial step during classification of proteins using machine 

learning techniques is to transform the variable length of protein sequence to fixed 
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length feature vectors. DNAbinder, which is a DNA binding protein prediction method, 

transforms position-specific scoring matrix (PSSM) to PSSM-400 vector. PSSM-400 is 

the composition of occurrences of each type of amino acid corresponding to each type 

of amino acids in protein sequence, which means for each column there will be 20 

values instead of one. Hence, it will be a vector of dimension 20 × 20 for each PSSM 

matrix (Kumar et al., 2007). 

StackDPPred is also a DNA binding protein prediction method (Mishra et al., 2019). To 

encode protein sequence with a fixed dimensional feature vector, they applied various 

feature extraction techniques based on the PSSM profile: PSSM-distance 

transformation (PSSM-DT), Residue probing transformation (RPT) and Evolutionary 

distance transformation (EDT). PSSM-DT results in two kinds of features: PSSM 

distance transformation of pairs of same amino acids (PSSM-SDT) and PSSM distance 

transformation of pairs of different amino acids (PSSM-DDT) (details can be seen in 

(Mishra et al., 2019)). PSSM-SDT calculates the occurrence probabilities for the pairs 

of the same amino acids separated by a distance k along the sequence. PSSM-DDT 

calculates the occurrence probabilities for pairs of different amino acids separated by a 

distance of k along the sequence (Mishra et al., 2019).  

𝑃𝑆𝑆𝑀 − 𝑆𝐷𝑇(𝑗, 𝑘) =- 𝑃!,# ∗ 𝑃!$%,#/(𝐿 − 𝑘)
&'%

!()
 

where, j is one type of the amino acid, L is the length of the protein sequence, P!,# is the 

PSSM score of amino acid j at position i and P!$%,# is the PSSM score of amino acid j at 

position i + k. Through this approach, 20*K number of PSSM-SDT features are 

generated, where K is the maximum range of k (k = 1, 2, …, K). 

𝑃𝑆𝑆𝑀 − 𝐷𝐷𝑇(𝑖), 𝑖*, 𝑘) =- 𝑃#,!! ∗ 𝑃#$%,!"/(𝐿 − 𝑘)
&'%

!()
 

where, i& and i'represent two different types of amino acids. 

RPT, proposed by (Jeong et al., 2011),emphasizes domains with similar conservation 

rates by grouping domain families based on their conservation score in the PSSM 

profile. And the EDT extracts the information of the non-co-occurrence probability for 

two amino acids separated by a certain distance in a protein from the PSSM profile 

(Mishra et al., 2019). 
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So far, there are some methods which can conduct multiple class prediction. And it can 

benefit a lot from establishing an all-in-one system. Many methods may not have 

constant performance due to the different training data they used. For example, the 

cutoff which is used to define binding residue ranges from 3.5Å to 6Å (Yan et al., 2016). 

Some use 3.5Å, and the others may use 5Å or 6Å. It has been found that changing the 

cutoff value will change the performance significantly (Yan et al., 2016).  

DRNApred is a method which can predict both DNA and RNA binding residues (Yan 

and Kurgan, 2017). DRNApred uses a lot of features including a variety of 

physicochemical and biochemical properties together with hidden Markov model (HMM) 

based evolutionary profile and predictes intrinsic disorder, secondary structure and 

solvent accessibility (Yan and Kurgan, 2017). 

hybridNAP is the first method which can predict all three classes of binding residues: 

protein-protein, protein-DNA and protein-RNA (Zhang et al., 2019). And their results 

suggest that development of the new generation of predictors would benefit from using 

training data sets that combine all the three protein-, RNA- and DNA-binding proteins 

and pursuing combined prediction of protein-, DNA- and RNA-binding residues (Yan et 

al., 2016; Zhang et al., 2019). 

DisoRDPbind is another method which can predict all three kinds of binding residues 

(Peng et al., 2017). DisoRDPbind uses the features such as predicted secondary 

structure, intrinsic disorder predicted by IUPred (Dosztanyi, 2018), amino acid 

composition and physiochemical properties of amino acids (Peng et al., 2017). 

However, there is a limitation for DisoRDPbind. Unlike hybridNAP which can provide 

general binding residues prediction, DisoRDPbind is designed specifically for the 

binding prediction on the disorder region. Thus, it has very bad performance on general 

predictions (Qiu et al., 2020). 

As there are already many tools which can predict binding protein or residues, the 

reasons why it is still necessary to establish the new method in this thesis are as 

following: 1) Previous review has already found that most binding prediction methods 

are only available through web servers. However, many of them are either no longer 

maintained or only transiently online (Yan et al., 2016). Furthermore, it will also 

negatively affect consensuses that rely on the web server calculations. Thus, 

unsustainable or short maintenance is one of the challenges for bioinformatics. 
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PredictProtein server (Yachdav et al., 2014), in which the binding prediction method in 

this thesis is available, went online as one of the first Internet servers in molecular 

biology in 1992. Now PredictProtein has already served for almost 30 years. 2) Though 

methods such as hybridNAP can predict multiple classes of binding residues, so fa, 

there is no comprehensive system which integrates both the protein level and the 

residue level prediction. However, a protein level prediction can significantly improve 

the residue level prediction when the users are not sure whether the input proteins are 

binding protein or not, for example, in high-throughput analysis. And again, an 

all-in-one system could have a more constant performance than a combination of many 

separate ones. 3) Unlike previous studies which heavily depend on evolutionary 

information, in this thesis, some new techniques such as neutral language processing 

are applied. 

 

1.4 Conclusion 

 

Protein-, DNA-, RNA-protein binding proteins and residues play important role in many 

biological processing. And SAVs, the majority of genetic variants, are the genome 

differences that make each person’s genome unique, some of which will lead to serious 

phenotype such as disease. So it is meaningful to conduct an analysis of those SAVs 

occurring on the binding proteins and residues. However, experimental and 

structure-based binding proteins/residues identification methods are not suitable for 

high-throughput research. Thus, in this thesis, we first develope a sequence-based 

Protein-, DNA-, RNA-protein binding proteins and residues prediction method which 

outperforms previous methods. And we further apply our method to analyzing SAVs 

from 60,706 people.  
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Chapter 2 
 

2 Sequence-based Protein-, DNA- and 
RNA-binding prediction system 
 

In this section, we will discuss our new sequence-based comprehensive binding 

prediction system (ProNA2020). It is a two-level prediction. At first level, the protein 

level, it can predict whether the input protein is a binding protein or not. If the input 

protein is predicted as a binding protein, then at the second level, the residue level, it 

can further predict the binding residues on the input protein. 

