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Abstract
In convex integer programming, various procedures have been developed to strengthen
convex relaxations of sets of integer points. On the one hand, there exist several
general-purpose methods that strengthen relaxations without specific knowledge of
the set S of feasible integer points, such as popular linear programming or semi-
definite programming hierarchies. On the other hand, various methods have been
designed for obtaining strengthened relaxations for very specific sets S that arise
in combinatorial optimization. We propose a new efficient method that interpolates
between these two approaches. Our procedure strengthens any convex set containing
a set S ⊆ {0, 1}n by exploiting certain additional information about S. Namely, the
required extra information will be in the form of a Boolean formula φ defining the
target set S. The new relaxation is obtained by “feeding” the convex set into the
formula φ. We analyze various aspects regarding the strength of our procedure. As
one application, interpreting an iterated application of our procedure as a hierarchy, our
findings simplify, improve, and extend previous results by Bienstock and Zuckerberg
on covering problems.

Mathematics Subject Classification 90Cxx · 52Bxx · 68Q06

1 Introduction

In convex integer programming, there exist various procedures to strengthen convex
relaxations of sets of integer points. Formally, given a set S ⊆ Z

n of integer points
and a convex set Q ⊆ R

n with Q ∩ Z
n = S, these methods aim to construct a new

convex set f (Q) satisfying S ⊆ f (Q) ⊆ Q.
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On the one hand, there exist several general-purpose methods that strengthen relax-
ations without specific knowledge of the set S, in a systematic way. The hierarchies
of Sherali and Adams [27], Lovász and Schrijver [21], and Lasserre [20], which are
tailored to 0/1-sets S ⊆ {0, 1}n , are methods of this type.

On the other hand, various methods have been designed for obtaining strengthened
relaxations for specific sets S. Such methods include, as an example, an impressive
collection of families of valid inequalities of the traveling salesperson polytope that
strengthen the classical subtour elimination formulation. Similar research has been
performed for many other polytopes arising in combinatorial optimization, such as
stable set polytopes and knapsack polytopes.

In thiswork,we propose a newmethod that interpolates between the two approaches
described above. We design a procedure to strengthen any convex set Q ⊆ R

n con-
taining a set S ⊆ {0, 1}n by exploiting certain additional information about S. Namely,
the required extra information will be in the form of a Boolean formula φ defining
the target set S. Instead of viewing a Boolean formula as taking 0/1-vectors as input,
the improved relaxation is obtained by “feeding” the convex set Q into the formula φ,
and will be denoted by φ(Q).

While the formula φ has to be provided as a further input, for certain problems,
there is an “obvious” candidate for φ. For example, suppose that the set S arises
from a 0/1-covering problem. That is, it is given by a matrix A ∈ {0, 1}m×n such that
S = {x ∈ {0, 1}n : Ax ≥ 1}, where 1 is the all-ones vector. Then S can be equivalently
specified by the following Boolean formula in conjunctive normal form

φ :=
m∧

i=1

∨

j :Ai j=1

x j . (1)

In addition, there is a vast literature on representing sets of 0/1-points via Boolean
formulas, and we are free to use any of these formulas for our procedure.

An important property ofφ(Q) is that it can be described by an extended formulation
whose size is bounded by the size of the formula φ times the size of an extended
formulation defining the input relaxation Q. Recall that an extended formulation of
size m of a polytope P is determined by matrices T ∈ R

n×d , A ∈ R
m×d and vectors

t ∈ R
n , b ∈ R

m such that P = {x ∈ R
n : ∃y ∈ R

d : Ay ≥ b, x = T y+ t}. Therefore,
provided that φ has polynomial size, our procedure is efficient in the sense that a small
extended formulation for Q can be converted into a small extended formulation for
φ(Q) in polynomial time.

To illustrate, thewell-studied procedure [10] thatmaps a relaxation Q to its Chvátal-
Gomory closure f (Q) is not efficient in the above sense (this is to be expected since
determining membership in f (Q) is NP-complete [12]). A striking example is given
by choosing Q as the fractional matching polytope [26, Section 30.2]. In this case,
the Chvátal-Gomory closure f (Q) is the matching polytope. It was recently shown
by Rothvoß that all extended formulations of the matching polytope have exponential
size [25].

Another property of our procedure is that it is complete in the sense that iterating it
a finite number of times (in fact, at most n times) always yields the convex hull of S.
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Furthermore, our procedure can be applied to any convex set Q ⊆ [0, 1]n that contains
the target set S. In particular, the set Q is even allowed to contain 0/1-points that do
not belong to S. As an example, we can always apply our method with Q = [0, 1]n ,
and thus finding an initial relaxation for conv(S) is never an issue. Intuitively, this is
possible since the information of which points belong to S is stored in φ.

