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Curing Velocity Superselection in
Non-relativistic QED by Restriction to a
Lightcone

Daniela Cadamuro and Wojciech Dybalski

Abstract. It is physically expected that plane-wave configurations of the
electron in QED induce disjoint representations of the algebra of the
electromagnetic fields. This phenomenon of velocity superselection, which
is one aspect of the infrared problem, is mathematically well established in
non-relativistic (Pauli–Fierz type) models of QED. We show that velocity
superselection can be resolved in such models by restricting the electron
states to the subalgebra of the fields localized in the future lightcone. This
actually follows from a more general statement about equivalence of GNS
representations for coherent states of the algebra of the future lightcone
in free electromagnetism. Our analysis turns out to be meaningful in the
non-relativistic setting and provides evidence in favour of the Buchholz–
Roberts approach to infrared problems.

1. Introduction

In the framework of local relativistic QFT D. Buchholz and J. E. Roberts pro-
posed a novel approach to infrared problems, by focusing attention on mea-
surements performed in some future lightcone [5]. They defined a family of
charged representations, localizable in certain subsets of the future lightcone,
and developed for them a meaningful superselection theory in the spirit of the
Doplicher–Haag–Roberts (DHR) analysis. As the Buchholz–Roberts approach
invalidates the standard no-go theorems [3], also a resolution of the infraparti-
cle problem, i.e., a demonstration of a sharp mass-shell for the electron, was
posed as a question for future research in [5]. It was later shown by S. Alazzawi
and one of the present authors in [1] that in the absence of the infraparticle
problem one can construct Compton scattering states in the Buchholz–Roberts
representations of QED. However, the question of a sharp mass of the electron
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was not addressed in this work and it appears to be too specific to tackle it in
the axiomatic setting. On the other hand, concrete non-perturbative models
of QED, amenable to a rigorous mathematical treatment, are non-relativistic
due to severe ultraviolet problems. As the algebra of observables localized in a
lightcone is a priori not available in such models, they may not appear suitable
to test the Buchholz–Roberts approach. It is the goal of the present paper to
show that such a conclusion would in fact be pre-mature. We consider the well-
established property of velocity superselection in non-relativistic QED, which
says that plane-wave configurations of the electron with distinct velocities in-
duce disjoint representations of the algebra of the electromagnetic fields. We
show that a restriction to the subalgebra of the future lightcone is meaningful
in this context and that the phenomenon of velocity superselection disappears
after such restriction. This means that the plane-wave configurations become
coherent and can, in principle, be superposed into normalizable states of the
electron with sharp mass. However, this latter step is not considered in this
work.

Let us explain in non-technical terms how velocity superselection is de-
fined in models of non-relativistic QED and how we resolve it by restriction
to a lightcone. The Hilbert space of the model is H = L2(R3) ⊗ Fph, where
L2(R3) carries the degrees of freedom of a spinless electron and Fph is the Fock
space of the physical photon states. The Hamiltonian has the textbook form
(cf. [25])

H :=
1
2
(−i∇xxx + α̃1/2AAA(xxx))2 + Hph, (1.1)

where α̃ > 0 is the coupling constant, xxx is the position of the electron, AAA
is the electromagnetic potential in the Coulomb gauge with fixed ultraviolet
regularization, and Hph is the Hamiltonian of free photons. Due to the transla-
tion invariance, we can decompose H into the fiber Hamiltonians HPPP at fixed
momentum PPP :

H = Π∗
(∫ ⊕

HPPP d3PPP

)
Π, (1.2)

where Π is a certain unitary map. The Hamiltonians HPPP , given by (4.1), are
self-adjoint operators acting on the so called fiber Fock space which we denote
by F . A manifestation of the infraparticle problem in this model is the absence
of the ground states of HPPP , which is known for small α̃ and for PPP �= 0 in some
ball S around zero [9,17]. On the other hand, for any infrared cutoff σ > 0 in
the interaction, the resulting fiber Hamiltonians HPPP,σ do have (normalized)
ground states ΨPPP,σ in the same region of parameters α̃,PPP . Although these
vectors tend weakly to zero as σ → 0 [9], they define states on a certain
C∗-algebra A ⊂ B(F):

ωPPP (A) = lim
σ→0

〈ΨPPP,σ, AΨPPP,σ〉, A ∈ A. (1.3)

These states can be interpreted as plane-wave configurations of the electron
moving with momentum PPP . It is well known that in (1.1), and in similar
models of non-relativistic QED, the GNS representations πPPP of the states ωPPP
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are disjoint for different values of PPP ∈ S [6,7,9,13,19]. To our knowledge, this
mathematical formulation of velocity superselection was first introduced by
Fröhlich in [13]. In our recent work [6] we showed that all the states {ωPPP }PPP∈S
belong to a suitably defined equivalence class, similar in intention to the charge
classes from [5]. We also could resolve the velocity superselection by inserting
certain infravacuum automorphisms [20] between the ‘bare electron’ and ‘soft-
photon dressing’ constituting the states ωPPP . In the present paper we cure
velocity superselection in a more geometric manner, which we now briefly
explain.

It follows from the proof of Proposition 5.1 that the choice of the algebra
A in (1.3) is largely arbitrary, as long as it acts irreducibly on F and the states
(1.3) are well-defined. In our paper we choose as A the algebra of observables
of the free electromagnetic field. As this theory is local and relativistic, we
have a subalgebra A(V+) ⊂ A of the fields localized in the future lightcone.
While πPPP , πPPP ′ are disjoint as representations on the full algebra A, we show
that they are unitarily equivalent after restriction to A(V+). Actually we even
show that πPPP are lightcone normal, i.e., unitarily equivalent to the vacuum
representation πvac after restriction to the lightcone.