 

2.1 Methods 

2.1.1 5-fold cross validation 

In this thesis, we use a 5-fold cross validation approach (Figure 2.1). Basically, the 

training data is divided into 5 parts (the details of data preparation are shown in the 

journal article at the end of this section). Every time, three parts serve as training set 

which are used to train the model, and one part serves as cross-training set which is 

used to select features and optimize the hyperparameters such as number of 
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hidden nodes and learning rate, and the rest one part is the test part which is used 

to evaluate the final performance of the model. 

 

Figure 2.1: Cross-validation procedure. The original non-redundant training data 

is split into five splits (Split1-Split5). Three splits are used for training, one for 

cross-training, one for testing. This process is repeated five times (5-fold 

cross-validation). 

 

2.1.2 Profile kernel 

Profile kernel is a kind of kernel function of support vector machine (SVM). An SVM is a 

supervised machine learning model that uses classification algorithms for two-group 

classification problems. The target of SVM is to find a decision boundary (also known 

as the hyperplane), which can separate two groups of samples from one or more 

feature vectors. And this hyperplane is a straight line and the distance from it to the 

nearest data point on each side (red nodes and blue nodes in Figure 2.2) is maximized 

(maximum-margin).  
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Figure 2.2 Linear SVM model. Classification between blue and red samples. To 

separate two groups of samples, SVM will find a hyperplane with the maximum margin. 

 

Given a labeled training dataset: 

(�⃗�&, 𝑦&),⋯ , (�⃗�(, 𝑦(), �⃗�) ∈ 𝑅* 	𝑎𝑛𝑑	𝑦) ∈ (−1,+1) 

where �⃗�) 	is a feature vector representation and 𝑦) is the class label (either 1 or -1) of a 

training sample 𝑖. Any hyperplane can be defined as: 

𝜔55⃗ �⃗�+ + 𝑏 = 0 

where 𝜔55⃗  is the weight vector, �⃗� is the input feature vector, and 𝑏 is the bias.  

For the linearly separable data, there are two parallel hyperplanes (two dashed lines in 

Figure 2.2) which can separate the two groups of data, so that the distance between 

them is as large as possible. The “margin” is the region bounded by these two parallel 

hyperplanes, and the maximum-margin hyperplane is the hyperplane that lies halfway 

between them. The above two hyperplanes can be described by: 

𝜔55⃗ �⃗�+ + 𝑏 = 1  

anything on or above this hyperplane belongs to one class (blue nodes). And 
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𝜔55⃗ �⃗�+ + 𝑏 = −1 

anything on or below this hyperplane belongs to one class (red nodes). 

And the 𝜔55⃗  and 𝑏 would satisfy the following inequalities for all samples in the training 

data: 

𝜔55⃗ 𝑥,555⃗
+ + 𝑏 ≥ 1	𝑖𝑓	𝑦) = 1 

𝜔55⃗ 𝑥,555⃗
+ + 𝑏 ≤ 1	𝑖𝑓	𝑦) = −1 

 

The distance between these two hyperplanes is '
‖.///⃗ ‖

 . Thus, the objective of SVM is to 

maximize the distance between two hyperplanes which means minimizing ‖𝜔55⃗ ‖ .  

The SVM is originally designed for linear classifier. For non-linear problem, there is an 

alternative use for SVM called kernel method. A kernel function can make it easier to 

calculate the inner product of two feature vectors in higher dimensional space, so as to 

transform a non-linear problem to a linear problem (Figure 2.3).  

 

 

Figure 2.3: Introduction of kernel function (Adeli et al., 2017). Classification is 

between blue and red sample. It is not possible to find a hyperplane in linear feature 
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space. Then with a suitable kernel function φ, a hyperplane can be found in higher 

dimensional space. 

 

Given K as the kernel function: 

𝐾(𝑥, 𝑦) =< 𝑓(𝑥), 𝑓(𝑦) > 

Where 𝑥, 𝑦 are n dimensional inputs. 𝑓 is a function used to map the input from n 

dimensional to m dimensional space. With the kernel functions, it is possible to 
compute the scalar product between two sample points in a higher dimensional space 

without explicitly mapping the data point into higher dimensional space.  

Profile kernel is a kind of kernel function for SVM. The original profile kernel has been 

introduced in (Kuang et al., 2005) and, in this thesis, an accelerated version of profile 

kernel from our lab is used (Hamp et al., 2013).  

Technically, the profile kernel uses probabilistic profiles, such as PSSM matrix 

produced by the PSI-BLAST algorithm, to define position-dependent mutation 

neighborhoods along protein sequences for inexact matching of k-length 

subsequences (“k-mers”) (Kuang et al., 2005). 
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Figure 2.4 Introduction of profile kernel (Hamp et al., 2013). This shows how profile 

kernel is calculated with two input profiles: P1 and P2. These two profiles are generated 

from proteins that are 186 (P1) and 241 residues long (P2; tables on the top). In profile 

calculation, it counts the number of conserved multi-mers at each node that fall below 

the substitution score threshold σ. Here is an example of 3-mer with a threshold σ=5. At 

each node, profile-kernel counts the number of 3-mer motif (such as “AAA”) on the 

protein with a score below 5. And technically, using 3-mer means mapping protein onto 

a 20*20*20 (8000) dimensional vector. 

 

Here is an example which explains the process of profile kernel calculation (Figure 2.4) 

(Hamp et al., 2013). At first, two blast profiles (such as PSSM matrix) are generated 

(two tables on the top of Figure 2.4). Then, there are two important parameters in 

profile kernel: k-mer andσ. k-mer indicates how many consecutive residues are taken 

into consideration in profile kernel, andσis the threshold for conservation score. Figure 

2.4 is an example for 3-mer andσis set to be 5. Instead of using the conservation score 

of single residues in original profile, the conservation is now calculated as the sum of 

the scores for 3 consecutive residues. Thus, 3-mer means that it maps the profile to a 

20^k-dimensional vector of integers. Each dimension represents one combination 

of k consecutive residues and a value gives the number of times 

this k-mer combination is conserved (conservation score belowσ) in a profile of the 

corresponding proteins (Hamp et al., 2013). 

 

2.1.3 Word2Vec 

Artificial neural networks (ANN), which are inspired by the biology neural networks, are 

widely used in machine learning. The basic component of neural network is neurons 

which is also referred to as perceptron. The simplest neural network consists of just one 

perceptron, which receives and sums up the input signal and evaluates this sum using 

a threshold function (activation function), which produces the output value. The 

following formula describes how the input signals are summed up with their weights: 
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𝑆𝑢𝑚(𝑠) =D𝑖1 ∗ 𝑤1

(

12&

 

And for activation functions, there are a lot of functions available, such as the widely 

used sigmoid function which can normalize the input value to be between 0 and 1: 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑠) =
1

1 + 𝑒3& 

And a schematic of basic ANN is depicted in Figure 2.5.  