By viewing an iterated application of our procedure as a hierarchy, we obtain a
significant simplification of theBienstock-Zuckerberg hierarchy [7]. This is a powerful
hierarchy tailored to 0/1-covering problems. However, one of its drawbacks is that the
definitionof the hierarchy is quite complicated. Prior to thiswork, it hadbeen simplified
by Mastrolilli [22] using a modification of the Sherali-Adams hierarchy that is based
on appropriately defined high-degree polynomials. Subsequent to our work, it has also
been simplified by Bienstock and Zuckerberg [9] themselves. Despite the simplicity
of our method, we obtain extended formulations whose size is often vastly smaller
than those of Bienstock and Zuckerberg [7,8] and Mastrolilli [22]. We discuss this in
more detail in Sect. 6.

Another aspect of our work is that it should serve as a bridge between combinatorial
optimization and circuit complexity. As a concrete example, our procedure yields
a very simple proof that Rothvoß’ result [25] on the extension complexity of the
matching polytope implies a seminal result of Raz and Wigderson [23, Theorem 4.1]
on the size of monotone formulas required to describe the matching function. In the
other direction, constructions of small formulas describing a set S ⊆ {0, 1}n can now
be used to obtain small extended formulations for conv(S). We give a few non-trivial
examples of this in Sect. 5, but of course there are many more.

For readers familiar with circuit complexity, we mention that our work is inspired
by a relatively unknown connection between Karchmer-Wigderson games [18] and
nonnegative factorizations, pioneered by Hrubeš [17]. This connection was recently
rediscovered by Göös, Jain and Watson [15] and exploited in [3]. As such, the proofs
of the main properties of our hierarchy are also very short. Indeed, the proof of our
main theorem can be regarded as a “polyhedral” Karchmer-Wigderson game, but no
knowledge of communication complexity is required.

Paper Outline We start by describing our procedure to obtain φ(Q) in Sect. 2. In
Sect. 3, we introduce notions that allow us to quantify the strength of our relaxations.
Our main results regarding properties of the set φ(Q) are presented in Sect. 4. In
Sect. 5, we discuss several applications of our method in detail. In Sect. 6 we compare
our procedure to related work of Bienstock and Zuckerberg [7,8] and Mastrolilli [22],
and state some open problems.

2 Description of the procedure

In order to present the constructionof the procedure, let usfix somenotation concerning
Boolean formulas.Weconsider formulas that are built out of input variables x1, . . . , xn ,
conjunctions ∧, disjunctions ∨, and negations ¬ in the standard way. Here, we define
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the size1 of a Boolean formula as the total number of occurrences of input variables.
We denote by |φ| the size of φ.

Given a Boolean formula φ, we can interpret it as a function from {0, 1}n → {0, 1}
and for an input x = (x1, . . . , xn) ∈ {0, 1}n we will denote its output by φ(x). We
say that the set S = {x ∈ {0, 1}n : φ(x) = 1} is defined by φ. Two formulas are said
to be equivalent if they define the same set.

We say that a formula is reduced if negations are only applied to input variables.
Note that, by De Morgan’s laws, every Boolean formula can be brought into an equiv-
alent reduced formula of the same size. As an example, the formulas

φ1 = ¬ ((x1 ∧ ¬x2) ∨ (¬ (x1 ∨ x3)))

φ2 = (¬x1 ∨ x2) ∧ (x1 ∨ x3) (2)

are equivalent and both have size 4, but only the second is in reduced form.
Below, we will repeatedly use the elementary fact that for every reduced formula

φ of size |φ|, one of the following holds:

• |φ| = 1 and either φ = xi or φ = ¬xi for some i ∈ [n], or
• |φ| ≥ 2 and φ is either the conjuction or the disjunction of two reduced formulas

φ1, φ2 such that |φ| = |φ1| + |φ2|.
This gives a way to represent any reduced Boolean formula as a rooted tree each of
whose inner nodes is labeled with ∧ or ∨ and each of whose leaves is labeled with a
non-negated variable xi or a negated variable ¬xi . Note that there may be many trees
that represent the same reduced Boolean formula, but this will not matter. Observe
that the size of a formula is the number of leaves in any one of its trees.

We are ready to describe our method to strengthen a convex relaxation of a given
set of points in {0, 1}n .
Definition 1 Let φ be a reduced Boolean formula with input variables x1, . . . , xn and
let Q ⊆ [0, 1]n be any convex set.

The set φ(Q) ⊆ R
n is recursively constructed from the formula φ as follows.

• Replace any non-negated input variable xi by the set {x ∈ Q : xi = 1}.
• Replace any negated input variable ¬xi by the set {x ∈ Q : xi = 0}.
• Replace any conjuction ∧ of two sets by their intersection.
• Replace any disjunction ∨ of two sets by the convex hull of their union.

As an example, given any convex set Q ⊆ [0, 1]3 and the formula φ2 defined in (2),
we have

φ2(Q) = conv
({x ∈ Q : x1 = 0} ∪ {x ∈ Q : x2 = 1})

∩ conv
({x ∈ Q : x1 = 1} ∪ {x ∈ Q : x3 = 1}).

In the remainder of this work, we will analyze several properties of φ(Q). One simple
observation will be that, if S is defined by φ and S ⊆ Q, then S ⊆ φ(Q) ⊆ Q.

