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Abstract

With ever growing system complexity the mean time between failures (MTBF) of HPC systems
is getting shorter. The conventional solution to failures in those kind of systems is checkpoint
restart, but checkpoint restart does not scale well with regards to an increase in system scale.
The reason for this is that an increase in system size goes hand in hand with a decreasing
MTBF and a potential increase in checkpoint cost. One of the solutions to this problem is
replication — fault tolerance through redundant computation. When using replication the
work is performed multiple times either by running the same process multiple times or
by running the complete application multiple times. In the first case, process replication,
extraordinary care needs to be taken, so that the replicas of processes stay consistent, so that
they can be swapped out with each other, should one fail. In the second case, known as group
replication, this is not the case but should a failure occur the whole group is affected by the
failure. Transparent group replication with MPI has been implemented with teaMPI. TeaMPI
alleviates some of the performance issues caused by replication by dividing the workload into
different tasks and sharing the outcomes of the tasks between the groups/teams. Although
teaMPI achieves replication it does not yet offer actual fault tolerance and will crash if a failure
of a process occurs. In this thesis we introduce extensions to teaMPI that make teaMPI robust
against hard failures. As standard MPI does not offer needed fault tolerance functionality a
modified version of OpenMPI, ULFM is used. ULFM offers a set of features that allows the
programmer to respond to failures of MPI processes.
The implementation is tested using a simple solver for shallow water equations, SWE, and
compared against an implementation using traditional checkpoint/restart. The evaluation
showed that it is possible to achieve faster wall clock times in a scenario with multiple failures
than it is with traditional checkpoint restart, although an integration with task sharing is
necessary to be able to benefit from a fault tolerant teaMPI.
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1 Introduction

The need for more computational power in science and engineering applications is leading to
much more complicated HPC systems being built. The current target for the next generation
of supercomputers is breaking the exaflop mark. As the era of Moore’s Law is slowly coming
to its end, such machines will be of much larger scale than current systems. One of the
major challenges such systems will face is a much lower mean time between failures (MTBF).
Whereas the MTBF of petascale systems is measured in days, it might be measured in minutes
for exascale systems. This means that techniques that can handle frequent failures will be of
increasing importance [1].
The main way of dealing with failures currently is global checkpoint restart which works
by periodically saving recovery information to stable storage and using that information to
restart the job in case of failure. A major drawback with this solution is, that it does not
scale very well and exascale systems may spend much more time creating checkpoints and
recovering from failures than doing actual computational work.
Therefore other alternatives need to be considered with one contender being replication.
Replication works by executing the same calculations multiple times, either on a per process
or per program instance level [2]. Multiple attempts, such as redMPI and SDR-MPI have
been made to realize replication in MPI environments. The latest implementation teaMPI
tries to mitigate the severe performance impact of other solutions by giving up on the strict
consistency requirements that have been enforced by older approaches and instead allows
splitting the program execution into multiple tasks and changes the order in which tasks
are executed for each replica. If one replica finishes a task, the result can be shared with
other replicas. One of the main problems of teaMPI that has not yet been solved is the lack
of fault tolerance mechanisms in MPI itself [3]. The current MPI standard does not specify
how an MPI implementation has to react to failures and as such, a process failure in an MPI
application will lead to the whole MPI job being aborted. To tackle this problem an extension
to the MPI standard, ULFM, has been proposed and implemented into OpenMPI [4].
The goal of this thesis is to modify teaMPI in a way to handle failures and allow the application
to restart work from a consistent state without using checkpoints and the file system.
To be able to test the performance of the implementation, SWE, a simple finite volume solver
for shallow water equations for tsunami simulations will be adapted to use features provided
by teaMPI. A simple global checkpoint restart mechanism will be implemented as well, so
that a comparison against current fault tolerance techniques can be drawn.
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1 Introduction

Overview

This thesis is structured in the following way: Section 2 will give background information
about fault tolerance and replication in general. In Section 3 related work such as different
replication implementations, Fenix and LAIK will be presented. The tools and software
that was used will be explained in section 4 and the implementation and evaluation of the
implementation will be discussed in sections 6 and 7.
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2 Background

2.1 Fault Tolerance in HPC

A fault tolerant system is a system that is able to perform its intended function in spite of
faults. Faults are root causes for an error such as a bitflip in the CPU’s cache. An error in turn
is the part of the state that might lead to a failure, that is when the service provided by the
system deviates from the expected service. The most important metric to measure a system’s
performance in regard to fault tolerance is the MTBF, the mean time between failures. As
fault tolerance is a very important topic, especially in the HPC world, countless approaches
to improve the fault tolerance have been developed [5].
There are two main types of fault tolerance techniques: proactive and reactive fault tolerance.
Reactive solutions try to keep the system or application running, by implementing tools that
allow the recovery from failures. Proactive solutions on the other hand try to anticipate and
proactively react to failures, so that they can be tolerated without the need to recover. An
example for a proactive solution would be preemptive migration, which works by migrating
processes from nodes that are about to fail to new nodes [6].
The most widely used fault tolerance technique is checkpointing and rollback recovery, a
reactive solution. It works by periodically saving the application state and using the saved data
to restart the application should a failure occur. A problem that arises when checkpointing
distributed software is that the checkpoint data of each process needs to be consistent with the
rest. Multiple ways such as coordinated checkpointing or uncoordinated checkpointing with
message logging exist to ensure consistent checkpoints [1]. Another problem that has been
investigated is the choice of the correct checkpoint interval. If checkpoints are not written
frequently enough a lot of work has to be redone in case of a failure. But if the application
saves its checkpoints too often time will be wasted as the creation of checkpoints is usually a
costly process. A simple approximation for an ideal checkpoint interval has been proposed
by J. Young in 1974:

τopt =
√

2δM (2.1)

with τopt being the optimal checkpoint interval, δ the time needed to save the checkpoint and
M the MTBF of the system [7].
Other approaches that are not within the scope of this thesis are application specific solutions,
that can be used to significantly improve the performance of general purpose solutions using
specific properties of the application or ways on how to deal with silent errors, which are
errors that do not manifest themselves in a crash, but for example in data corruption or wrong
results [1].
Another major fault tolerance technique that needs to be covered is replication.
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2 Background

2.2 Replication

A major problem that arises when using Checkpointing and Rollback Recovery is that the
scalabilty in relation to decreasing MTBF is bad. The current way to improve the execution
speed of parallel programs is to add more processors. But with a rising number of processors
the probability that a failure occurs during program execution rises. That means that the
MTBF gets smaller. To counteract this the checkpoint frequency needs to to raised. A higher
checkpoint frequency means that the program has to waste more time writing checkpoints.
All of this put together leads to the fact that the total expected program run-time will rise after
a certain threshold regarding the number of processors has been exceeded, as the program
will spend most of its time writing checkpoints and recovering from failures.
One possible solution for this problem is replication. When using replication the same com-
putation is performed redundantly on different processors. Due to the redundancy the crash
of a processor does not lead to failure of the complete application. At first glance the use of
replication may seem counter-intuitive as it will waste at least half of the used resources, but
replication drastically improves the parallel efficiency as each replica is run at a smaller scale,
that means with fewer processors, and does not suffer from the aforementioned problem.
The use of replication also provides some other advantages. As writing checkpoints is not
as critical when using replication, the I/O system does not need to be as powerful which
may lead to a lower overall system cost and a better energy efficiency. The result computed
by different replicas can also be compared against each other so that silent errors can be
detected.
It is important to note that replication is not a stand-alone solution and needs to be accompa-
nied by some kind of checkpointing system, to recover from failures that are too severe to be
handled by replication. But, as already stated, when using replication the MTBF of the system
will be much higher, so that checkpointing is not as problematic as without replication [2, 8].