 

 

 

Figure2.5: A schematic of basic ANN component (neuron). The perceptron (neuron) 

is represented by rectangle. It receives inputs i from different input perceptrons and 

then sums up the signal. The activation function uses the sum as input and calculates 

the output of the perceptron. 
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The basic version of ANN is able to solve simple linear classification problem. However, 

in complicate non-linear classification such as the binding prediction in this thesis, 

because of much bigger feature vectors and overlapping data points, it is necessary to 

use more complex ANN which contains multiple neurons. In most application, an ANN 

consists of three layers (Figure 2.6). The first layer is called input layer which contains 

as many nodes as the length of the input feature vector is. There is no calculation at 

this layer, and it just passes the information to the second layer which is called hidden 

layer. The hidden layer consists of hidden nodes, all of which are perceptrons. The final 

layer is the output layer which presents the quantity of output classes.  

 

Figure 2.6: Fully connected feed forward network. There are connections between 

every node in input layer and that in hidden layer, and also between the nodes in 

hidden layer and that in output layer. This kind of network topology is called a fully 

connected feed forward network. 

 

Word2Vec is a group of ANNs, which are used to produce word embeddings. It was 

developed by Tomas Mikolov in 2013 at Google (Mikolov et al., 2013). Word 

embedding, which can represent words by vectors, is one of the most popular 

representation of document vocabulary.  
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There are two different kinds of ANNs in Word2Vec which are trained for certain tasks: 

CBOW and Skip-gram (Figure 2.7). Assuming a window approach with size 5 (2 on 

each side), CROW uses the surrounding words to predict the probability for every word 

in the vocabulary of being the “central word” in the window approach. However, 

Skip-gram type uses the word in the middle to predict the probability for every word in 

the vocabulary of being the neighbors in the window approach. 

 

 

Figure 2.7: Two different kinds of Word2Vec neural network: CBOW and 
Skip-gram. The difference between CBOW and Skip-gram neural network is: the 

CBOW model uses the distributed representations of neighbor words to predict the 

word in the middle. While the Skip-gram model uses the distributed representation of 

the input word to predict the surrounding words. 

 

In the thesis, we used a skip-gram neural network of Word2Vec. To train the Word2Vec 

model, the first step is to collect the samples. Here, we assume the source text is “The 

quick brown fox jumps over the lazy dog”. Then, a window approach with a certain size 

(size=5 in Figure 2.8) goes through the context sentence and picks up the pairs of 
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central work and its neighbors in the window (Figure 2.8). The central words will serve 

as inputs for the network and the neighbors will be the targets.  

Then, we can set the neural network (Figure 2.9). It will have three layers:1) input layer. 

The input is the one-hot vector for the input word;2) hidden layer. There is no activation 

function on the hidden layer neurons, and, as an example, here we set the number of 

hidden nodes to be 4 (Figure 2.9); 3) output layer. It has nine neurons with softmax 

activation function which represent the probability distribution of words (Figure 2.9). 

The basic idea of skip-gram network is to learn the statistics from the number of times 

each sample pair shows up. Thus, the softmax output layer shows which words in the 

vocabulary have the higher possibility to be the neighbors of the input word.  

 

 

Figure 2.8: Sample preparation of Word2Vec. Assuming the source text is “The 

quick brown fox jumps over the lazy dog”, a window approach with size 5 goes through 

the sentence and picks up the pairs of samples: central word and its neighbor words. 
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Figure 2.9: Architecture for skip-gram model. The output of the neural network is a 

softmax layer which shows the the probabilities of each words in the corpus to be the 

neighbor words of the input word. And weight matrix of the hidden layer is what we 

need for next step of Word2Vec (here we uses 4 neurons as an example).  

 

After training the network, instead of the network itself, what we need is only the weight 

matrix in the hidden layer. In this example, since there are 4 neurons in the hidden layer 

and 9 words in the vocabulary, it is a 9x4 matrix (Figure 2.10). The final word vector can 

be produced through multiplying the one-hot vector for the input word by the weight 

matrix (Figure 2.10). And the length of word vector will simply equal to the number of 

neurons in the network.  
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Figure 2.10: Producing word vector by Word2Vec. Using the hidden layer weight 

matrix with 4 hidden nodes from the network in Figure 2.8, Word2Vec is able to 

calculate the final representation of the input word. 

 

In our study, the resource contexts are all the protein sequences from UniProt database 

(The UniProt, 2017). To train the representations for proteins, we need to break the 

protein sequences into sub sequences so that we can define the “biological words”. 

N-grams is the widely used technique in bioinformatics to study protein sequences. 

Normally, an overlapping window approach is applied in n-gram modeling of protein 

research. In this thesis, instead of the window approach, we generate n lists of shifted 

non-overlapping words (Figure 2.11 shows an example of 3-grams) (Asgari and Mofrad, 

2015). So in Figure 2.11, 3 consecutive residues are considered to be a ‘biological 

word’. For a certain protein sequence, all the possible “biological words” and their 

neighbors are used to train the word2vec skip-gram neural network which we talk about 

above. And parameter n is determined through cross-validation. The final 

representation of each protein sequence in our training set is produced by 

concatenating the vector representation of every possible “word” (n consecutive 

residues) on the protein sequence.  
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Figure 2.11: Protein sequence splitting with 3-grams. To prepare the training 

sample for the word2vec skip-gram neural network, each protein sequence is 

represented as three sequences (1, 2, 3) of 3-grams and 3 consecutive amino acids is 

a “biological word”. 

 

2.1.4 ANN for residue level prediction 

For residue level prediction, we used ANN with the features from PredictProtein 

(Yachdav et al., 2014). The PredictProtein (PP) server is an automatic service that 

searches up-to-date public sequence databases, creates alignments, and predicts 

aspects of protein structure and function (Yachdav et al., 2014).The features include： 

PSSM, which is calculated out of a multiple sequence alignment against big_80 

database. Big_80 is a redundancy-reduced (at 80% threshold) database which 

concatenates UniProt and PDB together (Burley et al., 2017; The UniProt, 2017). 

Predicted secondary structure and solvent accessibility. Secondary structure is 

predicted by a system of neural networks with three states helix, strand and loop rating 

at an expected average accuracy of 72% (Rost and Sander, 1993). The solvent 

accessibility is another important feature for binding residue prediction. Those residues 

on the surface of a protein which have better accessibility are more likely to be the 

binding residues. And solvent accessibility is predicted by a neural network method 

rating at a correlation coefficient (correlation between experimentally observed and 

predicted relative solvent accessibility) of 0.54 (Rost and Sander, 1994). 
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B-value, which describes the mobility of residues. Functional residues such as binding 

residues usually show a larger mobility than non-functional (non-binding) residues. In 

PredictProtein, B-value is predicted by PROFbval (Schlessinger et al., 2006). 

Other features: protein length, amino acid composition and physical properties of amino 

acids. Table 2.1 and Table 2.2 show the details of the features we used. 