1 Some sources also count the number of occurrences of ∧, ∨ and ¬, which is not necessary for our
purposes.
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Furthermore, φ(Q) is strictly contained in Q unless conv(S) = Q. In order to quantify
this improvement over Q, we will introduce useful measures in the next section.

3 Measuring the strength: pitch and notch

We now introduce two quantities that measure the strength of our procedure. To this
end, note that for every linear inequality in variables x1, . . . , xn we can partition [n]
into sets I+, I− ⊆ [n] (with I+ ∪ I− = [n] and I+ ∩ I− = ∅) such that the inequality
can be written as

∑

i∈I+
ci xi +

∑

i∈I−
ci (1 − xi ) ≥ δ, (3)

where c = (c1, . . . , cn)ᵀ ∈ R
n≥0 and δ ∈ R. Since we will only consider the intersec-

tion of [0, 1]n with the set of points satisfying such an inequality, we are only interested
in inequalities where δ ≥ 0. In this case, we call (3) an inequality in standard form.

The notch of an inequality in standard form is the smallest number ν such that

∑

j∈J

c j ≥ δ (4)

holds for every J ⊆ [n] with |J | ≥ ν, while its pitch is the smallest number p such
that (4) holds for every J ⊆ supp(c)with |J | ≥ p. Note that the pitch of an inequality
is at most its notch. For instance, the notch of the inequality x1+xn ≥ 1 is n−1, while
its pitch equals 1. Both quantities appear in the study of Chvátal-Gomory closures of
polytopes in [0, 1]n .

Intuitively, the notch of an inequality is related to how “deep” it cuts the 0/1-cube.
For simplicity, assume that I− = ∅, so that the origin minimizes the left-hand side
of (3) over the cube. The notch of (3) is then the smallest number ν such that no
0/1-vector of Hamming weight ν or more is cut by the inequality. A similar intuition
applies to the pitch.

We extend the definition of notch from inequalities to sets of 0/1-points as follows.
The notch of a non-empty set S ⊆ {0, 1}n , denoted ν(S), is the largest notch of any
inequality in standard form that is valid for S. It can be shown that ν(S) is equal to the
smallest number k such that every k-dimensional face of [0, 1]n contains a point from
S. This equivalent definition of notch2 was introduced in [6]. The main result of [6]
is that if S has bounded notch and conv(S) has bounded facet coefficients, then every
polytope Q ⊆ [0, 1]n whose set of 0/1-points is S has bounded Chvátal-Gomory rank.

The term pitch was used by Bienstock and Zuckerberg [7], who defined it formono-
tone inequalities in standard form, that is, where I− = ∅. Bounded pitch inequalities
are related to the Chvátal-Gomory closure as follows. Consider any constants ε > 0
and � ∈ Z≥1, and any relaxation Q := {x ∈ [0, 1]n : Ax ≥ b}of a set S := Q∩{0, 1}n ,
with A, b nonnegative. Bienstock and Zuckerberg [8, Lemma 2.1] proved that adding

2 To avoid possible confusion, we warn the reader that in a previous version of [6], this notion is called
pitch instead of notch.
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all valid pitch-p inequalities for p ≤ �/ ln(1+ ε)� = �(�/ε) to the system defining
Q gives a relaxation R that is a (1 + ε)-approximation3 of the �-th Chvátal-Gomory
closure of Q.

4 Main results

In this section, we prove several properties of the set φ(Q). Let us start with the
following simple observation.

Proposition 2 For every reducedBoolean formulaφ and every convex set Q ⊆ [0, 1]n,
the set φ(Q) is a convex subset of Q. Moreover, φ(Q) contains every point x ∈ {0, 1}n
such that x ∈ Q and φ(x) = 1. In other words, φ(Q) contains Q ∩ φ−1(1).

Proof The fact that φ(Q) is a convex set contained in Q is clear, since φ(Q) is
constructed from faces of Q by taking intersections and convex hulls of unions.

We prove the second part by induction on the size of φ. If |φ| = 1, then φ is either
φ = xi or φ = ¬xi for some i ∈ [n]. So either φ(Q) = {x ∈ Q : xi = 1} or
φ(Q) = {x ∈ Q : xi = 0}, respectively. We see immediately that φ(Q) contains
Q ∩ φ−1(1).

Now if |φ| ≥ 2, then φ is the conjunction or disjunction of two formulas of smaller
size, say φ1 and φ2. In the first case, φ = φ1 ∧ φ2 and we have φ(Q) = φ1(Q) ∩
φ2(Q) ⊇ (Q ∩ φ−1

1 (1)) ∩ (Q ∩ φ−1
2 (1)) = Q ∩ (φ−1

1 (1) ∩ φ−1
2 (1)) = Q ∩ φ−1(1),

where the inclusion follows from induction. In the second case, φ = φ1 ∨ φ2 and
φ(Q) = conv(φ1(Q) ∪ φ2(Q)) ⊇ (Q ∩ φ−1

1 (1)) ∪ (Q ∩ φ−1
2 (1)) = Q ∩ (φ−1

1 (1) ∪
φ−1
2 (1)) = Q ∩ φ−1(1).