2.2.1 Process Replication

When using Process Replication only one instance of the application is launched, but each
process of the application is replicated multiple times. The main challenge that needs to be
solved is synchronization. It is necessary that all replicas of the same process ensure that they
always keep their states synchronized, so that in case of failure a surviving replica can take
the place of the failed process. Synchronization is not a trivial problem as it essentially needs
to be made sure that every process receives the same messages as its replicas. In an MPI
environment this is mostly a problem that stems from non-deterministic message passing
using the MPI_ANY_SOURCE parameter in receive operations or other MPI functions such as
MPI_Wtime, MPI_Probe and MPI_Test. To solve this problem two different synchronization
modes have been proposed: the mirror and parallel protocol.
When using the mirror protocol each sender transmits its message to every replica of the
receiver. The receiver requires only one message to arrive in order to progress. The parallel
protocol on the other hand requires that every replicated rank has a single replica for every
other rank with which it communicates. Should a failure happen, another replica has to take
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2 Background

Figure 2.1: When using the Mirror Protocol every replica has to communicate with every other
replica. The Parallel Protocol only requires communication between designated
replicas. When using MPI_ANY_SOURCE additional synchronization is necessary. [8]

the part of the failed one [2, 8]. A program that uses process replication will only need to
restart from a checkpoint if every process from the same replication set fails. This leads to
a drastically increased MTBF, but the obvious disadvantage is that the synchronization of
processes incurs a significant communication overhead.
Some ways to improve efficiency have been proposed such as passive replication where only
so called master ranks communicate with each other. Each master rank has one or multiple
replicas, so called slave ranks, and the result from MPI operations is broadcast from the
master rank to the slave ranks [9]. Partial replication where only some ranks may have
replicas has also been studied. But partial replication as well as passive replication did not
yield the desired performance improvements [10]. There have been efforts, such as rMPI or
MR-MPI, to realize transparent process replication in MPI that will be covered in more detail
in chapter 3.

2.2.2 Group Replication

In contrast to Process Replication, Group Replication works by running the same application
on different processor groups. The different groups work independent from each other and
are not strongly synchronized.
Group Replication requires that the application is moldable, that means the workload can
be split into different chunks. If one group finishes a chunk of work, it takes a checkpoint
and distributes that to the other groups. Should one group suffer from a failure it can also
reload a checkpoint made by another group. The other groups can then load this checkpoint,
so that no unnecessary redundant computation is performed [2]. An implementation that
realizes Group Replication in MPI is teaMPI, which will be explained in further detail below.
With teaMPI a concept called task-shuffling and task-outcome sharing was introduced. This
works by having each group executing the individual chunks of work, the so called tasks,
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in a different order and share the outcome of those tasks with each other. This significantly
reduces the overhead of group replication as the amount of redundant work is lowered
drastically. But making use of this technique is only possible with workloads that allow the
shuffling of tasks [3].
One major advantage of group replication is, that it can be added to existing applications
very easily, as demonstrated by teaMPI. But from a theoretical standpoint group replication is
outperformed by process replication as process replication much more drastically lowers the
MTBF [2]. This is due to the fact that when using a group replication, a failure will disable a
whole group, whereas with processes replication a failure will disable only a single process.
Sadly there are no direct comparisons between different implementations, so no statement
about performance differences, especially between teaMPI with task-shuffling and older
process replication based implementations can be made.
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3 Related Work

3.1 Replication in MPI

There have been multiple attempts to add replication functionality to MPI. The first such
attempt has been rMPI [8] which was published in 2011. rMPI implements the parallel as well
as the mirror protocol to ensure consistency between replicas but due to the way how replicas
and masters are differentiated, only duplex replication, that means one leader and one replica
per process, is possible. Furthermore rMPI is implemented using PMPI but also uses some
MPICH internal functionality and can therefore not be used with other MPI implementations.
rMPI’s successors MR-MPI [11] and redMPI [12] also included partial redundancy and
allowed the usage of replication factors higher than two. Further investigation of partial
replication showed that it is not a useful feature as failures strike at unpredictable locations.
Implementing passive replication within MPI has been the goal of the MPIEcho project.
MPIEcho is implemented using the MPI Profiling Interface, which allows it to be used with
all modern MPI implementations. MPIEcho uses passive replication which means that only
master ranks communicate with each other and the results of those communication events are
broadcast to the replicas. The problem with this approach is, that it results in higher latency
[9].
SDR-MPI (Send Determinism MPI) is another approach, but it differs from the previous

Figure 3.1: Passive Replication in MPIEcho. Only the master ranks participate in the actual
reduce operation. The result is broadcasted to the existing clones. [9]

mentioned ones in that way that it uses a modified MPI implementation and is therefore not
portable. With SDR-MPI work-sharing between replicas was introduced as well, but to make
use of it applications had to be rewritten using a custom task API [13, 14][15].
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3.2 LAIK

LAIK, standing for Leichtgewichtige Anwendungsintegrierte Datenerhaltungskomponente or
in English Lightweight Application Integrated Fault-Tolerant Data Containers, is a library that
allows to implement parallel applications. To be more specific LAIK offers data containers
that allow programmers to access data using a memory model which resembles a software
controlled non-uniform shared memory architecture on a distributed memory system. With
LAIK there is no need to write communication code directly, communication is handled by
LAIK. LAIK is able to use multiple backends such as TCP or MPI for communication. LAIK
also offers transparent fault tolerance and also makes use of ULFM when using the MPI
backend. To achieve fault tolerance LAIK offers in-memory checkpointing. To ensure tolerance
of large scale failures LAIK stores two copies of the checkpoint on two different ranks. It is
the job of the programmer to select the appropriate ranks so that the checkpoints are stored
on different physical nodes. As LAIK manages the application data, it can automatically
create checkpoints. In case of a failure, LAIK can remove failed ranks and redistribute data to
surviving nodes. As the application programmer does not need to write communication code,
but communication is carried out by LAIK, LAIK can transparently restore the environment.
The application programer only needs to ensure that the program is able to continue execution
at the same point where the checkpoint was created. This might be challenging as this might
differ from the point where the application has called the LAIK restore routines. [16].

3.3 Fenix

Another approach to fault tolerant HPC application has been realized with Fenix. Compared
to LAIK, Fenix is a more low-level approach which is also implemented using PMPI. This
means that it will be possible to use Fenix with any MPI implementation should the features
proposed in ULFM become part of the official MPI standard. In contrast to LAIK, the
application programmer still has to write communication code, but in case of failures Fenix
automatically restores the MPI communication capabilities using features provided by ULFM.
To be able to successfully restore the application, Fenix relies on checkpoints that are stored
in neighbor node’s memory. Those checkpoints need to be created manually by a call to the
Fenix_Checkpoint_Allocate function [17].

Functionality

If a failure is detected, the first step is to propagate the failure notification to all running
processes. This is done by revoking all existing communicators. To be able to do that, the
user has to register self created communicators using the Fenix_Comm_Add function. Next,
the world communicator is shrunk to remove all failed processes and new processes are
spawned and merged with the world communicator and assigned the correct ranks. If
this has been done successfully, all surviving processes use a long jump to revert program
execution to Fenix_Init. Newly spawned processes are already inside Fenix_Init. After
that the checkpoint can be loaded and program execution can resume. Fenix is also able to

8
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Figure 3.2: Fenix recovery strategy when using cold spares [17]

use warm spares, processes that are started during normal program startup but are not used
for computation, instead of newly spawned cold spares.
The functionality and recovery strategy is very similar to the fault tolerant teaMPI that will
be presented in this thesis. The main difference is that with teaMPI the checkpoint only has
to be created in case of an actual failure [17].
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4 Software Techniques for Fault Tolerance

4.1 MPI and ULFM

MPI, the Message Passing Interface, is a standard that describes a set of functions that can be
used to implement communication via message passing between address spaces of different
processes. There are multiple MPI implementations of this standard such as MPICH, Intel-
MPI and OpenMPI. MPI is one of the most used APIs in the HPC world and provides a
variety of functionality, such as point-to-point communication and collective operations. With
the introduction of MPI 2 additional features such as parallel file I/O and dynamic process
creation were also added.[18]
One of the major issues of the current MPI standard is that it does not require any fault
tolerance functionality to be implemented. Although it is possible to implement error-handlers
that are called when the MPI implementation detects an errror during a call to a MPI function,
these can not be used to write fault tolerant code. Instead section 8.3 of the MPI standard
states that:

"After an error is detected, the state of MPI is undefined. That is, using a user-defined error
handler, or MPI_ERRORS_RETURN, does not necessarily allow the user to continue
to use MPI after an error is detected. The purpose of these error handlers is to allow a
user to issue user-defined error messages and to take actions unrelated to MPI (such as
flushing I/O buffers) before a program exits. An MPI implementation is free to allow MPI
to continue after an error but is not required to do so"

Meaning it is not possible to continue to use MPI for reliable communication after a failure has
occurred. Additionally, the default error handler that is set when starting a MPI application
is MPI_ERRORS_ARE_FATAL, which will simply abort the MPI job if a failure is detected.