For the architecture of the neural network, we used a classic three-layer network: one 

input layer, one hidden layer and one output layer (Figure 2.12). Specially, there are 

two nodes with sigmoid function at the output layer: one for binding prediction and one 

for non-binding prediction. So, the raw output score of the neural network will be: 

𝑠𝑐𝑜𝑟𝑒456 =	𝑛𝑜𝑑𝑒7)(*)(8 − 𝑛𝑜𝑑𝑒(9(37)(*)(8 

Besides, a second level filter is applied. Instead of the raw prediction of single residue, 

we use a window approach which takes neighbor residues into consideration: 

𝑠𝑐𝑜𝑟𝑒:)(5; =	
1
𝑤 D 𝑠𝑐𝑜𝑟𝑒456	) 	,

63&
'

)2363&'

(𝑠𝑐𝑜𝑟𝑒456	) > 0)	
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Figure 2.12: Architecture of ANN used in residue level prediction. It is a three- 

layer network. Specially, we set two nodes with sigmoid function at output layer: one for 

binding prediction and the other for non-binding prediction. 

 

2.1.5 Performance evaluation 

We applied the standard metrics with the acronyms (TP: true positives: observed and 
predicted in class C; TN: true negative: observed and predicted in non-C; FP: false 
positives: predicted in C, observed in non-C; FN: false negatives: predicted in non-C, 
observed in C): 

PRE(C)=PrecisionC=TP/(TP+FP) 

REC(C)=RecallC=TP/(TP+FN) 

Q2=(TP+TN)/(TP+TN+FP+FN) 

F1(C)=2*PRE(C)*REC(C)/(PRE(C)+REC(C)) 

MCC(C) = +=×+?3@=×@?
A(+=$@=)(+=$@?)(+?$@=)(+?$@?)
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Table 2.1: Input features for protein binding per-residue binding predictions 
Name Window size 

(number of 
residues) 

Description 

pssm 11 evolutionary Profile: normalized absolute 
conservation of aa at specific positions 

infPP 11 information per position: information content of 
specific position in PSSM and PERC 

helix 11 helix predicted 
loop 11 loop predicted 
strand 11 strand predicted 
md_raw 11 raw disorder prediction score 
md_minus 11 no disordered region predicted 
md_plus 11 intrinsically disordered region predicted 
profbval_raw1 11 raw residue flexibility score 
profbval_raw2 11 raw residue non flexibility score 
b 11 buried predicted 
e 11 exposed predicted 
i 11 intermediate predicted 
composition 1 relative occurrence of an AA in the entire 

sequence 
length_category11 3 length category 1-60 aa 
length_category2 3 length category 61-120 aa 
length_category3 3 length category 121-180 aa 
length_category4 3 length category 181- aa 
chemprop_hbreaker2 3 aa is a helix breaker 

chemprop_mass2 3 mass of the amino acid 
chemprop_vol2 3 volume of the amino acid (size) 
chemprop_cbeta2 3 aa is a c-beta branching aa 
chemprop_charge2 3 charge in 3 states 
chemprop_hyd2 3 hydrophobicity of the amino acid 
position 3 position of aa in protein sequence 

1 For the protein with a length smaller than 60, length_category1 is 0.5. Otherwise, 
length_category1 is 1. 

2 chemprop_mass and chemprop_vol were taken from 
http://prowl.rockefeller.edu/aainfo/contents.htm; chemprop_hyd was from Kyte-Doolittle 
(e.g. http://en.wikipedia.org/wiki/Hydropathy_index); chemprop_cbeta was according to 
http://www.russell.embl-heidelberg.de/aas/cbb.html; chemprop_hbreaker (helix breaker) 
was proline; chemprop_charge  was according to side chain charge 
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Table 2.2 Input features for DNA/RNA binding per-residue binding predictions 
Name window 

size 
Description 

pssm 11 evolutionary profile: normalized absolute conservation 
of aa at specific positions 

infPP 9 information per position: information content of specific 
position in PSSM and PERC 

relW 5 relative weight: information content of specific positions 
on PSSM and PERC 

md_raw 11 raw disorder prediction score 
md_ri 9 disorder prediction reliability score 
profbval_raw1 5 raw residue flexibility score 
profbval_raw2 5 raw residue non flexibility score 
helix 11 helix predicted 
loop 11 loop predicted 
strand 7 strand predicted 
OtE 9 raw prediction output of Sheet 
OtL 9 raw prediction output of Loop 
OtH 9 raw prediction output of Helix 
ri_sec 11 reliability index of secondary structure prediction, 

applies to helix, sheet, loop and OtE, OtH, OtL 
b 7 buried predicted 
e 7 exposed predicted 
i 7 intermediate predicted 
Rel_acc 11 predicted relative solvent accessibility in %  
Ri_acc 9 reliability index of solvent accessibility prediction: 

applies to e,i,b and rel_acc 
chemprop_hyd1 7 hydrophobicity of the amino acid  
chemprop_charge
1 

3 charge in 3 states 

chemprop_mass1 9 mass of the amino acid 
Exposed_composi
tion3  

1 for each buried, intermediate, exposed the relative 
occurrence is given in 3 categories with each 3 states 

buried_compositio
n3  

3 for each buried, intermediate, exposed the 
relative occurrence is given in 3 categories with 
each 3 states 

intermediate_com
position3  

1 for each buried, intermediate, exposed the 
relative occurrence is given in 3 categories with 
each 3 states 

Helix_composition
2 

1 the relative occurrence of helix is given in 3 
categories 

composition 1 relative occurrence of an AA in the entire 
sequence 

1 chemprop_mass and chemprop_vol were taken from 
http://prowl.rockefeller.edu/aainfo/contents.htm; chemprop_hyd was from Kyte-Doolittle 
(e.g. http://en.wikipedia.org/wiki/Hydropathy_index); chemprop_cbeta was according to 
http://www.russell.embl-heidelberg.de/aas/cbb.html; chemprop_hbreaker (helix breaker) 
was proline; chemprop_charge  was according to side chain charge 
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2.2 Results and discussion 

For protein level prediction, we use a combination of two distinct algorithms: 1) the 

sequence alignment-based profile-kernel and 2) neutral language based Word2Vec. In 

our study, we find that profile-kernel are better at predicting the proteins from large 

protein families that have more alignment from blast, while Word2Vec has a higher 

performance for the proteins from small families. Thus, the combination can make them 

benefit from each other.  

After establishing the protein level mode in training data, we compare the performance 

of our method with other state of art algorithms. First, our method (ProNA2020) 

outperforms all other methods in predicting binding proteins of all three classes: 

protein-binding, DNA-binding and RNA binding (Table 2.3).  

Besides the specific protein-level methods, residue level prediction method can also be 

used in protein level prediction. Basically, we just define the proteins holding at least 

one predicted binding residue as the binding proteins. We find residue level methods 

tend to predict almost all input proteins as binding proteins (Table 2.3). This makes 

them have very high recall, but low precision. These results approve that it is necessary 

to develop the specific protein level method since the residue level methods are not 

suitable to predict protein level binding. 