Next, we argue that we can use φ to transform any extended formulation for Q into
one for φ(Q). To this end, we make use of the extension complexity of a polytope P ,
which is defined as the smallest size of any extended formulation for P , and is denoted
by xc(P). We need the following standard facts about extension complexity. First, if F
is a non-empty face of P , then xc(F) ≤ xc(P). Second, for any non-empty polytopes
P1, P2 ⊆ R

n one has xc(P1 ∩ P2) ≤ xc(P1) + xc(P2). Third, a slight refinement of
Balas’ theorem [2] states that xc(conv(P1∪P2)) ≤ max{xc(P1), 1}+max{xc(P2), 1},
see [30, Prop. 3.1.1].

Proposition 3 Let φ be a reduced Boolean formula and let Q ⊆ [0, 1]n be a polytope
such that φ(Q) �= ∅. Then φ(Q) is a polytope with extension complexity xc(φ(Q)) ≤
|φ| xc(Q).

Proof. First, note that if xc(Q) = 0, then Q is a single point and so is φ(Q), which
implies xc(φ(Q)) = 0 and hence the claimed inequality holds trivially. Thus, we may
assume that xc(Q) ≥ 1 holds.

We prove the claim by induction over the size of φ. If |φ| = 1, then φ = xi or
φ = ¬xi for some i ∈ [n]. So either φ(Q) = {x ∈ Q : xi = 1} or φ(Q) = {x ∈ Q :
xi = 0}, respectively. In both cases,φ(Q) is a face of Q and hence xc(φ(Q)) ≤ xc(Q).

3 Here, this means that min{cᵀx : x ∈ f �(Q)} ≤ (1 + ε)min{cᵀx : x ∈ R} for every nonnegative cost
vector c, where f �(Q) denotes the �-th Chvátal-Gomory closure of Q.
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If |φ| ≥ 2, there exist reduced Boolean formulas φ1, φ2 (of size smaller than |φ|)
with |φ| = |φ1| + |φ2| such that φ = φ1 ∧ φ2 or φ = φ1 ∨ φ2. First, consider the case
φ = φ1 ∧ φ2, in which we have φ(Q) = φ1(Q) ∩ φ2(Q). Since φ(Q) is non-empty,
the same holds for φ1(Q) and φ2(Q) and hence, by the induction hypothesis, we have
xc(φi (Q)) ≤ |φi | xc(Q) for i = 1, 2. Therefore,

xc(φ(Q)) ≤ xc(φ1(Q)) + xc(φ2(Q)) ≤ |φ1| xc(Q) + |φ2| xc(Q) = |φ| xc(Q).

It remains to consider the case φ = φ1 ∨ φ2, in which we have φ(Q) =
conv(φ1(Q) ∪ φ2(Q)).

Note that the claimed inequality holds if φ1(Q) = ∅ or φ2(Q) = ∅. Thus, we
may assume that φ1(Q) and φ2(Q) are both non-empty. By the induction hypothesis,
xc(φi (Q)) ≤ |φi | xc(Q) for i = 1, 2. Therefore,

xc(φ(Q)) ≤ max{xc(φ1(Q)), 1} + max{xc(φ2(Q)), 1}
≤ max{|φ1| xc(Q), 1} + max{|φ2| xc(Q), 1}
= |φ1| xc(Q) + |φ2| xc(Q)

= |φ| xc(Q).

We remark that the upper bound provided by Proposition 3 is quite generous, and
can be improved in some cases. For instance, if we let τ denote the number of maximal
rooted subtrees of φ whose nodes are either input variables or ∧ gates, then we have
xc(φ(Q)) ≤ τ xc(Q). This is due to the well-known fact that any intersection of faces
of Q is a face of Q.

A Boolean formula is monotone if it does not contain negations. We are ready to
prove our main theorem in the monotone case.

Theorem 4 Let φ be a monotone Boolean formula defining a set S ⊆ {0, 1}n and let
Q ⊆ [0, 1]n be any convex set containing S. If Q satisfies all monotone inequalities
of pitch at most p that are valid for S, then φ(Q) satisfies all monotone inequalities
of pitch at most p + 1 that are valid for S. Moreover, if Q is a polytope defined by
an extended formulation of size σ , then φ(Q) is a polytope that can be defined by an
extended formulation of size |φ|σ , where |φ| is the size of the formula.
Proof The second part of the theorem is implied by Proposition 3. For the first part,
consider any monotone pitch-(p + 1) inequality in standard form that is valid for
S = {x ∈ {0, 1}n : φ(x) = 1},

∑

i∈I+
ci xi ≥ δ. (5)

By the definition of pitch, we may assume ci > 0 for all i ∈ I+. We also assume
δ > 0; otherwise, there is nothing to prove. Let a ∈ {0, 1}n be the characteristic vector
of [n]\I+. Thus, ai = 1 if i ∈ [n]\I+ and ai = 0 if i ∈ I+. Notice that a violates
(5). This implies φ(a) = 0.
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By contradiction, suppose that (5) is not valid for φ(Q). That is, there exists a
point in φ(Q) that violates (5). Let T be a tree that represents the formula φ. Each
v ∈ V (T ) has a corresponding formula, which is the formula computed by the subtree
of T rooted at v. For notational convenience, we identity each node of T with its
corresponding formula.