Let us explain the idea behind the proof in heuristic terms: Consider the
formal expression

WPPP := exp

(
i

α̃1/2

(2π)3/2

∫ ∞

0

dt ∇EPPP · AAA(g)(−t − u,−∇EPPP t)

)
, (1.4)

where EPPP denotes the infimum of the spectrum of HPPP , g ∈ C∞
0 (R3) is a

smearing function, and u > 0 is sufficiently large. The problem of convergence
of the t-integral above will be left aside in this introductory discussion. Up
to a phase and the shift u, the expression WPPP is the incoming Dyson wave
operator for the electromagnetic field interacting with an external current.
As expected, this current corresponds to an electron moving with velocity
∇EPPP , whose charge distribution is described by g, (cf. [11, Section 6]). Using
standard results from [7,9] on the states (1.3), it is easily seen that their GNS
representations πPPP are unitarily equivalent to πvac(WPPP · W ∗

PPP ). We show that
all πPPP , PPP ∈ S, are unitarily equivalent to πvac by verifying that WPPP commute
with A(V+). If AAA was a local field, the expression WPPP would clearly be localized
in the backward lightcone. Since this is not the case, we need one more step:
using EEE = −∂tAAA we express AAA as an integral of the free electric field EEE, i.e.,

WPPP = exp

(
− i

α̃1/2

(2π)3/2

∫ ∞

0

dt

∫ ∞

t

dτ ∇EPPP · EEE(g)(−τ − u, −∇EPPP t)

)
, (1.5)

which is manifestly localized in the backward lightcone V−. Now by the Huyg-
hens principle A(V−) ⊂ A(V+)′ so we obtain lightcone normality of πPPP .

The above intuitive arguments can be made rigorous by a careful control
of the t-integrals in (1.5). As this discussion is quite technical, we postpone it
to Appendix A. In Section 3 we give a less technical but also less insightful
complex function argument, relying heavily on the fact that πvac(WPPP · W ∗

PPP ) is a
coherent state. Although coherent states are well studied [24], their behaviour
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under restrictions to lightcones seems to be a ‘forgotten chapter,’ perhaps
familiar to some experts but never published. We believe that there is a good
reason to revisit this subject. Namely, the general discussion of Buchholz and
Roberts [5] may suggest that all the coherent states from [24] with the usual
infrared singularity are lightcone normal. We show in Theorem 3.1 that this is
not the case. Specifically, consider functions of the form

vvv(kkk) :=
i

|kkk|3/2
F (|kkk|)hhh(k̂kk), (1.6)

where F : R+ → C is Hölder continuous at zero, |kkk|−1/2F is square-integrable
outside zero and hhh ∈ L2(S2;R3) is nonzero and transverse. Then coherent state
representations given on Weyl operators by πvvv(W (fff)) := e−2iIm〈vvv,fff〉πvac(W (fff))
are lightcone normal if and only if

ImF (0) = 0. (1.7)

As coherent states πvac(WPPP · W ∗
PPP ) discussed above satisfy this condition, this

general result gives lightcone normality of the states πPPP and the absence of
velocity superselection on the lightcone algebra. In the same time, Theorem 3.1
raises the question if coherent states with ImF (0) �= 0 are relevant for infrared
problems. We remark here that coherent states considered in [12], related to
certain gauge transformations in external current QED, violate condition (1.7).
However, as hhh of (1.7) is a distribution in this case, Theorem 3.1 does not apply
directly. A further analysis of this issue, which is left for future research, may
help to understand if different gauges can be distinguished inside the future
lightcone. This in turn may shed light on the limitations of the Buchholz–
Roberts approach.

2. Free Electromagnetic Field

We set L2(R3;C3) := L2(R3) ⊗ C
3 and denote the scalar product by 〈 · , · 〉.

The single-photon Hilbert space h is spanned by the transverse functions

L2
tr(R

3;C3) := {fff ∈ L2(R3;C3) |kkk · fff(kkk) = 0 a.e.} (2.1)

and we denote by Ptr : L2(R3;C3) → L2(R3;C3) the orthogonal projection
on L2

tr(R
3;C3). We set k̂kk := kkk/|kkk|, write S2 for the unit sphere in R

3 and
introduce the polarization vectors S2 
 k̂kk �→ εεε±(k̂kk) ∈ S2, given by, e.g., [22]

εεε+(k̂kk) =
(k̂2,−k̂1, 0)√

k̂2
1 + k̂2

2

, εεε−(k̂kk) = k̂kk × εεε+(k̂kk), (2.2)

which satisfy kkk ·εεε±(k̂kk) = 0 and εεε+(k̂kk) ·εεε−(k̂kk) = 0 for k̂kk = (k̂1, k̂2, k̂3) ∈ S2. With
the help of these vectors we can write

(Ptrfff)(kkk) =
∑
λ=±

(
fff(kkk) · εεελ(k̂kk)

)
εεελ(k̂kk) (2.3)
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and note that the right-hand side of the latter equality is actually meaningful
for any function fff : R3 → C

3. For a given choice of the polarization vectors
we can identify L2

tr(R
3;C3) with L2(R3;C2) via

L2
tr(R

3;C3) 
 fff �→ (f+, f−) ∈ L2(R3;C2), f± := εεε± · fff. (2.4)

Next, we denote by F the symmetric Fock space over h := L2
tr(R

3;C3) �
L2(R3;C2):

F := ⊕∞
n=0F (n), F (n) := Symn(h⊗n), F (0) = CΩ. (2.5)

The dense domain of finite particle vectors will be denoted by F0 and DS ⊂ F0

will denote the subspace of finite particle vectors with Schwartz-class wave
functions.

Let a(∗)( · ) be the creation and annihilation operators on this Fock space
and a

(∗)
λ (kkk) the improper creation and annihilation operators on F such that

[aλ(kkk), a∗
λ′(kkk′)] = δλλ′δ(kkk −kkk′) and all other commutators vanish. These oper-

ators are related by a∗(fff) =
∑

λ=±
∫

d3kkk a∗
λ(kkk) (εεελ(k̂kk) · fff(kkk)), for fff ∈ h.

Now we define the electromagnetic potential in the Coulomb gauge as an
operator valued distribution on Fock space1

AAA(t,xxx) :=
∑
λ=±

∫
d3kkk√|kkk| εεελ(k̂kk)

(
ei|kkk|t−ikkk·xxxa∗

λ(kkk) + e−i|kkk|t+ikkk·xxxaλ(kkk)
)
. (2.6)

More precisely, for any fff ∈ D(R4;R3), (the space of smooth, compactly sup-
ported functions from R

4 to R
3), the expression

AAA(fff) :=
∫

dtd3xxxAAA(t,xxx) · fff(t,xxx) (2.7)

defines an essentially self-adjoint operator on F0, whose self-adjoint extension
will be denoted by the same symbol (cf. [23, Section X.7]). The same applies
to the electromagnetic fields, which are defined as distributions by

EEE(t,xxx) = −∂tAAA(t,xxx), BBB(t,xxx) = rotAAA(t,xxx). (2.8)

In contrast to the electromagnetic potential above, the electromagnetic
fields are Wightman fields. They give rise to a Haag–Kastler net of local C∗-
algebras which is constructed in a standard manner: For any double cone2

O ⊂ R
4 we define the local algebra A(O) as the C∗-algebra generated by

exponentials of the smeared fields:

A(O) := C∗{ei(EEE(fffe)+BBB(fffb)) | suppfff e, suppfffb ⊂ O }. (2.9)

The algebras associated with any (possibly unbounded) open regions U are
obtained by the C∗-inductive limit, i.e.,

A(U) :=
⋃

O⊂U
A(O)

‖ · ‖
. (2.10)

1We skip the usual normalization constant 1
(2π)3/2

1√
2
for consistency with [9].