For residue level prediction, we use the classic ANN with a lot of features from 

PreidctProtein server such as predicted secondary structure and solvent accessibility. 

We compare our method in two different ways: unknown mode (Table 2.4) and known 

mode (Table 2.5). Unknown mode means, for a query protein Q, it is not known 

whether it binds DNA/RNA/Protein. And known mode means only binding proteins are 

included in the performance comparison. For example, when assessing the 

performance of DNA binding residues prediction, we only use DNA binding proteins for 

known mode. But, for unknown mode, non-binding proteins are also included together 

with the binding proteins. In known mode comparison which is based on only binding 

proteins , our method (ProNA2020) has the higher MCC and F1 than others (Table 

2.5).However, in high-throughput analysis, the input proteins are not limited to the 

binding proteins, and actually most of the inputs will be non-binding proteins. Thus, the 

results in unknown mode which mixes the binding and non-binding proteins should be 
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more close to the performance in real practice (Table 2.4). In unknown mode 

comparison, besides MCC and F1, our method (ProNA2020) also has the highest Q2 

accuracy in all three tasks: 83±1% for DNA binding residues prediction; 88±2% for RNA 

binding residues prediction and 75±3% for protein binding residues prediction (Table 

2.4). All these results indicate ProNA2020 should so far be the best binding residues 

prediction method, especially for high-throughput analysis. And for the availability, 

besides the source code on github, ProNA2020 can also be used through 

PredictProtein server (Figure 2.13). 

 

 

 

Figure 2.13: ProNA2020 on PredictProtein server. The protein level predictions are 

given with GO annotations and reliability score. And the predicted binding residues are 

assigned with colored rectangle and the color saturation and lightness correspond to 

the reliability of the predictions (the higher the saturation, the reliable the prediction). 
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Table 2.3: Per-protein performance for independent test set 
Method Binding  Q2(%

) 
PRE(
%) 

REC(
%) 

F1(%
) 

MCC 

DisoRDPbind(Peng and 
Kurgan, 2015)1 

DNA 54±3 47±4 78±4 59±3 0.17±0.06 

DRNApred(Yan and Kurgan, 
2017)1 

 49±3 44±4 83±4 57±3 0.08±0.06 

hybridNAP(Zhang et al., 2017)1  42±3 42±3 100 59±3 0 
NucBind(Su et al., 2019)1  49±3 45±3 99±1 62±3 0.21±0.04 
DNAbinder(Kumar et al., 2007)  62±3 53±4 81±3 64±3 0.31±0.06 
DNABIND(Szilagyi and 
Skolnick, 2006) 

 59±3 50±4 61±5 55±4 0.17±0.06 

SomeNA(Hönigschmid, 2012)1  42±3 42±3 99±1 59±3 0.02±0.06 
StackDPPred(Mishra et al., 
2019) 

 67±3 57±3 90±3 70±3 0.42±0.05 

ProNA2020  77±3 67±4 77±3 76±3 0.56±0.05 
DisoRDPbind(Peng and 
Kurgan, 2015)1 

RNA 36±3 22±3 77±6 35±4 0.02±0.06 

DRNApred(Yan and Kurgan, 
2017)1 

 45±3 25±3 60±6 32±3 0.007±0.0
6 

hybridNAP(Zhang et al., 2017)1  22±3 22±3 100 36±3 0 
NucBind(Su et al., 2019)1  34±3 24±3 91±4 38±4 0.11±0.05 
RBPPred(Zhang and Liu, 2017)  59±3 29±4 61±6 39±5 0.16±0.07 
RNABindRPlus(Walia et al., 
2014)1 

 25±3 23±3 100 37±3 0.10±0.02 

SomeNA(Hönigschmid, 2012)1  34±3 24±3 98±1 38±4 0.15±0.03 
SPOT-RNA(Yang et al., 2014)  79±3 54±5 33±6 41±5 0.31±0.06 
TriPepSVM(Bressin et al., 
2019) 

 77±3 49±6 61±6 54±5 0.40±0.06 

ProNA2020  72±3 43±5 82±5 57±5 0.44±0.05 
DisoRDPbind(Peng and 
Kurgan, 2015)1 

Protein 50±3 91±3 41±3 57±3 0.21±0.05 

hybridNAP(Zhang et al., 2017)1  80±3 80±3 100 89±2 0 
BSpred(Mukherjee and Zhang, 
2011)1 

 80±3 80±3 100 89±2 0 

CRF-PPI(Wei et al., 2015)1  80±3 80±3 100 89±2 0 
InteractionSites(Ofran and 
Rost, 2007)1 

 80±3 80±3 100 89±2 -0.04±0.0
1 

iPPBS-PseAAC(Jia et al., 
2016)1 

 80±3 80±3 100 89±2 0 

LORIS(Dhole et al., 2014)1  80±3 80±3 100 89±2 0 
PPIS (Liu et al., 2016)1  80±3 80±3 100 89±2 0 
SPRINGS (Gurdeep Singh, 
2014)1 

 80±3 80±3 100 89±2 0 

SSWRF-PPI(Zhi-Sen Wei, 
2016)1 

 80±3 80±3 100 89±2 0 

ProNA2020  80±3 82±3 96±1 89±2 0.22±0.08 
 
1 per-residue methods “mis-used” for per-protein prediction 
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Table 2.4: Per-residue performance for independent test set - mode unknown ° 
Method Binding  Q2(%

) 
PRE(
%) 

REC(
%) 

F1(%
) 

MCC 

DisoRDPbind(Peng and 
Kurgan, 2015) 

DNA 75±3 34±3 13±2 19±3 0.09±0.02 

DRNApred(Yan and 
Kurgan, 2017) 

 74±2 36±4 24±3 28±3 0.13±0.03 

hybridNAP(Zhang et al., 
2017) 

 64±2 29±3 45±2 35±2 0.12±0.02 

NucBind(Su et al., 2019)  70±3 34±9 36±3 35±5 0.16±0.07 
SomeNA(Hönigschmid, 
2012) 

 78±2 51±4 39±2 44±2 0.31±0.03 

ProNA2020  83±1 60±3 59±3 60±2 0.49±0.02 
       
DisoRDPbind(Peng and 
Kurgan, 2015) 

RNA 80±2 17±5 16±4 15±4 0.05±0.03 

DRNApred(Yan and 
Kurgan, 2017) 

 78±5 19±5 22±6 21±5 0.08±0.06 

hybridNAP(Zhang et al., 
2017) 

 68±3 18±3 45±4 26±3 0.11±0.02 

NucBind(Su et al., 2019)  67±4 14±4 32±4 20±6 0.03±0.06 
RNABindRPlus(Walia et al., 
2014) 

 88±2 56±6 37±4 45±4 0.40±0.04 

SomeNA(Hönigschmid, 
2012) 