Our strategy is to find a root-to-leaf path in T such that for every node ψ on this
path,

(�) ψ(a) = 0 and there exists a point x̃ = x̃(ψ) ∈ ψ(Q) that violates (5).

This is satisfied at the root node φ.
Now consider any non-leaf node ψ in T that satisfies (�). Let ψ1 and ψ2 denote the

children of ψ , so that ψ = ψ1 ∧ ψ2 or ψ = ψ1 ∨ ψ2. We claim that, in both cases,
there exists an index k ∈ {1, 2} such that ψk satisfies (�).

First, in case ψ = ψ1 ∧ ψ2, we let x̃(ψ1) = x̃(ψ2) := x̃(ψ) and choose k ∈ {1, 2}
such that ψk(a) = 0. Such an index is guaranteed to exist since ψ(a) = 0. Then ψk

satisfies (�).
Second, in case ψ = ψ1 ∨ψ2, we have ψ1(a) = ψ2(a) = ψ(a) = 0. We let x̃(ψ1)

and x̃(ψ2) be any points of ψ1(Q) and ψ2(Q) (respectively) such that the segment
[x̃(ψ1), x̃(ψ2)] contains x̃ . For at least one k ∈ {1, 2}, the point x̃(ψk) violates (5).
Thus ψk satisfies (�) for that choice of k.

By iterating the argument above, starting at the root node φ, we reach a leaf node
ψ that satisfies (�). Note that ψ = x j for some j , since φ is monotone. We have
a j = ψ(a) = 0, so j ∈ I+. Moreover, there exists a point x̃ = x̃(ψ) ∈ ψ(Q) = {x ∈
Q : x j = 1} that violates (5).

Now consider the monotone inequality

∑

i∈I+
i �= j

ci xi ≥ δ − c j . (6)

This inequality is valid for S since it is the sum of (5) and c j (1 − x j ) ≥ 0, which are
both valid. Since c j (1 − x̃ j ) = 0, (6) is also violated by x̃ ∈ ψ(Q) ⊆ Q. The key
observation is that the pitch of (6) is at most p, which contradicts our assumption that
Q satisfies all monotone inequalities of pitch at most p.

In the non-monotone case, we now prove a statement analogous to Theorem 4
where the pitch is replaced by the notch.

Theorem 5 Let φ be a reduced Boolean formula defining a set S ⊆ {0, 1}n and let
Q ⊆ [0, 1]n be any convex set containing S. If Q satisfies all inequalities of notch at
most ν that are valid for S, then φ(Q) satisfies all inequalities of notch at most ν + 1
that are valid for S. Moreover, if Q is a polytope defined by an extended formulation
of size σ , then φ(Q) is a polytope that can be defined by an extended formulation of
size |φ|σ .
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Proof The proof is almost identical to that of Theorem 4. Instead of repeating the
whole proof, here we only explain the differences. The starting point is a notch-(ν+1)
inequality

∑

i∈I+
ci xi +

∑

i∈I−
ci (1 − xi ) ≥ δ , (7)

where I+ ⊆ [n] and I− ⊆ [n] satisfy I+ ∩ I− = ∅ and I+ ∪ I− = [n], δ > 0,
and ci ≥ 0 for all i ∈ [n]. Contrary to the previous proof, here we allow ci = 0. Let
a ∈ {0, 1}n be the characteristic vector of I−. Notice that a violates (7). This implies
φ(a) = 0.

Let T be a tree that represents the formula φ. Using the same proof strategy, we
find a leaf node ψ = x j or ψ = ¬x j of T such that ψ(a) = 0, and there exists a point
x̃ = x̃(ψ) ∈ ψ(Q) that violates (7).

If ψ = x j , then j ∈ I+ and we consider the valid inequality

∑

i∈I+
i �= j

ci xi +
∑

i∈I−
ci (1 − xi ) + δ(1 − x j ) ≥ δ − c j .

Otherwise, ψ = ¬x j and thus j ∈ I−. In this case, we consider the valid inequality

∑

i∈I+
ci xi +

∑

i∈I−
i �= j

ci (1 − xi ) + δx j ≥ δ − c j .

Since (7) is a notch-(ν + 1) inequality, it is easy to check that the notch of both of the
above inequalities is at most ν. However, they are violated by the point x̃ = x̃(ψ) ∈ Q.
As in the proof of Theorem 4, this gives the desired contradiction.