2A double cone is a spacetime translate of a set Or := { (t,xxx) ∈ R
4 | |t| + |xxx| < r}, r > 0.

We also say that Or := {xxx ∈ R
3 | |xxx| < r} is the base of Or.
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This gives, in particular, the quasi-local algebra A := A(R4) and the algebras
A(V±) of the future (+) and backward (−) open lightcone with a tip at zero.

The net of algebras O �→ A(O) is local, i.e., A(O1) ⊂ A(O2)′, where
O1 and O2 are spacelike-separated and the prime denotes the commutant in
B(F). Even more importantly, the Huyghens principle holds, that is,

A(V−) ⊂ A(V+).′ (2.11)

We will also use the translation covariance property, which gives

eiHpht−iPPPph·xxxA(O)e−iHpht+iPPPph·xxx = A(O + (t,xxx)), (2.12)

where the energy-momentum operators

Hph :=
∑
λ=±

∫
d3kkk |kkk| a∗

λ(kkk)aλ(kkk), PPP ph :=
∑
λ=±

∫
d3kkkkkk a∗

λ(kkk)aλ(kkk) (2.13)

are essentially self-adjoint on DS and their self-adjoint extensions are denoted
by the same symbol.

It will be convenient to express the algebras above as CCR algebras in the
Fock representation. For this purpose, for any fff e, fffb ∈ D(R4;R3), we write

fff(kkk) := −i(2π)2
(

|kkk|1/2Ptrf̃ff e(|kkk|, kkk) + |kkk|−1/2(kkk × f̃ffb(|kkk|, kkk))

)
, (2.14)

where tilde denotes the Fourier transform3. We define the real-linear vector
spaces

L(O) := {fff | suppfff e, suppfffb ⊂ O }, L(U) :=
⋃

O⊂U
L(O) (2.15)

and equip them with the symplectic form σ(fff1, fff2) = Im〈fff1, fff2〉. Then W (fff) :=
ei(a∗(fff)+a(fff)) satisfy the Weyl relations

W (fff1)W (fff2) = e−iσ(fff1,fff2)W (fff1 + fff2), W (fff)∗ = W (−fff). (2.16)

We note that A(O) = CCR(L(O)), A = CCR(L) and A(V±) = CCR(L(V±)),
where CCR(L̃) denotes the C∗-algebra generated by W (fff), fff ∈ L̃. Since
L := L(R4) is dense in L2

tr(R
3;C3), the quasi-local algebra A acts irreducibly

on F . The defining representation of A will be denoted πvac. It is the GNS
representation of the vacuum state ωvac( · ) := 〈Ω, · Ω〉. We say that a given
representation π of A is lightcone normal if

π � A(V+) � πvac � A(V+), (2.17)

where � denotes the unitary equivalence. Lightcone normality of states is
defined with respect to their GNS representations.

3We use the conventions for the Fourier transform from [23], i.e., f̃(k0, kkk) =
1

(2π)2

∫
dtd3xxx eik0t−ikkk·xxxf(t,xxx).
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3. Lightcone Normality of Coherent States

In this section we investigate lightcone normality of coherent states on the
algebra of the free electromagnetic field. Although coherent states have been
well studied, e.g., by Roepstorff [24], we are not aware of any treatment of
this particular aspect in the literature. Theorem 3.1 gives an exact charac-
terization of lightcone normality for coherent states with the usual infrared
singularity. Our analysis reveals that the lightcone normality for such states is
not automatic but requires an additional ‘reality assumption’ on the defining
functional.

Consider functions of the form

vvv(kkk) :=
i

|kkk|3/2
F (|kkk|)hhh(k̂kk). (3.1)

Here hhh ∈ L2
tr(S

2,R3), hhh �= 0, and F : R+ → C is a measurable function which
satisfies
(a) Hölder continuity at zero, i.e., |F (0) − F (|kkk|)| ≤ c|kkk|ε for some ε > 0 and

all |kkk| ≤ 1,
(b)

∫ ∞
σ

d|kkk||kkk|2∣∣ 1
|kkk|3/2 F (|kkk|)∣∣2 < ∞ for any σ > 0.

As vvv are not square-integrable, it is convenient to introduce an approximating
sequence of L2-functions:

vvvσ(kkk) =
i

|kkk|3/2
χ[σ,∞)(|kkk|)F (|kkk|)hhh(k̂kk), (3.2)

where χΔ is the characteristic function of a set Δ. Now we consider coherent
automorphisms of A defined by

αvvv(W (fff)) := lim
σ→0

W (vvvσ)W (fff)W (vvvσ)∗ = e−2i Im〈vvv,fff〉W (fff). (3.3)

The main result of this section is now a characterization of lightcone normality
of the coherent states above under mild regularity conditions.

Theorem 3.1. For vvv as in (3.1), satisfying properties (a), (b), we have

πvac ◦ αvvv � A(V+) � πvac � A(V+), (3.4)

if and only if ImF (0) = 0.