 86±3 40±6 16±2 23±2 0.19±0.04 

ProNA2020  88±2 53±4 40±4 46±3 0.40±0.03 
       
DisoRDPbind(Peng and 
Kurgan, 2015) 

Protein 73±3 23±8 3±1 5±2 -0.03±0.0
3 

hybridNAP(Zhang et al., 
2017) 

 67±2 35±3 38±2 37±2 0.14±0.02 

BSpred(Mukherjee and 
Zhang, 2011) 

 65±1 22±3 16±1 18±2 -0.04±0.0
2 

CRF-PPI(Wei et al., 2015)  56±1 26±3 40±1 31±2 0.02±0.01 
InteractionSites(Ofran and 
Rost, 2007) 

 73±3 33±3 9±1 14±1 0.05±0.02 

iPPBS-PseAAC (Jia et al., 
2016) 

 70±3 30±2 15±1 20±1 0.04±0.02 

LORIS(Dhole et al., 2014)  56±1 25±3 39±1 31±2 0.001±0.0
07 

PPIS (Liu et al., 2016)  55±1 26±3 42±1 32±2 0.01±0.01 
SPRINGS (Gurdeep Singh, 
2014) 

 56±1 25±3 36±1 32±2 0.004±0.0
07 

SSWRF-PPI(Zhi-Sen Wei, 
2016) 

 57±1 27±3 42±1 33±2 0.02±0.01 

ProNA2020  75±3 52±3 36±3 42±3 0.28±0.03 
 

°  Mode-unknown: for a query protein Q, it is not known whether it binds DNA/RNA/Protein. 
Instead, this binding also has to be predicted.  
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Table 2.5: Per-residue performance for independent test set – mode known ° 
Method Bind

ing  
Q2(%

) 
PRE(

%) 
REC(

%) 
F1(%) MCC 

DisoRDPbind(Peng and 
Kurgan, 2015) 

DNA 66±2 36±4 13±3 19±3 0.04±0.02 

DRNApred(Yan and 
Kurgan, 2017) 

 66±2 42±4 24±3 30±3 0.10±0.03 

hybridNAP(Zhang et al., 
2017) 

 57±2 36±4 46±2 40±1 0.08±0.02 

NucBind(Su et al., 2019)  78±1 86±2 37±3 52±2 0.47±0.02 
SomeNA(Hönigschmid, 
2012) 

 71±2 55±5 39±2 45±2 0.27±±0.04 

ProNA2020  78±1 65±2 67±2 66±1 0.50±0.02 
DisoRDPbind(Peng and 
Kurgan, 2015) 

RNA 71±3 27±4 16±5 20±4 0.04±0.03 

DRNApred(Yan and 
Kurgan, 2017) 

 69±3 29±3 24±6 26±5 0.07±0.04 

hybridNAP(Zhang et al., 
2017) 

 60±3 27±3 45±3 34±2 0.08±0.03 

NucBind(Su et al., 2019)  81±1 67±8 32±4 43±5 0.37±0.05 
RNABindRPlus(Walia et al., 
2014) 

 78±1 51±4 50±3 50±3 0.36±0.03 

SomeNA(Hönigschmid, 
2012) 

 77±2 49±1 16±2 25±3 0.17±0.06 

ProNA2020  79±2 55±3 45±3 50±2 0.37±0.03 
DisoRDPbind(Peng 
and Kurgan, 2015) 

Protein 66±1 31±1
0 

3±1 5±2 -0.001±0.00
8 

hybridNAP(Zhang et al., 
2017) 

 61±2 41±3 37±2 39±2 0.11±0.02 

BSpred(Mukherjee and 
Zhang, 2011) 

 60±1 30±2 16±1 20±1 -0.036±0.00
9 

CRF-PPI(Wei et al., 2015)  55±1 34±2 41±1 38±2 0.03±0.01 
InteractionSites(Ofran and 
Rost, 2007) 

 65±2 42±3 9±1 15±1 0.05±0.02 

iPPBS-PseAAC (Jia et al., 
2016) 

 63±1 36±2 15±1 22±1 0.027±0.008 

LORIS(Dhole et al., 2014)  54±1 36±2 39±1 36±1 0.005±0.008 
PPIS (Liu et al., 2016)  54±2 34±3 42±1 38±2 0.02±0.01 
SPRINGS (Gurdeep Singh, 
2014) 

 54±1 33±2 37±1 35±2 -0.01±0.008 

SSWRF-PPI(Zhi-Sen Wei, 
2016) 

 54±1 34±3 41±1 38±2 0.02±0.01 

ProNA2020  70±2 58±3 39±4 47±3 0.28±0.03 
 

°  Mode-known: for a query protein Q, it is known that it binds DNA/RNA/Protein. For 
instance, when assessing methods for the DNA per-residue prediction, only DNA-binding 
proteins are presented.  
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2.3 Journal article 

Jiajun Qiu(JQ) and Burkhard Rost (BR) conceptualized the work. JQ performed the 

whole analysis and model training. Tomas Norambuena and Francisco Melo helped 

creating the training data. Michael Bernhofer helped to make the method available 

online. Michael Heinzinger and Sofie Kemper provided useful suggestion and idea for 

the research. BR provided supervision. BR provided funding. JQ wrote the initial 

manuscript draft with BR. All authors reviewed and approved of the final manuscript. 
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Chapter 3 
 

3 Effect of Protein-, DNA- and RNA-binding 
residues on common and rare sequence 
variants in human 
 

3.1 Genetic variants in human  

There are no two human holding identical genome. Human genetic variation is the 

genetic difference among the population which makes everyone unique. It determines 

almost every biological phenotype of human being, such as height, skin color and even 

behavior. More importantly, genetic variations are related to most of human diseases. 

Thus, researches about genetic variation can not only make us have a better 

understanding of ourselves, but also bring benefit to the medicine progress, especially 

personalized medicine. 

3.2 High-throughput sequencing 

Unlike the first reference version of human genome released in 2001 which heavily 

depend on Sanger Sequencing (Schlessinger et al., 2006), nowads more and more 

genome researches utilize the high-throughput sequencing (HTS) methods, also 
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referred to as next-generation sequencing (NGS). Since 2006, a lot of next-generation 

sequencing companies and technologies have been created, and the corresponding 

field of bioinformatics has exploded as a major scientific and training discipline (Levy 

and Myers, 2016). These brought us from the first draft of the human reference genome 

to the ability to routinely sequence human genomes at a cost decreasing from billions of 

dollars to thousands of dollars (Levy and Myers, 2016). 