Setting φ1(Q) := φ(Q) and φ�+1(Q) := φ(φ�(Q)) for � ∈ Z≥1, and using the
trivial fact that the notch of a non-trivial inequality is at most n, we immediately obtain
the following corollary.

Corollary 6 Let φ be a reduced Boolean formula defining a set S ⊆ {0, 1}n and let
Q ⊆ [0, 1]n be any convex set containing S. Then we have φn(Q) = conv(S).

Another consequence of Theorem 5 is that integer points not belonging to S are
already excluded from φ(Q).

Corollary 7 Let φ be a reduced Boolean formula defining a set S ⊆ {0, 1}n and let
Q ⊆ [0, 1]n be any convex set containing S. Then we have φ(Q) ∩ Z

n = S.

Proof It suffices to show that no point from {0, 1}n\S is contained in φ(Q). To this
end, fix x̄ ∈ {0, 1}n\S and consider the inequality

∑

i∈[n]:x̄i=0

xi +
∑

i∈[n]:x̄i=1

(1 − xi ) ≥ 1 ,
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which is violated by x̄ , but valid for all other points of {0, 1}n . Since the inequality
has notch 1, by Theorem 5 it is also valid for φ(Q) and hence x̄ is not contained in
φ(Q).

5 Applications

In this section,wepresent several applications of our procedure, inwhichwe repeatedly
make use of Theorems 4 and 5.

5.1 Monotone formulas for matching

As a first application, we demonstrate how our findings together with Rothvoß’ result
[25] on the extension complexity of the matching polytope yield a very simple proof
of a seminal result of Raz and Wigderson [23, Theorem 4.1], which states4 that any
monotone Boolean formula deciding whether a graph on n nodes contains a perfect
matching has size 2�(n). Before giving any further detail, we point out that Raz and
Wigderson’s result extends to the bipartite case [23, Theorem 4.2], which is not the
case of the polyhedral approach described below.

The fact thatRothvoß’ theorem impliesRaz andWigderson’swasfirst discovered by
Göös, Jain andWatson [15]. While their arguments are based on connections between
nonnegative ranks of certain slack matrices and Karchmer-Wigderson games, which
implicitly play an important role in the proofs of Theorems 4 and 5, our results yield
a straightforward proof that does not require any further notions.

To this end, let n ∈ Z≥2 be even and letG = (V , E) denote the complete undirected
graph on n nodes. The set S considered by Raz and Wigderson is the set

S := {x ∈ {0, 1}E : supp(x) ⊆ E contains a perfect matching}.

Let φ be any monotone Boolean formula in variables xe (e ∈ E) that defines S. Next,
define the polytope

P := {x ∈ [0, 1]E : x(δ(U )) ≥ 1 for every U ⊆ V with |U | odd}.

It is a basic fact that S is contained in P . Furthermore, observe that every non-trivial
inequality in the definition of P has pitch 1. Thus,we have conv(S) ⊆ φ([0, 1]E ) ⊆ P .
Moreover, if we consider the affine subspace

D := {x ∈ R
E : x(δ({u}) = 1 for every u ∈ V },

it is well-known that both conv(S) ∩ D and P ∩ D are equal to the perfect matching
polytope of G, and hence we obtain that φ([0, 1]E ) ∩ D is also equal to the perfect
matching polytope of G. By Rothvoß’ result, this implies xc(φ([0, 1]E )) = 2�(n). On

4 The original result of Raz and Wigderson states that the depth of any monotone circuit computing the
mentioned function is �(n), which is equivalent to the mentioned result, see [29].

123



Strengthening convex relaxations of 0/1-sets using Boolean…

the other hand, by Proposition 3 we also have xc(φ([0, 1]E )) ≤ |φ| · xc([0, 1]E ) =
|φ| · 2|E | ≤ n2|φ| and hence |φ| must be exponential in n.

5.2 Covering problems: the binary case

In this section, we consider sets S ⊆ {0, 1}n that arise from 0/1-covering problems, in
which there is a matrix A ∈ {0, 1}m×n such that S = {x ∈ {0, 1}n : Ax ≥ 1}, where
1 is the all-ones vector. As an example, if A is the node-edge incidence matrix of an
undirected graph G, then the points of S correspond to vertex covers in G. This shows
that, in general, the convex hull of such sets S may not admit polynomial-size (in n)
extended formulations, see for example, [4,14,15].

Moreover, general 0/1-hierarchies may have difficulties identifying basic inequali-
ties even in simple instances. For example, in [8] it is shown that if Ax ≥ 1 consists of
the inequalities

∑
i∈[n]\{ j} xi ≥ 1 for each j ∈ [n], then it takes at least n − 2 rounds

of the Lovász-Schrijver or Sherali-Adams hierarchy to satisfy the pitch-2 inequality∑
i∈[n] xi ≥ 2.
By developing a hierarchy tailored to 0/1-covering problems, Bienstock and

Zuckerberg [7] were able to bypass some of these issues. As their main result, for
each k ∈ N, they construct a polytope f k(Q) containing S satisfying the following
two properties. First, every inequality of pitch at most k that is valid for S is also
valid for f k(Q). Second, f k(Q) can be described by an extended formulation of size
(m+n)g(k), where g(k) = �(k2). However, constructing the polytope f k(Q) is quite
technical and involved.