Proof. First suppose that ImF (0) = 0. Then we can find a real-valued function
G ∈ C∞

0 (R), supported in the interior of the negative real axis, such that
G̃(0) = F (0) and define an auxiliary function

v̂vv(kkk) =
i

|kkk|3/2
G̃(|kkk|)hhh(k̂kk). (3.5)

It follows from properties (a), (b) and F (0) = G̃(0) that vvv − v̂vv ∈ L2
tr(R

3;C3).
Thus, by standard arguments (e.g., Lemma 1 of [24]), αvvv = AdU ◦αv̂vv for some
unitary U . Therefore, to conclude the proof of the if-part of Theorem 3.1,
it suffices to show that αv̂vv � A(V+) = id � A(V+), where id is the identity
mapping. This is a consequence of (3.3) and Lemma 3.2.
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Now suppose that ImF (0) �= 0. Then F = ReF + iImF gives the corre-
sponding decomposition vvv = vvv0 − v̌vv, where vvv0 is as in the first part of the proof
and

v̌vv(kkk) :=
1

|kkk|3/2
(Im F )(|kkk|)hhh(k̂kk). (3.6)

Let us show that αv̌vv is not lightcone normal by the method of central sequences.
Suppose, by contradiction, that πvac ◦ αv̌vv � A(V+) � πvac � A(V+) for some
unitary U on F . This implies

ωvac ◦ αv̌vv � A(V+) = ωvac ◦ AdU � A(V+). (3.7)

Since the representation πvac of A is irreducible, then by [21, Theorem 10.2.1]
there exists Ũ ∈ A such that Ũ∗Ω = U∗Ω. Thus we can write, for all A ∈
A(V+),

ωvac(αv̌vv(A)) = ωvac(ŨAŨ∗) = ωvac(Ũ [A, Ũ∗]) + ωvac(A). (3.8)

Now let fff ∈ L(V+). We introduce the sequence fffθ(kkk) := θ−3/2fff(kkk/θ), θ > 0,
and set A = W (fffθ) in (3.8). By Lemma 3.3, we have

lim
θ→0

(
e−2iIm〈v̌vv,fffθ〉 − 1

)
ωvac(W (fffθ)) = 0. (3.9)

Since ωvac(W (fffθ)) is constant in θ and nonzero, and since we could always
change fffθ by a multiplicative constant, we arrive at a contradiction, consider-
ing Lemma 3.4.

Finally, recalling that αv̌vv = αvvv0 ◦ α−vvv and that αvvv0 is lightcone normal
by the first part of the proof, we conclude that αvvv cannot be lightcone normal
if ImF (0) �= 0. �

Lemma 3.2. For v̂vv as in (3.5), with G ∈ C∞
0 (R) real-valued and supported in

the interior of the negative real axis, and any fff ∈ L(V+)

Im〈v̂vv,fff〉 = 0. (3.10)

Proof. We write

fff(kkk) := −i(2π)2
(

|kkk|1/2Ptrf̃ff e(|kkk|, kkk) + |kkk|−1/2(kkk × f̃ffb(|kkk|, kkk))

)
=: fff e + fffb

and consider the resulting two contributions:

Im〈v̂vv,fff e〉 = − (2π)2

2i

∫
dΩ(k̂kk)hhh(k̂kk)

(∫ ∞

0

dρ ρG̃(−ρ)f̃ff e(ρ, k̂kkρ)

+
∫ 0

−∞
dρ ρG̃(−ρ)f̃ff e(ρ, k̂kkρ)

)

= − (2π)2

2i

∫
dΩ(k̂kk)hhh(k̂kk)

∫
R

dρ ρG̃(−ρ)f̃ff e(ρ, k̂kkρ). (3.11)
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Now we want to close the contour in the upper complex half-plane. We write
z = ρ + iη and note

f̃ff e(z, k̂kkz) =
1

(2π)2

∫
e(iρ−η)(t−k̂kk·xxx)fff e(t,xxx)dtd3xxx. (3.12)

Since fff is supported in the future lightcone, we have t−k̂kk ·xxx ≥ δ > 0, uniformly
in k̂kk. Hence

|f̃ff e(z, k̂kkz)| ≤ Ce−ηδ. (3.13)

Moreover, considering that G is supported in (−∞,−R], for some R > 0, we
have

|G̃(−z)| ≤ Ce−Rη. (3.14)

Thus we can close the contour and conclude that Im〈v̂vv,fff e〉 = 0. To show that
Im〈v̂vv,fffb〉 = 0 we proceed analogously. �

Lemma 3.3. For C ∈ A and fffθ defined in (3.8) we have limθ→0 ‖[C,W (fffθ)]‖ =
0.

Proof. For any ε we can find an observable Cε localized in some double cone
O(ε) such that ‖C − Cε‖ ≤ ε. Thus we can write

|[C,W (fffθ)]‖ ≤ 2‖C − Cε‖‖W (fffθ)‖ + ‖[Cε,W (fffθ)]‖
≤ 2ε + ‖[Cε,W (fffθ)]‖. (3.15)

Now it suffices to show that for any fixed ε we have limθ→0 ‖[Cε,W (fffθ)]‖ =
0. For this purpose, we note that W (fffθ) ∈ A(V+ + θe+), with some e+ ∈
V+. For sufficiently large λ, the vector λe+ is in the future of O(ε) and thus
‖[Cε,W (fffθ)]‖ = 0 by the Huyghens principle (2.11). This concludes the proof.

�

Lemma 3.4. Let v̌vv(kkk) := 1
|kkk|3/2 F (|kkk|)hhh(k̂kk), where F,hhh are as in (3.1) and in

addition F (0) is nonzero and real. Then, for any hhh �= 0 there exists fff ∈ L(V+)
such that

lim
θ→0

Im〈v̌vv,fffθ〉 �= 0. (3.16)

Proof. Proceeding as in computation (3.11) we get

Im〈v̌vv,fff e〉 = − (2π)2

2i

∫
dΩ(k̂kk)hhh(k̂kk)

(∫ ∞

0

dρ iρF (ρ)f̃ff e(ρ, k̂kkρ)

−
∫ 0

−∞
dρ iρF (−ρ)f̃ff e(ρ, k̂kkρ)

)
. (3.17)

Setting fff e,θ(t,xxx) := θ2fff e(θt, θxxx) we obtain f̃ff e,θ(|kkk|, kkk) = θ−2f̃ff e(|kkk|/θ,kkk/θ) and

Im〈v̌vv,fff e
θ〉 = − (2π)2

2i

∫
dΩ(k̂kk)hhh(k̂kk)

(∫ ∞

0

dρ iρF (θρ)f̃ff e(ρ, k̂kkρ)
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−
∫ 0

−∞
dρ iρF (−θρ)f̃ff e(ρ, k̂kkρ)

)
. (3.18)

Now we use that F (0) is real to get in the limit θ → 0,

lim
θ→0

Im〈v̌vv,fffe
θ〉 = −(2π)2F (0)

∫
dΩ(k̂kk)hhh(k̂kk)

( ∫ ∞

0

dρ ρ Re
(
f̃ffe(ρ, k̂kkρ)

))
. (3.19)

In the remaining part of the proof we will exhibit fff e ∈ L(V+) such that (3.19)
is different from zero thus proving our claim with f̃ffb = 0.