4.1.1 ULFM

In order to alleviate this problem, an extension to the MPI standard has been proposed.
ULFM, standing for User Level Fault Mitigation, introduces a set of new functionality that
can be used to write fault tolerant MPI programs. It is important to note that ULFM does
not specify a specific failure recovery model such as for example a checkpointing algorithm.
Instead it provides tools that can be used to clean up the MPI state, so that communication is
possible after failures occur.
In the following subsection a short overview over the additional features added by ULFM
will be given[4].
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4 Software Techniques for Fault Tolerance

Error Codes

ULFM introduces three new MPI error codes that can be returned and used to notify the
program about failures. MPI_ERR_PROC_FAILED is used when a process failure prevents the
completion of MPI operations. MPI_ERR_PROC_FAILED_PENDING is used in conjunction with
non-blocking receives using the MPI_ANY_SOURCE parameter. This error is returned when
a potential sender, that matches the posted receive has failed. Finally MPI_ERR_REVOKED is
returned when a process has used the MPI_Comm_Revoke to mark a communicator as unfit for
further usage.

Failure Reporting

In MPI failures are reported on a per communication basis. It may be possible that a
communication object contains failed processes, but if not all processes communicate directly
with each other some processes will not be notified of failures. Similarly a collective operation
might finish successful on some processes and fail on others. A situation that also might
arise is that some processes start a failure recovery procedure whereas others wait for
blocking collective calls to finish resulting in a deadlock. To avoid this situation, the function
MPI_Comm_revoke has been proposed. It is similar to MPI_Abort in its behavior, as it is a
collective operation that does not require a symmetric call on all participating processes.
MPI_Comm_revoke can be used to revoke a communicator. If a process tries to use a MPI
operation on a revoked communicator, the call will return with the error MPI_ERR_REVOKED.
This renders the communicator unusable. As all operations on this communicator will
eventually fail, all processes can enter repair procedures without the danger of deadlocks
arising.

Restoring Communication Capabilities

In order to restore the communication capabilities on a communicator basis, ULFM offers
MPI_Comm_shrink. This function creates a new communicator from an old one containing
failed processes. The new communicator will contain the same processes as the old one but
without the failed ones. Should there be new failures discovered during the execution of the
shrink operation, these failed processes will also be excluded from the new communicator.

Working with failed communicators

If using MPI_Comm_Revoke and MPI_Comm_shrink is not necessary, for example because the
communication pattern of the application is structured in a way that deadlocks are not
possible, ULFM also provides constructs to continue using a communicator containing failed
processes for point-to-point operations. MPI_Comm_failure_ack acknowledges the group
of failed processes and notifies the MPI library, that the application knows about failed
processes. This means that the application itself is responsible to make sure that when using
MPI wildcard receive operations with MPI_ANY_SOURCE, the receive is not matched by a failed
process. MPI_Comm_failure_get_acked can be used to get the group of processes that are
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locally known to have failed. Both of these functions can be used on revoked communicators
as well.
Acknowledging that the application knows about failures is necessary, because when us-
ing MPI_ANY_SOURCE it might be possible that a surviving process is waiting for a mes-
sage that is supposed to be sent by a failed processes which will lead to a deadlock.
MPI_Comm_failure_ack essentially signals the MPI library that the processes has knowl-
edge about failed processes and will ensure that no deadlocks happen on the application level.
If this is not done MPI has to return MPI_ERR_PROC_FAILED_PENDING every time an operation
using MPI_ANY_SOURCE is done, which makes the use of such operations impossible.

State Agreement

To be able to ensure a consistent state MPI_Comm_agree can be used. This function can be
thought of as a fault tolerant MPI_Allreduce that computes a conjunction of boolean values
provided by the living processes. Dead processes will participate with a default value of false.
This operation will complete successfully even if a communicator contains failed processes or
if failures happen during the agreement.

4.1.2 Possible Recovery Strategies

There are two main strategies to handle dropouts of processes due to failures with ULFM.
Those are shrink and substitute. The substitute strategy uses either cold or warm spare
processes that can replace failed ones. Warm spares are MPI ranks that are created when
launching the MPI application, but do not perform real computation until they are needed
to replace failed ones. Cold spares are processes that are spawned when needed using the
dynamic process creation functionality added by MPI 2. The other way of dealing with failed
processes is the shrink strategy, which works by simply removing failed processes from the
communicators.
The substitute strategy has the advantage of being a more general purpose strategy as after a
failure there are exactly as many working MPI ranks as the application has been launched
with. There are some applications that impose certain restrictions on the needed number
of ranks, e.g. a cube or square number of ranks is needed. This might make the use of the
shrink strategy unsuitable for a number of applications. Studies of recovery comparing the
shrink strategy and warm spares have shown that the use of spare processes can provide
a performance advantage, but with growing number of processes this advantage decreases.
The major disadvantage that arises when using spares is that it can disrupt the regular
communication patterns of the application as the spares can be run on different nodes than
the original ones. This might mitigate the performance benefits of spares if the application
has high communication overhead.
To my knowledge there are no direct comparisons between cold and warm spares but it is
to be expected that cold spares will suffer from higher overheads than warm spares as cold
spares need to spawned and initialized during run-time [19].
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4.1.3 MPI Profiling Interface

MPI declares all functions twice, each function is declared as MPI_Function_name as well
as PMPI_Function_name. The MPI_Function_name functions are defined as weak symbols
which allows programmers to overwrite the original functions with different implementations
that alter the semantics of those functions. The original MPI functionality can be accessed
when using the PMPI_Function_name versions. The main purpose of this interface is to write
profiling code that can be used to do performance measurements, but it is also possible to
implement completely new features such as replication using the profiling interface. This has
the advantage that such code can be used with different MPI implementations.

4.2 teaMPI

TeaMPI enables transparent group replication for MPI applications. This is done by evenly
dividing all ranks between multiple groups. Those groups are also called teams. When starting
an application with teaMPI, each is rank is assigned to a special team communicator and
every call to a MPI function made by the application using MPI_COMM_WORLD is automatically
translated to a call to the same function but using the team communicator. This way each
team only sees its own processes and behaves like it would have, had it been launched with
fewer processes from the beginning. TeaMPI is implemented using the MPI Profiling Interface,
that means existing applications can easily make use of the features added by teaMPI. It is
important to note that not every available MPI feature has been implemented in teaMPI, but
adding additional functionality can be done easily. For most operations the only necessary
change is to map MPI_COMM_WORLD to the team communicator. The implemented functionality
is sufficient to run production code such as ExaHyPe. Calls to functions that have not been
implemented will be using the standard MPI implementation.
In contrast to other approaches teaMPI does not enforce a strict synchronization between

Figure 4.1: During normal operation the ranks only communicate in their respective teams.
Heartbeats (dashed lines) are exchanged between the same logical ranks. [3]

teams, but it is possible to exchange heartbeats containing timestamps between corresponding
ranks of different teams. Those heartbeats can be used to identify slower teams. The heartbeats
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can also carry hash values of results supplied by the application, in order to ensure data
consistency. These heartbeats are carried out asynchronously and can be initiated by a call
to MPI_Sendrecv. To be able to differentiate between a normal call to MPI_Sendrecv and a
heartbeat, the heartbeats need to be called with MPI_COMM_SELF as the communicator. As a
Send-Receive operation on this communicator is not a useful operation in normal code, this
can be safely used to implement the heartbeat functionality.[15]
Another interesting feature that can be implemented using teaMPI is Task Sharing. To be able
to use this feature, the workload has to be split into multiple independent tasks. Each team
can then execute the tasks in a different order — the so called task shuffling. Outcomes of
successfully finished tasks can then be shared with other teams, so that they do not need to
redo already completed tasks. This greatly reduces the cost of replication as the degree of
redundancy is much lower.
One of the major issues with teaMPI is that it has not been integrated with fault tolerance
mechanisms yet. This leads to the fact that if a process failure happens, the whole MPI job
will abort, even if the redundancy provided by different teams could be used to recover from
failures [3].
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5 Introduction to the SWE Code