In contrast, our procedure directly implies significantly simpler and smaller
extended formulations that satisfy all pitch-k inequalities.

Corollary 8 Let A ∈ {0, 1}m×n, S = {x ∈ {0, 1}n : Ax ≥ 1}, and k ∈ N. Then there is
a polyhedral relaxation P of S such that all points of P satisfy all valid inequalities
of pitch at most k, and P can be defined by an extended formulation of size at most
2n · (mn)k .

Proof Let φ := ∧m
i=1

∨
j :Ai j=1 x j . Since [0, 1]n has 2n facets and φ has size at most

mn, we may take P = φk([0, 1]n) by Theorem 4.

5.3 Covering problems: bounded coefficients

Next, we consider a more general form of a covering problem in which S = {x ∈
{0, 1}n : Ax ≥ b} for some non-negative integer matrix A ∈ Z

m×n
≥0 and b ∈ Z

m≥1.
We first restrict ourselves to the case that all entries in A and b are bounded by some
constant  ∈ Z≥2.

Based on their results in [7], Bienstock and Zuckerberg [8] provide an extended
formulation of size O(m + n)g(k), where g(k) = �(k2). Our method yields a sig-
nificantly smaller extended formulation, via the following lemma.

Lemma 9 For every A ∈ Z
m×n
≥0 and b ∈ Z

m≥1 with entries bounded by , the set
S = {x ∈ {0, 1}n : Ax ≥ b} can be defined by a monotone formula φ of size at
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most 5.3mn logO(1)(n). Moreover, this formula can be constructed in randomized
polynomial time.

Proof Fix i ∈ [m], let n′ := ∑n
j=1 Ai j and let ψi be a monotone formula defining

the set {y ∈ {0, 1}n′ : ∑n′
k=1 yk ≥ bi }. Next, pick any function h : [n′] → [n] such

that |h−1( j)| = Ai j for all j ∈ [n]. In formula ψi , replace every occurrence of yk by
xh(k), for k ∈ [n′]. We obtain a monotone formula φi defining the set {x ∈ {0, 1}n :∑n

j=1 Ai j x j ≥ bi }. By using the construction of Hoory, Magen and Pitassi [16] for
the initial formula ψi , the resulting formula φi has size

|φi | = |ψi | ≤ 4.3n′ logO(1)(n′/) ≤ 5.3n logO(1)(n) ,

since n′ ≤ n and bi ≤ . The result follows by taking φ := ∧m
i=1 φi .

Corollary 10 Let A ∈ Z
m×n
≥0 , b ∈ Z

m≥1 with entries bounded by , S = {x ∈ {0, 1}n :
Ax ≥ b}, and k ∈ N. Then there is a polyhedral relaxation P of S such that all
points of P satisfy all valid inequalities of pitch at most k, and P can be defined by
an extended formulation of size at most (5.3mn logO(1)(n))k .

Proof By Theorem 4, we may take P = φk([0, 1]n), where φ is the formula from
Lemma 9.

5.4 Covering problems: the general case

In some cases, especially when m = O(1), the matrix A ∈ Z
m×n
≥0 and vector b ∈ Z

m≥0

may have coefficients as large as 2�(n log n). For such general instances,we can improve
the bound from Corollary 10.

Corollary 11 Let A ∈ Z
m×n
≥0 , b ∈ Z

m≥1, S = {x ∈ {0, 1}n : Ax ≥ b}, and k ∈ N.
Then there is a polyhedral relaxation P of S such that all points of P satisfy all valid
inequalities of pitch at most k, and P can be defined by an extended formulation of

size at most
(
mnO(log n)

)k
.

Proof Beimel and Weinreb [5] show that, for every a1, . . . , an, δ ∈ R≥0, the set
{x ∈ {0, 1}n : ∑n

j=1 a j x j ≥ δ} can be decided by a monotone formula of size

nO(log n). Let φ be the conjunction of these formulas for each inequality in Ax ≥ b.
By Theorem 4, we may take P = φk([0, 1]n).

In comparison, for this general case, Bienstock and Zuckerberg [7] have no non-
trivial upper bound.

5.5 Constant notch 0/1-sets

In this section, we consider non-empty sets S ⊆ {0, 1}n with constant notch ν(S).
These sets have several desirable properties. For example, as noted in [3] (and implic-
itly in [11]), there is an easy polynomial-time algorithm to optimize a linear function
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over a constant notch set S, provided that we have a polynomial-time membership
oracle for S. On the other hand, sets with constant notch do not necessarily admit
small extended formulations. Indeed, counting arguments developed in [1,24] show
that even for a “generic” set S ⊆ {0, 1}n with notch ν(S) = 1, conv(S) requires
extended formulations of size 2�(n).