The integration in ρ in (3.19) can be computed by means of Fourier
transforms of distributions [16, Sec. 3], and its real part yields

Re
( ∫ ∞

0

dρ ρ f̃ffe(ρ, k̂kkρ)
)

= − 1

(2π)2

∫
V+

dtd3xxxfff e(t,xxx)(t − k̂kk · xxx + i0)−2. (3.20)

Note that since fff e is supported inside the future light cone, there is no singu-
larity at t − k̂kk ·xxx = 0 in the above expression, and the regularization there can
be dropped. Inserting into (3.19), we have

lim
θ→0

Im〈v̌vv,fff e
θ〉 = F (0)

∫
dΩ(k̂kk)hhh(k̂kk)

∫
V+

dtd3xxxfff e(t,xxx)(t − k̂kk · xxx)−2, (3.21)

Now, since the function

V+ 
 (t,xxx) �→
∫

dΩ(k̂kk)hhh(k̂kk)(t − k̂kk · xxx)−2 (3.22)

is analytic in (t,xxx) ∈ V+ as the integration region is compact, then it either does
not vanish except on a null set, or it vanishes identically. In the first case, one
can find fff e such that (3.19) is nonzero, finishing the proof. In the second case,
we will construct a contradiction. We expand the function λ �→ (t − λk̂kk · xxx)−2

around λ = 0, and obtain∫
dΩ(k̂kk)hhh(k̂kk)(t − λk̂kk · xxx)−2 =

∞∑
�=0

(� + 1)t−�−2λ�

∫
dΩ(k̂kk)hhh(k̂kk)(k̂kk · xxx)�. (3.23)

If the right hand side vanishes identically for all (t,xxx) ∈ V+, it follows that

∀�,xxx :
∫

dΩ(k̂kk)hhh(k̂kk)(k̂kk · xxx)	 = 0. (3.24)

Now for xxx = eee3, the unit vector in the direction of the z-axis, we have in usual
spherical coordinates,

∀�, j :
∫

dΩ(k̂kk)hj(k̂kk) cos	 θ = 0, (3.25)

thus hj is orthogonal to all Y	0.
Since the representation of the rotation group is irreducible at every fixed

angular momentum �, we can use our choice of xxx to show orthogonality to all
rotated Y	0, and therefore to all Y	m. Thus hhh ≡ 0 which is a contradiction.

�
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4. Pauli–Fierz Model of Non-relativistic QED

Our aim is to apply the results from the previous section in the Pauli–Fierz
model of non-relativistic QED. We now summarize some known facts about
this model, as used in [6, Subsection 4.1]. By analogy with (2.6), we define
the quantized electromagnetic vector potential with infrared and ultraviolet
cutoffs 0 ≤ σ ≤ κ as the following operator on F0

AAA[σ,κ](xxx) :=
∑
λ=±

∫
d3kkk√|kkk|χ[σ,κ](|kkk|)εεελ(k̂kk)

(
e−ikkk·xxxa∗

λ(kkk) + eikkk·xxxaλ(kkk)
)
, (4.1)

where χΔ denotes the characteristic function of a set Δ. The fiber Hamiltonians
from the decomposition (1.2) are given by

HPPP,σ =
1
2
(PPP − PPP ph + α̃1/2AAA[σ,κ](0))2 + Hph, HPPP := HPPP,σ=0. (4.2)

They are self-adjoint, positive operators on a domain in F , which is inde-
pendent of PPP (see, e.g., [18,19,25]). The infima of the spectra of HPPP,σ, HPPP ,
denoted by EPPP,σ := inf Spec(HPPP,σ), EPPP := inf Spec(HPPP ) are rotation invariant
functions of PPP .

Now we recall some spectral results, mostly from [9,15], which will be
used in the next section. From now on we discuss the regime of low coupling
α̃ > 0 and momenta PPP restricted to the ball

S =
{
PPP ∈ R

3 | |PPP | <
1
3

}
. (4.3)

It is well known that for any σ > 0 the operators HPPP,σ have ground-states
ΨPPP,σ ∈ F , ‖ΨPPP,σ‖ = 1, so that EPPP,σ are eigenvalues. The dependence PPP �→
EPPP,σ is analytic for any fixed σ > 0 by the Kato perturbation theory. In
the limit σ → 0 the vectors ΨPPP,σ tend weakly to zero [9,10,13,14] and the
Hamiltonians HPPP do not have ground-states for PPP �= 0 [17]. To analyze this
phenomenon, one introduces the auxiliary vectors

ΦPPP,σ := W (−ivvvPPP,σ)ΨPPP,σ, W (−ivvvPPP,σ) = ea∗(vvvPPP ,σ)−a(vvvPPP ,σ), (4.4)

where vvvPPP,σ has the form

vvvPPP,σ(kkk) = α̃1/2Ptr

χ[σ,κ](|kkk|)
|kkk|3/2

∇EPPP,σ

1 − k̂kk · ∇EPPP,σ

, (4.5)

and we set k̂kk := kkk/|kkk| and ∇EPPP,σ := ∇PPP EPPP,σ. (By a slight abuse of notation,
we use in (4.4) the notation W (fff) also for fff which are not in the spaces (2.15).)
The following lemma collects some facts from [9,15].4

Lemma 4.1. Let α̃ > 0 be sufficiently small and PPP ∈ S. Then
(a) The function PPP �→ EPPP is rotation invariant, twice differentiable and has

a strictly positive second derivative with respect to |PPP |.
(b) limσ→0 ∂β

PPP EPPP,σ exists and equals ∂β
PPP EPPP for |β| ≤ 2.

4Precisely, for (a) and (b) see [15, Theorem III.3 and Corollary III.4], for (c) see [9, Eq. (III.2)
and formula (V.6)] and for (d) [9, Theorem III.1].
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(c) |∇EPPP,σ| ≤ vmax < 1 and |∇EPPP | ≤ vmax < 1 for some constant vmax,
uniformly in σ and in PPP ∈ S.

(d) ΦPPP := limσ→0 ΦPPP,σ exists in norm for a suitable choice of the phases of
ΨPPP,σ.