5.1 SWE

The SWE framework [20] provides a finite volume solver for shallow water equations, mainly
designed to simulate tsunamis. The focus of SWE is to teach parallel programming models,
therefore the code is designed to be easily understandable for students inexperienced in par-
allel programming and allows the simple implementation of different programming models
such as MPI, Cuda or OpenMP. Implementations using UCP++ and Charm++ have also been
done [21]

5.2 Shallow Water Equations

The Shallow Water Equations itself are a set of nonlinear partial differential equations, that
describe the flow of water if the horizontal dimension is predominant. This means that the
wavelength of the modeled body of water is much larger than the its depth. The underlying
principles of these equations are the conservation of mass which is used to derive the equation
of the water height h and the conservation of linear momentum which is used to derive the
water velocity in horizontal and vertical direction, hu and hv. The gravitational constant is
denoted as g.  h

hu
hv


t

+

 hu
hu2 + 1

2 gh2

huv


x

+

 hv
huv

hv2 + 1
2 gh2


y

= S(t, x, y) (5.1)

S(t, x, y) is a source term that can describe the influence of the Coriolis effect, wind, friction
and bathymetry. In the case of the SWE simulation, only the effect of the bathymetry is taken
into account and is given by 5.2.

S(t, x, y) =

 0
− ∂

∂x (ghb)
− ∂

∂y (ghb)

 (5.2)

A Finite Volume approach is used to solve the equations. The changes from one time step to
the next are described in 5.3.

Qn+1
i,j = Qn

i,j −
∆t
∆x

(
A+∆Qi−1/2,j + A−∆Qn

i+1/2,j

)
− ∆t

∆y

(
B+∆Qi,j−1/2 + B−∆Qn

i,j+1/2

)
(5.3)
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With Qn
i,j =

[
hi,j, (hu)i,j, (hv)i,j

]
being the vector of conserved quantities at tn. ∆t denotes the

length of the time step and ∆x and ∆y the size of the grid cells. A±∆Qi∓1/2,j is the solution to
the Riemann problem on the left and right side and B±∆Qi,j∓1/2 the solution to the Riemann
problem on the top and bottom side of the cell i, j [20, 21, 22].

5.3 Software Architecture

SWE_Block

SWE splits the computational domain between multiple cartesian grid blocks. These blocks are
the core element of SWE’s software architecture and are represented by the abstract SWE_Block
class. This class provides 2D arrays that store water heights, momentum and bathymetry.
It also provides virtual methods for setting boundary conditions and for simulating a time
step. The data transfer between different blocks is implemented using ghost and copy-layers.
Ghost-layers are used to implement boundary conditions and store data from adjacent blocks,
whereas copy-layers are replicated to adjacent blocks. SWE_Block provides functions that allow
the programmer to register copy-layers and get the ghost-layer. The data in the ghost-layer is
the data contained in the copy layers of adjacent blocks and is sent between neighbouring
blocks before the next time step can be calculated. The calling component is responsible for
providing that data, so it is possible to implement the information exchange between blocks
using different techniques. In the MPI version every rank is assigned one block and multiple
calls to MPI_Sendrecv are used to exchange data between adjacent blocks.

Solver

The SWE-Framework implements a number of different solvers that vary in computational
power and accuracy. The purpose of those solvers is to compute the one-dimensional Riemann-
problem between two neighbouring cells of the grid blocks, given at initial time t = 0 as:

q(x, 0) =

{
ql , if x < 0

qr, if x > 0
(5.4)

with

ql =

 hl
(hu)l

bl

 , qr =

 hr

(hu)r

br

 (5.5)

with ql and qr being the cell variables on the left and right side of the edge with the bathymetry
values bl and br. The implemented solvers are the F-Wave Solver, the Augmented-Riemann
Solver and the Hybrid Solver.

SWE_Scenario

The SWE_Scenario interface is used to provide initial values that are needed to start the
simulation. SWE_Scenario provides a number of functions such as getWaterHeight(float
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x, float y) or getVeloc_u(float x, float y) that will be called by a SWE_Block to fill the
arrays storing the data with the necessary start values. These scenarios can be of analytical
nature but with ASAGI real geo-data can also be used [23].

Output Files

Output produced by SWE is written using the NetCDF [24] format, although VTK files can
be written if the NetCDF library is not available. When using the MPI version of SWE, every
rank produces its own output file. The user can specify how many timesteps should be
computed. The total duration of the simulation as given by the scenario is then split into as
many intervals as desired and during simulation every time one of those intervals has passed
an output file is written. Those output files contain the bathymetry, momentum in x and y
direction and height values for each cell of the block.

Figure 5.1: Output of SWE when viewed in ParaView. This output has been created using the
splashing cone scenario

SWE_MPI

The first step when starting a simulation using MPI is to calculate how many cells each block
has. Then depending on the chosen solver a suitable SWE_Block is created and initialized
with the start values using the chosen scenario. Information is exchanged with the adjacent
blocks to obtain the boundary values. The output file is then created and initialized with the
non time-dependent values which are the bathymetry and the coordinates of the cells. Then
the main computational loop is entered. As long as not all desired outputs have been written,
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the loop exchanges all ghost layers, computes the new values and determines the smallest
global time step via a call to MPI_Allreduce[20].
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6 Implementation

The main goal of this thesis is to add reactive team recovery to teaMPI and to evaluate the
performance of the implementation using SWE. With reactive team recovery teaMPI will
be able to tolerate process failures. To do this, two tasks need to be achieved. The first is
implementing a simple checkpoint/restart mechanism in SWE so that a comparison to an
implementation using teaMPI can be drawn. The second is changing teaMPI so that it is able
to respond to failures of processes.
As already stated in section 4.1.2, there are three ways to implement fault tolerance with
ULFM: warm spares, cold spares and shrinking the active set of processes. In this thesis
warm and cold spares have been implemented. The reason for this is that spares allows to
keep the size of teams constant which simplifies the changes that need to be done in teaMPI.

6.1 Checkpoints in SWE

As SWE is already able to write output files (see section 5.1) which already contain almost
all information needed to restart program execution, only a small amount of changes had
to be done to enable checkpoint/restart in SWE. First in addition to the already existing
output-files, a small amount of meta data, that is necessary to reload the checkpoint, needs to
be created. This meta data includes information like the end time of the simulations, and
boundary conditions of the simulation domain.
In order to read the stored data, a new SWE-scenario was added that initializes the SWE_Block

with the data from the output files. A limitation in the current implementation is that the
simulation needs to be restarted with the same number of MPI ranks as it was originally
launched. Furthermore SWE used to create the output files by having the user specify how
many files should be written in total. The total simulation time was then split into as many
checkpoints as needed, and every time a new interval has been simulated completely, a new
output file was written. This behavior was changed so that the user can now enter a desired
checkpoint interval directly, by supplying it as a startup parameter. Every time the main
computational loop has been running as long as the checkpoint interval, a checkpoint is
created. This is done so that the user has a more direct control over the time that passes
between two IO operations which is more convenient when doing experiments regarding the
performance of the checkpointing implementation.
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6.2 Reactive Team Recovery for Fault Tolerance in teaMPI

To be able to choose how teaMPI behaves when a failure occurs, the programmer can
choose the desired error handling strategy using TMPI_SetErrorHandlingStrategy. The
available strategies are TMPI_KillTeamErrorHandler, TMPI_RespawnProcErrorHandler and
TMPI_WarmSpareErrorHandler. TMPI_KillTeamErrorHandler will simply exit all surviving
processes in a team, if one of the processes in the team encountered a failure. Strategy
TMPI_RespawnProcErrorHandler uses cold spares and TMPI_WarmSpareErrorHandler uses
warm spares, both of those strategies will be described in further detail below. By default
teaMPI does not do error handling and will crash if a failure occurs.
As integrating spares into existing communication structures will lead to inconsistent states
in the application software, teaMPI will call user-defined callbacks in the application that
allow the user to restore a consistent state. The first callback is called by a team without
failed processes and is used to create a checkpoint or to send data to damaged teams. The
other callback is used to load or receive the checkpoint. The callbacks can be set with
the TMPI_SetCreateCheckpointCallback and TMPI_SetLoadCheckpointCallback functions.
When a checkpoint needs to be loaded, teaMPI passes the number of the team that can be
used to load the data as a parameter to the callback. If a team has to create a checkpoint, it
receives the failed teams as a parameter.
The main idea behind fault tolerant teaMPI is that teaMPI manages a number of commu-
nicators that are automatically rebuilt if a failure occurs. Those communicators encompass
the ones created during teaMPI initialization, such as the team communicators, but also
TMPI_COMM_WORLD which is a managed version of MPI_COMM_WORLD. Every time an error is
detected in one of those communicators, failed processes are removed from the world com-
municator and all other communicators are rebuilt.
As errors are detected on a per-communicator-basis errors in different teams might go unno-
ticed. To counteract this, the application needs to periodically send out heartbeats to ensure
that there are no failures in the world communicator.