This raises the question of which constant notch sets do admit compact extended
formulations. As an immediate corollary to Theorem 5, we have the following nice
partial answer.

Corollary 12 If S ⊆ {0, 1}n has constant notch and S can be described by a formula φ

of size polynomial in n, then conv(S) can be described by a polynomial-size extended
formulation.

Notice that every explicit 0/1-set S of constant notch such that xc(conv(S)) is large
would thus provide an explicit Boolean function requiring large depth circuits, and
solve one of the hardest open problems in circuit complexity.

6 Comparison and conclusion

In this paper, we propose a new method for strengthening convex relaxations of
0/1-sets. Our approach currently yields the simplest and smallest linear extended for-
mulations expressing inequalities of constant pitch in the monotone case, and constant
notch in the general case.

By viewing an iterated application of our procedure as a hierarchy, we obtain a
significant simplification of theBienstock-Zuckerberg hierarchy [7]. Prior to ourwork,
[7] had been simplified by Mastrolilli [22] using a modification of the Sherali-Adams
hierarchy. Subsequent to our work, [7] has also been simplified by Bienstock and
Zuckerberg [9] themselves for the case of A ∈ {0, 1}m×n . The way [9] construct their
extended formulation is similar to what we do, except that they replace the canonical
monotone formula in (1) by a (logically equivalent) non-monotone formula, which
might yield a tighter relaxation in some cases.

Although [22] is an important simplification of [7], our approach is from first
principles and assumes no knowledge of polynomial optimization. Moreover, despite
the simplicity of our approach, our extended formulations (see Corollaries 8, 10,
and 11) are significantly smaller than those provided by [7,22]. This is possible since
we allow any monotone formula, and can thus use any known construction from the
literature. In contrast, Bienstock and Zuckerberg [7] implicitly only consider formulas
in conjunctive normal form. The number of clauses in every formula in conjunctive
normal form is at least the number of minimal covers5, which makes it impossible
for them to construct small extended formulations in situations where the number of
minimal covers is large.

Furthermore, the way inwhichwe derive our extended formulations is conceptually
different than [22].Mastrolilli [22] firstwrites down a proof of validity of any bounded-
pitch inequality that has a certain “polynomial” form (similar to a sum-of-squares

5 A point x ∈ {0, 1}n is called a min-term, and its characteristic vector a minimal cover, if x is a minimal
element of S with respect to the component-wise order ≤.
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proof, except that no square is necessary). He then uses this proof to recursively
define a set of polynomials S = S(A, k), and then constructs an extended formulation
generalizing the Sherali-Adams hierarchy from S. At the heart of his approach is a
lemma due to Bienstock and Zuckerberg [7, Lemma 4.2].

In our paper, we give a direct way to strengthen any given relaxation by “feeding”
it in a Boolean formula φ defining the set of feasible 0/1 solutions. That is, we first
describe how to construct the extended formulation. Then we prove that each iteration
(of the same procedure) “gives at least one extra unit of pitch”. At the heart of our
analysis lies a new ingredient (coming from a Karchmer-Widgerson game) replacing
the lemma from Bienstock and Zuckerberg. This is the reason why we improve the
exponential dependence in k from k2 to k in Corollary 8.

Finally, as far as we can tell, our results from Sects. 5.1 and 5.5 are completely
independent from [7,9,22]. To conclude, we state a few open questions raised by our
work.

(1) Do the new extended formulations lead to any new interesting algorithmic appli-
cation, in particular for covering problems? This appears to be connected to the
following question.Howgood are the lower bounds on the optimumvalue obtained
after performing a few rounds of the Chvátal-Gomory closure? For some prob-
lems, such as the vertex cover problem in graphs or more generally in q-uniform
hypergraphs with q = O(1), the bounds turn out to be quite poor in the worst case
[4,28]. The situation is less clear for other problems, such as network design prob-
lems. Recent work [13] on the tree augmentation problem uses certain inequalities
from the first Chvátal-Gomory closure in an essential way. For the related 2-edge
connected spanning subgraph problem, our work implies that one can approxi-
mately optimize over the �-th Chvátal-Gomory closure in quasi-polynomial time,
for every � = O(1).

(2) Forwhich classes of polytopes in [0, 1]n can one approximate a constant number of
rounds of the Chvátal-Gomory closure with compact extended formulations?Mas-
trolilli [22] show that this is possible for packing problems. However, his approach
crucially uses positive semi-definite extended formulations. Packing problems are
unlikely to admit compact linear extended formulations, although we do not have
a proof of this.

(3) Can one find polynomial-size monotone formulas for any nonnegative weighted
threshold function, that is, for everymin-knapsack {x ∈ {0, 1}n : ∑n

i=1 ai xi ≥ β}?
This would improve on the nO(log n) upper bound by Beimel and Weinreb [5].
Klabjan, Nemhauser and Tovey show that separating pitch-1 inequalities for such
sets is NP-hard [19]. However, this does not rule out a polynomial-size extended
formulation defining a relaxation that would be stronger than that provided by
pitch-1 inequalities.
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