In the following we assume that the phases of ΨPPP,σ are fixed as in Lemma 4.1 (d).
Using Lemma 4.1 (b) we can define the pointwise limit

vvvPPP (kkk) := lim
σ→0

vvvPPP,σ(kkk) = α̃1/2Ptr

χ[0,κ](|kkk|)
|kkk|3/2

∇EPPP

1 − k̂kk · ∇EPPP

. (4.6)

We note that the expressions 1−k̂kk ·∇EPPP,σ and 1−k̂kk ·∇EPPP in the denominators
of (4.5) and (4.6) are different from zero by Lemma 4.1 (c). Furthermore, Ptr

acting in (4.6) on a function which is not in L2(R3;C3) is defined by the right-
hand side of (2.3). The fact that vvvPPP is not in L2

tr(R
3;C3) for 0 �= PPP ∈ S will

be important below.

5. Curing Velocity Superselection

Now let us consider a special example of the state (3.1) which is relevant in
the Pauli–Fierz model and related to the problem of velocity superselection.
On the CCR algebra A over the symplectic space L as introduced above, we
define

ωPPP (A) := lim
σ→0

〈ΨPPP,σ, AΨPPP,σ〉 = 〈ΦPPP , α−ivvvPPP
(A)ΦPPP 〉, A ∈ A, (5.1)

where the automorphism α−ivvvPPP
is defined as in (3.3) and vvvPPP,σ is given by

(4.5). These states describe plane-wave configurations of the electron with
velocity ∇EPPP . Now let πPPP be the GNS representation of ωPPP . By formula (5.1)
and standard arguments (see, e.g., [6, Lemma A.1]), we have

πPPP � πvac ◦ α−ivvvPPP
, (5.2)

where πvac is the defining Fock vacuum representation and � denotes unitary
equivalence. Thus, in particular, πPPP are irreducible representations.

The mathematical formulation of velocity superselection, consisting in
the disjointness of πPPP for distinct PPP , was introduced by Fröhlich in [13] and
established later by various authors in different models and for varying choices
of the algebra A [6,7,9,13,19]. From the argument below it is clear that the
details of the construction of A are largely arbitrary.

Proposition 5.1. Let PPP ,PPP ′ ∈ S, PPP �= PPP ′. Then πPPP and πPPP ′ are disjoint.

Proof. We adapt Lemma 1 of [24]. Suppose by contradiction that there is a
unitary U such that

πvac ◦ α−ivvvPPP
= AdU ◦ πvac ◦ α−ivvvPPP ′ ⇒ πvac ◦ α−i(vvvPPP −vvvPPP ′ ) = AdU ◦ πvac. (5.3)

Since L is dense and vvvPPP −vvvPPP ′ is not square-integrable, we can find a sequence
L 
 fffn → 0 in L2 such that

lim
n→∞ Im〈i(vvvPPP − vvvPPP ′), fffn〉 �= 0. (5.4)
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By evaluating both sides of the second relation in (5.3) on W (fffn) and using
that W (fffn) → I in the strong operator topology, we conclude the proof. �

The main result of this section is the following theorem, which says that
velocity superselection can be resolved by restriction to the future lightcone.

Theorem 5.2. For any PPP ,PPP ′ ∈ S we have πPPP � A(V+) � πPPP ′ � A(V+).

In view of (5.2), this is a consequence of Theorem 3.1. A different argument,
which is applicable only to representations πPPP , is given in Appendix A.

6. Conclusions

In this paper we showed that the problem of velocity superselection of the
electron can be resolved by restriction to the algebra of the future lightcone
V+. We considered only the lightcone with a tip at zero, but a generalization
to shifted lightcones is straightforward. As expected from the time-reversal
symmetry of QED, restriction to a backward lightcone V− +aaa, aaa ∈ R

4, has the
same effect. We showed that the GNS representations of A(V+) are unitarily
equivalent for a large class of coherent states, of which those in the Pauli–Fierz
model are an example. We are confident that analogous results hold in other
models of non-relativistic QED by suitably adapted arguments. For example
in the Nelson model, which describes the electron interacting with the mass-
less scalar field, already a counterpart of (1.4) would give an approximating
sequence localized in the backward lightcone, and a double-integral formula
(1.5) would not be needed.

Proceeding towards future research directions, we recall that there is a
more satisfactory concept of velocity superselection in non-relativistic QED,
which uses the algebra generated by [8]

Wout(h) := ei(a∗
out(h)+aout(h)), where a∗

out(h) = lim
t→∞

eitHa∗(e−it|kkk|h)e−itH (6.1)

and h are suitable functions. The representations induced by the infraparti-
cle scattering states on this algebra have a direct integral decomposition into
disjoint representations labelled by the electron’s asymptotic velocity. We con-
jecture that also in this context the algebra of the future lightcone can be
found, on which these representations are unitarily equivalent. Such analysis
may pave the way to suitably dressed Hamiltonians of non-relativistic QED,
for which the infraparticle problem disappears. We hope to come back to this
problem in a future investigation.
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A. An Alternative Proof of Theorem 5.2

Theorem 5.2 follows immediately from Lemmas A.1 and A.2.
First, we introduce an auxiliary function v̂vvPPP given by

v̂vvPPP := α̃1/2Ptr
g̃(kkk)e−iu|kkk|∇EPPP

|kkk|3/2(1 − ∇EPPP · k̂kk)
, (A.1)

where g : R3 → R is a smooth function with compact support, with g̃(000) = 1,
and u > 1 is so large that (−u,xxx) ∈ V− for all xxx ∈ supp g. Since vvvPPP − v̂vvPPP ∈
L2

tr(R
3;C3), we have by standard arguments (e.g., Lemma 1 of [24]):

Lemma A.1. α−ivvvPPP
◦ α−1

−iv̂vvPPP
acts by the adjoint action of a unitary on the C∗-

algebra A.

Now it suffices to prove the following:

Lemma A.2. The automorphism α−iv̂vvPPP
acts like the identity on A(V+).

Proof. We only need to show that α−iv̂vvPPP
(W (fff)) = W (fff) for all fff ∈ L(O)

and O ⊂ V+. As remarked in Introduction, this is achieved by approximating
v̂vvPPP with functions localized in the (standard) backward light cone, and using
timelike commutativity of the free electromagnetic field. Hence we define the
approximant, T > 0,

(v̂vvPPP,T )λ(kkk) := −α̃1/2

∫ T

0

dt

∫ T

t

dτ
√

|kkk|∇EPPP ·εεελ(k̂kk)g̃(kkk)e−i|kkk|ue−i(|kkk|τ−∇EPPP ·kkkt).