6.2.1 Heartbeats

To be able to respond to failures every process needs to be able to recognize that a process
has crashed. During normal operation there are no messages exchanged between processes
of different teams. This will lead to the problem that a failure in a team will lead to the team
starting the recovery process but other teams will simply proceed with normal operation.
This is fixed by exchanging heartbeats. TeaMPI needs to guarantee that the only place where
a failure affects an otherwise healthy team is when calling the heartbeat function. It also
needs to be guaranteed that all processes in a team return with a consistent view of the
overall health of the MPI application. That means that if one process is notified of a failure in
another team, all processes will know about this failure by the end of the heartbeat operation.
If this would not be the case deadlocks could arise, due to non uniform failure reporting. For
example consider two processes in the same team communicating with blocking operations.
If one is notified of the failure it will enter recovery procedures whereas the other one will
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Listing 6.1: The heartbeat code used to detected failures in teams.

1 int MPI_Allreduce(const void *sendbuf, void *recvbuf, int count,

2 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) {

3

4 int err;

5 if(comm == MPI_COMM_SELF){

6 int send = TMPI_UNFINISHED;

7 int recv = 0;

8 /*Set Errorhandler to MPI_ERRORS_RETURN so that

9 *an error code is returned in case of error

10 */

11 PMPI_Comm_set_errhandler(getTeamComm(MPI_COMM_WORLD), MPI_ERRORS_RETURN);

12 PMPI_Comm_set_errhandler(getLibComm(), MPI_ERRORS_RETURN);

13

14 //Global operation on comm containing all processes

15 err = PMPI_Allreduce(&send, &recv, 1, MPI_INT, MPI_MIN, getLibComm());

16 //Check if error has been returned

17 int flag = (err == MPI_SUCCESS);

18 //Check that all processes in team have the same result

19 PMPIX_Comm_agree(getTeamComm(MPI_COMM_WORLD), &flag);

20 //If error has been detected enter recovery procedures

21 if(!flag){

22 (*getRecreateWorldFunction())(false);

23 }

24 PMPI_Comm_set_errhandler(getTeamComm(MPI_COMM_WORLD), *getTeamErrhandler());

25 PMPI_Comm_set_errhandler(getLibComm(), *getTeamErrhandler());

26

27 } else{

28 err = PMPI_Allreduce(sendbuf, recvbuf, count,

29 datatype, op, getTeamComm(comm));

30 }

31 return err;

32 }

wait in the blocking call that will never be answered.
Another task performed by the heartbeat is to synchronize the call to MPI_Finalize. It may
be possible that one team finishes its work before the other teams are able to finish their
calculation. The already finished team still needs to take part in the heartbeats, for that reason
the status of all teams is communicated via the heartbeats and only if all teams are finished
MPI_Finalize is called. At the moment the heartbeat used to detect failures is not integrated
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with the already existing heartbeats and works by hijacking a call to MPI_Allreduce with
MPI_COMM_SELF as communicator. In contrast to the already existing heartbeats which are
only exchanged between the corresponding replicated ranks, the fault tolerant heartbeats
are a global operation on all processes. This makes the heartbeat costly and calling it to
often should be avoided. On the other hand if the heartbeats are not executed frequently the
response to failures might be delayed.

6.2.2 Fault Tolerance with Cold Spares in teaMPI

The main idea of cold spares is to use the dynamic process creation features added in version
2.0 of the MPI standard to spawn new processes that can replace failed ones. The changes that
needed to be done to teaMPI in order to implement cold spares are the following: First the
teaMPI initialization routine that is called when a process calls MPI_Init needed to be changed
so that newly spawned processes are treated differently from the original ones. Second, a
MPI error handler that starts the necessary steps to recover from the failure on surviving
processes needs to be written. And third a function that recreates the communicators and
restores normal program functionality needs to be implemented.

Changes to TeaMPI-Initialization

When a program calls MPI_Init, initialiseTMPI is called to initialize teaMPI. During normal
operation, initialiseTMPI is the part of teaMPI where the MPI ranks are assigned to their
corresponding team-communicators. Additional communicators that are used internally and
for heartbeats between ranks are also created in this function.
Newly spawned processes need to be treated differently from the ones started during
the normal startup. In order to differentiate between spawned and normal processes,
MPI_Comm_get_parent can be used. It will return MPI_COMM_NULL for original processes;
for newly spawned processes it will return the parent intercommunicator that can be used
to communicate with the original processes. A newly spawned process will then call the
recreate_world function in order to rebuild the communicators.

The Error Handler

In MPI error handlers can be set on a communicator. Those error handlers are called when a
MPI-operation on that communicator fails. By default MPI implementations are required to
provide two such error handlers MPI_ERRORS_ARE_FATAL which will abort the job in case of a
failure and MPI_ERRORS_RETURN which will return the corresponding error code to the user. It
is also possible to implement user-specific error handlers.
If a failure occurs in fault tolerant teaMPI, the first thing that will happen is that the processes
directly affected by the failure will enter a user-specific error handler. The main purpose of
this error handler is failure reporting, so that processes that are not directly communicating
with the failed process or processes will also be notified of said failure. This is done by having
the error handler revoke the team communicator, the teaMPI internal world communicator
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TMPI_COMM_WORLD, the teaMPI internal library communicator and the inter team communicator
used for heartbeats. Should a process, unaware of the failure, use one of these communicators
the operation will fail with a revoked communicator error. That means it will also enter
the error handler. After those four communicators have been revoked the recreate_world

function will be called. This is illustrated in listing 6.2.

Listing 6.2: The error handler when using cold spares

1 void respawn_proc_errh(MPI_Comm *pcomm, int *perr, ...)

2 {

3 int err = *perr;

4 MPI_Comm comm = *pcomm;

5 int eclass, rank_team, team;

6

7 PMPI_Error_class(err, &eclass);

8

9 //Make sure error is due to process failure, not missuse of MPI calls etc

10 if (MPIX_ERR_PROC_FAILED != eclass && MPIX_ERR_REVOKED != eclass)

11 {

12 PMPI_Abort(comm, err);

13 }

14

15 //Revoke all communicators

16 PMPIX_Comm_revoke(getWorldComm());

17 PMPIX_Comm_revoke(getLibComm());

18 PMPIX_Comm_revoke(getTeamComm(MPI_COMM_WORLD));

19 PMPIX_Comm_revoke(getTeamInterComm());

20

21 //Enter recreate world function

22 respawn_proc_recreate_world(false);

23 }

Rebuilding the Communicators

The core part of the fault tolerance code is the recreate_world function, which performs two
main tasks: Respawning as many processes as needed and integrating those new processes
into the communication structure of teaMPI. It can be divided into three pieces: code that is
executed by surviving processes, code that is executed by newly spawned processes and code
that is executed by both.
The first operation surviving processes need to carry out is to create a new communicator
without failed processes using MPI_Comm_shrink. Using this new communicator and MPI
group operations, it is possible to identify which processes have failed and how many
failures have occurred. Next as many processes as have failed need to be spawned using
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Figure 6.1: Flowchart of the recreate_world function when using cold spares.