The first aim of whole gene sequence (WGS), which is one of the most widely 

application in NGS, is to create a high-quality map of genome variation. And variant 

calling is a key step which lays the foundation for all downstream analyses about 

genome interpretation and genetic discovery. So far, there are three general WGS 

strategies (Lappalainen et al., 2019) (Figure 3.1): 

Short-read WGS, can yield paired-end 150 bp reads with low error rates (0.1%-0.5%) 

(Lappalainen et al., 2019). Short-read approaches fall into two major categories: 

sequencing by ligation (SBL) and sequencing by synthesis (SBS) (Goodwin et al., 

2016). The most evident difference between SBS and SBL is that SBS uses DNA 

polymerase to incorporate complementary nucleotides to the elongating strand, while 

SBL uses ligase to seal the junction between the elongating strand and the newly 

incorporated complementary oligonucleotides. Due to the fact that DNA polymerase is 

an essential enzyme in the cell, SBS is a more natural approach compared with SBL 

(Huang et al., 2012). 

Long-read WGS, using single molecule technologies, can yield 10–100 kb reads with 

high error rates in the range of 10%–15% (Lappalainen et al., 2019). Genomes are 

found highly complex with many long repetitive elements, copy number alterations and 

structural variations that are related to evolution, adaptation and disease. These 

complex elements are so long that short-read sequencing is insufficient to resolve them. 

Long reads WGS, however, can span complex or repetitive regions with a single 

continuous read (Goodwin et al., 2016). 

Linked-read WGS, using the technology from 10X Genomics, can provide the long 

range information missing from standard approaches. By adding a unique barcode to 

every short read generated from a longer molecule (e.g.50 kb), we can link the short 

reads together (Lappalainen et al., 2019). 
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Figure 3.1 shows the approach of genetic variation detection by WGS. 

 

Figure 3.1: Variant detection approaches with WGS. The experimentally genome 

has two heterozygous variants, each of which is located on a different chromosome 

(blue and red stars) and one homozygous variant (green stars). Reference alleles are 

represented by solid lines and black stars.  
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3.3 Types of genetic variation 

With the help of the WGS technologies, a large number of genetic variations are 

identified. Overall, there are four major kinds of genetic variants: SNV, Small 

Insertion/Deletion Variation (indel), Structure Variation (SV) and Tandem Repeat 

Variation. SNVs and indels comprise the majority of the genetic variants in the human 

genome (Table 3.1) (Lappalainen et al., 2019). On average, the genome of an 

individual human has 3-4 million SNVs and 0.4-0.5 million indels when compared with 

the reference genome. Structure variation (SV) is a diverse kind of variation that 

includes copy number variants (CNVs), rearrangements, and mobile element insertions 

(MEIs) (Table 3.1). And Tandem Repeat Variation is the variant involving high-copy 

repeat (Table 3.1) (Lappalainen et al., 2019). 

Table 3.1: Human genetic variants (Lappalainen et al., 2019).  

Variant class Sub-class Size Num. / 
genome 

Single Nucleotide 
Variation (SNV) 

 1bp 3.5x106 

Small Insertion/Deletion 
Variation (indel) 

 1-49bp 4.5x105 

Structural Variation (SV) copy number variation >50 bp 
 

5,000 
 insertion 1,500 
 balanced rearrangement 40 
 complex genomic 

rearrangement 
>1 mb 0.01 

 extremely large copy number 
variant 

>1 mb 0.01 

 retrogene insertion gene coding 
length 

10 

 mobile element insertion 
(MEI) 

0.3-7 kb 2,000 

Tandem Repeat 
Variation 

short tandem repeat (STR) 1-6 bp (repeat 
unit) 

1x105 

 variable number tandem 
repeat (VNTR) 

7-49 bp 
(repeat unit) 

unknown 

 centromeric & 
heterochromatic repeats 

various unknown 

 

In this thesis, we focus on the SNVs which are the easiest type of variants to be 

identified by short-read WGS. There are two sub-types of SVNs in coding regions: 
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synonymous or non-synonymous SNVs. Synonymous SNVs change the DNA 

sequence, but do not change the encoded amino acids, which is the result of the 

redundancy of genetic code (multiple codons code for the same amino acid). Unlike the 

synonymous, non-synonymous SNVs are nucleotide variations that alter the amino 

acids on the protein sequence, which result in biological changes and are subject to 

natural selection. Nonsense variants, which is a special case of non-synonymous, 

change a tri-nucleotide encoding for an amino acid to be a STOP-codon which leads to 

the premature termination of translation. 

 

3.4 Common and rare variants 

So far, the vast amount (99%) of known SAVs are found as rare variants, i.e. they are 

observed in fewer than 1% of the population; only about 0.5% of the SAVs are common 

variants, i.e. they are observed in over 5% of the population (Mahlich et al., 2017).  

According to the evolutionary theory, those disease-causing variants should most likely 

be rare variants. Many researches based on WGS have studied properties of rare 

variants and their relevance for complex traits and diseases (Bomba et al., 2017). For 

example, Styrkarsdottir (Styrkarsdottir et al., 2013) found that gene LGR4 holds a 

nonsense variant associated with bone mineral density (BMD). The study has 4931 

individuals with BMD and 69,034 individuals as control group. Steinthorsdottir 

(Steinthorsdottir et al., 2014) also discovered four rare variants in CCND2, PAM and 

PDX1 genes which affect the risk of Type 2 diabetes. Helgason (Helgason et al., 2013) 

found C3 gene holds a rare variant associated with age-related macular degeneration 

(AMD). Also, rare variants in TREM2 and APP genes were found associated with 

Alzheimer’s disease (AD) (Jonsson et al., 2012; Jonsson et al., 2013). 

In contrast, very few of common variants have been functionally validated to associate 

with diseases. However, model organism researches find common variant contributions 

to complex phenotypes (Gibson, 2012). And, in our previous study, we found common 

SAVs are predicted with more effects than rare SAVs, which means common SAVs 

affect molecular function more than rare SAVs (Mahlich et al., 2017).  
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In this thesis, we will focus on the parts of SAVs occurring at protein-protein, -DNA and 

–RNA binding interfaces. 

3.5 Prediction of functional effects of sequence variants 

The early methods for predicting effects of sequence variants utilize position-specific 

profiles as well as the the evolutionary conservation, which is the probabilities 

specifically for each position in an alignment, such as SIFT and PANTHER-subPSEC. 

The hypothesis behind it is that some sites are more conserved than others and do not 

change in order to maintain the protein functions. Thus, changes at well-conserved 

positions tend to be predicted as deleterious. To predict whether a sequence variant 

will affect protein function, SIFT takes both the position where the changes occur and 

the type of amino acid change into consideration (Ng and Henikoff, 2003). Given an 

input protein sequence, SIFT will construct the MSA through a homology search with 

PSI-blast. Based on the amino acid appearing at each position in the alignment, SIFT 

calculates the occurrence probability of every amino acid at every position which is 

normalized by the frequency of the most common amino acid. If this normalized value is 

less than an empirically defined threshold, the variant is predicted to have an effect (Ng 

and Henikoff, 2003).  