(A.2)
This suggests an approximating sequence for W (−iv̂vvPPP ),

W (−iv̂vvPPP,T ) = exp
(

− α̃1/2
∑
λ=±

∫ T

0

dt

∫ T

t

dτ

∫
d3kkk

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Figure 1. Integration region in Eq. (A.3)

(
√

|kkk|∇EPPP · εεελ(k̂kk)g̃(kkk)e−i|kkk|ue−i(|kkk|τ−∇EPPP ·kkkt)a∗
λ(kkk)) − h.c.

)
= exp

(
− iα̃1/2

∫ T

0

dt

∫ T

t

dτ
1

(2π)3/2
∇EPPP · EEE(g)

( − u − τ, −∇EPPP t
))

,

(A.3)

considering that with our conventions,

EEE(t,xxx) = −
∑
λ=±

∫
d3kkk

√
|kkk|εεελ(k̂kk)i

(
ei|kkk|t−ikkk·xxxa∗

λ(kkk) − e−i|kkk|t+ikkk·xxxaλ(kkk)
)
. (A.4)

The region of integration in (A.3) is depicted in Figure 1. As remarked
above, u is chosen so large that −iv̂vvPPP,T is contained in L(V−) and thus
W (−iv̂vvPPP,T ) ∈ A(V−) (see Lemma B.2). Therefore Im〈−iv̂vvPPP,T , fff〉 = 0 if fff ∈
L(O) ⊂ L(V+), see (2.11). It now suffices to check that limT→∞〈v̂vvPPP,T , fff〉 =
〈v̂vvPPP , fff〉 for all fff ∈ L(O). Then, Im〈−iv̂vvPPP , fff〉 = 0 and hence α−iv̂vvPPP

(W (fff)) =
W (fff) by its definition (3.3).

To that end, we first perform the τ - and t-integrations in (A.2), which
give

(v̂vvPPP,T )λ(kkk) = (v̂vvPPP )λ(kkk)

−α̃1/2∇EPPP · εεελ(k̂kk)g̃(kkk)e−i|kkk|ue−i|kkk|T 1
|kkk|3/2

1

∇EPPP · k̂kk
[
ei∇EPPP ·kkkT − 1

]

−α̃1/2∇EPPP · εεελ(k̂kk)g̃(kkk)
1

|kkk|3/2(1 − ∇EPPP · k̂kk)
e−i|kkk|ue−i(|kkk|−∇EPPP ·kkk)T .

(A.5)
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We need to show that the last two terms in (A.5) vanish weakly in the limit
T → ∞. The last of these terms gives a contribution to 〈v̂vvPPP,T , fff〉 of

−
∑
λ=±

∫
d3kkk α̃1/2∇EPPP · εεελ(k̂kk)g̃(kkk)

1

|kkk|3/2(1−∇EPPP · k̂kk)
e−i|kkk|ue−i(|kkk|−∇EPPP ·kkk)T fλ(kkk).

(A.6)
This vanishes in the limit T → ∞ due to the dominated convergence for the an-
gular integration in dΩ(k̂kk), and by applying the Riemann–Lebesgue lemma to
the one-dimensional integration in d|kkk| with oscillating factor e−i|kkk|(1−∇EPPP ·k̂kk)T .
For the relevant majorants, note that g̃ is Schwartz and that the integrand be-
haves like |kkk|−3/2 at small kkk, which remains integrable with respect to d3kkk.

The second term of (A.5) gives the contribution

−
∑
λ=±

∫
d3kkk α̃1/2∇EPPP · εεελ(k̂kk)g̃(kkk)e−i|kkk|ue−i|kkk|T

· 1
|kkk|3/2

1

∇EPPP · k̂kk
[
ei∇EPPP ·kkkT − 1

]
fλ(kkk)

= −iα̃1/2T
∑
λ=±

∫ 1

0

dβ

∫
dΩ(k̂kk)

∫ ∞

0

d|kkk|∇EPPP · εεελ(k̂kk)g̃(kkk)e−i|kkk|u

·|kkk|3/2fλ(kkk)e−i|kkk|T (1−βk̂kk·∇EPPP ). (A.7)

Integrating by parts twice in |kkk| we obtain:

iα̃1/2

T

∑
λ=±

∫ 1

0

dβ

∫
dΩ(k̂kk)

∫ ∞

0

d|kkk|

∂2

∂|kkk|2
[
∇EPPP · εεελ(k̂kk)g̃(kkk)e−i|kkk|u|kkk|3/2fλ(kkk)

]
(1 − βk̂kk · ∇EPPP )2

e−i|kkk|T (1−βk̂kk·∇EPPP ) (A.8)

up to boundary terms which vanish for any fixed k̂kk since |kkk|3/2fλ(kkk) vanishes
as |kkk| → 0 together with its derivative with respect to |kkk| (cf. Eq. (2.14)), and
since εεελ(k̂kk) are chosen independent of |kkk|. We estimate the above integral as
follows:

|(A.8)| ≤ 2α̃1/2u2|∇EPPP |
Tc2

∑
λ=±

∫
dΩ(k̂kk)

∫ ∞

0

d|kkk|
∑

	=0,1,2

∣∣∣ ∂	

∂|kkk|	
[
|kkk|3/2g̃(kkk)fλ(kkk)

]∣∣∣
(A.9)

using that 1 − βk̂kk · ∇EPPP ≥ 1 − |β||k̂kk||∇EPPP | =: c. Taking into account that
fff ∈ L(O) and that g̃ is Schwartz, one finds that the second derivative is
integrable in |kkk| with a bound for the integral uniform in k̂kk. Hence the integrals
are all finite, and (A.9) vanishes in the limit T → ∞. �

B. Equivalence of Two Definitions of the Symplectic Space

Lemma B.2 from this appendix is used in the proof of Lemma A.2.
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Let Or ⊂ R
3 be an open ball of radius r centered at zero and let J be

the complex conjugation in configuration space. Following [4] we define the
symplectic space

LBJ :=
⋃
r>0

LBJ(Or), where (B.1)

LBJ(Or) := (1 + J)|kkk|−1/2(ikkk × D̃(Or;R3)) + (1 − J)|kkk|1/2PtrD̃(Or;R3). (B.2)

We recall that the spaces L(O) and the symplectic space L were defined in
(2.15) and note the following lemma. (A similar discussion of the scalar field
can be found in [2, Section 7.4.1]).