MPI_Comm_spawn. The failed teams are also calculated and it is checked if a team exists
that does not contain failures. If no such team exists, application execution is aborted.
Next the ranks of the failed processes in the old world communicator are calculated using
MPI_Group_translate_ranks and are sent to the newly spawned processes. The number of
the first team that did not suffer from any failures will also be sent.
A newly spawned process will just receive said rank, as well as the team number.
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Figure 6.2: Flowchart of used communicators during a call to recreate_world when using
cold spares

Next, a new communicator that contains surviving processes as well as the newly spawned
ones is constructed by creating a new intracommunicator from the intercommunicator that
is created when spawning new processes using MPI_Intercomm_merge. Due to the way how
MPI orders processes when using this operation, the processes will not have the right ranks.
To fix this, another new communicator is created using MPI_Comm_split. The key that is used
to assign the rank in this new communicator is the rank in the old world communicator for
surviving processes, and the rank that has been received for newly spawned ranks. This
new communicator will then become the new TMPI_COMM_WORLD. A new team and library
communicator will also be split from this communicator, just like it would happen during
initialiseTMPI. As a last step, a team that did not contain failed processes will call the
create-checkpoint callback, and failed teams will call the load-checkpoint callback that have
been set by the application. The generell functionality of this process is shown in figure 6.1
and the used communicators are shown in more detail in figure 6.2.
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6.2.3 Fault Tolerance with Warm Spares in teaMPI

The main concept of fault tolerance with warm spares is the same as when using cold spares:
replace failed processes with new ones. But whereas with cold spares new processes are
spawned, warm spares are created during normal program startup. They do not perform any
meaningful computation but wait until they are needed to replace failed ones.
To tell teaMPI how many of the initial MPI ranks should be set aside as spares, a new
environment variable, SPARES, has been introduced. If it is not set, a default value of zero
spares will be used.

Changes to TeaMPI-Initialization

The initialization differs from normal teaMPI in that way, that the spare processes need to
be assigned to their own team. All ranks which have a rank that is equal or higher than
total_number_ranks - SPARES will be used as spare rank, the rest as normal ranks. All spare
ranks are placed into their own team, which is the team with the highest team number. After
the teaMPI-initialization has been finished, all spares will wait until a failure occurs, and not
participate in normal program execution.

The Error Handler

When using warm spares, the error handler works exactly as the one used in conjunction
with cold spares. It revokes all communicators and enters the recreate_world function that
rebuilds the communicators after a failure has occurred.

Rebuilding the Communicators

Just like when using cold spares, the core fault tolerance functionality is provided by the
recreate_world function. Its purpose is to create new communicators where failed ranks
have been replaced by spares.
After a process has entered this function, the first step is to shrink the world communicator,
in order to create a new one without failed processes. Using MPI group operations, the failed
ranks are identified and the teams they belonged to are calculated. A team that does not
contain failures will be selected, so that it can create the checkpoint later on. The types of
failed processes, meaning if the process was a spare or a normal process, are also identified.
If there are not enough spares available to replace all failed normal ranks, the program
execution is aborted. Next a new communicator is created using MPI_Comm_split. In this
new communicator all failed normal processes will be replaced by spares and all surviving
processes will retain their original rank. Based on this communicator, a new team and a new
library communicator are created as well. All teams that contained failed processes will now
call the load checkpoint callback and the team designated to create the checkpoint will call
the create checkpoint callback. This is shown in figure 6.3.
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Figure 6.3: Flowchart of the recreate_world function when using warm spares.

6.3 Integrating SWE and Fault Tolerant teaMPI

In order to integrate SWE with teaMPI essentially four things need to be done.

1. Setting the desired teaMPI error-handling strategy as described above

2. Creating a callback that is able to create a checkpoint

3. Creating a callback that is able to recover from a checkpoint

4. Periodically checking for failures using heartbeats
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Listing 6.3: Extra steps necessary to initialize fault tolerant teaMPI

1 #ifdef TEAMPI

2 //! TeaMPI team number

3 int l_teamNumber;

4 //Paramter: vector of failed teams

5 std::function<void(std::vector<int>)> create(createCheckpointDisk);

6 //Parameter: number of team used to load checkpoint

7 std::function<void(int)> load(loadCheckpointDisk);

8 TMPI_SetCreateCheckpointCallback(&create);

9 TMPI_SetLoadCheckpointCallback(&load);

10 TMPI_SetErrorHandlingStrategy(TMPI_WarmSpareErrorHandler);

11 #endif

The checkpoint can be loaded using the features described in 6.1 or via MPI.
When loading the checkpoint, a problem that will arise is that spares or newly spawned
processes will be in a different state of process execution than surviving processes. This
can be solved by having all processes restart execution from the same place. To achieve this
setjmp and longjmp can be used. These two functions allow the implementation of control
flow between function calls that deviates from the usual control flow consisting of calls and
returns. With setjmp the calling environment can be saved in a buffer and longjmp can
restore the saved data from the buffer. Using setjmp and longjmp, it is essentially possible to
jump from called functions to calling functions. In the case of SWE those functions are used
to jump to the part of the main function where MPI_Init is called. The heartbeats are carried
out at the same place where a checkpoint would have been written in the checkpoint/restart
version. In my experiments a heartbeat interval of 5 seconds was used.
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Listing 6.4: Use of longjmp to restart program execution

1 void loadCheckpoint(int reloadTeam){

2 //Load Checkpoint from disk or receive data via MPI...

3

4 //Jump to predefined location, setjmp will return 1

5 longjmp(jumpBuffer, 1);

6 }

7

8 int main( int argc, char** argv ) {

9

10 //...

11

12 /*setjmp returns 0 if called directly. When using longjump

13 * to jump to saved states setjmp will return the value defines in

14 * the call to longjmp

15 */

16 if(setjmp(jumpBuffer) == 0){

17 /*When called after loading a checkpoint MPI_Init is not called

18 * again as calling MPI_Init multiple times is illegal

19 */

20 if ( MPI_Init(&argc,&argv) != MPI_SUCCESS ) {

21 std::cerr << "MPI_Init failed." << std::endl;

22 }

23 }

24

25 //...

26

27 }
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7.1 Theoretical Model

A problem encountered in the practical part of the evaluation is, that the memory footprint
and therefore the time needed to save a checkpoint of SWE is not particularly huge. For
example in SWE writing a checkpoint with 16 processes on 4 nodes only takes a fraction
of a second. Other applications might need tens of minutes to checkpoint their entire state.
Fault tolerance by replication is targeted more towards larger scale systems, like upcoming
exascale systems. This is the reason why the benefits gained by combining SWE and teaMPI
are not as large as could be expected, as can be seen in section 7.2.4. A theoretical model
that shows how reactive team recovery with teaMPI might behave in face of shorter MTBFs
and higher checkpointing costs will be presented, and used to compare the performance of
checkpointing against reactive team recovery with teaMPI.