Instead of PSI-blast, PANTHER-subPSEC (Thomas et al., 2003), which is also an early 

method, uses hidden Markov models in the construction of alignments. Another 

difference between PANTHER-subPSEC and SIFT is how the amino acid probabilities 

are used to determine a quantitative variant effect score. SIFT (Ng and Henikoff, 2003) 

uses the ratio between probability of the substituted amino acid and that of the most 

common amino acid at the position in the MSA. PANTHER-subPSEC (Thomas et al., 

2003) uses the absolute value of the ratio between the probabilities of the wild-type and 

substituted variants. PANTHER-subPSEC (Thomas et al., 2003) focuses on the 

magnitude of the change, which means a variant could be predicted as effect if it 

dramatically decreases or increases the probability compared to the wild type.  

PolyPhen (Ramensky et al., 2002) is the first widely used algorithm to combine 

sequence conservation information with structural features. In PolyPhen (Ramensky et 

al., 2002), TMHMM algorithm (Krogh et al., 2001) is used to predict transmembrane 



 

 
60 

regions, and the Coils2 algorithm (Lupas et al., 1991) is applied to predict coiled coil 

regions and the SignalP method (Nielsen et al., 1997) is for the prediction of signal 

peptide regions of the protein sequences. If the input variant is in a transmembrane 

region, PolyPhen uses the PHAT transmembrane-specific matrix score (Ng et al., 2000) 

to evaluate possible functional effect of a nsSNP on the transmembrane region. After 

these steps, PolyPhen empirically derives rules to predict whether a variant is 

damaging (affecting protein function) or neutral (no prototypical effect) (Ramensky et al., 

2002).  

Nowadays, machine learning approach is widely applied in variant effect prediction 

based on the above conservation concept and structure features.  

One typical example is PolyPhen2，which is a successor of PolyPhen (Adzhubei et al., 

2010). PolyPhen-2 uses 11 predictive features such as secondary structure, change in 

electrostatic charge, change in accessible surface area propensity and PHAT 

transmembrane-specific matrix score which is also used in PolyPhen These features 

were selected by an iterative greedy algorithm. (Adzhubei et al., 2010). For the 

classification method, PolyPhen2 uses Naïve Bayes which is a probability classifier (i.e, 

for a mutant allele, it assigns a probability of being damaging or neutral) (Adzhubei et 

al., 2010).  

PhD-SNP is a method based on SVM (Capriotti et al., 2006). PhD-SNP is a system 

consisting of different SVMs with RBF kernel function which classifies mutations into 

disease-related and neutral polymorphism. 1) The first SVM is called “SVM-Sequence” 

whose input vector consists of 40 values: the first 20 (the 20 residue types) explicitly 

define the mutation situation (wild-type or mutation); the last 20 input provide the 

mutation sequence environment (the number of the residue type in a window approach) 

(Capriotti et al., 2006); 2) The second SVM is called “SVM-Profile” whose two inputs 

are based on MSA: one of the input elements is the ratio between the frequencies of 

the mutated residues and that of wild-type; the other one is the number of aligned 

sequences regarding to the variant (Capriotti et al., 2006). 

Comparing to SVM, neural network works are found to have a better performance in the 

research of SNAP (Bromberg and Rost, 2007). The features SNAP used include but 

are not limited to: PSSM vectors from PSI-BLAST output, bio-chemical properties of the 
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mutated residue, the residue type, predicted accessibility and secondary structure and 

flexibility (Bromberg and Rost, 2007). Since the immediate local sequence environment 

can determine the effect of a variant, SNAP uses a window approach to capture the 

sequence environment information (Bromberg and Rost, 2007). 

In our thesis, we use SNAP2, the successor of SNAP, to predict the effect of sequence 

variants (Hecht et al., 2015). SNAP2 is also a neural network based method like SNAP 

but include some new features such as statistical contact potentials, predicted binding 

residues, predicted disordered regions, co-evolving positions and residue annotations 

from Pfam (Hecht et al., 2015). Figure 3.2 shows an example of the SNAP2 output. The 

output scores of SNAP2 range from -100:very neutral to 100:very effective (Hecht et al., 

2015).  

 

 

Figure 3.2: Example of SNAP2 output. The output scores range from -100 

(blue:neutral) to 100 (red:effective). The x-axis shows the residues in the protein 

sequence and y-axis represents 20 different variants for each position (black is the 

wild-type residue). 
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3.5 Results 

Overall, we found both common and rare variants are less likely to be on the binding 

residues which agrees with the hypothesis that most SAVs are benign. However, we 

found that binding SAVs are over-represented for those very effective SAVs 

(SNAP2-scores≥50) in both common and rare variants. 

We further analyzed the distribution of SAVs according to the strength of the effect 

prediction (SNAP2-score). The binding SAVs are found to be more effective than 

non-binding SAVs. In our previous study (Mahlich et al., 2017), we found common 

variants seem to be more effective than rare variants. In this study, we not only 

confirmed this phenomenon, but also found common binding variants are the most 

effective SAVs. Especially, those SAVs occurring on multiple binding residues (binding 

all three classes of macro-molecules: DNA, RNA and protein) are found more effective 

than those on single binding residue (only binding DNA or RNA or protein).  
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Chapter 4 
 

4 Conclusion 
The interactions between proteins and other large macro-molecules: DNA, RNA, and 

proteins participate in all essential biological processes. And mutations or sequence 

variants on those binding residues will cause strong phenotype and even serious 

diseases. However, experiment-based binding residue identification methods are not 

suitable for high-throughput binding site analysis, so it is necessary to establish the 

computational based binding prediction methods.  

In this thesis, we establish a sequence based comprehensive protein-DNA, -RNA and 

-protein binding prediction system: ProNA2020. ProNA2020 is a two-level prediction 

system which uses only protein sequence as input. In the first level (protein level), it 

predicts whether the input protein is a binding protein or not. And we combine the 

alignment based profile kernel with neutral language based ProtVec for protein level 

prediction. Profile-kernel has a better performance for the proteins from large families 

with more sequence alignments, while ProtVec is much better at proteins from small 

families with less sequence alignments. In the second level (residue level), for those 

predicted binding proteins, ProNA2020 further decides which residues is bound on the 

input protein. ProNA2020 is the first comprehensive system which combines protein 

level and residue level prediction, and it outperforms other state-of-the-art methods in 

particular tasks during independent test.  

Overall, this thesis provides a new comprehensive protein binding prediction system 

which makes high-throughput binding sites researches with high accuracy to be 

possible. And our analyses on human SAVs indicate those SAVs with functional effects 
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are enriched on macro-molecular binding residues. And the SAVs on residues which 

bind all three macro-molecules (DNA, RNA and protein) are found to be the most 

effective SAVs. Thus, our research about the binding residues can benefit future 

biology and medicine research (e.g. precision medicine) in both methodology and 

theory way. 
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