Lemma B.1. For any r > 0 we have LBJ(Or) = L(Or) where Or is the double
cone centered at zero whose base is Or. Hence, LBJ = L.

Proof. In order to show L(Or) ⊂ LBJ(Or), we decompose fff given in (2.14)
into its real and imaginary part in configuration space

fff =
(1 + J)

2
fff +

(1 − J)
2

fff. (B.3)

Next, exploiting that Ptrfff = − 1
|kkk|2kkk × [kkk × fff ], we obtain

(1 + J)
2

fff(kkk) = (−i)(2π)2|kkk|−1/2kkk ×
[
kkk ×

(
− f̃ff e(|kkk|, kkk) − f̃ff e(|kkk|,−kkk)

2|kkk|
)

+
f̃ffb(|kkk|, kkk) + f̃ffb(|kkk|,−kkk)

2

]
. (B.4)

It is easy to see that

f̃ff e(|kkk|, kkk) − f̃ff e(|kkk|,−kkk)
2|kkk| =

i

(2π)2

∫
dtd3xxxfff e(t,xxx)e−ikkk·xxx sin(|kkk|t)

|kkk| , (B.5)

f̃ffb(|kkk|, kkk) + f̃ffb(|kkk|,−kkk)
2

=
1

(2π)2

∫
dtd3xxxfffb(t,xxx)e−ikkk·xxx cos(|kkk|t). (B.6)

The rapid decay of (B.5) and (B.6) as |kkk| → ∞ implies smoothness of their
inverse Fourier transforms. By choosing the polar coordinates, we compute the
inverse Fourier transform of (B.6):

1
(2π)2

∫
dtd3xxxfffb(t,xxx)

∫
d3kkk e−ikkk·(xxx−yyy) cos(|kkk|t) (B.7)

= 4π
1

(2π)2

∫
dtd3xxx

fffb(t,xxx)
|xxx − yyy|

∫ ∞

0

d|kkk| |kkk| cos(|kkk|t) sin(|kkk||xxx − yyy|)

=
1
π

∫
dtd3xxx

fffb(t,xxx)
|xxx − yyy| δ′(t − |xxx − yyy|).

By this formula, suppfffb ⊂ Or implies that the expression in (B.7) is supported
in Or in the yyy variable. An analogous argument applies to (B.5). Also, the
analysis of the second term on the right-hand side of (B.3) follows the same
steps.
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To justify L(Or) ⊃ LBJ(Or), we choose an arbitrary fi ∈ D(Or;R) and
consider a smooth solution of the wave equation of the form

gi(t,xxx) =
1

(2π)3/2

∫
d3kkk eikkk·xxx sin(|kkk|t)

|kkk| f̃i(kkk), (B.8)

which is compactly supported in space for any fixed t and satisfies gi(0,xxx) = 0,
(∂tgi)(0,xxx) = fi(xxx). Thus we can write∫

d3xxx Ei(0,xxx)fi(xxx) =
∫

d3xxx
(
Ei(0,xxx)(∂tgi)(0,xxx) − (∂tEi)(0,xxx)gi(0,xxx)

)
=

∫
d3xxx Ei(t,xxx)

↔
∂ tgi(t,xxx)

=
∫

dτ α(τ)
∫

d3xxx Ei(τ,xxx)
↔
∂ τgi(τ,xxx), (B.9)

where in the last step we made use of the time-invariance of the symplectic
form on the space of solutions of the wave equation to integrate with α ∈
D(R;R) such that

∫
dτ α(τ) = 1, whose support is chosen in a sufficiently

small neighbourhood of zero. Considering that an analogous equality holds for
the components of the magnetic field and acting with both sides of (B.9) on
the vacuum, we conclude from the finite propagation speed of gi that L(Or) ⊃
LBJ(Or). �

As an application of Lemma B.1, we show that the expression in (A.3) is
an element of the C∗-algebra A(V−) (and not only of its weak closure).

Lemma B.2. In the notation from the proof of Lemma A.2, we have

W (−iv̂vvPPP,T )

= exp
( −iα̃1/2

(2π)3/2

∫ T

0

dt

∫ T

t

dτ ∇EPPP · EEE(g)
( − u − τ,−∇EPPP t

)) ∈ A(V−).

(B.10)

Proof. We note the equality

ei|k|(u+T )(−iv̂vvPPP,T ) =

∫ T

0

dt

∫ T

t

dτ vvvint(τ, t), (B.11)

vvvint(τ, t) := iα̃1/2
√

|kkk|Ptr∇EPPP g̃(kkk)ei|kkk|T e−i(|kkk|τ−∇EPPP ·kkkt). (B.12)

We recall that u > 1 is chosen so large that supp g ⊂ Ou. Following the steps
from the proof of Lemma B.1, one can show that the integral on the right-
hand side of (B.11) belongs to LBJ(Ou+T ). Considering this, by Lemma B.1
it belongs to L(Ou+T ), where Ou+T is the double cone whose base is Ou+T .
Then, by equality (B.11), −iv̂vvPPP,T ∈ L(V−). �

References

[1] Alazzawi, S., Dybalski, W.: Compton scattering in the Buchholz–Roberts frame-
work of relativistic QED. Lett. Math. Phys. 107, 81–106 (2017)



Vol. 21 (2020) Curing Velocity Superselection in Non-relativistic QED 2895

[2] Bostelmann, H.: Lokale Algebren und Operatorprodukte am Punkt. PhD thesis,
University of Göttingen (2000)

[3] Buchholz, D.: Gauss’ law and the infraparticle problem. Phys. Lett. B 174, 331–
334 (1986)

[4] Buchholz, D., Jacobi, P.: On the nuclearity condition for massless fields. Lett.
Math. Phys. 13, 313–323 (1987)

[5] Buchholz, D., Roberts, J.E.: New light on infrared problems: sectors, statistics,
symmetries and spectrum. Commun. Math. Phys. 330, 935–972 (2014)

[6] Cadamuro, D., Dybalski, W.: Relative normalizers of automorphism groups,
infravacua and the problem of velocity superselection in QED. Commun. Math.
Phys. 372, 769–796 (2019)
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