7.1.1 Analytical Model

The analytical model assumes that the program has to do a certain amount of work before it
is finished. This is work is represented as cpu time of meaningful work that needs to be done,
this total work will be denoted as wt. During program execution failures will strike exactly
every time the mean time between failure tmtb f has passed. To counteract the failure the
checkpoint based implementation writes checkpoints that take tcp of time units to write every
time a checkpoint interval of ti time units has passed. The total run-time of the program can
than be represented as a sequence of intervals of length tmtb f . During each of these intervals a
certain amount of work is done, whereas the rest of this interval is wasted due to checkpoints
being written or work being lost due to it not being saved in a checkpoint. The meaningful
progress during one such interval is denoted as wprog.

wprog = kmtb f ∗ ti (7.1)

With kmtb f being the number of not interrupted checkpoints that have been written until a
failure strikes. For each uninterrupted checkpoint ti time units of work have been done.

kmtb f =

⌊
tmtb f

ti + tcp

⌋
(7.2)

The number of completely finished MTBF intervals needed to complete the given amount
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of work is then given by kprog:

kprog =

⌊
wt

wprog

⌋
=

 wt

ti ∗
⌊

tmtb f
ti+tcp

⌋
 (7.3)

The biggest part of the overall execution time T is therefore given by:

kprog ∗ tmtb f =

 wt

ti ∗
⌊

tmtb f
ti+tcp

⌋
 ∗ tmtb f (7.4)

This equation does not account for the work that might be done in the final interval where
no failure occurs. This final interval takes t f inal time to complete.

t f inal = wrem + ncp(wrem) ∗ tcp (7.5)

where wrem is the remaining work that has not been finished yet and ncp(wrem) the number
of checkpoints written while doing the remaining work. It holds that:

wrem = wt − kprog ∗ wprog = wt −

 wt

ti ∗
⌊

tmtb f
ti+tcp

⌋
 ∗ ⌊ tmtb f

ti + tcp

⌋
∗ ti (7.6)

The number of checkpoints written during that time is given by:

ncp(wrem) =

⌊
wrem

ti

⌋
=


wt −

 wt

ti∗
⌊

tmtb f
ti+tcp

⌋
 ∗ ⌊ tmtb f

ti+tcp

⌋
∗ ti

ti

 (7.7)

The total time T needed for wt work units with a MTBF of tmtb f checkpointing costs of tcp

and a checkpoint interval of ti is therefore:

T = kprog ∗ tmtb f + wrem + ncp(wrem) ∗ tcp (7.8)

For teaMPI the formula is easier. In the approach teaMPI suffers from an overhead o
that is caused by the fact that with replication more resources are needed. The overhead is
multiplicated with the work time wt. It is assumed that teaMPI works until a failure occurs
after an interval of tmtb f after which a checkpoint needs to be written which takes tcp time
units. Just like with checkpointing a correction needs to be added that considers the final
interval where no failure occurs. The total execution with teaMPI is therefore:⌊

o ∗ wt

tmtb f

⌋
(tmtb f + tcp) + ((o ∗ wt)mod tmtb f ) (7.9)
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7 Results

It needs to be said that this approach is not ideal. As failures always strike at the same
time it becomes trivial to guess a correct checkpoint interval, which is able to take exactly one
checkpoint right before the failure strikes. This would allow checkpoint restart to perform
more efficiently than teaMPI, as it provides the benefit of taking a checkpoint only in case of a
failure but without any overhead. Another problem is that very bad combinations of MTBFs
and checkpointing costs will let the formula for checkpoint diverge to infinity as failures
always strike before a checkpoint is written. Also restarting the work after a failure does not
have cost with checkpointing and teaMPI and in the model it is not possible for a failure to
strike during the teaMPI recovery.

7.1.2 Simulation

In order to evaluate the performance under a more realistic scenario, a simulation has been
written. This simulation still works under the assumptions mentioned above, which includes
the fact that there is no cost for restart and failures can not strike during teaMPI recovery but
failures are exponentially distributed. This means that for checkpointing Young’s formula
mentioned in section 2.1 can be used to estimate the ideal checkpoint interval.
In the case of checkpointing the simulation works by keeping track of the total elapsed time
T and the amount of work that is left to be done, wl , which in the beginning is the overall
work that needs to be done wt. The algorithm works iteratively: First an interval of random
but exponentially distributed length is generated. This can be done by generating a random
value r between 0.0 and 1.0, an exponentially distributed random time interval I can than be
obtained with:

I =
− ln r

λ
(7.10)

where λ is 1
MTBF . Next it is checked how many sequences of work and complete checkpoints

can be written in I. The sum of work done, that is saved by a checkpoint is then subtracted
from wl and I is added to the total elapsed time T. This processes is repeated until wl is zero.
For teaMPI the simulation works almost the same. Just like in the aforementioned approach a
overhead o is assumed for teaMPI which simply manifests itself as linear factor for the overall
work wt. Just like in the checkpointing simulation a exponentially distributed interval I is
generated. The simulation then assumes that work is done until the failure strikes. After the
failure occurs a checkpoint needs to be written that means the checkpoint costs needs to be
added to T. After that the processes can start from the beginning and needs to be repeated
until all work is done.

7.1.3 Results

The results have been calculated using a total work time of 4320 minutes. In case of the
formula a constant checkpoint interval of 200 minutes has been used and for the simulation
the checkpoints interval is has been calculated using Young’s formula. The teaMPI overhead
was set to 1.5 and 2.0.
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7 Results

(a) Overhead of 1.5

(b) Overhead of 2.0

Figure 7.1: Difference in execution time between teaMPI and checkpointing calculated using
the formula from 7.1.1. TeaMPI is faster for positive values.
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7 Results

(a) Overhead of 1.5

(b) Overhead of 2.0

Figure 7.2: Difference in execution time between teaMPI and checkpointing calculated using
the simulation from 7.1.2. TeaMPI is faster for positive values.
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As can be seen in figures 7.1 and 7.2 teaMPI can be substantially faster than checkpoint
restart when the MTBF becomes small or checkpointing costs become large. It needs to be
noted that for the formula, steps occur in the output. The reason for that is that for some
combinations of checkpoint interval and MTBF the amount of work that is lost due to a failure
is minimized. This happens due to the assumption that failures always occur deterministically,
after the MTBF has passed.
All in all it can be said that under the right circumstances teaMPI is faster than checkpointing
even if teaMPI has an overhead of 2.

7.2 Performance Benchmark

7.2.1 Testing Environment and Methods

All tests were performed on the CoolMUC-2 Linux Cluster of the LRZ, with ulfm2 version
4.0.2u1 as the used MPI implementation. CoolMUC-2 provides a total of 812 x86 nodes
using Intel Xeon processors with 28 cores per node, with the maximum size of a single job
being 64 nodes. The code was compiled using gcc and the tests carried out use the SWE
SWE_RadialDamBreakScenario, which simulates an elevated water cone in the center of the
domain, on four nodes with a varying number of MPI processes. Every MPI process was
given 7 OpenMP threads, that means that a maximum of 4 MPI processes per node are
possible.
In order to be able to compare the performance of different team sizes and checkpointing
intervals the input size of the SWE calculations was fixed to 3500 by 3500 grid cells. This
size leads to a total execution between 130 and 500 seconds for a failure-free run depending
on the number of used MPI processes. To be able to test how the implementation reacts to
failures an artificial failure was injected by sending the SIGKILL signal to one of the running
MPI processes. The failure was injected after waiting for 50 seconds after program startup or
the recovery from a previous failure. Checkpoints were written to the SCRATCH file system
provided by the linux cluster.
All tests using teaMPI were carried out using two teams. The tests could only be carried
out using warm spares as an error in the MPI configuration in the Linux Cluster prevents
the dynamic process creation features of MPI from working correctly. When trying to
communicate with newly spawned processes ULFM fails with an internal error, stating that
it is unable to reach them. The support has already been contacted and similar errors have
also been found in the other MPI implementations that are available on the CoolMUC Linux
Cluster, as well as the SuperMUC supercomputer.
When using teaMPI 16 MPI processes were allocated, but up to 8 of those processes were
used as spares.

7.2.2 Evaluation of Checkpoint Restart in SWE

In order to be able to see the performance benefits of the reactive team recovery in teaMPI,
the results need to be compared to the classical approach using checkpoint restart. The first
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7 Results

(a) 4 MPI processes (b) 6 MPI processes

(c) 8 MPI processes (d) 12 MPI processes

(e) 16 MPI processes

Figure 7.3: Total duration of a simulation run plotted against different checkpoint intervals
for a varying number of processes and injected failures
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(a) 4 MPI processes (b) 6 MPI processes

(c) 8 MPI processes (d) 12 MPI processes

(e) 16 MPI processes

Figure 7.4: Total duration of a simulation run plotted against the number of injected failures
for varying number of processes and checkpoint intervals
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(a) 10 seconds (b) 30 seconds

(c) 50 seconds (d) 70 seconds

(e) 90 seconds

Figure 7.5: Relative difference in execution time between failure and failure free scenario for
varying number of failures.
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(a) 4 MPI processes (b) 6 MPI processes

(c) 8 MPI processes (d) 12 MPI processes

(e) 16 MPI processes

Figure 7.6: Number of checkpoints written plotted against the number of injected failures for
varying number of processes and checkpoint intervals
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takeaway from the experiments is the influence of the checkpoint interval on the execution
for a different number of processes and failures as shown in figure 7.3. When comparing
those graphs with each other it is obvious that using 4 processes, as shown in subfigure 7.3a,
results in a significant outlier regarding the performance. When using 4 processes access to
the file system becomes so slow that even with failures, longer checkpointing intervals are
always performing better than writing checkpoints more frequently. When using 6 or more
MPI processes most other runs seem to perform best when using a checkpoint interval of
30 seconds. When writing checkpoints more often the overhead of writing to the file system
increases drastically and when writing less checkpoints more rework is required in case of a
failure. It can also be seen, that as expected injecting more failures leads to a longer elapsed
wall clock time. The reason that an interval of 30 seconds is the best performing interval is
that failures are injected 50 seconds after starting or restarting the simulation. That means
that with a shorter interval unnecessary checkpoints are written and with longer intervals no
checkpoint is written before the failure occurs, leading to more wasted work.

The response to the injected failures can be seen in figures 7.4 and 7.5. It can be seen that
with the best performing checkpoint interval the overhead caused by the failures ranges
between 1.1 and 1.75 depending on the number of used MPI processes. The overhead is
calculated by comparing the elapsed wall time without failures to the wall time with failures.
Therfore the overhead contains the time needed for restarting as well as writing checkpoints
and work that is lost due to the failure. It is interesting to note that the highest relative
overhead that occurs is observed when using 16 MPI processes. Comparing that to the
absolute duration, using 16 processes still yields the fastest execution time.
As can be seen in figure 7.6, the number of checkpoints written stays relatively constant and
does not change much when injecting more failures. The reason for this is that the checkpoint
interval is measured in respect to actual being done and not overall elapsed time.

7.2.3 Evaluation with teaMPI redundancy

The experiments with redundant teaMPI have been carried out using a total of 16 processes
with either 4, 6 or 8 spares, which means either 12, 10 or 8 processes participating in normal
computation. The size of a single team is then 6, 5 or 4 processes. The recovery works as
described in section 6.2.3, in case of a failure the failed processes is replaced by a spare and
the callbacks set in SWE are called. The surviving team then creates a checkpoint which
is loaded by the failed team, and the failed team then resumes operation using the data
loaded from the chceckpoint. The absolute run times in a failure free scenario can be seen
in figure 7.7. As expected using more spares results in a significant performance overhead,
as processes are started that do not take part in the actual computation. The absolute and
relative overhead caused by injecting up to four failures can be seen in figure 7.8 and 7.9.
When using 6 or 4 spares the overhead caused by failures is very low, but with 8 spares the
overhead rises much stronger. The reason for this is, that when using 8 spares the size of one
team is 4 processes and as already observed in section 7.2.2 writing checkpoints with few
processes is much more costly.
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Figure 7.7: Execution time in a failure free scenario with differing number of spares.

Figure 7.8: Duration of total execution time with failures.

´

Figure 7.9: Relative overhead caused by failures
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7.2.4 Comparison of CR and teaMPI

Before comparing teaMPI and Checkpoint/Restart it is important to note that when using
teaMPI the number of processes needed to achieve the same speed as without it, is at least
doubled, depending on the number of used teams. When using spares additional processes
need to be set aside and can not participate in normal program execution. The doubling of
needed resources might be alleviated to a certain extend by using task sharing as described in
[3], but this was out of scope for this thesis. All of this means there are two ways to compare
the performance of teaMPI and Checkpoint/Restart.
The first comparison that needs to be drawn is to compare the performance when looking
at the total number of used processes. For a run with teaMPI this is total number of MPI
processes minus the number of warm spares and for C/R it is the total number of used
processes. In the experiments performed with teaMPI the number of processes was always
set to 16, with a varying number of spares. As can be seen in figures 7.10 and 7.11, in this
case C/R always performs faster as long as a good checkpoint interval is used. Only when
using 12 processes and a unsuitable checkpoint interval teaMPI outperforms C/R when 3
or 4 failures are injected. The reason for this is that C/R can use double the processes for
computation as teaMPI is performing redundant calculations without task sharing.

(a) Absolute difference (b) Relative difference

Figure 7.10: Absolute difference in execution time in failure free scenario using different
number of processes
Team size is half the number of used processes

The next comparison that can be drawn is looking at how C/R performs compared to
teaMPI when C/R uses exactly as many processes as a single team in teaMPI does. The
results of this comparison is shown in figures 7.12 and 7.13. In this case the advantage is
clearly on the side of the teaMPI implementation. TeaMPI holds a significant advantage
to C/R using only four processes which is due to the fact that checkpointing with this
number of processes is much more expensive then with more. Even without failures teaMPI
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(a) Absolute difference using 8 processes
Team size of 4

(b) Absolute difference using 12 processes
Team size of 6

(c) Relative difference using 8 processes
Team size of 4

(d) Relative difference using 12 processes
Team size of 6

Figure 7.11: Comparing difference in execution time between teaMPI and C/R. The absolute
number of processes excluding spares is used as the baseline for comparison
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(a) Absolute difference (b) Relative difference

Figure 7.12: Difference in execution time in failure free scenario using different number of
processes
Team size is equal to the number of used processes

is about 90 seconds faster than C/R. When using 6 processes this effect is not so extreme as
checkpointing becomes much cheaper. Still teaMPI is about a minute faster in the four failure
case than the best performing checkpoint interval. In a failure free case teaMPI also holds
a slight advantage over C/R as no time is wasted writing checkpoints. As with 6 processes
checkpointing is not that expensive, and the effect is much less pronounced than when using
only four processes.
All in all it can be said that when the performance penalty of using teaMPI can be reduced,
which can be done by using task sharing, the fault tolerant teaMPI offers the possibility to
create fault tolerant software without checkpoints or writing much less frequent checkpoints.
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(a) Absolute difference using 4 processes
Team size of 4

(b) Absolute difference using 6 processes
Team size of 6

(c) Relative difference using 4 processes
Team size of 4

(d) Relative difference using 6 processes
Team size of 6

Figure 7.13: Comparing difference in execution time between teaMPI and C/R. The number
of processes in a team is used as the baseline for comparison
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8 Conclusion and Further Work

The evaluation of teaMPI showed that it might be an efficient tool to combat failures in
an HPC environment. In order to be able to conclusively compare the performance of the
implementation further work needs to be done. As SWE suffered from the problem that check-
points were comparatively cheap to write, the overhead suffered by the checkpoint/restart
implementation was negligible with more than four processes. Therefore teaMPI needs to
be tested on a larger scale with production-level code like ExaHyPE [25]. Software like
this will have a larger memory footprint and saving a checkpoint will become much more
expensive. As shown in the theoretical model the teaMPI solution becomes more efficient
than checkpointing with an increasing cost of writing a checkpoint. Testing on a larger scale
with more realistic failure scenarios and MTBFs will also be necessary, as the problem of
frequent failures is one that is much more likely to occur in very large scale computations,
making use of hundreds or thousands of nodes. As shown when comparing the teaMPI
solution against checkpointing, teaMPI holds an advantage when its overhead, caused by
the redundant computation is ignored. For that reason fault tolerant teaMPI needs to be
integrated with task sharing. This is not trivial as this removes the redundancy between teams
that is used to restart in case of a failure, but it could be used to improve the performance
and reduce the overhead of teaMPI compared to checkpointing.

Another task that needs to be done is testing the cold spares implementation, which could
not yet be carried out due to an error in the MPI setup of the CoolMUC2 Linux-Cluster.
Further work that can be done in regards to teaMPI also includes improving the performance
of the fault tolerant heartbeats by rewriting them using non-blocking MPI constructs. In
addition to the current warm and cold spares error handling strategies a shrink strategy
could be implemented as well. Some use cases might profit from such a way of dealing with
failures and it would allow to launch teaMPI without wasting processing resources for spares.
TeaMPI reduces the number of failures that are fatal for the program execution but larger
scale failures, for example ones affecting multiple teams can not easily be handled by teaMPI.
Therefore the combination of fault tolerant teaMPI with other fault tolerance techniques
such as regular checkpointing or application specific techniques might also be worth a more
detailed theoretical analysis.
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